WO2019136718A1 - 数据发送方法、装置及系统 - Google Patents

数据发送方法、装置及系统 Download PDF

Info

Publication number
WO2019136718A1
WO2019136718A1 PCT/CN2018/072486 CN2018072486W WO2019136718A1 WO 2019136718 A1 WO2019136718 A1 WO 2019136718A1 CN 2018072486 W CN2018072486 W CN 2018072486W WO 2019136718 A1 WO2019136718 A1 WO 2019136718A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
area
parameter
power parameter
path loss
Prior art date
Application number
PCT/CN2018/072486
Other languages
English (en)
French (fr)
Inventor
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202010540189.9A priority Critical patent/CN111698769B/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to AU2018401508A priority patent/AU2018401508B2/en
Priority to EP18899473.5A priority patent/EP3713352B1/en
Priority to EP22158911.2A priority patent/EP4027570A1/en
Priority to ES18899473T priority patent/ES2914382T3/es
Priority to JP2020537712A priority patent/JP7178414B2/ja
Priority to CN201880067322.4A priority patent/CN111226478A/zh
Priority to KR1020207022492A priority patent/KR102604940B1/ko
Priority to PCT/CN2018/072486 priority patent/WO2019136718A1/zh
Priority to TW108101246A priority patent/TWI797233B/zh
Publication of WO2019136718A1 publication Critical patent/WO2019136718A1/zh
Priority to US16/898,845 priority patent/US11109327B2/en
Priority to US17/404,730 priority patent/US11785560B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a data sending method, apparatus, and system.
  • the 5th generation mobile communication (The 5th generation, 5G) technology introduces Ultra Reliable Low Latency Communication (URLLC).
  • URLLC Ultra Reliable Low Latency Communication
  • the base station When the downlink service data is sent, the base station sends the URLLC data in a resource preemptive manner. That is, when the URLLC data needs to be sent, some resources of the enhanced mobile broadband (eMBB) service are used for sending, thereby reducing the delay of the URLLC service. .
  • eMBB enhanced mobile broadband
  • the base station needs to introduce additional signaling overhead when performing the immediate adjustment, so that the terminal needs to frequently detect the sent control signal and increase the power consumption of the terminal.
  • the embodiment of the present invention provides a data sending method, device, and system, which can solve the problem that a terminal needs to frequently detect a sent control signal, resulting in an increase in power consumption of the terminal.
  • a data transmitting method comprising:
  • the terminal transmits data by using the first power in the first area
  • the first area and the second area are distinguished by transmission resources.
  • a data transmitting method comprising:
  • the access network device receives data sent by the terminal by using the first power in the first area
  • the first area and the second area are distinguished by transmission resources.
  • a data transmitting apparatus comprising:
  • a first sending module configured to send data by using the first power in the first area
  • a second sending module configured to send data by using the second power in the second area
  • the first area and the second area are distinguished by transmission resources.
  • a data transmitting apparatus comprising:
  • a first receiving module configured to receive data sent by the terminal by using the first power in the first area
  • a second receiving module configured to receive data sent by the terminal by using the second power in the second area
  • the first area and the second area are distinguished by transmission resources.
  • a terminal comprising a processor and a memory, the memory storing at least one instruction for execution by the processor to implement the first The data transmission method described in the aspect.
  • an access network device comprising a processor and a memory, the memory storing at least one instruction, the at least one instruction being used by the processor Executing to implement the data transmitting method described in the second aspect above.
  • a computer readable storage medium storing at least one instruction for execution by a processor to implement data transmission as described in the first aspect above method.
  • a computer readable storage medium storing at least one instruction for execution by a processor to implement data transmission as described in the second aspect above method.
  • a communication system comprising: a terminal and an access network device; the terminal is a terminal according to the fifth aspect; and the access network device is as a sixth Aspect of the access network device.
  • the terminal can use the corresponding power to transmit data in different areas, thereby preventing the terminal from frequently detecting the control signal during the process of sending the uplink data, thereby reducing the power consumption of the terminal, and adopting different The power transmission of data helps to improve the reliability and efficiency of data transmission between the terminal and the access network device in the communication system.
  • FIG. 1 is a schematic structural diagram of a communication network provided by an exemplary embodiment of the present application.
  • FIG. 2 is a flowchart of a data sending method provided by an exemplary embodiment of the present application.
  • FIG. 3 is a flowchart of a data sending method provided by an exemplary embodiment of the present application.
  • FIG. 4 is a flowchart of a data sending method provided by another exemplary embodiment of the present application.
  • FIG. 5 is a flowchart of a data sending method provided by another exemplary embodiment of the present application.
  • FIG. 6 is a block diagram showing a data transmitting apparatus provided by an exemplary embodiment of the present application.
  • FIG. 7 is a block diagram showing a data transmitting apparatus provided by an exemplary embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an exemplary embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an access network device according to an exemplary embodiment of the present application.
  • a “module” as referred to herein generally refers to a program or instruction stored in a memory that is capable of performing certain functions;
  • "unit” as referred to herein generally refers to a functional structure that is logically divided, the "unit” It can be implemented by pure hardware or a combination of hardware and software.
  • Multiple as referred to herein means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character “/” generally indicates that the contextual object is an "or” relationship.
  • the words “first”, “second” and similar terms used in the specification and claims of the present application do not denote any order, quantity, or importance, but are merely used to distinguish different components.
  • FIG. 1 is a schematic structural diagram of a mobile communication system according to an embodiment of the present application.
  • the mobile communication system can be a 5G system, also known as an NR system.
  • the mobile communication system includes an access network device 120 and a terminal 140.
  • Access network device 120 can be a base station.
  • the base station may be a base station (gNB) employing a centralized distributed architecture in a 5G system.
  • the access network device 120 adopts a centralized distributed architecture, it generally includes a central unit (CU) and at least two distributed units (DUs).
  • a centralized data unit is provided with a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control (RLC) layer, and a Media Access Control (MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • a physical (physical, PHY) layer protocol stack is provided in the unit.
  • the specific implementation manner of the access network device 120 in this embodiment of the present application is not limited.
  • the access network device may further include a home base station (Home eNB, HeNB), a relay, a pico base station Pico, and the like.
  • Access network device 120 may also be referred to as a
  • the access network device 120 and the terminal 140 establish a wireless connection through the wireless air interface.
  • the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air (NR); or the wireless air interface may also be based on 5G. Wireless air interface for the next generation of mobile communication network technology standards.
  • 5G fifth generation mobile communication network technology
  • NR new air
  • Wireless air interface for the next generation of mobile communication network technology standards.
  • Terminal 140 may be a device that provides voice and/or data connectivity to a user.
  • the terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal such as a mobile telephone (or "cellular" telephone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • multiple access network devices 120 and/or multiple terminals 140 may be included, and one access network device 120 and one terminal 140 are shown in FIG.
  • this embodiment does not limit this.
  • FIG. 2 shows a flowchart of a data sending method provided by an exemplary embodiment of the present application. This embodiment is exemplified by applying the method to the terminal described in FIG. 1.
  • the method includes:
  • Step 201 The terminal sends data by using the first power in the first area.
  • Step 202 The terminal sends data by using the second power in the second area, where the first area and the second area are distinguished by transmission resources.
  • the first area and the second area are logical areas obtained by the access network device by dividing the transmission resource, where the transmission resource includes a time domain resource and/or a frequency domain resource.
  • the first area and the second area are distinguished by using any one of the following ways: 1.
  • the first area and the second area are distinguished by time domain resources.
  • the access network device performs area division based on the time domain resource, where the time domain resource includes at least one of a symbol, a slot, and a subframe.
  • the first area and the second area respectively occupy the same or different number of time domain resources.
  • the access network device distinguishes the area according to the time slot
  • the first time slot in the subframe may be divided into the first area
  • the second time slot in the subframe is divided into the second area
  • the area division can also be based on other types of time domain resources, which is not limited in this embodiment.
  • the access network device performs area division based on the frequency domain resource, where the frequency domain resource includes at least one of a physical resource block (PRB) and a resource block group (RBG).
  • the frequency domain resource includes at least one of a physical resource block (PRB) and a resource block group (RBG).
  • PRB physical resource block
  • RBG resource block group
  • the first area and the second area respectively occupy the same or different frequency domain resources.
  • the access network device when the access network device performs the area division according to the physical resource block, the first 50th physical resource block may be divided into the first area, and the 51st to 100th physical resource blocks may be divided into the second area.
  • the area configuration may also be based on other types of frequency domain resources, which is not limited in this embodiment.
  • the first area and the second area are distinguished by time domain resources and frequency domain resources.
  • the access network device may perform regional differentiation according to the time domain frequency domain resource at the same time, except that the area division is performed based on the frequency domain resource or the time domain resource.
  • the access network device configures the first area and the second area based on the time slot and the physical resource block.
  • the first area and the second area are distinguished by a Band Width Part (BWP).
  • BWP Band Width Part
  • BWP refers to a set of contiguous blocks of physical resources on a given set of parameters and a given carrier.
  • the access network device configures at least two BWPs for the terminal on the available bandwidth, corresponding to different areas. For example, in this embodiment, the access network device configures the BWP1 and the BWP2 for the terminal, and corresponds to the first area and the second area, respectively.
  • the time-frequency domain resources corresponding to the two BWPs are different.
  • BWP1 corresponds to PRB1-50
  • BWP2 corresponds to PRB51-55; or, the time-frequency domain resources corresponding to the two BWPs are the same.
  • the corresponding subcarrier spacing is different.
  • both BWP1 and BWP2 correspond to PRB51-55, but the subcarrier spacing corresponding to BWP1 is 60KHz, and the subcarrier spacing corresponding to BWP2 is 15KHz.
  • the embodiment of the present application is only described by taking two areas as an example. In other possible implementation manners, at least three areas may be configured, and the specific quantity of the area is not limited in this application.
  • the access network device sends the area configuration information indicating the configuration of the first area and the second area to the terminal, so that the terminal determines the first area and the second area according to the area configuration information.
  • the area configuration information sent by the access network device is further used to indicate the distinguishing manner and the configuration information of the first area and the second area.
  • the area configuration information includes the BWP subcarrier. Configuration information such as interval.
  • the power parameters of the first power and the second power are configured by the access network device, and the power parameter may be represented by an actual power value or a Power Spectral Density (PSD).
  • PSD Power Spectral Density
  • the terminal sends the service data at a low power in the first area under the scheduling of the access network device, or sends the service data in the second area at a high power; when the terminal is in the access network device
  • the terminal selects the high-priority service data in the first area and the resource preemption mode to transmit the high-priority service data.
  • High priority traffic data is sent with high power.
  • the low power and the high power may be agreed by the protocol, or may be indicated by the access network device.
  • the terminal uses the first power in the first area under the scheduling of the access network device. (ie, low power) transmitting eMBB service data, transmitting eMBB service data in the second area with the second power (ie, normal power); when the terminal sends the URLLC service data under the scheduling of the access network device, in order to reduce the URLLC service data
  • the terminal selects the first area, and the URLLC service data is sent by preempting the resources of the eMBB service, and in order to ensure high reliability of the URLLC service, the terminal uses the third power in the first area (greater than the first power, and the The second power is the same or different) and the URLLC service data is sent.
  • the terminal can use the corresponding power to transmit data in different areas, thereby preventing the terminal from frequently detecting the control signal during the process of sending the uplink data, thereby reducing the
  • the power consumption of the terminal and the transmission of data using different powers help to improve the reliability and efficiency of data transmission between the terminal and the access network device in the communication system.
  • FIG. 3 shows a flowchart of a data sending method provided by an exemplary embodiment of the present application. This embodiment is exemplified by applying the method to the access network device described in FIG. 1.
  • the method includes:
  • Step 301 The access network device sends data by using the first power in the first area.
  • the access network device distinguishes the first area from the second area (logical area) by using a transmission resource, where the transmission resource includes a time domain resource and/or a frequency domain resource.
  • the manner in which the access network device distinguishes the area includes the following:
  • the first area and the second area are distinguished by time domain resources and frequency domain resources.
  • the first area and the second area are distinguished by a Band Width Part (BWP).
  • BWP Band Width Part
  • step 202 For details, refer to the description in step 202. This embodiment is not described here.
  • Step 302 The access network device sends data by using the second power in the second area, where the first area and the second area are distinguished by transmission resources.
  • the access network device transmits downlink data by using corresponding power on the corresponding area.
  • the access network device transmits data at a low power in the first region and transmits data at a high power in the second region.
  • the access network device when the foregoing method is applied to the downlink data transmission scenario of the eMBB service and the URLLC service in the 5G, the access network device sends the first power (such as low power) in the first area.
  • the eMBB service data transmits eMBB service data in a second area with a second power (such as normal power and higher than the first power).
  • the access network device when the access network device needs to schedule the URLLC service, in order to reduce the transmission delay of the URLLC service data, the access network device selects to send the URLLC service data in the first area by preempting the resources of the eMBB service, and to ensure the URLLC The high reliability of the service, the access network device uses the third power (greater than the first power, the same or different from the second power) in the first area to send the URLLC service data.
  • the access network device sends the area configuration information to the terminal according to the area configuration, where the access network device may send the area configuration information by using a broadcast manner.
  • the access network device In order for the terminal to transmit uplink data in different areas with corresponding power, the access network device also indicates to the terminal the power of transmitting data in different areas. Optionally, the access network device sends a difference between the power parameter of the first power and the power parameter of the second power to the terminal, or the power parameters of the first power and the second power are independently configured by the access network device.
  • the terminal uses the first power to transmit data in the first area and the second power in the second area, and correspondingly, the access network device is in the first area and/or The second area receives the data sent by the terminal.
  • the access network device is based on the length of the Transmission Time Interval (TTI), the Control Resource Set (CORESET), or the Physical Downlink Control Channel Format (Physical Downlink Control Channel Format).
  • TTI Transmission Time Interval
  • CORESET Control Resource Set
  • Physical Downlink Control Channel Format Physical Downlink Control Channel Format
  • the PDCCH format distinguishes the received data.
  • the access network device distinguishes the eMBB data and the URLLC data according to the TTI length. This embodiment does not limit the manner in which the access network device distinguishes data types.
  • the terminal can use the corresponding power to transmit data in different areas, thereby preventing the terminal from frequently detecting the control signal during the process of sending the uplink data, thereby reducing the
  • the power consumption of the terminal and the transmission of data using different powers help to improve the reliability and efficiency of data transmission between the terminal and the access network device in the communication system.
  • FIG. 4 shows a flowchart of a data sending method provided by another exemplary embodiment of the present application. This embodiment is exemplified by applying the method to the communication system described in FIG. 1.
  • the method includes:
  • Step 401 The access network device sends area configuration information to the terminal, where the area configuration information is used to indicate the configuration of the first area and the second area.
  • the area configuration information includes: time domain configuration information, frequency domain configuration information, or time-frequency domain configuration information.
  • the access network device sends the area configuration information to each terminal in a broadcast manner, so that each accessed terminal can know the configuration of the area.
  • the area network information is exchanged between the access network devices, so that according to the regional area information of the adjacent access network devices, The local area configuration is adjusted to send the adjusted area configuration information to the terminal.
  • the resource block is divided into the first area
  • the second physical resource block is divided into the second area
  • Power_parameter(PRB2) ⁇ 0 ⁇ .
  • Step 402 The terminal receives the area configuration information sent by the access network device.
  • Step 403 The access network device sends a power difference value to the terminal, where the power difference is a difference between the power parameter of the first power and the power parameter of the second power.
  • the terminal In order to reduce the interference of the data transmitted in the first area and the second area, the terminal needs to use different power to transmit data in different areas.
  • the indication area is configured, the access network device also needs to indicate to the terminal in different areas. The transmit power of the data.
  • the access network device sends the power difference between the first area and the second area to the terminal.
  • the power parameter can be represented by an actual power value or a power spectral density.
  • the access network device further sends the configured power parameter to the terminal, so that the terminal determines the first power and the second power based on the power parameter and the power difference.
  • the power parameter sent by the access network device includes at least one of a target received power parameter, a path loss compensation coefficient, and a dynamic power adjustment value.
  • the power parameters include the following configurations.
  • the path loss compensation coefficient in the power parameter is independently configured, and the target received power parameter and the dynamic power adjustment value in the power parameter are shared and configured.
  • the access network device configures respective path loss compensation coefficients for each area, and configures a unified target received power parameter and dynamic power adjustment value for each area, that is, different areas have different path loss compensation coefficients. But with the same target received power parameters and dynamic power adjustment values.
  • the path loss compensation coefficient and the dynamic power adjustment value in the power parameter are independently configured, and the target received power parameters in the power parameter are shared and configured.
  • the access network device configures respective path loss compensation coefficients and dynamic power adjustment values for each area, and configures uniform target receiving power parameters for each area, that is, different areas have different path loss compensation coefficients and Dynamic power adjustment value, but with the same target received power parameter.
  • the dynamic power adjustment values in the power parameters are independently configured, and the target received power parameters and the path loss compensation coefficients in the power parameters are shared.
  • the access network devices When the configuration mode is adopted, the access network devices respectively configure respective dynamic power adjustment values for each area, and configure unified target receiving power parameters and path loss compensation coefficients for each area, that is, different areas have different dynamic power adjustment values. But it has the same target receiving power parameter and path loss compensation coefficient.
  • the power control can be performed for different scenarios, services, and data types, and the signaling overhead when the power parameters are configured (because there is a shared configuration).
  • the dynamic power adjustment value, the target received power parameter, and the path loss compensation coefficient in the power parameter are shared.
  • the access network device configures a unified target receiving power parameter, a path loss compensation coefficient, and a dynamic power adjustment value for each area, that is, different areas have the same target receiving power parameter, path loss compensation coefficient, and dynamic power. Adjust the value.
  • the terminal When the power parameters are configured in this way, the signaling overhead when configuring the power parameters is minimized because the configuration parameters are shared by different areas.
  • the terminal performs differentiated power control for different scenarios, services, and data types according to the power difference configured by the access network device.
  • the target received power parameter and the path loss compensation coefficient in the power parameter are independently configured, and the dynamic power adjustment value in the power parameter is shared.
  • the access network devices When the configuration mode is adopted, the access network devices respectively configure respective target receiving power parameters and path loss compensation coefficients for each area, and share dynamic power adjustment values for each area, that is, different areas have different target receiving power parameters and different Road loss compensation factor, but with the same dynamic power adjustment value.
  • power control can be differentiated for different scenarios, services, and data types.
  • the channel change can be tracked in real time.
  • the target receiving power parameter, the path loss compensation coefficient and the dynamic power adjustment value in the power parameter are independently configured.
  • the access network devices When adopting this configuration mode, the access network devices respectively configure respective target receiving power parameters, path loss compensation coefficients, and dynamic power adjustment values for each region, that is, different regions have different target receiving power parameters, and different path loss compensation coefficients. And different dynamic power adjustment values.
  • the target received power parameters in the power parameters are independently configured, and the path loss compensation coefficients and dynamic power adjustment values in the power parameters are shared.
  • the access network device configures respective target receiving power parameters for each area, and configures a unified dynamic power adjustment value and a path loss compensation coefficient for each area, that is, different areas have different target receiving power parameters. But it has the same dynamic power adjustment value and different path loss compensation coefficients.
  • the target received power parameter and the dynamic power adjustment value in the power parameter are independently configured, and the path loss compensation coefficients in the power parameter are shared.
  • the access network device configures respective target receiving power parameters and dynamic power adjustment values for each area, and configures a unified path loss compensation coefficient for each area, that is, different areas have different target receiving power parameters and Different dynamic power adjustment values, but with the same path loss compensation factor.
  • the access network device configures the power difference in a semi-static configuration manner. For example, the access network device sends a power difference to the terminal every predetermined time interval, and the terminal stores and uses the current received power difference value before the access network device sends the power difference next time.
  • step 401 and step 403 there is no strict sequence between step 401 and step 403, that is, step 401 and step 403 can be performed simultaneously, and this embodiment does not limit the execution timing of the two.
  • Step 404 The terminal receives a power difference sent by the access network device.
  • the terminal calculates the expected transmit power of the access network device based on the power parameters configured by the access network device, and determines the transmit power of the data in different regions according to the expected transmit power and power difference.
  • the terminal calculates the transmit power that is expected by the access network device according to the power consumption calculation formula of the protocol, and is not described here.
  • the terminal when the terminal is scheduled to send data in the first area, the terminal sets the transmission power (first power) to the expected transmission power-power difference value;
  • the terminal When the terminal is scheduled to transmit data in the second area, the terminal sets the transmission power (second power) to the transmission power expected by the access network device;
  • the terminal determines to send high priority data in the first area, and sets the sending power to the expected sending power of the access network device, thereby reducing other low priority data on the second area. Interference to improve the reliability of transmitting high priority data.
  • the expected transmission power of the access network device is P
  • the power difference configured by the access network device is deltaP
  • the terminal is scheduled to be sent in the first area.
  • the transmission power is set to P-deltaP
  • the transmission power is set to P
  • the transmission power is set to P.
  • Step 405 The terminal transmits data by using the first power in the first area.
  • the eMMB data is transmitted using the transmission power P-deltaP.
  • Step 406 The terminal transmits data by using the second power in the second area.
  • the eMMB data is transmitted using the transmission power P.
  • the terminal when the URLLC service preempts the resource, the terminal sends the URLLC data by using the third power in the first area.
  • the third power may be P in the foregoing example.
  • the terminal can use the corresponding power to transmit data in different areas, thereby preventing the terminal from frequently detecting the control signal during the process of sending the uplink data, thereby reducing the
  • the power consumption of the terminal and the transmission of data using different powers help to improve the reliability and efficiency of data transmission between the terminal and the access network device in the communication system.
  • the access network device sends the area configuration information and the power difference value of the different areas to the terminal, so that the terminal determines different areas according to the area configuration information, and determines the transmit power of the data in different areas according to the power difference value. Therefore, the subsequent uplink data transmission is performed, and the reliability and efficiency of the uplink data transmission are improved.
  • the access network device configures the power difference value in a semi-static manner, thereby avoiding the inability to track the power hopping.
  • the access network device exchanges area configuration information, and performs area adjustment according to the acquired area configuration information, thereby reducing interference between adjacent cells, and further improving data transmission quality of the system.
  • FIG. 5 shows a flowchart of a data sending method provided by another exemplary embodiment of the present application. This embodiment is exemplified by applying the method to the communication system described in FIG. 1.
  • the method includes:
  • Step 501 The access network device sends area configuration information to the terminal, where the area configuration information is used to indicate the configuration of the first area and the second area.
  • the access network device configures two BWPs for the terminal, and corresponds to the first area and the second area respectively.
  • the access network device sends the configuration information and configuration information of the two BWPs to the terminal. terminal.
  • the time-frequency domain resources corresponding to the two BWPs are different.
  • BWP1 corresponds to PRB1-50
  • BWP2 corresponds to PRB51-55.
  • the time-frequency domain resources corresponding to the two BWPs are the same, but the corresponding sub-carrier spacing is different.
  • both BWP1 and BWP2 correspond to PRB51-55, but the subcarrier spacing corresponding to BWP1 is 60KHz, and the subcarrier spacing corresponding to BWP2 is 15KHz. This embodiment does not limit this.
  • Step 502 The terminal receives the area configuration information sent by the access network device.
  • the terminal determines the first area and the second area according to the BWP configuration information therein.
  • Step 503 The access network device sends a power parameter to the terminal, where the power parameter of the first power and some or all of the power parameters of the second power are independently configured.
  • the access network device independently configures some or all (uplink) power parameters for each BWP, so that the terminal determines the transmit power of data in each area according to the power parameters configured for the BWP.
  • the power parameter includes at least one of a target received power parameter, a path loss compensation coefficient, and a dynamic power adjustment value, where the target received power parameter is a power that the access network device expects to receive data, and a path loss compensation coefficient. Used to compensate for power loss during transmission.
  • Dynamic power adjustment values can be indicated by values or sets (such as ⁇ -3, 0, 3, 6 ⁇ ).
  • the configuration of the power parameters includes the following.
  • the target received power parameter and the path loss compensation coefficient in the power parameter are independently configured, and the dynamic power adjustment value in the power parameter is shared.
  • the access network device configures respective target receiving power parameters and path loss compensation coefficients for each BWP, and shares dynamic power adjustment values for each BWP, that is, different BWPs have different target receiving power parameters and different Road loss compensation factor, but with the same dynamic power adjustment value.
  • the power parameters transmitted by the access network device include the target received power P1 and the path loss compensation coefficient a1 configured for the BWP1, the target received power P2 and the path loss compensation coefficient a2 configured for the BWP2, and the uniformly configured dynamic power. Adjust the value f1.
  • power control can be differentiated for different scenarios, services, and data types.
  • the channel change can be tracked in real time.
  • the target receiving power parameter, the path loss compensation coefficient and the dynamic power adjustment value in the power parameter are independently configured.
  • the access network devices When adopting this configuration mode, the access network devices respectively configure respective target receiving power parameters, path loss compensation coefficients, and dynamic power adjustment values for each BWP, that is, different BWPs have different target receiving power parameters, and different path loss compensation coefficients. And different dynamic power adjustment values.
  • the power parameters transmitted by the access network device include the target received power P1, the path loss compensation coefficient a1, and the dynamic power adjustment value f1 configured for the BWP1, the target received power P2 configured for the BWP2, and the path loss compensation coefficient a2. Dynamic power adjustment value f2.
  • the target received power parameters in the power parameters are independently configured, and the path loss compensation coefficients and dynamic power adjustment values in the power parameters are shared and configured.
  • the access network device configures respective target receiving power parameters for each BWP, and configures a unified dynamic power adjustment value and a path loss compensation coefficient for each BWP, that is, different BWPs have different target receiving power parameters. But it has the same dynamic power adjustment value and different path loss compensation coefficients.
  • the power parameters transmitted by the access network device include the target received power P1 configured for BWP1, the target received power P2 configured for BWP2, and the dynamically configured dynamic power adjustment value f1 and the path loss compensation coefficient a1.
  • the target received power parameter and the dynamic power adjustment value in the power parameter are independently configured, and the path loss compensation coefficients in the power parameter are shared.
  • the access network device configures respective target receiving power parameters and dynamic power adjustment values for each BWP, and configures a unified path loss compensation coefficient for each BWP, that is, different BWPs have different target receiving power parameters and Different dynamic power adjustment values, but with the same path loss compensation factor.
  • the power parameters transmitted by the access network device include the target received power P1 and the dynamic power adjustment value f1 configured for the BWP1, the target received power P2 and the dynamic power adjustment value f2 configured for the BWP2, and the uniformly configured path loss. Compensation coefficient a1.
  • Step 504 The terminal receives a power parameter configured by the access network device.
  • the path loss compensation coefficient in the power parameter is independently configured, and the target received power parameter and the dynamic power adjustment value in the power parameter are shared and configured.
  • the access network device configures respective path loss compensation coefficients for each BWP, and configures a unified target received power parameter and dynamic power adjustment value for each BWP, that is, different BWPs have different path loss compensation coefficients. But with the same target received power parameters and dynamic power adjustment values.
  • the path loss compensation coefficient and the dynamic power adjustment value in the power parameter are independently configured, and the target received power parameters in the power parameter are shared and configured.
  • the access network device configures respective path loss compensation coefficients and dynamic power adjustment values for each BWP, and configures a unified target received power parameter for each BWP, that is, different BWPs have different path loss compensation coefficients and Dynamic power adjustment value, but with the same target received power parameter.
  • the dynamic power adjustment values in the power parameters are independently configured, and the target received power parameters and the path loss compensation coefficients in the power parameters are shared.
  • the access network device configures respective dynamic power adjustment values for each BWP, and configures a unified target received power parameter and a path loss compensation coefficient for each BWP, that is, different BWPs have different dynamic power adjustment values. But it has the same target receiving power parameter and path loss compensation coefficient.
  • the power control can be performed for different scenarios, services, and data types, and the signaling overhead when the power parameters are configured (because there is a shared configuration).
  • the dynamic power adjustment value, the target received power parameter, and the path loss compensation coefficient in the power parameter are shared.
  • the access network device configures a unified target receiving power parameter, a path loss compensation coefficient, and a dynamic power adjustment value for each BWP, that is, different BWPs have the same target receiving power parameter, path loss compensation coefficient, and dynamic power. Adjust the value.
  • the terminal When the power parameters are configured in this way, the signaling overhead when configuring the power parameters is minimized because different BWPs share configuration parameters.
  • the terminal performs differentiated power control for different scenarios, services, and data types according to the power difference configured by the access network device.
  • the terminal receives and stores the power parameter configured by the access network device, so that when the uplink data is subsequently sent, the sending power is determined based on the power parameter.
  • Step 505 The terminal determines the first power according to the power parameter, and sends the data by using the first power in the first area.
  • the access network device configures a smaller target receiving power of the power parameter for the BWP1 (corresponding to the first area), so that when the terminal is scheduled to send data in the first area, the smaller target receiving power setting is based on the power parameter. Transmit power (ie, first power) and transmit data according to the set transmit power.
  • the terminal when transmitting (upstream) eMMB data on BWP1, the terminal sets the transmission power with reference to the smaller target reception power, thereby enabling the eMMB data to be transmitted at a low power in the first region.
  • Step 506 The terminal determines the second power according to the power parameter, and sends the data by using the second power in the second area.
  • the access network device configures a larger target receiving power in the power parameter for the BWP2 (corresponding to the second area), so that when the terminal is scheduled to send data in the second area, based on a larger target receiving power setting in the power parameter. Transmit power (ie, second power) and transmit data according to the set transmit power.
  • the terminal when transmitting (upstream) eMMB data on the BWP2, the terminal sets the transmission power with reference to the larger target reception power, thereby enabling the eMMB data to be transmitted with high power in the second region.
  • the terminal when the URLLC data needs to be sent, the terminal sends the URLLC data by using the resource of the BWP1 (corresponding to the first area), and configures a large sending power (for example, based on a large target receiving power). , thereby improving the reliability of URLLC data transmission.
  • the terminal can use the corresponding power to transmit data in different areas, thereby preventing the terminal from frequently detecting the control signal during the process of sending the uplink data, thereby reducing the
  • the power consumption of the terminal and the transmission of data using different powers help to improve the reliability and efficiency of data transmission between the terminal and the access network device in the communication system.
  • the following is a device embodiment of the present application. Since the device embodiment has a corresponding relationship with the method embodiment, the technical details not described in the device embodiment may refer to the corresponding description in the foregoing method embodiments.
  • FIG. 6 shows a block diagram of a data transmitting apparatus provided by an exemplary embodiment of the present application.
  • the data transmitting device can be implemented as all or part of the terminal by software, hardware, or a combination of both.
  • the device includes:
  • the first sending module 610 is configured to send data by using the first power in the first area
  • the second sending module 620 is configured to send data by using the second power in the second area.
  • the first area and the second area are distinguished by transmission resources.
  • the first area and the second area are distinguished by time domain resources; or
  • the first area and the second area are distinguished by frequency domain resources; or
  • the first area and the second area are distinguished by the time domain resource and the frequency domain resource; or
  • the first area and the second area are distinguished by a frequency domain broadband portion BWP;
  • the time domain resource includes at least one of a symbol, a time slot, and a subframe, where the frequency domain resource includes at least one of a physical resource block PRB and a resource block group RBG.
  • the device further includes:
  • the information receiving module is configured to receive area configuration information sent by the access network device, where the area configuration information is used to indicate configuration of the first area and the second area.
  • the device further includes:
  • An information receiving module configured to receive area configuration information sent by the access network device, where the area configuration information is used to indicate configuration of the first power area and the second power area;
  • a difference receiving module configured to receive, by the terminal, a power difference value sent by the access network device
  • the power difference is a difference between a power parameter of the first power and a power parameter of the second power.
  • the power difference is semi-statically configured.
  • part or all of the power parameter of the first power and the power parameter of the second power are independently configured.
  • the target received power parameter and the path loss compensation coefficient in the power parameter are independently configured, and the dynamic power adjustment value in the power parameter is shared and configured;
  • the target received power parameter, the path loss compensation coefficient, and the dynamic power adjustment value in the power parameter are independently configured;
  • the target received power parameter in the power parameter is independently configured, and the path loss compensation coefficient and the dynamic power adjustment value in the power parameter are shared and configured;
  • the target received power parameter and the dynamic power adjustment value in the power parameter are independently configured, and the path loss compensation coefficient in the power parameter shares a configuration
  • the path loss compensation coefficients in the power parameters are independently configured, and the target received power parameters and the dynamic power adjustment values in the power parameters are shared and configured;
  • the path loss compensation coefficient and the dynamic power adjustment value in the power parameter are independently configured, and the target received power parameter in the power parameter is shared and configured;
  • the dynamic power adjustment values in the power parameters are independently configured, and the target received power parameters and the path loss compensation coefficients in the power parameters are shared;
  • the dynamic power adjustment value, the target received power parameter, and the path loss compensation coefficient in the power parameter are shared configuration.
  • FIG. 7 shows a block diagram of a data transmitting apparatus provided by an exemplary embodiment of the present application.
  • the data transmitting device can be implemented as all or part of the access network device by software, hardware or a combination of both.
  • the device includes:
  • the third sending module 710 is configured to send data by using the first power in the first area.
  • the fourth sending module 720 is configured to send data by using the second power in the second area.
  • the first area and the second area are distinguished by transmission resources.
  • the first area and the second area are distinguished by time domain resources; or
  • the first area and the second area are distinguished by frequency domain resources; or
  • the first area and the second area are distinguished by the time domain resource and the frequency domain resource; or
  • the first area and the second area are distinguished by a frequency domain broadband portion BWP;
  • the time domain resource includes at least one of a symbol, a time slot, and a subframe, where the frequency domain resource includes at least one of a physical resource block PRB and a resource block group RBG.
  • the device further includes:
  • the information sending module is configured to send area configuration information to the terminal, where the area configuration information is used to indicate the configuration of the first area and the second area.
  • the device further includes:
  • An information sending module configured to send area configuration information to the terminal, where the area configuration information is used to indicate a configuration of the first area and the second area;
  • a difference sending module configured to send a power difference value to the terminal
  • the power difference is a difference between a power parameter of the first power and a power parameter of the second power.
  • the power difference is semi-statically configured.
  • part or all of the power parameter of the first power and the power parameter of the second power are independently configured.
  • the target received power parameter and the path loss compensation coefficient in the power parameter are independently configured, and the dynamic power adjustment value in the power parameter shares a configuration
  • the target received power parameter, the path loss compensation coefficient, and the dynamic power adjustment value in the power parameter are independently configured;
  • the target received power parameter in the power parameter is independently configured, and the path loss compensation coefficient and the dynamic power adjustment value in the power parameter are shared and configured;
  • the target received power parameter and the dynamic power adjustment value in the power parameter are independently configured, and the path loss compensation coefficient in the power parameter shares a configuration
  • the path loss compensation coefficients in the power parameters are independently configured, and the target received power parameters and the dynamic power adjustment values in the power parameters are shared and configured;
  • the path loss compensation coefficient and the dynamic power adjustment value in the power parameter are independently configured, and the target received power parameter in the power parameter is shared and configured;
  • the dynamic power adjustment values in the power parameters are independently configured, and the target received power parameters and the path loss compensation coefficients in the power parameters are shared;
  • the dynamic power adjustment value, the target received power parameter, and the path loss compensation coefficient in the power parameter are shared configuration.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an exemplary embodiment of the present application.
  • the terminal includes: a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 , and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 can be implemented as a communication component, which can be a communication chip.
  • the memory 104 is coupled to the processor 101 via a bus 105.
  • the memory 104 can be used to store at least one instruction, and the processor 101 is configured to execute the at least one instruction to implement various steps performed by the terminal in the above method embodiment.
  • memory 104 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, including, but not limited to, a magnetic or optical disk, electrically erasable and programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Anytime Access Memory (SRAM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read Only Memory (PROM) .
  • EEPROM electrically erasable and programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Anytime Access Memory
  • ROM Read Only Memory
  • Magnetic Memory Magnetic Memory
  • Flash Memory Programmable Read Only Memory
  • FIG. 9 is a schematic structural diagram of an access network device provided by an exemplary embodiment of the present application.
  • the access network device includes: a processor 111 , a receiver 112 , a transmitter 113 , a memory 114 , and a bus 115 . .
  • the processor 111 includes one or more processing cores, and the processor 111 executes various functional applications and information processing by running software programs and modules.
  • Receiver 112 and transmitter 113 can be implemented as a communication component, which can be a communication chip.
  • the memory 114 is coupled to the processor 111 via a bus 115.
  • the memory 114 can be used to store at least one instruction, and the processor 111 is configured to execute the at least one instruction to implement various steps performed by the access network device in the foregoing method embodiment.
  • memory 114 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, including, but not limited to, a magnetic or optical disk, electrically erasable and programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Anytime Access Memory (SRAM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Programmable Read Only Memory (PROM) .
  • EEPROM electrically erasable and programmable Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • SRAM Static Anytime Access Memory
  • ROM Read Only Memory
  • Magnetic Memory Magnetic Memory
  • Flash Memory Programmable Read Only Memory
  • the present application provides a computer readable storage medium having at least one instruction stored therein, the at least one instruction being loaded and executed by the processor to implement the data transmission method provided by the various method embodiments described above.
  • the present application also provides a computer program product that, when run on a computer, causes the computer to perform the data transmission method provided by the various method embodiments described above.
  • the functions described in the embodiments of the present application may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请实施例提供了一种数据发送方法、装置及系统,涉及通信领域,所述方法包括:终端在第一区域采用第一功率发送数据,在第二区域采用第二功率发送数据,其中,第一区域和第二区域通过传输资源区分。本申请中,通过配置传输资源上不同的区域,并为不同区域独立配置相应的功率参数,从而根据功率参数采用相应的功率进行数据发送,使得终端在发送上行数据过程中,无需频繁检测控制信号,降低终端功耗,并有助于提高通信系统中数据传输的可靠性和效率。

Description

数据发送方法、装置及系统 技术领域
本申请实施例涉及通信领域,特别涉及一种数据发送方法、装置及系统。
背景技术
第五代移动通信(The 5th generation,5G)技术中引入了超高可靠低时延通信(Ultra Reliable LowLatency Communication,URLLC)。
发送下行业务数据时,基站采用资源抢占的方式发送URLLC数据,即当前存在需要发送URLLC数据时,占用增强移动宽带(enhance Mobile Broadband,eMBB)业务的部分资源进行发送,从而降低URLLC业务的时延。
然而,对于上行过程,由于上行业务数据由终端发送,基站进行即时调整时需要引入额外的信令开销,导致终端需要频繁检测下发的控制信号,增加终端的功耗。
发明内容
本申请实施例提供了一种数据发送方法、装置及系统,可以解决终端需要频繁检测下发的控制信号,导致终端功耗增加的问题。
根据本申请的第一方面,提供了一种数据发送方法,所述方法包括:
终端在第一区域采用第一功率发送数据;
所述终端在第二区域采用第二功率发送数据;
其中,所述第一区域和所述第二区域通过传输资源区分。
根据本申请的第二方面,提供了一种数据发送方法,所述方法包括:
接入网设备在第一区域接收终端采用第一功率发送的数据;
所述接入网设备在第二区域接收所述终端采用第二功率发送的数据;
其中,所述第一区域和所述第二区域通过传输资源区分。
根据本申请的第三方面,提供了一种数据发送装置,所述装置包括:
第一发送模块,用于在第一区域采用第一功率发送数据;
第二发送模块,用于在第二区域采用第二功率发送数据;
其中,所述第一区域和所述第二区域通过传输资源区分。
根据本申请的第四方面,提供了一种数据发送装置,所述装置包括:
第一接收模块,用于在第一区域接收终端采用第一功率发送的数据;
第二接收模块,用于在第二区域接收所述终端采用第二功率发送的数据;
其中,所述第一区域和所述第二区域通过传输资源区分。
根据本申请的第五方面,提供了一种终端,所述终端包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述第一方面所述的数据发送方法。
根据本申请的第六方面,提供了一种接入网设备,所述接入网设备包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述第二方面所述的数据发送方法。
根据本申请的第七方面,提供了一种计算机可读存储介质,所述存储介质存储有至少一条指令,所述至少一条指令用于被处理器执行以实现上述第一方面所述的数据发送方法。
根据本申请的第八方面,提供了一种计算机可读存储介质,所述存储介质存储有至少一条指令,所述至少一条指令用于被处理器执行以实现上述第二方面所述的数据发送方法。
根据本申请的第九方面,提供了一种通信系统,所述系统包括:终端和接入网设备;所述终端是如第五方面所述的终端;所述接入网设备是如第六方面所述的接入网设备。
本申请实施例提供的技术方案的有益效果是:
通过配置传输资源上不同的区域,使得终端能够在不同区域采用相应的功率进行数据发送,从而避免终端在发送上行数据过程中频繁检测控制信号,进而降低了终端的功耗,并且,采用不同的功率进行数据传输,有助于提高通信系统中终端与接入网设备间数据传输的可靠性和效率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示意性实施例提供的通信网络的结构示意图;
图2是本申请一个示意性实施例提供的数据发送方法的流程图;
图3是本申请一个示意性实施例提供的数据发送方法的流程图;
图4是本申请另一个示意性实施例提供的数据发送方法的流程图;
图5是本申请另一个示意性实施例提供的数据发送方法的流程图;
图6示出了本申请一个示例性实施例提供的数据发送装置的框图;
图7示出了本申请一个示例性实施例提供的数据发送装置的框图;
图8示出了本申请一个示例性实施例提供的终端的结构示意图;
图9示出了本申请一个示例性实施例提供的接入网设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在本文提及的“模块”通常是指存储在存储器中的能够实现某些功能的程序或指令;在本文中提及的“单元”通常是指按照逻辑划分的功能性结构,该“单元”可以由纯硬件实现,或者,软硬件的结合实现。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。
请参考图1,其示出了本申请一个实施例提供的移动通信系统的结构示意图。该移动通信系统可以是5G系统,又称NR系统。该移动通信系统包括:接入网设备120和终端140。
接入网设备120可以是基站。例如,基站可以是5G系统中采用集中分布式架构的基站(gNB)。当接入网设备120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本申请实施例对接入网设备120的具体实现方式不加以限定。可选地,接入网设备还可以包括家庭基站(Home eNB,HeNB)、中继(Relay)、微微基站Pico等。接入网设备120还可以称为网络侧设备。
接入网设备120和终端140通过无线空口建立无线连接。可选地,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口(New Radio,NR);或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
终端140可以是指向用户提供语音和/或数据连通性的设备。终端可以经无线接入网 (Radio Access Network,RAN)与一个或多个核心网进行通信,终端140可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机。
需要说明的是,在图1所示的移动通信系统中,可以包括多个接入网设备120和/或多个终端140,图1中以示出一个接入网设备120和一个终端140来举例说明,但本实施例对此不作限定。
请参考图2,其示出了本申请一个示例性实施例提供的数据发送方法的流程图。本实施例以该方法应用于图1所述的终端中来举例说明。该方法包括:
步骤201,终端在第一区域采用第一功率发送数据。
步骤202,终端在第二区域采用第二功率发送数据,第一区域和第二区域通过传输资源区分。
可选的,第一区域和第二区域由接入网设备通过划分传输资源得到的逻辑区域,其中,该传输资源包括时域资源和/或频域资源。
在一种可能的实施方式中,采用下述几种方式中的任意一种区分第一区域和第二区域:1、通过时域资源区分第一区域和第二区域。
可选的,接入网设备基于时域资源进行区域区分,其中,该时域资源包括符号(symbol)、时隙(slot)和子帧(subframe)中的至少一种。
可选的,第一区域和第二区域各自占用的时域资源的数量相同或不同。
比如,接入网设备按照时隙区分区域时,可以将子帧中的第1个时隙划分为第一区域,将子帧中的第2个时隙划分为第二区域。
当然,区域区分还可以基于其他类型的时域资源,本实施例并不对此进行限定。
2、通过频域资源区分第一区域和第二区域。
可选的,接入网设备基于频域资源进行区域区分,其中,该频域资源包括物理资源块(Physical Resource Block,PRB)和资源块组(Resource Block Group,RBG)中的至少一种。
可选的,第一区域和第二区域各自占用的频域资源的数量相同或不同。
比如,接入网设备按照物理资源块进行区域区分时,可以将第1-50个物理资源块划分为第一区域,将第51-100个物理资源块划分为第二区域。
当然,区域配置还可以基于其他类型的频域资源,本实施例并不对此进行限定。
3、通过时域资源和频域资源区分第一区域和第二区域。
可选的,除了单独基于频域资源或时域资源进行区域区分外,接入网设备还可以同时根据时域频域资源进行区域区分。
可选的,接入网设备同时基于时隙和物理资源块配置第一区域和第二区域。
4、通过频域宽带部分(Band Width Part,BWP)区分第一区域和第二区域。
BWP是指在给定参数集和给定载波上的一组连续的物理资源块。
在一种可能的实施方式中,接入网设备在可用带宽上为终端配置至少两个BWP,分别对应不同的区域。比如,本实施例中,接入网设备为终端配置BWP1和BWP2,分别对应第一区域和第二区域。
可选的,当配置两个BWP时,两个BWP对应的时频域资源不同,比如,BWP1对应PRB1-50,而BWP2对应PRB51-55;或者,两个BWP对应的时频域资源相同,但对应的子载波间隔不同,比如,BWP1和BWP2均对应PRB51-55,但BWP1对应的子载波间隔为60KHz,BWP2对应的子载波间隔为15KHz。
可选的,本申请实施例仅以配置两个区域为例进行说明,在其他可能的实施方式中可以配置出至少三个区域,本申请并不对区域的具体数量进行限定。
可选的,接入网设备向终端发送指示第一区域和第二区域配置的区域配置信息,以便终端根据该区域配置信息确定出第一区域和第二区域。
可选的,接入网设备发送的区域配置信息还用于指示第一区域和第二区域的区分方式以及配置信息,比如,当通过BWP配置不同区域时,该区域配置信息中包括BWP子载波间隔等配置信息。
可选的,第一功率和第二功率的功率参数由接入网设备配置,该功率参数可以采用实际功率值,也可以采用功率谱密度(Power Spectral Density,PSD)进行表示。
在一种可能的应用场景下,终端在接入网设备的调度下,在第一区域以低功率发送业务数据,或,在第二区域以高功率发送业务数据;当终端在接入网设备的调度下发送高优先级业务数据时,为了降低高优先级业务数据的传输时延,终端选择在第一区域,通过资源抢占的方式发送高优先级业务数据,且为了保证传输的可靠性,高优先级业务数据采用高功率发送。其中,低功率和高功率可以为协议约定,也可以由接入网设备指示。
可选的,在一种实际应用场景下,将上述方法应用于5G中的eMBB业务和URLLC业务的上行数据发送场景时,终端在接入网设备的调度下,在第一区域以第一功率(即低功率)发送eMBB业务数据,在第二区域以第二功率(即正常功率)发送eMBB业务数据;当终端在接入网设备的调度下发送URLLC业务数据时,为了降低URLLC业务数据的传输时延,终端选择在第一区域,通过抢占eMBB业务的资源来发送URLLC业务数据,且为了保证URLLC业务的高可靠性,终端在第一区域采用第三功率(大于第一功率,与第二功率相同或不同)发送URLLC业务数据。
综上所述,本实施例中,通过配置传输资源上不同的区域,使得终端能够在不同区域采用相应的功率进行数据发送,从而避免终端在发送上行数据过程中频繁检测控制信号,进而降低了终端的功耗,并且,采用不同的功率进行数据传输,有助于提高通信系统中终端与接入网设备间数据传输的可靠性和效率。
请参考图3,其示出了本申请一个示例性实施例提供的数据发送方法的流程图。本实施例以该方法应用于图1所述的接入网设备中来举例说明。该方法包括:
步骤301,接入网设备在第一区域采用第一功率发送数据。
接入网设备通过传输资源区分第一区域和第二区域(逻辑区域),其中,传输资源包括时域资源和/或频域资源。
可选的,接入网设备区分区域的方式包括如下几种:
1、通过时域资源区分第一区域和第二区域。
2、通过频域资源区分第一区域和第二区域。
3、通过时域资源和频域资源区分第一区域和第二区域。
4、通过频域宽带部分(Band Width Part,BWP)区分第一区域和第二区域。
具体区分方式详见步骤202中的描述,本实施例在此不再赘述。
步骤302,接入网设备在第二区域采用第二功率发送数据,其中,第一区域和第二区域通过传输资源区分。
根据区分出的区域,接入网设备在相应的区域上采用对应的功率发送下行数据。
在一种可能的实施方式中,接入网设备在第一区域以低功率发送数据,在第二区域以高功率发送数据。
可选的,在一种实际应用场景下,将上述方法应用于5G中的eMBB业务和URLLC业务的下行数据发送场景时,接入网设备在第一区域以第一功率(比如低功率)发送eMBB业务数据,在第二区域以第二功率(比如正常功率,且高于第一功率)发送eMBB业务数据。
可选的,接入网设备需要调度URLLC业务时,为了降低URLLC业务数据的传输时延,接入网设备选择在第一区域,通过抢占eMBB业务的资源来发送URLLC业务数据,且为了保证URLLC业务的高可靠性,接入网设备在第一区域采用第三功率(大于第一功率,与第二功率相同或不同)发送URLLC业务数据。
可选的,为了指示终端按照相似的方式发送上行数据,接入网设备基于区域配置,向终端发送区域配置信息,其中,接入网设备可以采用广播的方式发送区域配置信息。
为了使终端在不同区域采用相应的功率发送上行数据,接入网设备还向终端指示不同区域中发送数据的功率。可选的,接入网设备向终端发送第一功率的功率参数与第二功率的功率参数的差值,或,接入网设备部分或全部独立配置第一功率和第二功率的功率参数。
进一步的,终端在接入网设备的调度下,在第一区域采用第一功率发送数据,在第二区域采用第二功率发送数据,相应的,接入网设备在第一区域和/或第二区域接收终端发送的数据。
对于接收到的数据,可选的,接入网设备基于传输时间间隔(Transmission Time Interval,TTI)的长度、控制资源集(Control Resource set,CORESET)或物理下行控制信道格式(Physical Downlink Control Channel Format,PDCCH Format)区分接收到的数据,比如,接入网设备根据TTI长度区分eMBB数据和URLLC数据。本实施例并不对接入网设备区分数据类型的方式进行限定。
综上所述,本实施例中,通过配置传输资源上不同的区域,使得终端能够在不同区域采用相应的功率进行数据发送,从而避免终端在发送上行数据过程中频繁检测控制信号,进而降低了终端的功耗,并且,采用不同的功率进行数据传输,有助于提高通信系统中终端与接入网设备间数据传输的可靠性和效率。
请参考图4,其示出了本申请另一个示例性实施例提供的数据发送方法的流程图。本实施例以该方法应用于图1所述的通信系统中来举例说明。该方法包括:
步骤401,接入网设备向终端发送区域配置信息,区域配置信息用于指示第一区域和第二区域的配置。
可选的,该区域配置信息中包括:时域配置信息、频域配置信息或时频域配置信息。
可选的,接入网设备通过广播的方式向各个终端发送区域配置信息,以便接入的各个终端均能够知悉区域的配置。
在一种可能的实施方式中,当基于物理资源块配置不同区域时,接入网设备向终端发送的区域配置信息可以采用如下格式:Power_parameter(n_PRB)={0,1},其中,n_PRB用于指示第n个物理资源块,0表示物理资源块属于第一区域,1表示物理资源块属于第二区域。
类似的,当基于时隙配置不同区域时,接入网设备向终端发送的区域配置信息可以采用如下格式:Power_parameter(n_slot)={0,1},其中,n_slot用于指示第n个时隙,0表示时隙属于第一区域,1表示时隙属于第二区域。
为了减小小区之间的干扰,从而提高数据传输质量,在一种可能的实施方式中,接入网设备之间进行区域区域信息交换,从而根据相邻接入网设备的区域区域信息,对自身的区域配置进行调整,从而将调整后的区域配置信息发送至终端。比如,接入网设备A向接入网设备B发送的区域配置信息A为:Power_parameter(PRB1)={0},Power_parameter(PRB2)={1},即接入网设备A将第1个物理资源块划分至第一区域,将第2个物理资源块划分至第二区域,接入网设备B即将自身的区域配置信息B调整为Power_parameter(PRB1)={1},Power_parameter(PRB2)={0}。
步骤402,终端接收接入网设备发送的区域配置信息。
步骤403,接入网设备向终端发送功率差值,功率差值为第一功率的功率参数与第二功率的功率参数的差值。
为了降低第一区域和第二区域内发送数据的干扰,终端需要在不同区域内采用不同的功率发送数据,相应的,在指示区域配置的同时,接入网设备还需要向终端指示不同区域内数据的发送功率。
可选的,接入网设备将第一区域和第二区域的功率差值发送至终端。其中,该功率参 数可以采用实际功率值或功率谱密度进行表示。
可选的,接入网设备还向终端发送配置的功率参数,以便终端基于该功率参数和功率差值确定出第一功率和第二功率。其中,接入网设备发送的功率参数包括目标接收功率参数、路损补偿系数和动态功率调整值中的至少一种。
可选的,功率参数包括如下几种配置方式。
1、功率参数中的路损补偿系数独立配置,且功率参数中的目标接收功率参数和动态功率调整值共享配置。
采用这种配置方式时,接入网设备分别为各个区域配置各自的路损补偿系数,为各个区域配置统一的目标接收功率参数以及动态功率调整值,即不同区域具有不同的路损补偿系数,但具有相同的目标接收功率参数以及动态功率调整值。
2、功率参数中的路损补偿系数以及动态功率调整值独立配置,且功率参数中的目标接收功率参数共享配置。
采用这种配置方式时,接入网设备分别为各个区域配置各自的路损补偿系数以及动态功率调整值,为各个区域配置统一的目标接收功率参数,即不同区域具有不同的路损补偿系数以及动态功率调整值,但具有相同的目标接收功率参数。
3、功率参数中的动态功率调整值独立配置,且功率参数中的目标接收功率参数以及路损补偿系数共享配置。
采用这种配置方式时,接入网设备分别为各个区域配置各自的动态功率调整值,为各个区域配置统一的目标接收功率参数以及路损补偿系数,即不同区域具有不同的动态功率调整值,但具有相同的目标接收功率参数以及路损补偿系数。
通过上述三种方式配置功率参数时,既可以针对不同的场景、业务、数据类型进行区别功率控制,还能够降低配置功率参数时的信令开销(由于存在共享配置)。
4、功率参数中的动态功率调整值,目标接收功率参数以及路损补偿系数共享配置。
采用这种配置方式时,接入网设备为各个区域配置统一的目标接收功率参数、路损补偿系数以及动态功率调整值,即不同区域具有相同的目标接收功率参数、路损补偿系数以及动态功率调整值。
采用这种方式配置功率参数时,由于不同区域共享配置参数,因此配置功率参数时的信令开销降至最低。后续过程中,终端即根据接入网设备配置的功率差值针对不同场景、业务、数据类型进行区别功率控制。
5、功率参数中的目标接收功率参数和路损补偿系数独立配置,且功率参数中的动态功率调整值共享配置。
采用这种配置方式时,接入网设备分别为各个区域配置各自的目标接收功率参数和路损补偿系数,为各个区域共享动态功率调整值,即不同区域具有不同的目标接收功率参数和不同的路损补偿系数,但具有相同的动态功率调整值。
采用这种配置方式,能够针对不同的场景、业务和数据类型,区别进行功率控制,同时,根据共享的动态功率调整值,能够即时跟踪信道的变化情况。
6、功率参数中的目标接收功率参数、路损补偿系数以及动态功率调整值独立配置。
采用这种配置方式时,接入网设备分别为各个区域配置各自的目标接收功率参数、路损补偿系数以及动态功率调整值,即不同区域具有不同的目标接收功率参数,不同的路损补偿系数和不同的动态功率调整值。
采用这种配置方式,由于为各个区域分别设置各自的功率参数,因此能够针对不同的场景、业务和数据类型,区别进行更加精准的功率控制(但信令开销也相应增加)。
7、功率参数中的目标接收功率参数独立配置,且功率参数中的路损补偿系数以及动态功率调整值共享配置。
采用这种配置方式时,接入网设备分别为各个区域配置各自的目标接收功率参数,为各个区域配置统一的动态功率调整值和路损补偿系数,即不同区域具有不同的目标接收功 率参数,但具有相同的动态功率调整值和不同的路损补偿系数。
采用这种配置方式,仅对目标接收功率进行独立配置,即刻针对不同的场景、业务和数据类型区别进行功率控制,同时降低配置功率参数的信令开销。
8、功率参数中的目标接收功率参数以及动态功率调整值独立配置,且功率参数中的路损补偿系数共享配置。
采用这种配置方式时,接入网设备分别为各个区域配置各自的目标接收功率参数和动态功率调整值,为各个区域配置统一的路损补偿系数,即不同区域具有不同的目标接收功率参数和不同的动态功率调整值,但具有相同的路损补偿系数。可选的,为了避免功率差过大,导致动态信令无法跟踪,接入网设备采用半静态配置的方式配置功率差值。比如,接入网设备每隔预定时间间隔,向终端发送功率差值,终端在接入网设备下一次发送功率差值前,存储并使用当前收到功率差值。
需要说明的是,步骤401和步骤403之间不存在严格的先后顺序,即步骤401和步骤403可以同时执行,本实施例并不对两者的执行时序进行限定。
步骤404,终端接收接入网设备发送的功率差值。
可选的,终端基于接入网设备配置的功率参数,计算接入网设备期待的发送功率,并根据期待的发送功率和功率差值,确定不同区域中数据的发送功率。
可选的,终端基于协议约定的发送功率计算公式,根据接入网设备配置的功率参数计算接入网设备期待的发送功率,本实施例在此不再赘述。
在一种可能的实施方式中,当终端被调度在第一区域发送数据时,终端将发送功率(第一功率)设置为期待的发送功率-功率差值;
当终端被调度在第二区域发送数据时,终端将发送功率(第二功率)设置为接入网设备期待的发送功率;
当终端被调度发送高优先级数据时,终端则确定在第一区域发送高优先级数据,并将发送功率设置为接入网设备期待的发送功率,从而降低第二区域上其他低优先级数据的干扰,提高传输高优先级数据的可靠性。
在一个示意性的例子中,在eMBB业务和URLLC业务调度场景下,接入网设备期待的发送功率为P,且接入网设备配置的功率差值为deltaP,终端被调度在第一区域发送eMBB数据时,将发送功率设置为P-deltaP;终端被调度在第二区域发送eMBB数据时,将发送功率设置为P;终端被调度在第一区域发送URLLC数据时,将发送功率设置为P。
步骤405,终端在第一区域采用第一功率发送数据。
结合上述步骤中的示例,当终端被调度在第一区域发送eMMB数据时,采用发送功率P-deltaP发送eMMB数据。
步骤406,终端在第二区域采用第二功率发送数据。
结合上述步骤中的示例,当终端被调度在第二区域发送eMMB数据时,采用发送功率P发送eMMB数据。
可选的,当存在URLLC业务抢占资源时,终端在第一区域采用第三功率发送URLLC数据,比如,该第三功率可以为上述示例中的P。
综上所述,本实施例中,通过配置传输资源上不同的区域,使得终端能够在不同区域采用相应的功率进行数据发送,从而避免终端在发送上行数据过程中频繁检测控制信号,进而降低了终端的功耗,并且,采用不同的功率进行数据传输,有助于提高通信系统中终端与接入网设备间数据传输的可靠性和效率。
本实施例中,接入网设备向终端发送区域配置信息以及不同区域的功率差值,以便终端根据区域配置信息确定出不同的区域,并根据该功率差值确定出不同区域内数据的发送功率,从而进行后续的上行数据传输,提高了上行数据传输的可靠性和效率;同时,接入网设备采用半静态的方式配置功率差值,进而避免无法跟踪功率跳变。
本实施例中,接入网设备之间通过交换区域配置信息,并根据获取到区域配置信息进 行区域调整,从而减小相邻小区之间的干扰,进一步提高系统的数据传输质量。
请参考图5,其示出了本申请另一个示例性实施例提供的数据发送方法的流程图。本实施例以该方法应用于图1所述的通信系统中来举例说明。该方法包括:
步骤501,接入网设备向终端发送区域配置信息,区域配置信息用于指示第一区域和第二区域的配置。
本实施例中,接入网设备为终端配置两个BWP,分别对应第一区域和第二区域,向终端发送区域配置信息时,接入网设备即将两个BWP的配置信息以及配置信息发送至终端。
可选的,两个BWP对应的时频域资源不同,比如,BWP1对应PRB1-50,而BWP2对应PRB51-55;或者,两个BWP对应的时频域资源相同,但对应的子载波间隔不同,比如,BWP1和BWP2均对应PRB51-55,但BWP1对应的子载波间隔为60KHz,BWP2对应的子载波间隔为15KHz。本实施例并不对此进行限定。
步骤502,终端接收接入网设备发送的区域配置信息。
相应的,终端接收到区域配置信息后,即根据其中的BWP配置信息确定出第一区域和第二区域。
步骤503,接入网设备向终端发送功率参数,其中,第一功率的功率参数与所述第二功率的功率参数的部分或全部独立配置。
本实施例中,接入网设备为每个BWP独立配置部分或全部(上行)功率参数,以便终端根据为BWP配置的功率参数确定各个区域内数据的发送功率。
可选的,该功率参数包括目标接收功率参数、路损补偿系数以及动态功率调整值中的至少一种,其中,目标接收功率参数为接入网设备期望接收到数据的功率,路损补偿系数用于补偿传输过程中的功率损耗,动态功率调整值可以采用值或集合(比如{-3,0,3,6})的方式进行指示。
可选的,功率参数的配置方式包括如下几种。
1、功率参数中的目标接收功率参数和路损补偿系数独立配置,且功率参数中的动态功率调整值共享配置。
采用这种配置方式时,接入网设备分别为各个BWP配置各自的目标接收功率参数和路损补偿系数,为各个BWP共享动态功率调整值,即不同BWP具有不同的目标接收功率参数和不同的路损补偿系数,但具有相同的动态功率调整值。
比如,接入网设备为发送的功率参数中,包括为BWP1配置的目标接收功率P1和路损补偿系数a1,为BWP2配置的目标接收功率P2和路损补偿系数a2,以及统一配置的动态功率调整值f1。
采用这种配置方式,能够针对不同的场景、业务和数据类型,区别进行功率控制,同时,根据共享的动态功率调整值,能够即时跟踪信道的变化情况。
2、功率参数中的目标接收功率参数、路损补偿系数以及动态功率调整值独立配置。
采用这种配置方式时,接入网设备分别为各个BWP配置各自的目标接收功率参数、路损补偿系数以及动态功率调整值,即不同BWP具有不同的目标接收功率参数,不同的路损补偿系数和不同的动态功率调整值。
比如,接入网设备为发送的功率参数中,包括为BWP1配置的目标接收功率P1、路损补偿系数a1以及动态功率调整值f1,为BWP2配置的目标接收功率P2、路损补偿系数a2以及动态功率调整值f2。
采用这种配置方式,由于为各个BWP分别设置各自的功率参数,因此能够针对不同的场景、业务和数据类型,区别进行更加精准的功率控制(但信令开销也相应增加)。
3、功率参数中的目标接收功率参数独立配置,且功率参数中的路损补偿系数以及动态功率调整值共享配置。
采用这种配置方式时,接入网设备分别为各个BWP配置各自的目标接收功率参数,为 各个BWP配置统一的动态功率调整值和路损补偿系数,即不同BWP具有不同的目标接收功率参数,但具有相同的动态功率调整值和不同的路损补偿系数。
比如,接入网设备为发送的功率参数中,包括为BWP1配置的目标接收功率P1,为BWP2配置的目标接收功率P2,以及统一配置的动态功率调整值f1和路损补偿系数a1。
采用这种配置方式,仅对目标接收功率进行独立配置,即刻针对不同的场景、业务和数据类型区别进行功率控制,同时降低配置功率参数的信令开销。
4、功率参数中的目标接收功率参数以及动态功率调整值独立配置,且功率参数中的路损补偿系数共享配置。
采用这种配置方式时,接入网设备分别为各个BWP配置各自的目标接收功率参数和动态功率调整值,为各个BWP配置统一的路损补偿系数,即不同BWP具有不同的目标接收功率参数和不同的动态功率调整值,但具有相同的路损补偿系数。
比如,接入网设备为发送的功率参数中,包括为BWP1配置的目标接收功率P1和动态功率调整值f1,为BWP2配置的目标接收功率P2和动态功率调整值f2,以及统一配置的路损补偿系数a1。步骤504,终端接收接入网设备配置的功率参数。
5、功率参数中的路损补偿系数独立配置,且功率参数中的目标接收功率参数和动态功率调整值共享配置。
采用这种配置方式时,接入网设备分别为各个BWP配置各自的路损补偿系数,为各个BWP配置统一的目标接收功率参数以及动态功率调整值,即不同BWP具有不同的路损补偿系数,但具有相同的目标接收功率参数以及动态功率调整值。
6、功率参数中的路损补偿系数以及动态功率调整值独立配置,且功率参数中的目标接收功率参数共享配置。
采用这种配置方式时,接入网设备分别为各个BWP配置各自的路损补偿系数以及动态功率调整值,为各个BWP配置统一的目标接收功率参数,即不同BWP具有不同的路损补偿系数以及动态功率调整值,但具有相同的目标接收功率参数。
7、功率参数中的动态功率调整值独立配置,且功率参数中的目标接收功率参数以及路损补偿系数共享配置。
采用这种配置方式时,接入网设备分别为各个BWP配置各自的动态功率调整值,为各个BWP配置统一的目标接收功率参数以及路损补偿系数,即不同BWP具有不同的动态功率调整值,但具有相同的目标接收功率参数以及路损补偿系数。
通过上述三种方式配置功率参数时,既可以针对不同的场景、业务、数据类型进行区别功率控制,还能够降低配置功率参数时的信令开销(由于存在共享配置)。
8、功率参数中的动态功率调整值,目标接收功率参数以及路损补偿系数共享配置。
采用这种配置方式时,接入网设备为各个BWP配置统一的目标接收功率参数、路损补偿系数以及动态功率调整值,即不同BWP具有相同的目标接收功率参数、路损补偿系数以及动态功率调整值。
采用这种方式配置功率参数时,由于不同BWP共享配置参数,因此配置功率参数时的信令开销降至最低。后续过程中,终端即根据接入网设备配置的功率差值针对不同场景、业务、数据类型进行区别功率控制。
终端接收并存储接入网设备配置的功率参数,以便后续发送上行数据时,基于该功率参数确定发送功率。
步骤505,终端根据功率参数确定第一功率,并在第一区域采用第一功率发送数据。
可选的,接入网设备为BWP1(对应第一区域)配置功率参数中较小的目标接收功率,以便终端被调度在第一区域发送数据时,基于功率参数中较小的目标接收功率设置发送功率(即第一功率),并根据设置的发送功率发送数据。
比如,在BWP1上发送(上行)eMMB数据时,终端参考较小目标接收功率设置发送功率,从而实现在第一区域以低功率发送eMMB数据。
步骤506,终端根据功率参数确定第二功率,并在第二区域采用第二功率发送数据。
可选的,接入网设备为BWP2(对应第二区域)配置功率参数中较大的目标接收功率,以便终端被调度在第二区域发送数据时,基于功率参数中较大的目标接收功率设置发送功率(即第二功率),并根据设置的发送功率发送数据。
比如,在BWP2上发送(上行)eMMB数据时,终端参考较大目标接收功率设置发送功率,从而实现在第二区域以高功率发送eMMB数据。
可选的,当需要发送URLLC数据时,终端通过抢占资源的方式,使用BWP1(对应第一区域)的资源发送URLLC数据,并为其配置较大发送功率(比如基于较大的目标接收功率),从而提高URLLC数据传输的可靠性。
综上所述,本实施例中,通过配置传输资源上不同的区域,使得终端能够在不同区域采用相应的功率进行数据发送,从而避免终端在发送上行数据过程中频繁检测控制信号,进而降低了终端的功耗,并且,采用不同的功率进行数据传输,有助于提高通信系统中终端与接入网设备间数据传输的可靠性和效率。
此外,5G系统中,由于URLLC业务和eMBB业务的可靠性要求不同,且物理层看不到业务类型,因此基于业务类型进行功率控制成为一个有待解决的问题。本申请实施例中,通过配置至少两个BWP,并仅在其中一个BWP上采用高功率发送URLLC数据,实现基于业务类型的功率区别控制,并有利于提高URLLC数据传输的可靠性;同时,仅对URLLC数据进行功率增强可以降低传输功耗以及系统干扰。
以下为本申请的装置实施例,由于装置实施例与方法实施例存在对应关系,因此在装置实施例中未描述的技术细节,可以参考上述方法实施例中的相应描述。
请参考图6,其示出了本申请一个示例性实施例提供的数据发送装置的框图。该数据发送装置可以通过软件、硬件或者两者的结合,实现成为终端的全部或一部分。该装置包括:
第一发送模块610,用于在第一区域采用第一功率发送数据;
第二发送模块620,用于在第二区域采用第二功率发送数据;
其中,所述第一区域和所述第二区域通过传输资源区分。
可选的,所述第一区域和所述第二区域通过时域资源区分;或,
所述第一区域和所述第二区域通过频域资源区分;或,
所述第一区域和所述第二区域通过所述时域资源和所述频域资源区分;或,
所述第一区域和所述第二区域通过频域宽带部分BWP区分;
其中,所述时域资源包括符号、时隙和子帧中的至少一种,所述频域资源包括物理资源块PRB和资源块组RBG中的至少一种。
可选的,所述装置还包括:
信息接收模块,用于接收接入网设备发送的区域配置信息,所述区域配置信息用于指示所述第一区域和所述第二区域的配置。
可选的,所述装置还包括:
信息接收模块,用于接收接入网设备发送的区域配置信息,所述区域配置信息用于指示所述第一功率区域和所述第二功率区域的配置;
差值接收模块,用于所述终端接收所述接入网设备发送的功率差值;
其中,所述功率差值为第一功率的功率参数与第二功率的功率参数的差值。
可选的,所述功率差值采用半静态配置。
可选的,所述第一功率的功率参数与所述第二功率的功率参数的部分或全部独立配置。
可选的,所述功率参数中的目标接收功率参数和路损补偿系数独立配置,且所述功率参数中的动态功率调整值共享配置;
或,
所述功率参数中的目标接收功率参数、路损补偿系数以及动态功率调整值独立配置;
或,
所述功率参数中的目标接收功率参数独立配置,且所述功率参数中的路损补偿系数以及动态功率调整值共享配置;
或,
所述功率参数中的目标接收功率参数以及动态功率调整值独立配置,且所述功率参数中的路损补偿系数共享配置;
或,
所述功率参数中的路损补偿系数独立配置,且所述功率参数中的目标接收功率参数和动态功率调整值共享配置;
或,
所述功率参数中的路损补偿系数以及动态功率调整值独立配置,且所述功率参数中的目标接收功率参数共享配置;
或,
所述功率参数中的动态功率调整值独立配置,且所述功率参数中的目标接收功率参数以及路损补偿系数共享配置;
或,
所述功率参数中的动态功率调整值,目标接收功率参数以及路损补偿系数共享配置。
相关细节参考上述各个方法实施例中由终端执行的步骤。
请参考图7,其示出了本申请一个示例性实施例提供的数据发送装置的框图。该数据发送装置可以通过软件、硬件或者两者的结合,实现成为接入网设备的全部或一部分。该装置包括:
第三发送模块710,用于在第一区域采用第一功率发送数据;
第四发送模块720,用于在第二区域采用第二功率发送数据;
其中,所述第一区域和所述第二区域通过传输资源区分。
可选的,所述第一区域和所述第二区域通过时域资源区分;或,
所述第一区域和所述第二区域通过频域资源区分;或,
所述第一区域和所述第二区域通过所述时域资源和所述频域资源区分;或,
所述第一区域和所述第二区域通过频域宽带部分BWP区分;
其中,所述时域资源包括符号、时隙和子帧中的至少一种,所述频域资源包括物理资源块PRB和资源块组RBG中的至少一种。
可选的,所装置还包括:
信息发送模块,用于向终端发送区域配置信息,所述区域配置信息用于指示所述第一区域和所述第二区域的配置。
可选的,所述装置还包括:
信息发送模块,用于向终端发送区域配置信息,所述区域配置信息用于指示所述第一区域和所述第二区域的配置;
差值发送模块,用于向所述终端发送功率差值;
其中,所述功率差值为第一功率的功率参数与第二功率的功率参数的差值。
可选的,所述功率差值采用半静态配置。
可选的,所述第一功率的功率参数与所述第二功率的功率参数的部分或全部独立配置。
可选的,
所述功率参数中的目标接收功率参数和路损补偿系数独立配置,且所述功率参数中的动态功率调整值共享配置;
或,
所述功率参数中的目标接收功率参数、路损补偿系数以及动态功率调整值独立配置;
或,
所述功率参数中的目标接收功率参数独立配置,且所述功率参数中的路损补偿系数以及动态功率调整值共享配置;
或,
所述功率参数中的目标接收功率参数以及动态功率调整值独立配置,且所述功率参数中的路损补偿系数共享配置;
或,
所述功率参数中的路损补偿系数独立配置,且所述功率参数中的目标接收功率参数和动态功率调整值共享配置;
或,
所述功率参数中的路损补偿系数以及动态功率调整值独立配置,且所述功率参数中的目标接收功率参数共享配置;
或,
所述功率参数中的动态功率调整值独立配置,且所述功率参数中的目标接收功率参数以及路损补偿系数共享配置;
或,
所述功率参数中的动态功率调整值,目标接收功率参数以及路损补偿系数共享配置。
相关细节参考上述各个方法实施例中由接入网设备执行的步骤。
请参考图8,其示出了本申请一个示例性实施例提供的终端的结构示意图,该终端包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中终端执行的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
请参考图9,其示出了本申请一个示例性实施例提供的接入网设备的结构示意图,该接入网设备包括:处理器111、接收器112、发射器113、存储器114和总线115。
处理器111包括一个或者一个以上处理核心,处理器111通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器112和发射器113可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器114通过总线115与处理器111相连。
存储器114可用于存储至少一个指令,处理器111用于执行该至少一个指令,以实现上述方法实施例中接入网设备执行的各个步骤。
此外,存储器114可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
本申请提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现上述各个方法实施例提供的数据发送方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述各个方法实施例提供的数据发送方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (33)

  1. 一种数据发送方法,其特征在于,所述方法包括:
    终端在第一区域采用第一功率发送数据;
    所述终端在第二区域采用第二功率发送数据;
    其中,所述第一区域和所述第二区域通过传输资源区分。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一区域和所述第二区域通过时域资源区分;或,
    所述第一区域和所述第二区域通过频域资源区分;或,
    所述第一区域和所述第二区域通过所述时域资源和所述频域资源区分;或,
    所述第一区域和所述第二区域通过频域宽带部分BWP区分;
    其中,所述时域资源包括符号、时隙和子帧中的至少一种,所述频域资源包括物理资源块PRB和资源块组RBG中的至少一种。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端在第一区域采用第一功率发送数据之前,所述方法还包括:
    所述终端接收接入网设备发送的区域配置信息,所述区域配置信息用于指示所述第一区域和所述第二区域的配置。
  4. 根据权利要求1或2所述的方法,其特征在于,所述终端在第一区域采用第一功率发送数据之前,所述方法还包括:
    所述终端接收接入网设备发送的区域配置信息,所述区域配置信息用于指示所述第一功率区域和所述第二功率区域的配置;
    所述终端接收所述接入网设备发送的功率差值;
    其中,所述功率差值为第一功率的功率参数与第二功率的功率参数的差值。
  5. 根据权利要求4所述的方法,其特征在于,所述功率差值采用半静态配置。
  6. 根据权利要求1所述的方法,其特征在于,所述第一功率的功率参数与所述第二功率的功率参数的部分或全部独立配置。
  7. 根据权利要求6所述的方法,其特征在于,
    所述功率参数中的目标接收功率参数和路损补偿系数独立配置,且所述功率参数中的动态功率调整值共享配置;
    或,
    所述功率参数中的目标接收功率参数、路损补偿系数以及动态功率调整值独立配置;
    或,
    所述功率参数中的目标接收功率参数独立配置,且所述功率参数中的路损补偿系数以及动态功率调整值共享配置;
    或,
    所述功率参数中的目标接收功率参数以及动态功率调整值独立配置,且所述功率参数中的路损补偿系数共享配置;
    或,
    所述功率参数中的路损补偿系数独立配置,且所述功率参数中的目标接收功率参数和动态功率调整值共享配置;
    或,
    所述功率参数中的路损补偿系数以及动态功率调整值独立配置,且所述功率参数中的目标接收功率参数共享配置;
    或,
    所述功率参数中的动态功率调整值独立配置,且所述功率参数中的目标接收功率参数以及路损补偿系数共享配置;
    或,
    所述功率参数中的动态功率调整值,目标接收功率参数以及路损补偿系数共享配置。
  8. 一种数据接收方法,其特征在于,所述方法,包括:
    接入网设备在第一区域采用第一功率发送数据;
    所述接入网设备在第二区域采用第二功率发送数据;
    其中,所述第一区域和所述第二区域通过传输资源区分。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第一区域和所述第二区域通过时域资源区分;或,
    所述第一区域和所述第二区域通过频域资源区分;或,
    所述第一区域和所述第二区域通过所述时域资源和所述频域资源区分;或,
    所述第一区域和所述第二区域通过频域宽带部分BWP区分;
    其中,所述时域资源包括符号、时隙和子帧中的至少一种,所述频域资源包括物理资源块PRB和资源块组RBG中的至少一种。
  10. 根据权利要求8或9所述的方法,其特征在于,所述接入网设备在第一区域采用第一功率发送数据之前,所述方法还包括:
    所述接入网设备向终端发送区域配置信息,所述区域配置信息用于指示所述第一区域和所述第二区域的配置。
  11. 根据权利要求8或9所述的方法,其特征在于,所述接入网设备在第一区域采用第一功率发送数据之前,所述方法还包括:
    所述接入网设备向终端发送区域配置信息,所述区域配置信息用于指示所述第一区域和所述第二区域的配置;
    所述接入网设备向所述终端发送功率差值;
    其中,所述功率差值为第一功率的功率参数与第二功率的功率参数的差值。
  12. 根据权利要求11所述的方法,其特征在于,所述功率差值采用半静态配置。
  13. 根据权利要求9所述的方法,其特征在于,所述第一功率的功率参数与所述第二功率的功率参数的部分或全部独立配置。
  14. 根据权利要求13所述的方法,其特征在于,
    所述功率参数中的目标接收功率参数和路损补偿系数独立配置,且所述功率参数中的动态功率调整值共享配置;
    或,
    所述功率参数中的目标接收功率参数、路损补偿系数以及动态功率调整值独立配置;
    或,
    所述功率参数中的目标接收功率参数独立配置,且所述功率参数中的路损补偿系数以及 动态功率调整值共享配置;
    或,
    所述功率参数中的目标接收功率参数以及动态功率调整值独立配置,且所述功率参数中的路损补偿系数共享配置;
    或,
    所述功率参数中的路损补偿系数独立配置,且所述功率参数中的目标接收功率参数和动态功率调整值共享配置;
    或,
    所述功率参数中的路损补偿系数以及动态功率调整值独立配置,且所述功率参数中的目标接收功率参数共享配置;
    或,
    所述功率参数中的动态功率调整值独立配置,且所述功率参数中的目标接收功率参数以及路损补偿系数共享配置;
    或,
    所述功率参数中的动态功率调整值,目标接收功率参数以及路损补偿系数共享配置。
  15. 一种数据发送装置,其特征在于,所述装置包括:
    第一发送模块,用于在第一区域采用第一功率发送数据;
    第二发送模块,用于在第二区域采用第二功率发送数据;
    其中,所述第一区域和所述第二区域通过传输资源区分。
  16. 根据权利要求15所述的装置,其特征在于,
    所述第一区域和所述第二区域通过时域资源区分;或,
    所述第一区域和所述第二区域通过频域资源区分;或,
    所述第一区域和所述第二区域通过所述时域资源和所述频域资源区分;或,
    所述第一区域和所述第二区域通过频域宽带部分BWP区分;
    其中,所述时域资源包括符号、时隙和子帧中的至少一种,所述频域资源包括物理资源块PRB和资源块组RBG中的至少一种。
  17. 根据权利要求15或16所述的装置,其特征在于,所述装置还包括:
    信息接收模块,用于接收接入网设备发送的区域配置信息,所述区域配置信息用于指示所述第一区域和所述第二区域的配置。
  18. 根据权利要求15或16所述的装置,其特征在于,所述装置还包括:
    信息接收模块,用于接收接入网设备发送的区域配置信息,所述区域配置信息用于指示所述第一功率区域和所述第二功率区域的配置;
    差值接收模块,用于所述终端接收所述接入网设备发送的功率差值;
    其中,所述功率差值为第一功率的功率参数与第二功率的功率参数的差值。
  19. 根据权利要求18所述的装置,其特征在于,所述功率差值采用半静态配置。
  20. 根据权利要求15所述的装置,其特征在于,所述第一功率的功率参数与所述第二功率的功率参数的部分或全部独立配置。
  21. 根据权利要求20所述的装置,其特征在于,
    所述功率参数中的目标接收功率参数和路损补偿系数独立配置,且所述功率参数中的动 态功率调整值共享配置;
    或,
    所述功率参数中的目标接收功率参数、路损补偿系数以及动态功率调整值独立配置;
    或,
    所述功率参数中的目标接收功率参数独立配置,且所述功率参数中的路损补偿系数以及动态功率调整值共享配置;
    或,
    所述功率参数中的目标接收功率参数以及动态功率调整值独立配置,且所述功率参数中的路损补偿系数共享配置;
    或,
    所述功率参数中的路损补偿系数独立配置,且所述功率参数中的目标接收功率参数和动态功率调整值共享配置;
    或,
    所述功率参数中的路损补偿系数以及动态功率调整值独立配置,且所述功率参数中的目标接收功率参数共享配置;
    或,
    所述功率参数中的动态功率调整值独立配置,且所述功率参数中的目标接收功率参数以及路损补偿系数共享配置;
    或,
    所述功率参数中的动态功率调整值,目标接收功率参数以及路损补偿系数共享配置。
  22. 一种数据接收装置,其特征在于,所述装置包括:
    第三发送模块,用于在第一区域采用第一功率发送数据;
    第四发送模块,用于在第二区域采用第二功率发送数据;
    其中,所述第一区域和所述第二区域通过传输资源区分。
  23. 根据权利要求22所述的装置,其特征在于,
    所述第一区域和所述第二区域通过时域资源区分;或,
    所述第一区域和所述第二区域通过频域资源区分;或,
    所述第一区域和所述第二区域通过所述时域资源和所述频域资源区分;或,
    所述第一区域和所述第二区域通过频域宽带部分BWP区分;
    其中,所述时域资源包括符号、时隙和子帧中的至少一种,所述频域资源包括物理资源块PRB和资源块组RBG中的至少一种。
  24. 根据权利要求22或23所述的装置,其特征在于,所装置还包括:
    信息发送模块,用于向终端发送区域配置信息,所述区域配置信息用于指示所述第一区域和所述第二区域的配置。
  25. 根据权利要求22或23所述的装置,其特征在于,所述装置还包括:
    信息发送模块,用于向终端发送区域配置信息,所述区域配置信息用于指示所述第一区域和所述第二区域的配置;
    差值发送模块,用于向所述终端发送功率差值;
    其中,所述功率差值为第一功率的功率参数与第二功率的功率参数的差值。
  26. 根据权利要求25所述的装置,其特征在于,所述功率差值采用半静态配置。
  27. 根据权利要求23所述的装置,其特征在于,所述第一功率的功率参数与所述第二功率的功率参数的部分或全部独立配置。
  28. 根据权利要求27所述的装置,其特征在于,
    所述功率参数中的目标接收功率参数和路损补偿系数独立配置,且所述功率参数中的动态功率调整值共享配置;
    或,
    所述功率参数中的目标接收功率参数、路损补偿系数以及动态功率调整值独立配置;
    或,
    所述功率参数中的目标接收功率参数独立配置,且所述功率参数中的路损补偿系数以及动态功率调整值共享配置;
    或,
    所述功率参数中的目标接收功率参数以及动态功率调整值独立配置,且所述功率参数中的路损补偿系数共享配置;
    或,
    所述功率参数中的路损补偿系数独立配置,且所述功率参数中的目标接收功率参数和动态功率调整值共享配置;
    或,
    所述功率参数中的路损补偿系数以及动态功率调整值独立配置,且所述功率参数中的目标接收功率参数共享配置;
    或,
    所述功率参数中的动态功率调整值独立配置,且所述功率参数中的目标接收功率参数以及路损补偿系数共享配置;
    或,
    所述功率参数中的动态功率调整值,目标接收功率参数以及路损补偿系数共享配置。
  29. 一种终端,其特征在于,所述终端包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述权利要求1至7中任一所述的数据发送方法。
  30. 一种接入网设备,其特征在于,所述接入网设备包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述权利要求8至14中任一所述的数据发送方法。
  31. 一种计算机可读存储介质,其特征在于,所述存储介质存储有至少一条指令,所述至少一条指令用于被处理器执行以实现上述权利要求1至7中任一所述的数据发送方法。
  32. 一种计算机可读存储介质,其特征在于,所述存储介质存储有至少一条指令,所述至少一条指令用于被处理器执行以实现上述权利要求8至14中任一所述的数据发送方法。
  33. 一种通信系统,其特征在于,所述系统包括:终端和接入网设备;
    所述终端是如权利要求29所述的终端;
    所述接入网设备是如权利要求30所述的接入网设备。
PCT/CN2018/072486 2018-01-12 2018-01-12 数据发送方法、装置及系统 WO2019136718A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2020537712A JP7178414B2 (ja) 2018-01-12 2018-01-12 データ送信方法、装置、及びシステム
AU2018401508A AU2018401508B2 (en) 2018-01-12 2018-01-12 Data transmission method and device, and system
EP18899473.5A EP3713352B1 (en) 2018-01-12 2018-01-12 Data transmission method and device
EP22158911.2A EP4027570A1 (en) 2018-01-12 2018-01-12 Data transmission method and device, and system
ES18899473T ES2914382T3 (es) 2018-01-12 2018-01-12 Método y dispositivo de transmisión de datos
CN202010540189.9A CN111698769B (zh) 2018-01-12 2018-01-12 数据发送方法、装置及系统
CN201880067322.4A CN111226478A (zh) 2018-01-12 2018-01-12 数据发送方法、装置及系统
KR1020207022492A KR102604940B1 (ko) 2018-01-12 2018-01-12 데이터 송신 방법, 장치 및 시스템
PCT/CN2018/072486 WO2019136718A1 (zh) 2018-01-12 2018-01-12 数据发送方法、装置及系统
TW108101246A TWI797233B (zh) 2018-01-12 2019-01-11 數據發送方法、裝置及系統
US16/898,845 US11109327B2 (en) 2018-01-12 2020-06-11 Data transmission method and device, and system
US17/404,730 US11785560B2 (en) 2018-01-12 2021-08-17 Data transmission method and device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/072486 WO2019136718A1 (zh) 2018-01-12 2018-01-12 数据发送方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/898,845 Continuation US11109327B2 (en) 2018-01-12 2020-06-11 Data transmission method and device, and system

Publications (1)

Publication Number Publication Date
WO2019136718A1 true WO2019136718A1 (zh) 2019-07-18

Family

ID=67218409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072486 WO2019136718A1 (zh) 2018-01-12 2018-01-12 数据发送方法、装置及系统

Country Status (9)

Country Link
US (2) US11109327B2 (zh)
EP (2) EP4027570A1 (zh)
JP (1) JP7178414B2 (zh)
KR (1) KR102604940B1 (zh)
CN (2) CN111698769B (zh)
AU (1) AU2018401508B2 (zh)
ES (1) ES2914382T3 (zh)
TW (1) TWI797233B (zh)
WO (1) WO2019136718A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018401508B2 (en) * 2018-01-12 2021-03-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and device, and system
US11943774B2 (en) * 2018-07-25 2024-03-26 Sony Corporation System and method for indicating a first set and a second set of uplink channel transmission parameters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100189093A1 (en) * 2009-01-26 2010-07-29 Qualcomm Incorporated Power decision pilot for wireless communication
CN103491051A (zh) * 2012-06-14 2014-01-01 华为技术有限公司 数据发射方法及设备
CN103650579A (zh) * 2011-05-10 2014-03-19 黑莓有限公司 用于移动台辅助的干扰减轻的接入点
CN104602350A (zh) * 2013-11-01 2015-05-06 上海朗帛通信技术有限公司 一种d2d干扰避免的方法和装置
CN106937381A (zh) * 2015-12-29 2017-07-07 展讯通信(上海)有限公司 网络侧设备及下行数据传输方法

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ968200A0 (en) * 2000-08-25 2000-09-21 Robert Bosch Gmbh A security system
CN100375397C (zh) * 2004-09-30 2008-03-12 株式会社Ntt都科摩 信号检测器及使用该信号检测器的接收机
US9253784B2 (en) * 2010-01-11 2016-02-02 Samsung Electronics Co., Ltd. Method and system for enabling resource block bundling in LTE-A systems
US8853890B2 (en) * 2010-07-09 2014-10-07 Sony Corporation Power supply device, communication terminal device, and non-contact power transmission method
US9559820B2 (en) * 2011-02-18 2017-01-31 Qualcomm Incorporated Feedback reporting based on channel state information reference signal (CSI-RS) groups
US9462557B2 (en) * 2011-08-15 2016-10-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and an apparatus in a user equipment for controlling transmission power of the user equipment
US20130250875A1 (en) * 2012-03-23 2013-09-26 Qualcomm Incorporated Methods and apparatus for uplink power control
JP5706848B2 (ja) * 2012-04-19 2015-04-22 株式会社Nttドコモ 無線通信システム、無線基地局および通信制御方法
US10548137B2 (en) 2013-04-04 2020-01-28 Sharpp Kabushiki Kaisha Terminal device, communication method, and integrated circuit
CN105393623B (zh) * 2013-07-12 2019-07-05 夏普株式会社 终端装置、方法以及集成电路
US10243720B2 (en) * 2013-12-18 2019-03-26 Idac Holdings, Inc. Methods, apparatus and systems for interference management in a full duplex radio system
KR101881967B1 (ko) * 2014-03-20 2018-07-25 후아웨이 디바이스 (둥관) 컴퍼니 리미티드 신호 전송 방법, 사용자 장비, 및 기지국
CN105323841B (zh) * 2014-08-01 2018-12-11 电信科学技术研究院 一种d2d传输功率控制方法及装置
US10305651B2 (en) * 2014-10-03 2019-05-28 University Of South Florida Superposed signaling for bandwidth efficiency
WO2016159699A1 (ko) * 2015-03-31 2016-10-06 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 통신 방법 및 상기 방법을 이용하는 단말
CN106465129B (zh) * 2015-04-10 2019-11-05 华为技术有限公司 一种分配网络资源的方法、装置和基站
US9543900B1 (en) * 2015-06-19 2017-01-10 Qualcomm Incorporated Switchable supply and tunable load impedance power amplifier
CN106375930A (zh) * 2015-07-22 2017-02-01 中兴通讯股份有限公司 一种设备到设备通信方法及装置
US10477537B2 (en) * 2016-02-11 2019-11-12 Qualcomm Incorporated Multi-PRB operation for narrowband systems
CN107277908B (zh) * 2016-04-06 2021-06-15 华为技术有限公司 一种功率控制方法及设备
US11265824B2 (en) * 2016-05-11 2022-03-01 Idac Holdings, Inc. Uplink asynchronous non-orthogonal multiple access
US10356778B2 (en) * 2016-05-12 2019-07-16 Asustek Computer Inc. Facilitating detection of control channels with different transmission time intervals in a wireless communication system
WO2017193395A1 (zh) * 2016-05-13 2017-11-16 华为技术有限公司 传输上行数据的方法、终端设备和网络侧设备
US10681697B2 (en) 2016-07-05 2020-06-09 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, and communication method
CN107872260B (zh) * 2016-09-28 2021-03-05 华为技术有限公司 通信方法及网络设备
EP4184852A1 (en) * 2017-06-14 2023-05-24 InterDigital Patent Holdings, Inc. Reliable control signaling
CN107396386B (zh) * 2017-08-30 2021-05-18 宇龙计算机通信科技(深圳)有限公司 信道检测方法及信道检测设备
KR102554390B1 (ko) * 2017-09-20 2023-07-11 삼성전자주식회사 무선 통신 시스템에서 제어 정보 송수신 방법 및 장치
CN111147218B (zh) * 2017-09-28 2021-01-05 华为技术有限公司 通信方法、装置和设备
US10959105B2 (en) * 2017-09-29 2021-03-23 Qualcomm Incorporated Methods, apparatuses and systems for configuring bandwidth parts in shared spectrum
CN109600826A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 功率控制方法及装置
US10869312B2 (en) * 2017-10-31 2020-12-15 Ofinno, Llc Scheduling with bandwidth part switching
EP3787189A1 (en) * 2017-11-09 2021-03-03 Comcast Cable Communications LLC Csi transmission with multiple bandwidth parts
WO2019099634A1 (en) * 2017-11-15 2019-05-23 Convida Wireless, Llc Method and device for power headroom reporting in 5g nr
CN109803361B (zh) * 2017-11-16 2021-06-04 华为技术有限公司 一种上行信道的发送方法及设备
JP6901743B2 (ja) * 2017-11-16 2021-07-14 オフィノ, エルエルシー 帯域幅部分に関するチャネル状態情報レポート
US10945172B2 (en) * 2017-11-16 2021-03-09 Comcast Cable Communications, Llc Power control for bandwidth part switching
CN109803367B (zh) * 2017-11-16 2021-02-23 华为技术有限公司 上行数据的传输方法、终端设备和基站
CN109803363B (zh) * 2017-11-17 2022-11-08 华为技术有限公司 通信方法、通信装置和系统
US11153060B2 (en) * 2017-12-29 2021-10-19 Comcast Cable Communications, Llc Selection of grant and CSI
US11128359B2 (en) * 2018-01-04 2021-09-21 Comcast Cable Communications, Llc Methods and systems for information reporting
CA3029372A1 (en) * 2018-01-09 2019-07-09 Comcast Cable Communications, Llc Beam selection in beam failure recovery request retransmission
CA3029574A1 (en) * 2018-01-10 2019-07-10 Comcast Cable Communications, Llc Power control for channel state information
CN110035485B (zh) * 2018-01-11 2022-11-22 华为技术有限公司 上行信息的传输方法和装置
AU2018401508B2 (en) * 2018-01-12 2021-03-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and device, and system
WO2019193420A1 (en) * 2018-04-05 2019-10-10 Lenovo (Singapore) Pte. Ltd. Ue power control for multiple uplink carriers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100189093A1 (en) * 2009-01-26 2010-07-29 Qualcomm Incorporated Power decision pilot for wireless communication
CN103650579A (zh) * 2011-05-10 2014-03-19 黑莓有限公司 用于移动台辅助的干扰减轻的接入点
CN103491051A (zh) * 2012-06-14 2014-01-01 华为技术有限公司 数据发射方法及设备
CN104602350A (zh) * 2013-11-01 2015-05-06 上海朗帛通信技术有限公司 一种d2d干扰避免的方法和装置
CN106937381A (zh) * 2015-12-29 2017-07-07 展讯通信(上海)有限公司 网络侧设备及下行数据传输方法

Also Published As

Publication number Publication date
US20210377879A1 (en) 2021-12-02
EP3713352A4 (en) 2020-11-18
ES2914382T3 (es) 2022-06-10
EP4027570A1 (en) 2022-07-13
US20200305095A1 (en) 2020-09-24
AU2018401508A1 (en) 2020-07-09
JP7178414B2 (ja) 2022-11-25
US11785560B2 (en) 2023-10-10
CN111698769A (zh) 2020-09-22
EP3713352A1 (en) 2020-09-23
KR102604940B1 (ko) 2023-11-21
US11109327B2 (en) 2021-08-31
EP3713352B1 (en) 2022-04-06
KR20200105695A (ko) 2020-09-08
TW201931905A (zh) 2019-08-01
CN111226478A (zh) 2020-06-02
CN111698769B (zh) 2023-06-30
JP2021511704A (ja) 2021-05-06
TWI797233B (zh) 2023-04-01
AU2018401508B2 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2019129012A1 (zh) 控制信息的传输方法
US11848779B2 (en) Method for duplicately receiving control message, and device therefor
US20150257160A1 (en) Base station and radio communication method
US20240072935A1 (en) Method for duplicately receiving control message, and device therefor
US11785560B2 (en) Data transmission method and device, and system
CN116158164A (zh) 用户设备和基站
US11770808B2 (en) Resource indicating method, apparatus, access network device, terminal and system
US20210410122A1 (en) Systems and methods for slot offset information management
WO2021160150A1 (zh) Iab网络的复用调度方法和iab节点
TW202133653A (zh) 用於封包延遲額度受限方案的模式二資源(重新)選擇的通訊設備及通訊方法
TW201902259A (zh) 上行控制訊息傳輸方法、裝置及系統
WO2018120156A1 (zh) 系统信息发送方法、系统信息接收方法及装置
WO2019096273A1 (zh) 一种信息发送、接收的方法及装置
EP4271086A1 (en) User equipment, scheduling node, method for user equipment, and method for scheduling node
EP4160964A1 (en) User equipment and base station involved in monitoring of a downlink control channel
EP4271085A1 (en) Video transmission with periodic wireless resources
EP4346143A1 (en) User equipment and base station involved in time-division communication
CN111903159A (zh) 方法、装置和计算机程序
WO2023000232A1 (zh) 无线通信方法、终端设备和网络设备
WO2023197258A1 (zh) Ta指示方法、装置、设备及介质
WO2023030205A1 (zh) 资源指示方法和通信装置
WO2023030060A1 (zh) 一种通信方法和设备
WO2024065410A1 (zh) 转发器的指示方法、转发器和网络设备
TW202348072A (zh) 使用多個時序提前組進行高效頻譜聚合的方法與裝置
WO2024089680A1 (en) Indication for unused transmission occasions for uplink cancellation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018899473

Country of ref document: EP

Effective date: 20200618

ENP Entry into the national phase

Ref document number: 2020537712

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018401508

Country of ref document: AU

Date of ref document: 20180112

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207022492

Country of ref document: KR

Kind code of ref document: A