WO2019134177A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2019134177A1
WO2019134177A1 PCT/CN2018/071854 CN2018071854W WO2019134177A1 WO 2019134177 A1 WO2019134177 A1 WO 2019134177A1 CN 2018071854 W CN2018071854 W CN 2018071854W WO 2019134177 A1 WO2019134177 A1 WO 2019134177A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
metal layer
doped
active
Prior art date
Application number
PCT/CN2018/071854
Other languages
English (en)
French (fr)
Inventor
卓恩宗
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US16/337,933 priority Critical patent/US20210343753A1/en
Publication of WO2019134177A1 publication Critical patent/WO2019134177A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • G02F1/13685Top gates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present application relates to the field of display technologies, and in particular, to a display panel, a process for displaying a display panel, and a display device.
  • the liquid crystal display has many advantages such as thin body, power saving, no radiation, and has been widely used.
  • Most of the liquid crystal displays on the market are backlight type liquid crystal displays, which include a liquid crystal panel and a backlight module (Backlight Module).
  • the working principle of the liquid crystal panel is to place liquid crystal molecules in two parallel glass substrates, and apply a driving voltage on the two glass substrates to control the rotation direction of the liquid crystal molecules to refract the light of the backlight module to generate a picture.
  • a thin film transistor liquid crystal display includes a liquid crystal panel including a color filter substrate (CF Substrate, also referred to as a color filter substrate) and a thin film transistor array substrate (Thin Film Transistor Substrate, TFT Substrate), and a backlight module.
  • CF Substrate also referred to as a color filter substrate
  • Thin Film Transistor Substrate, TFT Substrate thin film transistor array substrate
  • a transparent electrode exists on the opposite inner side of the substrate.
  • a layer of liquid crystal molecules (LC) is sandwiched between the two substrates.
  • the liquid crystal panel controls the orientation of the liquid crystal molecules by an electric field, changes the polarization state of the light, and realizes the purpose of display by the penetration and blocking of the optical path by the polarizing plate.
  • OLED Organic Light-Emitting Diode
  • OLED displays adopts self-illumination of the light-emitting diode to display, and has the advantages of self-luminous, wide viewing angle, almost infinite contrast, low power consumption and high reaction speed.
  • OLED displays also need to be controlled by thin film transistors, but the thin film transistors of conventional amorphous silicon structures have low mobility and cannot be applied to OLED displays.
  • the display panel provided by the embodiment of the present application includes:
  • a display panel comprising:
  • a substrate having a plurality of pixel regions
  • An organic light emitting diode formed on the transparent conductive layer;
  • the semiconductor layer comprises silicon germanium oxide.
  • a-Si TFTs amorphous silicon thin film transistors
  • silicon germanium oxide the mobility can exceed 1 cm 2 /Vs, even more than 2 cm 2 /Vs.
  • Germanium (Ge) is a gray-white metal that is shiny and hard. It belongs to the carbon family and has chemical properties similar to those of the same family of tin and silicon. In nature, there are five isotopes in the ⁇ , with atomic weights between 70 and 76. It can form many different organometallic compounds.
  • germanium is superior to that of general non-metals, inferior to general metals, and has a melt density of 5.32 g/cm. It has good semiconductor properties such as electron mobility and hole mobility. Doping the germanium into the semiconductor layer 40 of the active switch can effectively improve the mobility and meet the requirements of the OLED display.
  • the semiconductor layer includes a first doped layer, an active layer and a second doped layer, the active layer being disposed between the first doped layer and the second doped layer, the active layer
  • the layer includes the silicon germanium oxide.
  • the active switch further includes:
  • a source metal layer and a drain metal layer are formed on the dielectric layer
  • the source metal layer is electrically connected to the first doped layer through the dielectric layer and the gate insulating layer
  • the drain metal layer is electrically connected to the second doped layer through the dielectric layer and the gate insulating layer.
  • the active switch further includes:
  • a source metal layer and a drain metal layer are formed on the dielectric layer
  • the gate insulating layer is equal in width to the gate metal layer, the gate metal layer is located between the source metal layer and the drain metal layer, and the source metal layer penetrates the dielectric layer and the first doping
  • the impurity layer is electrically connected, and the drain metal layer is electrically connected to the second doped layer through the dielectric layer.
  • the gate insulating layer is limited to the underside of the gate metal layer, and the other portions have no gate insulating layer, and the total thickness of each layer stack is reduced, which is advantageous for reducing the thickness of the panel.
  • a first insulating layer is formed on the source metal layer, the drain metal layer, and the dielectric layer;
  • the transparent conductive layer is formed on the first insulating layer; is embedded between the first insulating layer and the second insulating layer, and is electrically connected to the drain metal layer;
  • the common electrode layer is formed on the third insulating layer
  • the organic light emitting diode is located in the same layer as the third insulating layer, and is electrically connected to the transparent conductive layer and the common electrode layer, respectively.
  • the organic light emitting diode that drives the intermediate portion emits light by using the transparent electrode layer and the common electrode layer overlying the drain metal layer as the two electrodes of the organic light emitting diode. Since the drain metal layer, the transparent electrode layer, the organic light emitting diode, and the common electrode layer are closely stacked structures, not only the electrical contact performance is good but also the structure is compact, which is advantageous in reducing the thickness of the display panel, compared to the structure through the via connection.
  • the common electrode layer integrally covers the third insulating layer. No additional etching process is required to make the common electrode layer, which simplifies the process and reduces production costs.
  • the active layer is disposed directly under the gate metal layer, and the width of the active layer is less than or equal to a width of the gate metal layer.
  • the active switch is a low temperature polysilicon thin film transistor.
  • Silicon thin film transistors can be classified into polysilicon (Poly-Si TFT) and amorphous silicon (a-Si TFT), and the difference between them is that the transistor characteristics are different.
  • the molecular structure of polycrystalline silicon is neat and directional in a grain, so the electron mobility is 200-300 times faster than the disordered amorphous silicon.
  • Polysilicon products mainly include high temperature polysilicon (HTPS) and low temperature polysilicon (LTPS).
  • LTPS low temperature poly-silicon
  • the amorphous silicon structured glass substrate absorbs the energy of the excimer laser, it is converted into a polycrystalline silicon structure. Since the entire process is completed below 600 ° C, the general glass substrate is applicable and has good versatility.
  • Another object of the present application is to provide a display device that improves semiconductor layer mobility.
  • a display device includes a control component, and a display panel as described herein.
  • Germanium (Ge) is a gray-white metal that is shiny and hard. It belongs to the carbon family and has chemical properties similar to those of the same family of tin and silicon. In nature, there are five isotopes in the ⁇ , with atomic weights between 70 and 76. It can form many different organometallic compounds.
  • the conductive ability of germanium is superior to that of general non-metals, inferior to general metals, and has a melt density of 5.32 g/cm. It has good semiconductor properties such as electron mobility and hole mobility. Doping the germanium into the semiconductor layer of the thin film transistor can effectively improve the mobility and meet the requirements of the OLED display.
  • FIG. 1 is a schematic structural view of a display panel according to an embodiment of the present application.
  • FIG. 2 is a schematic structural view of a display panel according to another embodiment of the present application.
  • FIG. 3 is a schematic structural view of a display panel according to another embodiment of the present application.
  • FIG. 4 is a schematic structural view of a display panel according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a display device according to an embodiment of the present application.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • a plurality means two or more unless otherwise stated.
  • the term “comprises” and its variations are intended to cover a non-exclusive inclusion.
  • connection or integral connection; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the substrate 10 has a plurality of pixel regions
  • An active switch 11 is formed on the substrate 10;
  • a transparent conductive layer 23 electrically connected to the active switch 11;
  • An organic light emitting diode 18 formed on the transparent conductive layer 23;
  • Germanium (Ge) is a gray-white metal that is shiny and hard. It belongs to the carbon family and has chemical properties similar to those of the same family of tin and silicon. In nature, there are five isotopes in the ⁇ , with atomic weights between 70 and 76. It can form many different organometallic compounds.
  • the conductive ability of germanium is superior to that of general non-metals, inferior to general metals, and has a melt density of 5.32 g/cm. It has good semiconductor properties such as electron mobility and hole mobility. Doping the germanium into the semiconductor layer of the thin film transistor can effectively improve the mobility and meet the requirements of the OLED display.
  • Mobility refers to the average drift velocity of a carrier generated at a unit electric field strength. Its unit is centimeters / (volts per second). The mobility represents the amount of carrier conductivity, and the carrier (electron or hole) concentration determines the conductivity of the semiconductor. The mobility is inversely proportional to the effective mass of the carriers and the probability of scattering. Mobility is an important parameter for characterizing semiconductors. The higher the mobility, the faster the device will run and the higher the cutoff frequency. Therefore, the application can effectively improve the response speed of the display panel.
  • the germanium-containing semiconductor material is a bismuth oxide (SixGeyOz) compound or an oxygen-rich cerium compound
  • the annealing temperature (Depo. Temp) of these compounds is generally between 170 ° C and 370 ° C.
  • Oxygen-rich cerium compounds include, but are not limited to, cerium oxide (GeOx); cerium nitride (GeNx); cerium oxynitride (GeOxNy), etc., and the cerium oxide (SixGeyOz) compound or the oxygen-rich cerium compound are all nanomaterials.
  • the atomic numbers x and y of silicon (Si) and germanium (Ge) are:
  • amorphous silicon thin film transistors is low, less than 1 cm 2 /Vs. With silicon germanium oxide, the mobility can exceed 1 cm 2 /Vs, even more than 2 cm 2 /Vs.
  • Germanium (Ge) is a gray-white metal that is shiny and hard. It belongs to the carbon family and has chemical properties similar to those of the same family of tin and silicon. In nature, there are five isotopes in the ⁇ , with atomic weights between 70 and 76. It can form many different organometallic compounds.
  • the conductive ability of germanium is superior to that of general non-metals, inferior to general metals, and has a melt density of 5.32 g/cm. It has good semiconductor properties such as electron mobility and hole mobility. Doping the germanium into the semiconductor layer 40 of the active switch can effectively improve the mobility, and particularly meet the requirements of the OLED display.
  • the semiconductor layer has an electron mobility greater than 3 cm 2 /vs.
  • the active switch is a low temperature polysilicon thin film transistor.
  • the active switch includes a semiconductor layer 12; the semiconductor layer 12 includes a first doped layer 13, an active layer 15 and a second doped layer 14, and the active layer 15 is disposed on the first doped layer 13 and Between the two doped layers 14, the active layer 15 includes the silicon germanium oxide, and the first doped layer 13, the active layer 15 and the second doped layer 14 are located in the same layer.
  • the active switch further includes:
  • a gate insulating layer 16 is formed on the semiconductor layer 12;
  • a gate metal layer 27 is formed on the gate insulating layer 16;
  • a source metal layer 19 and a drain metal layer 20 are formed on the dielectric layer 17;
  • the source metal layer 19 is electrically connected to the first doped layer 13 through the dielectric layer 17 and the gate insulating layer 16.
  • the drain metal layer 20 penetrates the dielectric layer 17 and the gate insulating layer 16 and the first The two doped layers 14 are electrically connected.
  • the active layer 15 is disposed directly under the gate metal layer 27, and the width of the active layer 15 is less than or equal to the width of the gate metal layer 27.
  • the substrate 10 is a glass substrate 10, and the glass substrate 10 can be added with a buffer layer 26, and the semiconductor layer 12 is attached to the buffer layer 26, and the adhesion is strong.
  • the active switch is a low temperature polysilicon thin film transistor.
  • the first doped layer 13 and the second doped layer 14 may employ an oxygen-rich cerium compound to further increase the mobility.
  • This embodiment applies an active switch structure in which the gate metal layer 27 is located above the semiconductor layer 12, which is advantageous for improving the corresponding speed of the active switch.
  • Silicon thin film transistors can be classified into polysilicon (Poly-Si TFT) and amorphous silicon (a-Si TFT), and the difference between them is that the transistor characteristics are different.
  • the molecular structure of polycrystalline silicon is neat and directional in a grain, so the electron mobility is 200-300 times faster than the disordered amorphous silicon.
  • Polysilicon products mainly include high temperature polysilicon (HTPS) and low temperature polysilicon (LTPS).
  • LTPS low temperature poly-silicon
  • thin film transistor display panel uses excimer laser as a heat source in the packaging process.
  • a laser beam with uniform energy distribution is generated and projected onto the amorphous silicon structure.
  • the amorphous silicon structured glass substrate 10 absorbs the energy of the excimer laser, it is converted into a polycrystalline silicon structure. Since the entire process is completed below 600 ° C, the general glass substrate 10 can be applied. Good sex.
  • the display panel applied in this embodiment manner includes:
  • the substrate 10 has a plurality of pixel regions
  • An active switch is formed on the substrate 10;
  • An organic light emitting diode 18 formed on the transparent conductive layer;
  • the active switch includes a semiconductor layer 12; the semiconductor layer 12 includes a first doped layer 13, an active layer 15 and a second doped layer 14, and the active layer 15 is disposed on the first doped layer 13 and Between the two doped layers 14, the active layer 15 includes the silicon germanium oxide, and the first doped layer 13, the active layer 15 and the second doped layer 14 are located in the same layer.
  • the active switch further includes:
  • a gate insulating layer 16 is formed on the semiconductor layer 12;
  • a gate metal layer 27 is formed on the gate insulating layer 16;
  • a source metal layer 19 and a drain metal layer 20 are formed on the dielectric layer 17;
  • the source metal layer 19 is electrically connected to the first doped layer 13 through the dielectric layer 17 and the gate insulating layer 16.
  • the drain metal layer 20 penetrates the dielectric layer 17 and the gate insulating layer 16 and the first The two doped layers 14 are electrically connected.
  • the display panel further includes:
  • a second insulating layer 22 is formed on the first insulating layer 21;
  • the transparent conductive layer 23 is formed on the first insulating layer 21, is embedded between the first insulating layer 21 and the second insulating layer 22, and is electrically connected to the drain metal layer 20;
  • a third insulating layer 24 is formed on the second insulating layer 22;
  • the common electrode layer 25 is formed on the third insulating layer 24;
  • the organic light emitting diode 18 is located in the same layer as the third insulating layer 24, and is electrically connected to the transparent conductive layer 23 and the common electrode layer 25, respectively.
  • the common electrode layer 25 entirely covers the third insulating layer 24 .
  • the active layer 15 is disposed directly under the gate metal layer 27, and the width of the active layer 15 is less than or equal to the width of the gate metal layer 27.
  • the substrate 10 is a glass substrate 10, and the glass substrate 10 can be added with a buffer layer 26, and the semiconductor layer 12 is attached to the buffer layer 26, and the adhesion is strong.
  • the organic light emitting diode 18 driving the intermediate portion is illuminated by the transparent electrode layer and the common electrode layer 25 overlying the drain metal layer 20 as the two electrodes of the organic light emitting diode 18. Since the drain metal layer 20, the transparent electrode layer, the organic light emitting diode 18, and the common electrode layer 25 are closely stacked structures, not only the electrical contact performance is good but also the structure is compact, which is advantageous for lowering the display panel than the structure through the via connection. thickness of.
  • the display panel applied in this embodiment manner includes:
  • the substrate 10 has a plurality of pixel regions
  • An active switch is formed on the substrate 10;
  • An organic light emitting diode 18 formed on the transparent conductive layer;
  • the active switch includes a semiconductor layer 12; the semiconductor layer 12 includes a first doped layer 13, an active layer 15 and a second doped layer 14, and the active layer 15 is disposed on the first doped layer 13 and Between the two doped layers 14, the active layer 15 includes the silicon germanium oxide, and the first doped layer 13, the active layer 15 and the second doped layer 14 are located in the same layer.
  • the active switch further includes:
  • a gate insulating layer 16 is formed on the semiconductor layer 12;
  • a gate metal layer 27 is formed on the gate insulating layer 16;
  • a source metal layer 19 and a drain metal layer 20 are formed on the dielectric layer 17;
  • a transparent conductive layer 23 formed on the drain metal layer 20 and electrically connected to the drain metal layer 20;
  • the organic light emitting diode 18 is electrically connected to the transparent conductive layer 23.
  • the gate insulating layer 16 is equal in width to the gate metal layer 27, the gate metal layer 27 is located between the source metal layer 19 and the drain metal layer 20, and the source metal layer 19 extends through the dielectric layer. 17 is electrically connected to the first doped layer 13 , and the drain metal layer 20 is electrically connected to the second doped layer 14 through the dielectric layer 17 .
  • the active layer 15 is disposed directly under the gate metal layer 27, and the width of the active layer 15 is less than or equal to the width of the gate metal layer 27.
  • the substrate 10 is a glass substrate 10, and the glass substrate 10 can be added with a buffer layer 26, and the semiconductor layer 12 is attached to the buffer layer 26, and the adhesion is strong.
  • This embodiment applies another active switch structure in which the gate metal layer 27 is located above the semiconductor layer 12, which is advantageous for improving the corresponding speed of the active switch.
  • the gate insulating layer 16 is limited to the underside of the gate metal layer 27, and the other portions have no gate insulating layer 16, and the total thickness of each layer stack is reduced, which is advantageous for reducing the thickness of the panel.
  • the display panel applied in this embodiment manner includes:
  • the substrate 10 has a plurality of pixel regions
  • An active switch is formed on the substrate 10;
  • An organic light emitting diode 18 formed on the transparent conductive layer;
  • the active switch includes a gate metal layer 27, a gate insulating layer 16, a semiconductor layer 12, a source metal layer 19, a drain metal layer 20, a passivation layer 28, and a transparent conductive layer 23 in sequence;
  • the semiconductor layer 12 includes An active layer 15 formed on the gate metal layer 27, a first doped layer 13 and a second doped layer 14 formed over the active layer 15, and a source metal layer 19 formed on the first doped layer 13
  • the drain metal layer 20 is formed on the second doping layer 14 , and the transparent conductive layer 23 is electrically connected to the drain metal layer 20 through the passivation layer 28 .
  • the active layer 15 includes silicon germanium oxide.
  • the active switch is a low temperature polysilicon thin film transistor.
  • the first doped layer 13 and the second doped layer 14 may employ an oxygen-rich cerium compound to further increase the mobility.
  • the substrate 10 is a glass substrate 10, and a buffer layer 26 may be added between the active switch and the glass substrate 10 to improve the adhesion of the active switch.
  • the display panel of the above embodiment may be any of the following: Twisted Nematic (TN) or Super Twisted Nematic (STN) type, In-Plane Switching (IPS) type, vertical alignment (Vertical Alignment, VA) type, and curved panel. It can be a type of liquid crystal panel, plasma panel, OLED panel, QLED panel, and the like.
  • the present embodiment is applied to a display device 30.
  • the display device 30 includes the control unit 31 and the foregoing display panel 32.
  • the above description is made by taking the display panel as an example. It should be noted that the above description of the structure of the display panel is also applicable to the display device of the embodiment of the present application.
  • the display device of the embodiment of the present application is a liquid crystal display
  • the liquid crystal display includes a backlight module, and the backlight module can be used as a light source for supplying sufficient light source with uniform brightness and distribution.
  • the backlight module of the embodiment can be For the front light type, it may also be a backlight type. It should be noted that the backlight module of the embodiment is not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板和显示装置(30)。显示面板包括基板(10),具有多个像素区;主动开关(11),形成于基板(10)上;透明导电层(23),与主动开关(11)电连接;有机发光二极管(18);形成于透明导电层(23)上;公共电极层(25),覆盖在有机发光二极管(18)上;主动开关(11)包括半导体层(12),半导体层(12)由含锗元素的半导体材料制成,半导体层(12)电子迁移率大于3cm 2/vs。

Description

显示面板和显示装置 【技术领域】
本申请涉及显示技术领域,尤其涉及一种显示面板、显示面板的制程和显示装置。
【背景技术】
液晶显示器具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。现有市场上的液晶显示器大部分为背光型液晶显示器,其包括液晶面板及背光模组(BacklightModule)。液晶面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,并在两片玻璃基板上施加驱动电压来控制液晶分子的旋转方向,以将背光模组的光线折射出来产生画面。
其中,薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display,TFT-LCD)由于具有低的功耗、优异的画面品质以及较高的生产良率等性能,目前已经逐渐占据了显示领域的主导地位。同样,薄膜晶体管液晶显示器包含液晶面板和背光模组,液晶面板包括彩膜基板(Color Filter Substrate,CFSubstrate,也称彩色滤光片基板)和薄膜晶体管阵列基板(Thin Film Transistor Substrate,TFT Substrate),上述基板的相对内侧存在透明电极。两片基板之间夹一层液晶分子(Liquid Crystal,LC)。液晶面板是通过电场对液晶分子取向的控制,改变光的偏振状态,并藉由偏光板实现光路的穿透与阻挡,实现显示的目的。
另有一种OLED(Organic Light-Emitting Diode)显示器,采用机发光二极管自发光来进行显示,具有自发光、广视角、几乎无穷高的对比度、较低耗电、极高反应速度等优点。OLED显示器也需要采用薄膜晶体管进行控制,但传统非晶硅结构的薄膜晶体管迁移率(mobility)较低,无法适用于OLED显示器。
【发明内容】
本申请的一个目的在于提供一种提高半导体层迁移率的显示面板。
为解决上述问题,本申请的实施例提供的显示面板包括:
一种显示面板,所述显示面板包括:
基板,具有多个像素区;
主动开关,形成于基板上;
有机发光二极管;形成于透明导电层上;
所述主动开关包括半导体层,所述半导体层由含锗元素的半导体材料制成,所述半导体层采用化学汽相淀积制成,其制程的气体比率为:GeH 4/SiH 4=0.1~10,SiH 4/N 2O=0.1~10,GeH 4/N 2O=0.1~10。
可选的,所述半导体层包括硅锗氧化物。一般非晶硅薄膜晶体管(a-Si TFT)的迁移率都较低,小于1cm 2/V-s。而采用硅锗氧化物其迁移率可以超过1cm 2/V-s,甚至于超过2cm 2/V-s。锗(Ge)是一种灰白色类金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近。在自然中,锗共有五种同位素,原子量在70至76之间。它能形成许多不同的有机金属化合物。锗的导电的本领优于一般非金属,劣于一般金属,熔密度为5.32克/cm,有着良好的半导体性质,如电子迁移率、空穴迁移率。将锗掺杂到主动开关的半导体层40内,能有效提高迁移率,满足OLED显示的要求。
可选的,所述半导体层包括第一掺杂层,有源层和第二掺杂层,所述有源层设置在第一掺杂层和第二掺杂层之间,所述有源层包括所述硅锗氧化物。
可选的,所述第一掺杂层,有源层和第二掺杂层位于同一层;所述主动开关还包括:
栅极绝缘层,形成于半导体层上;
栅极金属层,形成于栅极绝缘层上;
介质层,形成于栅极金属层上;
源极金属层和漏极金属层,形成于介质层上;
所述源极金属层贯穿介质层和栅极绝缘层与所述第一掺杂层电连接,所述漏极金属层贯穿介质层和栅极绝缘层与所述第二掺杂层电连接。
此为一种栅极金属层位于半导体层上方的主动开关结构,有利于提高主动开关的相应速度。
可选的,所述第一掺杂层,有源层和第二掺杂层位于同一层;所述主动开关还包括:
栅极绝缘层,形成于半导体层上;
栅极金属层,形成于栅极绝缘层上;
介质层,形成于栅极金属层上;
源极金属层和漏极金属层,形成于介质层上;
所述栅极绝缘层与所述栅极金属层宽度相等,所述栅极金属层位于源极金属层和漏极金属层之间,所述源极金属层贯穿介质层与所述第一掺杂层电连接,所述漏极金属层贯穿介质层与所述第二掺杂层电连接。
此为一种栅极金属层位于半导体层上方的主动开关结构,有利于提高主动开关的相应速度。另外,栅极绝缘层仅限于在栅极金属层下方,其他部分没有栅极绝缘层,各层堆叠的总厚度有所降低,有利于降低面板的厚度。
可选的,第一绝缘层,形成于源极金属层、漏极金属层和介质层上;
第二绝缘层,形成于第一绝缘层上;
所述透明导电层形成于第一绝缘层上;嵌入第一绝缘层和第二绝缘层之间,与所述漏极金属层电连接;
第三绝缘层,形成于第二绝缘层上;
所述公共电极层形成于第三绝缘层上;
所述有机发光二极管与第三绝缘层位于同一层,分别与透明导电层和公共电极层电连接。
利用覆盖在漏极金属层上的透明电极层和公共电极层作为有机发光二极管的两个电极,驱动中间部分的有机发光二极管发光。由于漏极金属层、透明电极层、有机发光二极管和公共电极层是紧密堆叠的结构,相比通过过孔连接的结构,不仅电接触性能良好,且结构紧凑,有利于降低显示面板的厚度。
可选的,所述公共电极层整体覆盖所述第三绝缘层。制作公共电极层时不需要额外增加蚀刻工艺,简化了工艺流程,降低生产成本。
可选的,所述有源层设置在所述栅极金属层的正下方位置,所述有源层的宽度小于或等于所述栅极金属层的宽度。
可选的,所述主动开关为低温多晶硅薄膜晶体管。硅薄膜晶体管(TFT)可分为多晶硅(Poly-Si TFT)与非晶硅(a-Si TFT),两者的差异在于电晶体特性不同。多晶硅的分子结构在一颗晶粒(Grain)中的排列状态是整齐而有方向性的,因此电子移动率比排列杂乱的非晶硅快了200-300倍。而多晶硅品则主要包含高温多晶硅(HTPS)与低温多晶硅(LTPS)二种产品。低温多晶硅(Low Temperature Poly-silicon;简称LTPS)薄膜晶体管显示面板在封装过程中,利用准分子镭射作为热源,镭射光经过投射系统后,会产生能量均匀分布的镭射光束,投射于非晶硅结构的玻璃基板上,当非晶硅结构玻璃基板吸收准分子镭射的能量后,会转变成为多晶硅结构,因整个处理过程都是在600℃以下完成,因此一般玻璃基板皆可适用,通用性好。
本申请的另一个目的在于提供一种显示装置,其提高了半导体层迁移率。
一种显示装置,包括控制部件,以及本申请所述的显示面板。
锗(Ge)是一种灰白色类金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近。在自然中,锗共有五种同位素,原子量在70至76之间。它能形成许多不同的有机金属化合物。锗的导电的本领优于一般非金属,劣于一般金属,熔密度为5.32克/cm,有着良好的半导体性质,如电子迁移率、空穴迁移率。将锗掺杂到薄膜晶体管的半导体层内,能有效提高迁移率,满足OLED显示的要求。
【附图说明】
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原 理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请一个实施例显示面板的结构示意图;
图2是本申请另一个实施例显示面板的结构示意图;
图3是本申请另一个实施例显示面板的结构示意图;
图4是本申请另一个实施例显示面板的结构示意图;
图5是本申请实施例显示装置的示意图。
【具体实施方式】
本申请的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连, 也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
在图中,结构相似的单元是以相同标号表示。
下面参考附图1至图5实施例进一步详细描述本申请的显示面板和显示装置。
本实施例方式的显示面板包括:
基板10,具有多个像素区;
主动开关11,形成于基板10上;
透明导电层23,与主动开关11电连接;
有机发光二极管18;形成于透明导电层23上;
公共电极层25,覆盖在有机发光二级管18上;
所述主动开关包括半导体层12,所述半导体层由含锗元素的半导体材料制成,所述半导体层采用化学汽相淀积制成,其制程的气体比率为:GeH 4/SiH 4=0.1~10,SiH 4/N 2O=0.1~10,GeH 4/N 2O=0.1~10。
锗(Ge)是一种灰白色类金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近。在自然中,锗共有五种同位素,原子量在70至76之间。它能形成许多不同的有机金属化合物。锗的导电的本领优于一般非金属,劣于一般金属,熔密度为5.32克/cm,有着良好的半导体性质,如电子迁移率、空穴迁移率。将锗掺杂到薄膜晶体管的半导体层内,能有效提高迁移率,满足OLED显示的要求。
迁移率(mobility)是指单位电场强度下所产生的载流子平均漂移速度。它 的单位是厘米/(伏·秒)。迁移率代表了载流子导电能力的大小,它和载流子(电子或空穴)浓度决定了半导体的电导率。迁移率与载流子的有效质量和散射概率成反比。迁移率是表征半导体的一个重要参数。迁移率越大,器件的运行速度越快,截止频率就越高。因此,本申请可以有效提升显示面板的响应速度。
具体来讲,含锗元素的半导体材料为氧化锗硅(SixGeyOz)化合物或富氧锗化合物,这些化合物的退火温度(Depo.Temp)一般都在170℃~370℃之间。富氧锗化合物包括但不限于氧化锗(GeOx);氮化锗(GeNx);氮氧化锗(GeOxNy)等,氧化锗硅(SixGeyOz)化合物或富氧锗化合物均为纳米材料。
以氧化锗硅(SixGeyOz)化合物为例,硅(Si)和锗(Ge)的原子数量x、y分别是:
Si:x=0.1~1
Ge:y=0.1~1
Z=1-x-y
一般非晶硅薄膜晶体管(a-Si TFT)的迁移率都较低,小于1cm 2/V-s。而采用硅锗氧化物其迁移率可以超过1cm 2/V-s,甚至于超过2cm 2/V-s。锗(Ge)是一种灰白色类金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近。在自然中,锗共有五种同位素,原子量在70至76之间。它能形成许多不同的有机金属化合物。锗的导电的本领优于一般非金属,劣于一般金属,熔密度为5.32克/cm,有着良好的半导体性质,如电子迁移率、空穴迁移率。将锗掺杂到主动开关的半导体层40内,能有效提高迁移率,特别能满足OLED显示的要求。
可选的,所述半导体层电子迁移率大于3cm 2/vs。
可选的,所述主动开关为低温多晶硅薄膜晶体管。
所述主动开关包括半导体层12;所述半导体层12包括第一掺杂层13,有源层15和第二掺杂层14,所述有源层15设置在第一掺杂层13和第二掺杂层14之间,所述有源层15包括所述硅锗氧化物,所述第一掺杂层13,有源层15和第二掺杂层14位于同一层。
所述主动开关还包括:
栅极绝缘层16,形成于半导体层12上;
栅极金属层27,形成于栅极绝缘层16上;
介质层17,形成于栅极金属层27上;
源极金属层19和漏极金属层20,形成于介质层17上;
所述源极金属层19贯穿介质层17和栅极绝缘层16与所述第一掺杂层13电连接,所述漏极金属层20贯穿介质层17和栅极绝缘层16与所述第二掺杂层14电连接。
可选的,所述有源层15设置在所述栅极金属层27的正下方位置,所述有源层15的宽度小于或等于所述栅极金属层27的宽度。
可选的,基板10采用玻璃基板10,玻璃基板10可以增加缓冲层26,半导体层12附着在缓冲层26上,附着力强。
可选的,所述主动开关为低温多晶硅薄膜晶体管。第一掺杂层13和第二掺杂层14可以采用富氧锗化合物,以进一步提高迁移率。
本实施方式申请一种栅极金属层27位于半导体层12上方的主动开关结构,有利于提高主动开关的相应速度。硅薄膜晶体管(TFT)可分为多晶硅(Poly-Si TFT)与非晶硅(a-Si TFT),两者的差异在于电晶体特性不同。多晶硅的分子结构在一颗晶粒(Grain)中的排列状态是整齐而有方向性的,因此电子移动率比排列杂乱的非晶硅快了200-300倍。而多晶硅品则主要包含高温多晶硅(HTPS)与低温多晶硅(LTPS)二种产品。低温多晶硅(Low Temperature Poly-silicon;简称LTPS)薄膜晶体管显示面板在封装过程中,利用准分子镭射作为热源,镭射光经过投射系统后,会产生能量均匀分布的镭射光束,投射于非晶硅结构的玻璃基板10上,当非晶硅结构玻璃基板10吸收准分子镭射的能量后,会转变成为多晶硅结构,因整个处理过程都是在600℃以下完成,因此一般玻璃基板10皆可适用,通用性好。
参考图2,本实施例方式申请的显示面板包括:
基板10,具有多个像素区;
主动开关,形成于基板10上;
有机发光二极管18;形成于透明导电层上;
所述主动开关包括半导体层12;所述半导体层12包括第一掺杂层13,有源层15和第二掺杂层14,所述有源层15设置在第一掺杂层13和第二掺杂层14之间,所述有源层15包括所述硅锗氧化物,所述第一掺杂层13,有源层15和第二掺杂层14位于同一层。
所述主动开关还包括:
栅极绝缘层16,形成于半导体层12上;
栅极金属层27,形成于栅极绝缘层16上;
介质层17,形成于栅极金属层27上;
源极金属层19和漏极金属层20,形成于介质层17上;
所述源极金属层19贯穿介质层17和栅极绝缘层16与所述第一掺杂层13电连接,所述漏极金属层20贯穿介质层17和栅极绝缘层16与所述第二掺杂层14电连接。
所述显示面板还包括:
第一绝缘层21,形成于源极金属层19、漏极金属层20和介质层17上;
第二绝缘层22,形成于第一绝缘层21上;
所述透明导电层23形成于第一绝缘层21上,嵌入第一绝缘层21和第二绝缘层22之间,与所述漏极金属层20电连接;
第三绝缘层24,形成于第二绝缘层22上;
所述公共电极层25形成于第三绝缘层24上;
所述有机发光二极管18与第三绝缘层24位于同一层,分别与透明导电层23和公共电极层25电连接。
可选的,所述公共电极层25整体覆盖所述第三绝缘层24。所述有源层15设置在所述栅极金属层27的正下方位置,所述有源层15的宽度小于或等于所 述栅极金属层27的宽度。
可选的,基板10采用玻璃基板10,玻璃基板10可以增加缓冲层26,半导体层12附着在缓冲层26上,附着力强。
利用覆盖在漏极金属层20上的透明电极层和公共电极层25作为有机发光二极管18的两个电极,驱动中间部分的有机发光二极管18发光。由于漏极金属层20、透明电极层、有机发光二极管18和公共电极层25是紧密堆叠的结构,相比通过过孔连接的结构,不仅电接触性能良好,且结构紧凑,有利于降低显示面板的厚度。
参考图3,本实施例方式申请的显示面板包括:
基板10,具有多个像素区;
主动开关,形成于基板10上;
有机发光二极管18;形成于透明导电层上;
所述主动开关包括半导体层12;所述半导体层12包括第一掺杂层13,有源层15和第二掺杂层14,所述有源层15设置在第一掺杂层13和第二掺杂层14之间,所述有源层15包括所述硅锗氧化物,所述第一掺杂层13,有源层15和第二掺杂层14位于同一层。
所述主动开关还包括:
栅极绝缘层16,形成于半导体层12上;
栅极金属层27,形成于栅极绝缘层16上;
介质层17,形成于栅极金属层27上;
源极金属层19和漏极金属层20,形成于介质层17上;
透明导电层23,形成于漏极金属层20上,并与漏极金属层20电连接;
所述有机发光二极管18与透明导电层23电连接。
所述栅极绝缘层16与所述栅极金属层27宽度相等,所述栅极金属层27位于源极金属层19和漏极金属层20之间,所述源极金属层19贯穿介质层17与所述第一掺杂层13电连接,所述漏极金属层20贯穿介质层17与所述第二掺杂 层14电连接。
可选的,所述有源层15设置在所述栅极金属层27的正下方位置,所述有源层15的宽度小于或等于所述栅极金属层27的宽度。
可选的,基板10采用玻璃基板10,玻璃基板10可以增加缓冲层26,半导体层12附着在缓冲层26上,附着力强。
本实施方式申请另一种栅极金属层27位于半导体层12上方的主动开关结构,有利于提高主动开关的相应速度。另外,栅极绝缘层16仅限于在栅极金属层27下方,其他部分没有栅极绝缘层16,各层堆叠的总厚度有所降低,有利于降低面板的厚度。
参考图4,本实施例方式申请的显示面板包括:
基板10,具有多个像素区;
主动开关,形成于基板10上;
有机发光二极管18;形成于透明导电层上;
所述主动开关依次包括栅极金属层27、栅极绝缘层16、半导体层12、源极金属层19、漏极金属层20、钝化层28和透明导电层23;所述半导体层12包括形成于栅极金属层27上的有源层15,形成在有源层15上方的第一掺杂层13和第二掺杂层14,源极金属层19形成于第一掺杂层13上,所述漏极金属层20形成于第二掺杂层14上,所述透明导电层23贯穿钝化层28与所述漏极金属层20电连接。所述有源层15包括硅锗氧化物。
可选的,所述主动开关为低温多晶硅薄膜晶体管。第一掺杂层13和第二掺杂层14可以采用富氧锗化合物,以进一步提高迁移率。
可选的,基板10采用玻璃基板10,主动开关和玻璃基板10之间可以增加缓冲层26,提高主动开关的附着力。
以上实施例的显示面板可以为以下任一种:扭曲向列(Twisted Nematic,TN)或超扭曲向列(Super Twisted Nematic,STN)型,平面转换(In-Plane Switching,IPS)型、垂直配向(Vertical Alignment,VA)型、及曲面型面板。可以为液晶面 板、等离子面板、OLED面板、QLED面板等类型。
参考图5,本实施方式申请一种显示装置30。该显示装置30包括控制部件31,以及前述的显示面板32,以上以显示面板为例进行详细说明,需要说明的是,以上对显示面板结构的描述同样适用于本申请实施例的显示装置中。其中,当本申请实施例的显示装置为液晶显示器时,液晶显示器包括有背光模组,背光模组可作为光源,用于供应充足的亮度与分布均匀的光源,本实施例的背光模组可以为前光式,也可以为背光式,需要说明的是,本实施例的背光模组并不限于此。
以上内容是结合可选的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (20)

  1. 一种显示面板,包括:
    基板,具有多个像素区;
    主动开关,形成于基板上;
    透明导电层,与主动开关电连接;
    有机发光二极管;形成于透明导电层上;
    公共电极层,覆盖在有机发光二级管上;
    所述主动开关包括半导体层,所述半导体层由含锗元素的半导体材料制成,所述半导体层采用化学汽相沉积制成,其制程的气体比率为:GeH 4/SiH 4=0.1~10,SiH 4/N 2O=0.1~10,GeH 4/N 2O=0.1~10;
    所述半导体层包括硅锗氧化物;所述半导体层包括第一掺杂层,有源层和第二掺杂层,所述有源层设置在第一掺杂层和第二掺杂层之间,所述有源层包括所述硅锗氧化物;
    所述第一掺杂层,有源层和第二掺杂层位于同一层;所述主动开关还包括:
    栅极绝缘层,形成于半导体层上;
    栅极金属层,形成于栅极绝缘层上;
    介质层,形成于栅极金属层上;
    源极金属层和漏极金属层,形成于介质层上;
    所述栅极绝缘层与所述栅极金属层宽度相等,所述栅极金属层位于源极金属层和漏极金属层之间,所述源极金属层贯穿介质层与所述第一掺杂层电连接,所述漏极金属层贯穿介质层与所述第二掺杂层电连接;
    第一绝缘层,形成于源极金属层、漏极金属层和介质层上;
    第二绝缘层,形成于第一绝缘层上;
    所述透明导电层形成于第一绝缘层上;嵌入第一绝缘层和第二绝缘层之间,与所述漏极金属层电连接;
    第三绝缘层,形成于第二绝缘层上;
    所述公共电极层形成于第三绝缘层上;
    所述有机发光二极管与第三绝缘层位于同一层,分别与透明导电层和公共电极层电连接;
    所述公共电极层整体覆盖所述第三绝缘层;
    所述主动开关为低温多晶硅薄膜晶体管。
  2. 一种显示面板,包括:
    基板,具有多个像素区;
    主动开关,形成于基板上;
    透明导电层,与主动开关电连接;
    有机发光二极管;形成于透明导电层上;
    公共电极层,覆盖在有机发光二级管上;
    所述主动开关包括半导体层,所述半导体层由含锗元素的半导体材料制成,所述半导体层采用化学汽相沉积制成,其制程的气体比率为:GeH 4/SiH 4=0.1~10,SiH 4/N 2O=0.1~10,GeH 4/N 2O=0.1~10。
  3. 如权利要求2所述的显示面板,其中,所述半导体层包括硅锗氧化物。
  4. 如权利要求3所述的显示面板,其中,所述半导体层包括第一掺杂层,有源层和第二掺杂层,所述有源层设置在第一掺杂层和第二掺杂层之间,所述有源层包括所述硅锗氧化物。
  5. 如权利要求4所述的显示面板,其中,所述第一掺杂层,有源层和第二掺杂层位于同一层;所述主动开关还包括:
    栅极绝缘层,形成于半导体层上;
    栅极金属层,形成于栅极绝缘层上;
    介质层,形成于栅极金属层上;
    源极金属层和漏极金属层,形成于介质层上;
    所述源极金属层贯穿介质层和栅极绝缘层与所述第一掺杂层电连接,所述 漏极金属层贯穿介质层和栅极绝缘层与所述第二掺杂层电连接。
  6. 如权利要求5所述的显示面板,还包括:
    第一绝缘层,形成于源极金属层、漏极金属层和介质层上;
    第二绝缘层,形成于第一绝缘层上;
    所述透明导电层形成于第一绝缘层上;嵌入第一绝缘层和第二绝缘层之间,与所述漏极金属层电连接;
    第三绝缘层,形成于第二绝缘层上;
    所述公共电极层形成于第三绝缘层上;
    所述有机发光二极管与第三绝缘层位于同一层,分别与透明导电层和公共电极层电连接。
  7. 如权利要求6所述的显示面板,其中,所述公共电极层整体覆盖所述第三绝缘层。
  8. 如权利要求5所述的显示面板,其中,所述有源层设置在所述栅极金属层的正下方位置,所述有源层的宽度小于或等于所述栅极金属层的宽度。
  9. 如权利要求4所述的显示面板,其中,所述第一掺杂层,有源层和第二掺杂层位于同一层;所述主动开关还包括:
    栅极绝缘层,形成于半导体层上;
    栅极金属层,形成于栅极绝缘层上;
    介质层,形成于栅极金属层上;
    源极金属层和漏极金属层,形成于介质层上;
    所述栅极绝缘层与所述栅极金属层宽度相等,所述栅极金属层位于源极金属层和漏极金属层之间,所述源极金属层贯穿介质层与所述第一掺杂层电连接,所述漏极金属层贯穿介质层与所述第二掺杂层电连接。
  10. 如权利要求9所述的显示面板,还包括:
    第一绝缘层,形成于源极金属层、漏极金属层和介质层上;
    第二绝缘层,形成于第一绝缘层上;
    所述透明导电层形成于第一绝缘层上;嵌入第一绝缘层和第二绝缘层之间,与所述漏极金属层电连接;
    第三绝缘层,形成于第二绝缘层上;
    所述公共电极层形成于第三绝缘层上;
    所述有机发光二极管与第三绝缘层位于同一层,分别与透明导电层和公共电极层电连接。
  11. 如权利要求10所述的显示面板,其中,所述公共电极层整体覆盖所述第三绝缘层。
  12. 如权利要求9所述的显示面板,其中,所述有源层设置在所述栅极金属层的正下方位置,所述有源层的宽度小于或等于所述栅极金属层的宽度。
  13. 一种显示装置,包括:
    控制部件,以及显示面板;
    所述显示面板包括:
    基板,具有多个像素区;
    主动开关,形成于基板上;
    透明导电层,与主动开关电连接;
    有机发光二极管;形成于透明导电层上;
    公共电极层,覆盖在有机发光二级管上;
    所述主动开关包括半导体层,所述半导体层由含锗元素的半导体材料制成,所述半导体层采用化学汽相淀积制成,其制程的气体比率为:GeH 4/SiH 4=0.1~10,SiH 4/N 2O=0.1~10,GeH 4/N 2O=0.1~10。
  14. 如权利要求13所述的显示面板,其中,所述半导体层包括硅锗氧化物。
  15. 如权利要求14所述的显示面板,其中,所述半导体层包括第一掺杂层,有源层和第二掺杂层,所述有源层设置在第一掺杂层和第二掺杂层之间,所述有源层包括所述硅锗氧化物。
  16. 如权利要求15所述的显示面板,其中,所述第一掺杂层,有源层和第 二掺杂层位于同一层;所述主动开关还包括:
    栅极绝缘层,形成于半导体层上;
    栅极金属层,形成于栅极绝缘层上;
    介质层,形成于栅极金属层上;
    源极金属层和漏极金属层,形成于介质层上;
    所述源极金属层贯穿介质层和栅极绝缘层与所述第一掺杂层电连接,所述漏极金属层贯穿介质层和栅极绝缘层与所述第二掺杂层电连接。
  17. 如权利要求15所述的显示面板,其中,所述第一掺杂层,有源层和第二掺杂层位于同一层;所述主动开关还包括:
    栅极绝缘层,形成于半导体层上;
    栅极金属层,形成于栅极绝缘层上;
    介质层,形成于栅极金属层上;
    源极金属层和漏极金属层,形成于介质层上;
    所述栅极绝缘层与所述栅极金属层宽度相等,所述栅极金属层位于源极金属层和漏极金属层之间,所述源极金属层贯穿介质层与所述第一掺杂层电连接,所述漏极金属层贯穿介质层与所述第二掺杂层电连接。
  18. 如权利要求17所述的显示面板,其中,所述显示面板还包括:
    第一绝缘层,形成于源极金属层、漏极金属层和介质层上;
    第二绝缘层,形成于第一绝缘层上;
    所述透明导电层形成于第一绝缘层上;嵌入第一绝缘层和第二绝缘层之间,与所述漏极金属层电连接;
    第三绝缘层,形成于第二绝缘层上;
    所述公共电极层形成于第三绝缘层上;
    所述有机发光二极管与第三绝缘层位于同一层,分别与透明导电层和公共电极层电连接。
  19. 如权利要求18所述的显示面板,其中,所述公共电极层整体覆盖所述 第三绝缘层。
  20. 如权利要求17述的显示面板,其中,所述有源层设置在所述栅极金属层的正下方位置,所述有源层的宽度小于或等于所述栅极金属层的宽度。
PCT/CN2018/071854 2018-01-05 2018-01-09 显示面板和显示装置 WO2019134177A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/337,933 US20210343753A1 (en) 2018-01-05 2018-01-09 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810011638.3 2018-01-05
CN201810011638.3A CN108376691B (zh) 2018-01-05 2018-01-05 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2019134177A1 true WO2019134177A1 (zh) 2019-07-11

Family

ID=63016480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071854 WO2019134177A1 (zh) 2018-01-05 2018-01-09 显示面板和显示装置

Country Status (3)

Country Link
US (1) US20210343753A1 (zh)
CN (1) CN108376691B (zh)
WO (1) WO2019134177A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904173B (zh) * 2019-01-11 2021-08-06 惠科股份有限公司 一种显示面板、显示面板的制造方法和显示装置
CN109873018A (zh) * 2019-03-01 2019-06-11 惠科股份有限公司 显示面板及其制备方法、显示装置
CN109860262A (zh) * 2019-03-01 2019-06-07 惠科股份有限公司 显示面板及其制备方法、显示装置
CN110930883B (zh) * 2019-12-12 2021-09-10 昆山国显光电有限公司 显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032664A1 (en) * 2008-08-06 2010-02-11 Samsung Electronics Co., Ltd. Thin film transistor substrate and a fabricating method thereof
CN104934461A (zh) * 2014-03-18 2015-09-23 三星显示有限公司 有机发光二极管显示器
CN105810836A (zh) * 2015-01-19 2016-07-27 三星显示有限公司 有机发光二级管及包括其的有机发光二级管显示器
CN106997896A (zh) * 2017-04-07 2017-08-01 惠科股份有限公司 一种显示面板和显示装置
CN107359188A (zh) * 2017-08-28 2017-11-17 惠科股份有限公司 显示面板及其制造方法
CN107359203A (zh) * 2017-05-12 2017-11-17 惠科股份有限公司 显示面板和显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527926B (zh) * 2017-08-25 2020-02-07 惠科股份有限公司 主动阵列开关基板及其显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032664A1 (en) * 2008-08-06 2010-02-11 Samsung Electronics Co., Ltd. Thin film transistor substrate and a fabricating method thereof
CN104934461A (zh) * 2014-03-18 2015-09-23 三星显示有限公司 有机发光二极管显示器
CN105810836A (zh) * 2015-01-19 2016-07-27 三星显示有限公司 有机发光二级管及包括其的有机发光二级管显示器
CN106997896A (zh) * 2017-04-07 2017-08-01 惠科股份有限公司 一种显示面板和显示装置
CN107359203A (zh) * 2017-05-12 2017-11-17 惠科股份有限公司 显示面板和显示装置
CN107359188A (zh) * 2017-08-28 2017-11-17 惠科股份有限公司 显示面板及其制造方法

Also Published As

Publication number Publication date
CN108376691B (zh) 2021-01-08
US20210343753A1 (en) 2021-11-04
CN108376691A (zh) 2018-08-07

Similar Documents

Publication Publication Date Title
WO2019134177A1 (zh) 显示面板和显示装置
US9372371B2 (en) Liquid crystal display panel, and liquid crystal display device
KR101827848B1 (ko) 박막 트랜지스터 및 이를 구비한 표시 장치
US20110147756A1 (en) Semiconductor device
WO2017045237A1 (zh) 非晶硅半导体tft背板结构
TWI413259B (zh) 薄膜電晶體和使用其之有機發光顯示裝置
US8400601B2 (en) Flat panel display device and method of manufacturing the same
US11825701B2 (en) Display panel and manufacturing method thereof
US10121883B2 (en) Manufacturing method of top gate thin-film transistor
KR101498136B1 (ko) 폴리실리콘 활성층을 함유한 박막트랜지스터, 그 제조방법 및 어레이 기판
US10921663B2 (en) Array substrate and method for forming the same
JP2013249537A (ja) 酸化物半導体スパッタリング用ターゲット、これを用いた薄膜トランジスタの製造方法
WO2018205303A1 (zh) 显示面板和显示装置
CN105702622A (zh) 低温多晶硅tft基板的制作方法及低温多晶硅tft基板
TWI545774B (zh) 薄膜電晶體及含有該薄膜電晶體之平板顯示裝置
US10749037B2 (en) Low temperature poly-silicon TFT substrate and manufacturing method thereof
US10431693B2 (en) Array substrate and display panel
KR101602834B1 (ko) 산화물 박막 트랜지스터 및 이의 제조방법
US20200105796A1 (en) Array substrate, method for fabricating array substrate and display
KR20120132130A (ko) 박막트랜지스터 및 그의 제조방법
CN114927532B (zh) 阵列基板及其制作方法和显示面板
WO2020042337A1 (zh) 阵列基板及显示面板
KR20130029272A (ko) 박막 트랜지스터
WO2021179271A1 (zh) 显示基板及其制备方法、显示面板
WO2021106336A1 (ja) 酸化物半導体を用いた薄膜トランジスタ、及び、それを用いた半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18898498

Country of ref document: EP

Kind code of ref document: A1