WO2019134143A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2019134143A1
WO2019134143A1 PCT/CN2018/071668 CN2018071668W WO2019134143A1 WO 2019134143 A1 WO2019134143 A1 WO 2019134143A1 CN 2018071668 W CN2018071668 W CN 2018071668W WO 2019134143 A1 WO2019134143 A1 WO 2019134143A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbols
light sources
mode
symbol
preamble
Prior art date
Application number
PCT/CN2018/071668
Other languages
English (en)
French (fr)
Inventor
姜彤
罗鹏飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/071668 priority Critical patent/WO2019134143A1/zh
Priority to CN201880081677.9A priority patent/CN111492597B/zh
Publication of WO2019134143A1 publication Critical patent/WO2019134143A1/zh
Priority to US16/919,913 priority patent/US11233567B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/278Bus-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/502LED transmitters

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a communication method and apparatus.
  • VLC Visible Light Communication
  • a photodiode can be used as the photodetector, and for a plurality of LED optical signals, an image sensor (IS) including a PD array can be used as the photoreceiver.
  • IS image sensor
  • mobile phones, automobiles and other devices have built-in LED light source, camera and other modules. Although these light sources and cameras are only used for lighting and shooting video, this lays a hardware foundation for the practical application of IS-based VLC systems, which is simple. The transformation can be achieved by using Optical Camera Communications (OCC) between the LED light source and the optical camera.
  • OCC Optical Camera Communications
  • Undersampled Pulse Width Modulation (UPWM) is a flicker-free camera communication technology that enables high spectrum utilization.
  • the embodiment of the present invention provides a communication method and device, which solves the scenario of multiple light sources in an optical camera communication system, how to realize simultaneous transmission of multiple light sources, and improve transmission efficiency.
  • a first aspect of the embodiments of the present application provides a communication method, where the method is applied to a sending node, where the sending node includes N light sources, and the method includes: first, generating N physical frames, each physical frame including a preamble, a mode indication, and an effective Data, the mode indication is used to indicate a transmission mode of the N light sources, the transmission mode is a diversity mode or a multiplexing mode, and N is a positive integer greater than or equal to 2; then, N physical frames are sent through N light sources, wherein one light source transmits A physical frame.
  • the communication method provided by the embodiment of the present application increases the mode indication by using the mode indication in the frame structure of the physical frame, and uses the mode indication to indicate the transmission mode of the N light sources, that is, the transmission modes of the N light sources to transmit the original data, thereby implementing N light sources. Simultaneous transmission improves transmission efficiency, and further facilitates the receiving node to parse the received physical frame according to the mode indication to obtain the original data.
  • the light source may be an LED or a laser diode (LD).
  • the diversity mode transmits the same valid data for each of the N light sources.
  • each physical frame further includes a port indication.
  • the receiving node In order for the receiving node to parse the received physical frame according to the mode indication and the port indication, the original data is obtained.
  • the port indicates information indicating N light sources that transmit valid data.
  • a second aspect of the embodiments of the present application provides a communication method, where the method is applied to a receiving node, including: receiving P physical frames sent by P light sources, each physical frame including a preamble, a mode indication, and valid data, and the mode indication is used.
  • the transmission mode is a diversity mode or a multiplexing mode, N is a positive integer greater than or equal to 2, P is less than or equal to N; and determining, according to the mode indication, a transmission mode of the N light sources of the transmitting node; If the mode of the N light sources indicated by the mode indication is the diversity mode, the original data sent by the sending node through the N light sources is obtained according to the valid data of one or the L physical frames of the P physical frames, where L is less than or equal to P.
  • the communication method provided by the embodiment of the present application increases the mode indication by using the mode indication in the frame structure of the physical frame, and uses the mode indication to indicate the transmission mode of the N light sources, that is, the transmission modes of the N light sources to transmit the original data, thereby implementing N light sources. Simultaneous transmission improves transmission efficiency, so that the receiving node parses the received physical frame according to the mode indication, and acquires the original data.
  • each physical frame further includes a port indication
  • the method further includes: determining whether P is equal to N; If P is equal to N, the valid data of the P physical frames is parsed according to the port indication of the P physical frames, and the original data sent by the transmitting node through the N light sources is obtained.
  • the receiving node is configured to parse the received physical frame according to the mode indication and the port indication to obtain the original data.
  • a third aspect of the embodiments of the present application provides a sending node, where the sending node includes N light sources, and includes: a processing unit, configured to generate N physical frames, each physical frame including a preamble, a mode indication, and valid data, and a mode indication
  • a transmission mode for indicating N light sources is a diversity mode or a multiplexing mode
  • N is a positive integer greater than or equal to 2
  • the transmitting unit is configured to send N physical frames by using N light sources, wherein one light source sends one Physical frame.
  • each physical frame further includes a port indication.
  • a fourth aspect of the embodiments of the present application provides a receiving node, including: a receiving unit, configured to receive P physical frames sent by P light sources, where each physical frame includes a preamble, a mode indication, and valid data, and the mode indication is used for a transmission mode indicating the N light sources of the transmitting node, the transmission mode is a diversity mode or a multiplexing mode, N is a positive integer greater than or equal to 2, P is less than or equal to N; and the processing unit is configured to determine N light sources of the sending node according to the mode indication
  • the sending mode is further configured to: if the transmission mode of the N light sources indicated by the mode indication is a diversity mode, according to valid data of one or L physical frames of the P physical frames, the sending node is sent by using N light sources.
  • Raw data, L is less than or equal to P.
  • each physical frame further includes a port indication
  • the processing unit is further configured to determine whether P is equal to
  • the processing unit is further configured to parse the valid data of the P physical frames according to the port indication of the P physical frames, and obtain the original data sent by the sending node by using the N light sources.
  • the preamble of each physical frame includes the symbol 0 to the symbol m+1, where the duty ratio corresponding to the symbol 0 is the first duty ratio, and the symbol m
  • the duty ratio corresponding to +1 is the second duty ratio
  • the duty ratio corresponding to m symbols in symbol 1 to symbol m is in one-to-one correspondence with all m duty ratios used in m-th order UPWM modulation
  • m is a physical frame.
  • the modulation order used for the valid data included. It should be noted that before determining the transmission mode of the N light sources of the transmitting node according to the mode indication, it is necessary to perform synchronization, phase error correction and nonlinear compensation on the received physical frame according to the preamble.
  • the preamble of each physical frame includes one of symbol 0, symbol m+1, and T preamble blocks, where the duty ratio corresponding to symbol 0 is The first duty ratio, the duty ratio corresponding to the symbol m+1 is the second duty ratio, and T is the number of packets of the N light sources, and each of the T preamble blocks includes K symbols, and K symbols correspond to The duty ratio is a part of all m duty cycles used in m-th order UPWM modulation, and the duty ratio corresponding to K ⁇ T symbols included in T preamble blocks includes m duty ratios, and T is greater than or equal to 2 A positive integer, K is an integer greater than or equal to 1 and less than or equal to m.
  • the preamble blocks included in each physical frame are merged, Form the lead.
  • the mode indication of each physical frame includes a first symbol, and if the mode indication indicates that the transmission mode of the N light sources is a diversity mode, the first symbol corresponds to The duty ratio is the third duty ratio. If the transmission mode of the N light sources indicated by the mode indication is the multiplexing mode, the duty ratio corresponding to the first symbol is the fourth duty ratio.
  • a mode indication of each physical frame includes a second symbol and a third symbol, and a second duty of each physical frame corresponds to a same duty ratio, each The duty ratio corresponding to the third symbol of the physical frame is the same.
  • the mode of the indication indicates that the transmission modes of the N light sources are the diversity mode
  • the duty ratio corresponding to the second symbol of each physical frame and the duty corresponding to the third symbol Differentiating, if the transmission mode of the N light sources indicated by the mode indication is a multiplexing mode, the duty ratio corresponding to the second symbol of each physical frame is the same as the duty ratio corresponding to the third symbol; or, if the mode indication is The transmission mode of the indicated N light sources is a diversity mode, and the duty ratio corresponding to the second symbol of each physical frame is the same as the duty ratio corresponding to the third symbol, and if the mode indication indicates that the transmission modes of the N light sources are complex In the mode, the duty ratio corresponding to the second symbol of each physical frame is different from the duty ratio corresponding to the third symbol.
  • the mode of the indication indicates that the transmission modes of the N light sources are the diversity mode
  • the valid data included in each physical frame includes the original data to be sent
  • the transmission mode indicating the indicated N light sources is a multiplexing mode, and the valid data included in each physical frame includes one data block, and the data block includes one-ninth of the original data to be transmitted.
  • the port indication includes a total number of light sources field and a first light source serial number field, and the total number of light sources field is used to indicate the number N of light sources of the N physical frames sent by the sending node, first The light source serial number field is used to indicate the serial number of the light source that sends the current physical frame, or the port indication includes the total number of light source fields, the first light source serial number field, and the first check digit field, or the port indication includes the first light source serial number field and the Nth a light source indication field, where the Nth light source indication field is used to indicate whether the light source represented by the first light source serial number field is the Nth light source, or the port indication includes a first light source serial number field, an Nth light source indication field, and a first check digit field, Or the port indication includes an extended indication field, an Nth light source indication field, a second light source serial number field, and a second parity bit field, or the port indication includes an extended indication
  • the total number of light sources indicates the number N of light sources that the transmitting node sends N physical frames, the number of light sources indicates the serial number of the light source that sends the current physical frame, or the port indication includes Q symbols.
  • Q symbols Q-1 symbols are used to indicate the source number, and symbols other than Q-1 symbols in the Q symbols are used to indicate whether the light source represented by the source number is the Nth source.
  • a fifth aspect of the embodiments of the present application provides a communication method, where the method is applied to a sending node, where the sending node includes N light sources, and the method includes: first, generating N physical frames, each physical frame including preamble and valid data, N a positive integer greater than or equal to 2; then, N physical frames are transmitted by N light sources, wherein one light source transmits one physical frame; wherein the preamble includes symbol 0 to symbol m+1, and the duty ratio corresponding to symbol 0 is For a duty cycle, the duty ratio corresponding to the symbol m+1 is the second duty ratio, the duty ratio corresponding to m symbols in the symbols 1 to m, and all m duty ratios used in the m-th order UPWM modulation a correspondence, m is a modulation order adopted by the valid data included in the physical frame, and a different order of the symbols 1 to m included in the preamble is used to indicate a transmission mode of the N light sources of the transmitting node, or the symbols 1 to 1 included in
  • the communication method provided by the embodiment of the present application uses a preamble to indicate a transmission mode of N light sources, that is, a transmission mode in which N light sources transmit original data, thereby realizing simultaneous transmission of N light sources, improving transmission efficiency, and further facilitating reception nodes according to
  • the preamble parses the received physical frame to obtain the original data.
  • each physical frame further includes a first port indication; if the preamble includes The transmission mode indicated by the different order of the X1 symbols in the symbol 1 to the symbol m is the multiplexing mode, and the X2 symbols other than the X1 symbols in the symbols 1 to m of the symbols included in the preamble of each physical frame are used for
  • each physical frame further includes a second port indication, X1+X2 ⁇ m, or X3 symbols of the symbols 1 to m in the preamble including X1 symbols and X2 symbols are used to indicate The total number of light sources, X1+X2+X3 ⁇ m, the source number indicates the serial number of the light source that sends the current physical frame, and the total number of light sources indicates the number N of light sources that the transmitting node sends N physical frames.
  • a sixth aspect of the embodiments of the present application provides a communication method, where the method is applied to a receiving node, including: receiving P physical frames sent by P light sources, each physical frame including preamble and valid data, where the preamble includes a symbol 0.
  • the duty ratio corresponding to the symbol 0 is the first duty ratio
  • the duty ratio corresponding to the symbol m+1 is the second duty ratio
  • the duty ratio corresponding to the m symbols in the symbols 1 to m One-to-one correspondence with all m duty ratios used in m-th order UPWM modulation
  • m is the modulation order adopted by the valid data included in the physical frame
  • the different order of the symbols 1 to m included in the preamble is used to indicate the transmitting node
  • the transmission mode of the N light sources, or the different order of the X1 symbols in the symbol 1 to the symbol m included in the preamble is used to indicate the transmission mode
  • the transmission mode is the diversity mode or the multiplexing mode
  • N is a positive integer greater
  • the communication method provided by the embodiment of the present application uses a preamble to indicate a transmission mode of N light sources, that is, a transmission mode in which N light sources transmit original data, thereby implementing simultaneous transmission of N light sources, improving transmission efficiency, and making the receiving node according to the preamble. Parse the received physical frame and get the original data.
  • each physical frame further includes a first port indication
  • the preamble includes The transmission mode indicated by the different order of the X1 symbols in the symbol 1 to the symbol m is the multiplexing mode, and the X2 symbols other than the X1 symbols in the symbols 1 to m of the symbols included in the preamble of each physical frame are used for
  • each physical frame further includes a second port indication, X1+X2 ⁇ m, or X3 symbols of the symbols 1 to m in the preamble including X1 symbols and X2 symbols are used to indicate The total number of light sources, X1+X2+X3 ⁇ m
  • the source number indicates the serial number of the light source that sends the current physical frame
  • the total number of light sources indicates the number N of light sources that the transmitting node sends N physical frames.
  • the method further includes: determining whether P is equal to N; Equivalent to N, parsing the valid data of the P physical frames according to the preamble and/or port indication of the P physical frames, and obtaining the original data sent by the sending node through the N light sources, where the port indication includes the first port indication or the second port indication.
  • the receiving node is configured to parse the received physical frame according to the preamble and the port indication to obtain the original data.
  • a seventh aspect of the embodiments of the present application provides a sending node, where the sending node includes N light sources, and includes: a processing unit, configured to generate N physical frames, each physical frame including preamble and valid data, and N is greater than or equal to 2 a positive integer; a sending unit, configured to send N physical frames by using N light sources, wherein one light source sends one physical frame; wherein the preamble includes symbol 0 to symbol m+1, and the duty ratio corresponding to symbol 0 is first The duty ratio, the duty ratio corresponding to the symbol m+1 is the second duty ratio, the duty ratio corresponding to m symbols in the symbols 1 to m, and all m duty ratios used in the m-th order UPWM modulation.
  • m is the modulation order adopted by the valid data included in the physical frame
  • the different order of the symbols 1 to m included in the preamble is used to indicate the transmission mode of the N light sources of the transmitting node, or the symbols 1 to symbols included in the preamble
  • the different order of X1 symbols in m is used to indicate the transmission mode
  • the transmission mode is the diversity mode or the multiplexing mode.
  • each physical frame further includes a first port indication; if the preamble includes The transmission mode indicated by the different order of the X1 symbols in the symbol 1 to the symbol m is the multiplexing mode, and the X2 symbols other than the X1 symbols in the symbols 1 to m of the symbols included in the preamble of each physical frame are used for
  • each physical frame further includes a second port indication, X1+X2 ⁇ m, or X3 symbols of the symbols 1 to m in the preamble including X1 symbols and X2 symbols are used to indicate The total number of light sources, X1+X2+X3 ⁇ m, the source number indicates the serial number of the light source that sends the current physical frame, and the total number of light sources indicates the number N of light sources that the transmitting node sends N physical frames.
  • An eighth aspect of the present application provides a receiving node, including: a receiving unit, configured to receive P physical frames sent by P light sources, where each physical frame includes preamble and valid data, where the preamble includes symbols 0 to The symbol m+1, the duty ratio corresponding to the symbol 0 is the first duty ratio, the duty ratio corresponding to the symbol m+1 is the second duty ratio, and the duty ratio corresponding to the m symbols in the symbols 1 to m All m duty ratios used in m-th order UPWM modulation are in one-to-one correspondence, m is the modulation order used by the valid data included in the physical frame, and the different order of the symbols 1 to m included in the preamble is used to indicate the N of the transmitting node.
  • the transmission mode of the light sources, or the different order of the X1 symbols in the symbols 1 to m included in the preamble is used to indicate the transmission mode, the transmission mode is the diversity mode or the multiplexing mode, N is a positive integer greater than or equal to 2, and P is smaller than Equal to N; a processing unit, configured to determine a transmission mode of the N light sources of the sending node according to the preamble; and the processing unit is further configured to: if the transmission mode indicated by the preamble is a diversity mode, according to one or L physical frames of the P physical frames Effective data, The original data sent by the transmitting node through the N light sources is obtained, and L is less than or equal to P.
  • each physical frame further includes a first port indication
  • the preamble includes The transmission mode indicated by the different order of the X1 symbols in the symbol 1 to the symbol m is the multiplexing mode, and the X2 symbols other than the X1 symbols in the symbols 1 to m of the symbols included in the preamble of each physical frame are used for
  • each physical frame further includes a second port indication, X1+X2 ⁇ m, or X3 symbols of the symbols 1 to m in the preamble including X1 symbols and X2 symbols are used to indicate The total number of light sources, X1+X2+X3 ⁇ m
  • the source number indicates the serial number of the light source that sends the current physical frame
  • the total number of light sources indicates the number N of light sources that the transmitting node sends N physical frames
  • the symbols 1 to m are sorted in descending order, the transmission mode is a diversity mode, the symbols 1 to m are sorted in ascending order, and the transmission mode is a multiplexing mode; or, symbol 1 The symbol m is sorted in ascending order, the transmission mode is the diversity mode, the symbols 1 to m are sorted in descending order, and the transmission mode is the multiplexing mode.
  • the first port indication includes a total number of light sources field and a first light source serial number field, and the total number of light sources field is used to indicate the number N of light sources of the N physical frames sent by the sending node
  • the first source serial number field is used to indicate the sequence number of the light source that sends the current physical frame
  • the first port indication includes the total number of light source fields, the first light source serial number field, and the first check digit field
  • the first port indication includes the first a light source serial number field and an Nth light source indicating field
  • the Nth light source indicating field is used to indicate whether the light source represented by the first light source serial number field is the Nth light source
  • the first port indication includes the first light source serial number field and the Nth light source indicating field
  • the first check bit field or the first port indication includes an extended indication field, an Nth light source indication field, a second light source serial number field, and a second parity bit field, or the first port
  • the serial number indicates that the first port indication includes Q symbols, and Q-1 symbols of the Q symbols are used to indicate the light source serial number, and symbols other than the Q-1 symbols among the Q symbols are used to indicate the light source represented by the light source serial number. Whether it is the Nth light source.
  • the second port indication includes a total number of light sources field, and the total number of light sources field is used to indicate the number N of light sources of the N physical frames sent by the sending node, or the second port indication
  • the light source total field and the fourth check bit field are included, or the second port indication includes R symbols, and the R symbols are used to indicate the total number of light sources or whether the light source indicated by the light source number is the Nth light source.
  • the foregoing third, fourth, seventh, and eighth functional modules may be implemented by hardware, or may be implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a transceiver for performing functions of a receiving unit and a transmitting unit, a processor for performing functions of the processing unit, a memory, and a program instruction for the processor to process the communication method of the embodiment of the present application.
  • the processor, transceiver, and memory are connected by a bus and communicate with each other.
  • the functions of the behavior of the transmitting node in the communication method provided by the first aspect and the fifth aspect, and the function of receiving the behavior of the node in the communication method provided by the second aspect and the sixth aspect may be referred to.
  • a ninth aspect of the embodiments of the present application provides a sending node, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, when the processing While the processor is running, the processor executes the computer-executable instructions stored by the memory to cause the transmitting node to perform the method of any of the above aspects.
  • a tenth aspect of the embodiments of the present application provides a receiving node, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus when the processing While the processor is running, the processor executes the computer-executable instructions stored by the memory to cause the receiving node to perform the method of any of the above aspects.
  • An eleventh aspect of the embodiments of the present application provides a computer readable storage medium, including: computer software instructions; when a computer software instruction is executed in a transmitting node or a chip built in a transmitting node, causing a transmitting node to perform the foregoing communication method.
  • a twelfth aspect of the embodiments of the present application provides a computer readable storage medium comprising: computer software instructions; when a computer software instruction is executed in a receiving node or a chip built in a receiving node, causing the receiving node to perform the foregoing communication method.
  • a thirteenth aspect of the embodiments of the present application provides a computer program product comprising instructions for causing a transmitting node to perform the communication method described above when the computer program product runs in a transmitting node or a chip built in the transmitting node.
  • a fourteenth aspect of the embodiments of the present application provides a computer program product comprising instructions for causing a receiving node to perform the communication method described above when the computer program product runs in a receiving node or a chip built in the receiving node.
  • the names of the sending node and the receiving node are not limited to the device itself. In actual implementation, these devices may appear under other names. As long as the functions of the respective devices are similar to the embodiments of the present application, they are within the scope of the claims and their equivalents.
  • FIG. 1 is a schematic structural diagram of an optical camera communication system according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a physical frame provided by the prior art
  • FIG. 4 is a schematic structural diagram of a physical frame according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a preamble according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a port indication according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another port indication according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another port indication according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another port indication according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of still another port indication according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another port indication according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of another communication method according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another physical frame according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of still another port indication according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a sending node according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a receiving node according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a computer device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of another sending node according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of another receiving node according to an embodiment of the present disclosure.
  • a communication method provided by an embodiment of the present application can be applied to various communication systems.
  • it may be an Optical Camera Communications (OCC) system.
  • OOC Optical Camera Communications
  • FIG. 1 is a schematic structural diagram of an optical camera communication system according to an embodiment of the present application.
  • the system includes a transmitting node and a receiving node.
  • the transmitting node includes at least an OCC transmitter, and the OCC transmitter is configured with an LED array or an LD array, and may be a lighting fixture with an OCC function, a front and rear lights of the automobile, a traffic signal, and the like.
  • the receiving node includes at least an OCC receiver.
  • the OCC receiver may be a built-in camera with an OCC function, a smartphone, a tablet, a surveillance camera, and a driving recorder.
  • the built-in camera described in the embodiment of the present application may adopt a Global Shutter (GS) or a Rolling Shutter (RS) exposure mode.
  • GS Global Shutter
  • RS Rolling Shutter
  • the communication method provided by the embodiment of the present application is applied to a sending node and a receiving node.
  • the sending node includes N light sources.
  • the method includes: first, the sending node generates N physical frames, where each physical frame includes a preamble, a mode indication, and valid data.
  • the mode indication is used to indicate a transmission mode of the N light sources, the transmission mode is a diversity mode or a multiplexing mode, and N is a positive integer greater than or equal to 2; then, the transmitting node sends N physical frames through N light sources, wherein one light source sends A physical frame.
  • the receiving node receives P physical frames sent by the P light sources, and determines a transmission mode of the N light sources of the transmitting node according to the mode indication.
  • the transmission mode of the N light sources indicated by the mode indication is a diversity mode, according to one of the P physical frames. Or the valid data of the L physical frames, and obtain the original data sent by the transmitting node through the N light sources.
  • the communication method provided by the embodiment of the present application increases the mode indication by using the mode indication in the frame structure of the physical frame, and uses the mode indication to indicate the transmission mode of the N light sources, that is, the transmission modes of the N light sources to transmit the original data, thereby implementing N light sources. Simultaneous transmission improves transmission efficiency, and further causes the receiving node to parse the received physical frame according to the mode indication to obtain the original data.
  • FIG. 2 is a flowchart of a communication method according to an embodiment of the present disclosure.
  • the sending node includes N light sources. As shown in FIG. 2, the method may include:
  • the sending node generates N physical frames.
  • the transmitting node of the optical camera communication system includes an LED or an LD
  • the physical frame (PHY frame) sent by the transmitting node includes a preamble, a header, and a payload, such as Figure 3 shows.
  • each of the N physical frames includes a preamble, a mode indication, and valid data.
  • FIG. 4 is a schematic structural diagram of a physical frame according to an embodiment of the present disclosure.
  • the port is indicated as an optional field of the physical frame.
  • the mode indication and the port indication form a multiple-input multiple-output (MIMO) information indication.
  • MIMO multiple-input multiple-output
  • the preamble of each physical frame consists of m + 2 UPWM symbols for synchronization, phase error determination, and nonlinear compensation.
  • the m+2 UPWM symbols include symbol 0 to symbol m+1, where m is the modulation order used by the frame header and payload of the physical frame.
  • the duty ratio corresponding to symbol 0 is the first duty ratio
  • the duty ratio corresponding to symbol m+1 is the second duty ratio
  • the duty ratio corresponding to m symbols in symbols 1 to m is the m-order UPWM modulation station. All m duty cycles used are one-to-one correspondence.
  • the first duty cycle can be 0%.
  • the second duty cycle can be 100%. As shown in FIG.
  • S0 represents symbol
  • S1 to Sm represents symbol 1 to symbol m
  • Sm+1 represents symbol m+1.
  • m is a positive integer, and the value of m may be an integer power of 2, for example, 2, 4, 8, 16, etc., or may be a non-integer power of 2, for example, 3, 6, 12, 23, and the like.
  • the preamble of each physical frame includes one of symbol 0, symbol m+1, and T preamble blocks, where a duty ratio corresponding to symbol 0 is a first duty ratio, and symbol m
  • the duty ratio corresponding to +1 is the second duty ratio
  • T is the number of packets of N light sources
  • each of the T preamble blocks includes K symbols
  • the duty ratio corresponding to K symbols is m-order UPWM
  • the duty ratio corresponding to K ⁇ T symbols included in T preamble blocks includes m duty ratios
  • T is a positive integer greater than or equal to 2
  • K is greater than or equal to 1 and an integer less than or equal to m.
  • N light sources are divided into 2 groups.
  • the light sources are grouped by even and odd numbers of the light source numbers, that is, the even-numbered light sources are grouped into one group, and the odd-numbered light sources are grouped into one group.
  • the first half of S1 to Sm is a group, and the latter half of S1 to Sm is a group.
  • the preamble transmitted by the even-numbered light source includes S0, the first half of S1 to Sm, and Sm+1.
  • the preamble transmitted by the odd-numbered source includes S0, the second half of S1 to Sm, and Sm+1.
  • the first half of S1 to Sm refers to S1 to Sm/2; the latter half of S1 to Sm refers to S(m/2+1) to Sm.
  • the first half of S1 to Sm means S1 to S(m+1)/2; the latter half of S1 to Sm means S(m+1)/2 to Sm.
  • the N light sources are divided into 2 groups.
  • the light sources are grouped by even and odd numbers of the light source numbers, that is, the even-numbered light sources are grouped into one group, and the odd-numbered light sources are grouped into one group.
  • m is an even number
  • an odd number of S1 to Sm is a group
  • an even number of S1 to Sm is a group.
  • the preambles transmitted by the even-numbered light sources include S0, S1, S3, ..., Sm-1, and Sm+1; the preambles transmitted by the odd-numbered light sources include S0, S2, S4, ..., Sm, and Sm+1.
  • the preambles transmitted by the even-numbered light sources include S0, S1, S3, ..., Sm-2, Sm, and Sm+1; the preambles transmitted by the odd-numbered light sources include S0, S2, S4, ..., Sm-1, Sm, and Sm+ 1.
  • the mode indication is used to indicate a transmission mode of the N light sources, that is, a transmission mode in which the N light sources transmit the physical frame.
  • the transmission mode is diversity mode or multiplexing mode.
  • the diversity mode is the same for the effective data transmitted by each of the N light sources. It can be understood that the physical frame sent by each light source includes all the original data.
  • the multiplexing mode is different for the effective data transmitted by each of the N light sources, and can be understood as a part of the original data included in the physical frame transmitted by each light source. For example, the original data to be transmitted is divided into N shares according to the number N of light sources of the transmitting node, and N data blocks are obtained, and N data blocks are respectively mapped into valid data of N physical frames.
  • the original data is mapped bit by bit to the N light sources, and sequentially looped.
  • the original data is a frame header and a payload in a physical frame sent by the transmitting node when the transmitting node of the optical camera communication system includes an LED or an LD, wherein the payload is optional, and some physical frames only include the frame header, excluding Load.
  • the mode indication of each physical frame includes a first symbol, and if the mode indicates that the transmission mode of the indicated N light sources is a diversity mode, the duty ratio corresponding to the first symbol is a third duty ratio. If the transmission mode of the N light sources indicated by the mode indication is the multiplexing mode, the duty ratio corresponding to the first symbol is the fourth duty ratio.
  • the third duty cycle and the fourth duty cycle may be complementary two duty cycles. For example, the third duty ratio is X%, the fourth duty ratio is 1-X%, or the third duty ratio is 1-X%, and the fourth duty ratio is X%, wherein X% can be 0%, 1-X% can be 100%.
  • the mode indication of each physical frame includes a second symbol and a third symbol, and the second symbol corresponding to each physical frame has a same duty ratio, and the third symbol of each physical frame corresponds to The duty cycle is the same. If the transmission mode of the N light sources indicated by the mode indication is a diversity mode, the duty ratio corresponding to the second symbol of each physical frame is different from the duty ratio corresponding to the third symbol, if the mode indicates the indicated N light sources.
  • the transmission mode is a multiplexing mode, and the duty ratio corresponding to the second symbol of each physical frame is the same as the duty ratio corresponding to the third symbol. As shown in Table 1.
  • X% can be 0%, 1-X% can be 100%.
  • the mode of the N light sources indicated by the mode indication is a diversity mode
  • the duty ratio corresponding to the second symbol of each physical frame and the duty ratio corresponding to the third symbol are the same
  • the mode indication indicates The transmission mode of the N light sources is a multiplexing mode
  • the duty ratio corresponding to the second symbol of each physical frame is different from the duty ratio corresponding to the third symbol.
  • each physical frame further includes a port indication. So that the receiving node parses the received physical frame according to the mode indication and the port indication to obtain the original data.
  • the port indicates information indicating N light sources that transmit valid data.
  • FIG. 6 is a schematic structural diagram of a port indication according to an embodiment of the present application.
  • the port indication includes a total number of light sources field (LED Num) and a first light source number field (Port ID).
  • the port indication further includes a first parity bit field.
  • the total number of light sources field is used to indicate the number N of light sources that the transmitting node sends N physical frames. In practical applications, the number of bits of the total number of light source fields can be set according to the number N of light sources that are desired to be supported.
  • the first light source serial number field is used to indicate the serial number of the light source that sends the current physical frame.
  • the transmitting node has 4 light sources
  • the first light source has a serial number of 1
  • the second light source has a serial number of 2
  • a third The number of the light source is 3, and the number of the fourth source is 4.
  • the number of bits of the first source number field can be set according to the number N of light sources that are desired to be supported.
  • the first check bit field is used to check the total number of the light source field and the first light source serial number field, and the method of the check may be a parity check or a Cyclic Redundancy Check (CRC), etc., and the embodiment of the present application is here. Not limited.
  • FIG. 7 is a schematic structural diagram of another port indication according to an embodiment of the present disclosure.
  • the port indication includes a first source number field and an Nth source indication field.
  • the port indication further includes a first parity bit field.
  • the Nth light source indication field is used to indicate whether the light source represented by the first light source serial number field is the Nth light source.
  • the Nth light source may be a light source whose source number is equal to N. For example, when the total number of light sources is 16, the light source numbers of the N light sources are 1 to 16, respectively, and the Nth light source refers to the light source with the light source number 16.
  • the Nth light source indicating field may be set to 1; if the light source indicated by the first light source serial number field is not the Nth light source, the Nth light source indicating field may be set to 0.
  • the first parity bit field is used to check the first source sequence number field and the Nth source indicator field.
  • FIG. 8 is a schematic structural diagram of still another port indication according to an embodiment of the present disclosure.
  • the port indication includes an extended indication field, an Nth light source indication field, a second light source number field, and a second parity bit field.
  • FIG. 9 is a schematic structural diagram of still another port indication according to an embodiment of the present disclosure.
  • the port indication includes an extended indication field, an Nth light source indication field, a second light source number field, a second parity bit field, a third light source number field, and a third parity bit field.
  • the second light source serial number field is the same as the first light source serial number field, and the complete serial number of the light source is filled in.
  • the extended indication field may occupy 1 bit
  • the Nth source indicator field may occupy 1 bit
  • the second source sequence number field may occupy 5 bits
  • the second parity bit field may occupy 1 bit.
  • the third source sequence number field may occupy 7 bits
  • the second parity bit field may occupy 1 bit.
  • FIG. 10 is a schematic structural diagram of still another port indication according to an embodiment of the present application.
  • the port indication includes a packet indication field, a group number field, a first source sequence number field, a total number of light sources in the group, and a fourth parity field.
  • the packet indication field is used to indicate whether the N light sources are grouped. If the N light sources are grouped, the group indication field can be set to one.
  • the group serial number field is used to indicate the serial number of the group, and each group has a serial number.
  • the total number of light sources in the group field is used to indicate the number of light sources included in the group. If the N light sources are not grouped, the packet indication field can be set to zero.
  • the port indication includes a packet indication field, a first source sequence number field, a total number of light sources field, and a fourth parity bit field.
  • FIG. 11 is a schematic structural diagram of still another port indication according to an embodiment of the present application.
  • the port indication includes a packet indication field, a group sequence number field, a first source sequence number field, an Nth source indication field, and a fourth parity field.
  • the packet indication field is used to indicate whether the N light sources are grouped. If the N light sources are grouped, the group indication field can be set to one. At the same time, the group sequence number field is used to indicate the sequence number of the group. If the N light sources are not grouped, the packet indication field can be set to zero.
  • the port indication includes a packet indication field, a first source sequence number field, an Nth source indication field, and a fourth parity field. For the explanation of the Nth light source indication field, reference may be made to the above description.
  • the port indication includes Q symbols, and the Q symbols are used to indicate the total number of light sources and the source number.
  • the total number of light sources indicates the number N of light sources that the transmitting node sends N physical frames.
  • the duty ratio of symbol 1, the duty ratio of symbol 3, and the duty ratio of symbol 4 and symbol 6 are in the range of [0%, 100%], and the duty ratio range of symbol 2 and symbol 5 includes [0]. %, 100%, part or all of the supported duty cycle values corresponding to the modulation order m], total m'+2(m' ⁇ m) values, support indication 2*(m'+2)*2 Light source.
  • the port indication includes Q symbols, and Q-1 symbols of the Q symbols are used to indicate the source number, and symbols other than the Q-1 symbols in the Q symbols are used to indicate whether the light source represented by the source number is The Nth light source.
  • Q 4 symbols 1, 2, and 3 are used to indicate the source number
  • symbol 4 is used to indicate whether the light source indicated by the source number is the Nth source.
  • the duty ratio of symbol 1 and the duty ratio of symbol 3 are in the range of [0%, 100%], and the duty ratio range of symbol 2 includes [0%, 100%, the portion corresponding to the modulation order m Or all supported duty cycle values], a total of m' + 2 (m' ⁇ m) values, can support the number of light sources indicating 2 * (m ' + 2) * 2 light sources.
  • the duty ratio of symbol 4 can be 0% or 100%. When the duty ratio of the symbol 4 is 0%, the symbol 4 may indicate that the light source indicated by the light source number is the Nth light source. When the duty ratio of the symbol 4 is 100%, the symbol 4 may indicate that the light source indicated by the light source number is not the Nth light source.
  • the mode indication of each physical frame includes a symbol.
  • the mode of the physical frame sent by the K1 light sources indicates that the duty ratio corresponding to one symbol is the third duty ratio
  • the mode indication of the physical frame sent by the K2 light sources indicates that the duty ratio corresponding to one symbol is the fourth. Duty cycle, where K1+K2 is the total number of sources. If the transmission mode of the N light sources indicated by the mode indication is the multiplexing mode, the mode indications of the physical frames transmitted by all the light sources are all the same corresponding to one symbol.
  • the sending node sends N physical frames by using N light sources, where one light source sends one physical frame.
  • the transmitting node may send N physical frames to the receiving node through the N light sources in the form of optical signals.
  • a light source transmits an optical signal, and an optical signal carries a physical frame.
  • the receiving node receives P physical frames sent by P light sources.
  • the receiving node may receive all the N physical frames sent by the N light sources, or may only receive a part of the N physical frames sent by the N light sources, that is, P is less than or equal to N, and N is a positive integer greater than or equal to 2.
  • Each physical frame includes a preamble, a mode indication, and valid data.
  • the preamble the mode indication
  • the port indication the valid data
  • the preamble in the physical frame includes one of the symbol 0, the symbol m+1, and the T preamble blocks, where the duty ratio corresponding to the symbol 0 is the first occupation. Space ratio, the duty ratio corresponding to symbol m+1 is the second duty ratio, T is the number of packets of N light sources, and each of the T preamble blocks includes K symbols, and the space corresponding to K symbols.
  • the duty ratio corresponding to the K ⁇ T symbols included in the T preamble blocks includes m duty ratios, and T is a positive integer greater than or equal to 2, which is a part of all m duty ratios used for m-th order UPWM modulation.
  • K is an integer greater than or equal to 1 and less than or equal to m.
  • the receiving node first needs to combine the received N physical frames, and combines the leading blocks included in the N physical frames to form a complete preamble for synchronization, phase error correction, and non- Linear compensation.
  • the complete preamble includes the preamble of the symbol 0 to the symbol m+1, wherein the duty ratio corresponding to the symbol 0 is the first duty ratio, and the duty ratio corresponding to the symbol m+1 is the second duty ratio, symbol 1
  • the duty ratio corresponding to m symbols in symbol m is in one-to-one correspondence with all m duty cycles used in m-th order UPWM modulation, and m is the modulation order used by the valid data included in the physical frame.
  • the receiving node determines, according to the mode indication, a transmission mode of the N light sources of the sending node.
  • the mode indication includes the first symbol. If the duty ratio corresponding to the first symbol is the third duty ratio, the receiving node determines that the transmission mode of the N light sources indicated by the mode indication is a diversity mode, and if the duty ratio corresponding to the first symbol is the fourth duty ratio, The receiving node determines that the transmission mode of the N light sources indicated by the mode indication is a multiplexing mode.
  • the mode indication of each physical frame includes a second symbol and a third symbol, and a second duty of each physical frame corresponds to a same duty ratio, and a third symbol of each physical frame corresponds to The duty cycle is the same.
  • the receiving node determines that the transmission mode of the N light sources indicated by the mode indication is a diversity mode, if each physical frame The duty ratio corresponding to the two symbols is the same as the duty ratio corresponding to the third symbol, and the receiving node determines that the transmission mode of the N light sources indicated by the mode indication is a multiplexing mode; or, if the second symbol of each physical frame corresponds to The duty ratio is the same as the duty ratio corresponding to the third symbol, and the receiving node determines that the transmission mode of the N light sources indicated by the mode indication is a diversity mode, and the duty ratio and the third symbol corresponding to the second symbol of each physical frame The corresponding duty ratio is different, and the receiving node determines that the transmission mode of the N light sources indicated by the mode indication is a multiplexing mode.
  • the receiving node obtains, according to valid data of one or L physical frames of the P physical frames, original data that is sent by the sending node by using the N light sources.
  • the valid data included in each physical frame is the original data.
  • the valid data of one physical frame in the P physical frames can be parsed, and the sending node is sent through N light sources. Raw data.
  • the valid data of the L physical frames in the P physical frames may also be parsed, and the original data sent by the transmitting node through the N light sources is obtained.
  • the original data transmitted by the transmitting node through the N light sources is obtained by parsing the valid data of the L physical frames, so that the valid data of the L physical frames can be combined to reduce the error.
  • L is less than or equal to P.
  • the communication method further includes the following detailed steps:
  • the receiving node determines whether P is equal to N.
  • P is equal to N according to whether the receiving node has received N physical frames sent by the N light sources according to the port indication. If P is equal to N, S207 is performed; if P is less than N, S208 is performed.
  • the receiving node may determine the number N of light sources of the transmitting node according to the indication of the total number of light sources field, and determine whether P is equal to N. If P is equal to N, it indicates that the receiving node receives all N physical frames sent by the N light sources. If P is less than N, it indicates that the receiving node fails to receive all N physical frames sent by the N light sources.
  • the receiving node may determine, according to the indication of the Nth light source indication field, whether the light source represented by the first light source serial number field is the Nth light source, and if there is one physical frame in the received P physical frames.
  • the light source indicated by the light source serial number field is the Nth light source, and the receiving node determines the value of N according to the port number indicated in the physical frame, and determines whether P is equal to N. If the light source indicated by the first light source number field of one of the received P physical frames is the Nth light source, indicating that the N physical frames sent by the receiving node to the N light sources are not received, the receiving node determines that P is less than N. .
  • the receiving node parses the valid data of the P physical frames according to the port indication of the P physical frames, and obtains the original data sent by the sending node by using the N light sources.
  • the receiving node does not process P physical frames or discards P physical frames.
  • the valid data of the P physical frames may be parsed according to the port indication of the P physical frames, and the original data sent by the sending node through the N light sources is obtained. .
  • the communication method provided by the embodiment of the present application increases the mode indication by using the mode indication in the frame structure of the physical frame, and uses the mode indication to indicate the transmission mode of the N light sources, that is, the transmission modes of the N light sources to transmit the original data, thereby implementing N light sources. Simultaneous transmission improves transmission efficiency, so that the receiving node parses the received physical frame according to the mode indication, and acquires the original data.
  • Each of the N physical frames in the communication method provided by the foregoing embodiment includes a preamble, a mode indication, and valid data.
  • the physical frame When the transmission mode of the N light sources indicated by the mode indication is a multiplexing mode, the physical frame further includes a port. Instructions.
  • each of the N physical frames includes preamble and valid data, and when the mode indicates that the transmission mode of the N light sources is the multiplexing mode, the physical frame further includes a port indication.
  • FIG. 13 is a schematic structural diagram of another physical frame according to an embodiment of the present disclosure. The difference from the above embodiment is that the transmission mode of the N light sources of the transmitting node may be used in the embodiment of the present application.
  • the preamble described in the embodiment of the present application may be a preamble as shown in FIG. 5, including the symbol 0 to the symbol m+1, the duty ratio corresponding to the symbol 0 is the first duty ratio, and the duty ratio corresponding to the symbol m+1 is The second duty ratio, the duty ratio corresponding to m symbols in the symbols 1 to m is one-to-one corresponding to all m duty ratios used in the m-th order UPWM modulation, and m is the modulation used for the valid data included in the physical frame. Order.
  • the different order of the symbols 1 to m included in the preamble is used to indicate the transmission mode of the N light sources of the transmitting node, or the different order of the X1 symbols in the symbols 1 to m included in the preamble is used to indicate the transmission mode, and the transmission is performed.
  • the mode is a diversity mode or a multiplexing mode.
  • each physical frame further includes a first port indication, and the specific implementation manner of the first port indication may refer to the port indication in the foregoing embodiment.
  • first port indication may refer to the port indication in the foregoing embodiment.
  • the symbols 1 to m are sorted in descending order
  • the transmission mode is the diversity mode
  • the symbols 1 to m are sorted in ascending order
  • the transmission mode is the multiplexing mode
  • symbol 1 The symbol m is sorted in descending order
  • the transmission mode is the multiplexing mode.
  • the transmission mode is the multiplexing mode, which is sorted in descending order of symbols 1 to 3, and the transmission mode is the diversity mode.
  • the receiving node After receiving the physical frame, if the symbol 1 to the symbol m are sorted in descending order, the receiving node determines that the transmission mode is the diversity mode, and if the symbols 1 to m are sorted in ascending order, the receiving node determines that the transmission mode is the multiplexing mode; or, if the symbol 1 to symbol m are sorted in ascending order, and the receiving node determines that the transmission mode is a diversity mode. If the symbols 1 to m are in descending order, the receiving node determines that the transmission mode is the multiplexing mode.
  • the preamble of each physical frame includes the symbols 1 to m except X2 symbols other than the X1 symbols are used to indicate the source number
  • each physical frame further includes a second port indication, X1+X2 ⁇ m
  • the source number indicates the sequence number of the light source transmitting the current physical frame
  • the total number of the light sources indicates that the sending node sends The number N of light sources of N physical frames.
  • FIG. 14 is a schematic structural diagram of still another port indication according to an embodiment of the present disclosure.
  • the second port indication includes a total number of light sources field.
  • the second port indication further includes a fifth parity bit field.
  • the second port indication includes R symbols, and the R symbols are used to indicate the total number of light sources or whether the light source indicated by the light source serial number is the Nth light source.
  • the duty ratio corresponding to the first symbol of the R symbols may be 0%, and the duty ratio corresponding to the Rth symbol may be 100%.
  • the receiving node After the receiving node receives the physical frame, the receiving node determines whether the sending mode is the diversity mode or the multiplexing mode according to the transmission mode indicated by the X1 symbols in the symbols 1 to m included in the preamble.
  • the preamble includes the symbol 1 to the symbol m except X1 symbols and X3 symbols other than X2 symbols are used to indicate the total number of light sources, X1+X2+X3 ⁇ m.
  • the different order of the first X1 symbols (S1 to SX1) of symbols 1 through m is used to indicate the transmission mode, and the different sequences of the intermediate X2 symbols (SX1+1 to SX1+X2) of symbols 1 through m are used.
  • the different order of the last X3 symbols (SX1+X2+1 to Sm) indicating the source number, symbol 1 to symbol m is used to indicate the total number of light sources.
  • X1 can be equal to 2.
  • the order of the middle X2 symbols and the last X3 symbols is unchanged, and should be set to a fixed order, then the duty cycle sequence of the middle X2 symbols is also unchanged, and the duty ratio of the last X3 symbols The sequence is also unchanged.
  • the receiving node After the receiving node receives the physical frame, the receiving node determines whether the sending mode is the diversity mode or the multiplexing mode according to the transmission mode indicated by the X1 symbols in the symbols 1 to m included in the preamble.
  • the receiving node determines the sending mode, if the sending mode indicated by the preamble is the diversity mode, according to the valid data of one or L physical frames of the P physical frames, the original data sent by the sending node through the N light sources is obtained, and L is less than or equal to P.
  • each physical frame further includes a first port indication, if the preamble includes the different order of the X1 symbols in the symbols 1 to m
  • the indicated transmission mode is a multiplexing mode
  • each of the physical frames further includes a second port when the X2 symbols other than the X1 symbols in the symbols 1 to m of the preamble of each physical frame are used to indicate the source number.
  • X1+X2 ⁇ m, or X3 symbols other than X1 symbols and X2 symbols in symbols 1 to m included in the preamble are used to indicate the total number of light sources, X1+X2+X3 ⁇ m, and the light source number indicates The sequence number of the light source of the current physical frame is sent.
  • the total number of light sources indicates the number N of light sources that the transmitting node sends N physical frames, and the receiving node determines whether P is equal to N. If P is equal to N, it is parsed according to the preamble and/or port indication of the P physical frames.
  • the valid data of the P physical frames is obtained by the sending node through the N light sources, and the port indication includes the first port indication or the second port indication.
  • each network element such as a sending node and a receiving node, in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
  • each network element such as a sending node and a receiving node, in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function module by the sending node and the receiving node according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 15 is a schematic diagram showing a possible configuration of the sending node involved in the foregoing and the embodiment.
  • the sending node may include: a processing unit 1501. And transmitting unit 1502.
  • the processing unit 1501 is configured to support the sending node to execute S201 in the communication method shown in FIG. 2 and S201 in the communication method shown in FIG. 12.
  • the transmitting unit 1502 is configured to support the transmitting node to execute S202 in the communication method shown in FIG. 2, and S202 in the communication method shown in FIG.
  • the transmitting node provided by the embodiment of the present application is configured to execute the foregoing communication method, so that the same effect as the above communication method can be achieved.
  • FIG. 16 is a schematic diagram showing a possible composition of the receiving node involved in the foregoing and the embodiment.
  • the receiving node may include: receiving unit 1601. And processing unit 1602.
  • the receiving unit 1601 is configured to support the receiving node to execute S203 in the communication method shown in FIG. 2, and S203 in the communication method shown in FIG.
  • the processing unit 1602 is configured to support the receiving node to execute S204, S205 in the communication method shown in FIG. 2, and S204 to S208 in the communication method shown in FIG.
  • the receiving node provided by the embodiment of the present application is configured to execute the foregoing communication method, so that the same effect as the above communication method can be achieved.
  • FIG. 17 is a schematic structural diagram of a computer device according to an embodiment of the present disclosure. As shown in FIG. 17, the computer device may include at least one processor 171, a memory 172, a communication interface 173, and a communication bus 174.
  • the processor 171 is a control center of the computer device, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 171 may include a central processing unit (CPU) or a plurality of CPUs, such as CPU0 and CPU1 shown in FIG.
  • the processor 171 may also be an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application, for example, one or more microprocessors (Digital Signal Processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASIC Application Specific Integrated Circuit
  • the processor 171 can perform various functions of the computer device by running or executing a software program stored in the memory 172 and calling data stored in the memory 172.
  • a computer device can include multiple processors, such as processor 171 and processor 175 shown in FIG. Each of these processors can be a single core processor (CPU) or a multi-core processor (multi-CPU).
  • processors herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the computer device may be a sending node, and the processor 171 is mainly used to generate N physical frames.
  • the computer device may be a receiving node
  • the processor 171 is mainly configured to determine, according to the mode indication, a sending mode of the N light sources of the sending node, and according to one of the P physical frames. Or valid data of L physical frames, or parsing valid data of P physical frames according to port indications of P physical frames, and obtaining original data sent by the transmitting node through N light sources.
  • the receiving node or the transmitting node provided by the embodiment of the present application is used to execute the foregoing communication method, so that the same effect as the above communication method can be achieved.
  • the memory 172 can be a Read-Only Memory (ROM) or other type of static storage device that can store static information and instructions, a Random Access Memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • Memory 172 may be present independently and coupled to processor 171 via communication bus 174.
  • the memory 172 can also be integrated with the processor 171.
  • the memory 172 is used to store a software program that executes the solution of the present application, and is controlled by the processor 171 for execution.
  • the communication interface 173 uses a device such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc. .
  • the communication interface 173 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
  • the communication bus 174 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 17, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 17 does not constitute a limitation of a computer device, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • an LED array or an LD array may also be included in the embodiment of the present application.
  • FIG. 18 shows another possible composition diagram of the transmitting node involved in the above embodiment.
  • the transmitting node includes a processing module 1801 and a communication module 1802.
  • the processing module 1801 is configured to control and manage the actions of the transmitting node.
  • the processing module 1801 is configured to support the transmitting node to perform S201 in FIG. 2, and/or other processes for the techniques described herein.
  • the communication module 1802 is configured to support communication of the transmitting node with other network entities.
  • the communication module 1802 is configured to execute the sending node to execute S203 in FIG. 2.
  • the sending node may further include a storage module 1803 for storing program codes and data of the sending node.
  • the processing module 1801 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1802 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1803 can be a memory.
  • the processing module 1801 is a processor
  • the communication module 1802 is a communication interface
  • the storage module 1803 is a memory
  • the transmitting node involved in the embodiment of the present application may be the computer device shown in FIG.
  • FIG. 19 shows another possible composition diagram of the receiving node involved in the above embodiment.
  • the receiving node includes a processing module 1901 and a communication module 1902.
  • the processing module 1901 is configured to control and manage the actions of the receiving node.
  • the processing module 1901 is configured to support the receiving node to perform S204, S205 in FIG. 2, S204 through S208 in FIG. 12, and/or other processes for the techniques described herein.
  • the communication module 1902 is configured to support communication of the receiving node with other network entities. Specifically, the communication module 1902 is configured to execute the receiving node to execute S203 in FIG. 2.
  • the receiving node may further include a storage module 1903 for storing program codes and data of the receiving node.
  • the processing module 1901 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1902 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1903 can be a memory.
  • the processing module 1901 is a processor
  • the communication module 1902 is a communication interface
  • the storage module 1903 is a memory
  • the receiving node involved in the embodiment of the present application may be the computer device shown in FIG.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used.
  • the combination may be integrated into another device, or some features may be ignored or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a readable storage medium.
  • the technical solution of the embodiments of the present application may be embodied in the form of a software product in the form of a software product in essence or in the form of a contribution to the prior art, and the software product is stored in a storage medium.
  • a number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种通信方法及装置,涉及通信领域,解决了光学相机通信系统中多路光源的场景,如何实现多路光源同时传输,提高传输效率的问题。具体方案为:生成N个物理帧,每个物理帧包括前导、模式指示和有效数据,模式指示用于指示N个光源的发送模式,发送模式为分集模式或复用模式,N为大于等于2的正整数;通过N个光源发送N个物理帧,其中,一个光源发送一个物理帧。本申请实施例用于光学相机通信的过程中。

Description

一种通信方法及装置 技术领域
本申请实施例涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
随着发光二极管(Light-emitting Diode,LED)技术的发展,这种高能效、体积小、寿命长的LED灯被广泛应用于照明、指示、屏幕等场景。另外,由于LED时间响应特性好,信号可通过肉眼观测不到的高速明暗闪烁发送出去,从而具有作为光通信系统信号发射器的潜力,因此,可见光通信技术(Visible Light Communication,VLC)正成为照明、通信界日益关注的课题。
通常,对于一个LED光信号,可以采用光电二极管(photodiode,PD)作为光电探测器,对于多个LED光信号,可以采用包括PD阵列的图像传感器(Image Sensor,IS)作为光电接收器。目前,手机、汽车等设备均已内置了LED光源、摄像头等模块,虽然这些光源和摄像头仅用于照明和拍摄视频,但这给基于IS的VLC系统的实际应用铺设了硬件基础,仅需简单改造即可实现使用LED光源和光学相机之间的光学相机通信(Optical Camera Communications,OCC)。欠采样脉冲宽度调制(Undersampled Pulse Width Modulation,UPWM)是一种可实现无闪烁的相机通信技术,可实现较高的频谱利用率。但是,现有基于UPWM调制的OCC系统中只规定了单光源的相机通信,并没有规定对于多个光源通信方法。因此,对于多路光源的场景,如何实现多路光源同时传输,提高传输效率是一个亟待解决的问题。
发明内容
本申请实施例提供一种通信方法及装置,解决了光学相机通信系统中多路光源的场景,如何实现多路光源同时传输,提高传输效率的问题。
为达到上述目的,本申请实施例采用如下技术方案:
本申请实施例的第一方面,提供一种通信方法,方法应用于发送节点,发送节点包括N个光源,方法包括:首先,生成N个物理帧,每个物理帧包括前导、模式指示和有效数据,模式指示用于指示N个光源的发送模式,发送模式为分集模式或复用模式,N为大于等于2的正整数;然后,通过N个光源发送N个物理帧,其中,一个光源发送一个物理帧。本申请实施例提供的通信方法,通过在物理帧的帧结构中增加模式指示,利用模式指示来指示N个光源的发送模式,即N个光源发送原始数据的发送模式,从而,实现N个光源同时传输,提高传输效率,进一步以便于接收节点根据模式指示来解析接收到的物理帧,获取原始数据。
需要说明的是,光源可以是LED或激光二极管(Laser Diode,LD)。分集模式为N个光源中每个光源发送的有效数据相同。
结合第一方面,在一种可能的实现方式中,若模式指示所指示的N个光源的发送模式为复用模式,每个物理帧还包括端口指示。以便于接收节点根据模式指示和端口 指示来解析接收到的物理帧,获取原始数据。端口指示用于指示发送有效数据的N个光源的信息。
本申请实施例的第二方面,提供一种通信方法,方法应用于接收节点,包括:接收P个光源发送的P个物理帧,每个物理帧包括前导、模式指示和有效数据,模式指示用于指示发送节点的N个光源的发送模式,发送模式为分集模式或复用模式,N为大于等于2的正整数,P小于等于N;根据模式指示确定发送节点的N个光源的发送模式;若模式指示所指示的N个光源的发送模式为分集模式,根据P个物理帧中一个或L个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据,L小于等于P。本申请实施例提供的通信方法,通过在物理帧的帧结构中增加模式指示,利用模式指示来指示N个光源的发送模式,即N个光源发送原始数据的发送模式,从而,实现N个光源同时传输,提高传输效率,使得接收节点根据模式指示来解析接收到的物理帧,获取原始数据。
结合第二方面,在一种可能的实现方式中,若模式指示所指示的N个光源的发送模式为复用模式,每个物理帧还包括端口指示,方法还包括:判断P是否等于N;若P等于N,根据P个物理帧的端口指示解析P个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据。使得接收节点根据模式指示和端口指示来解析接收到的物理帧,获取原始数据。
本申请实施例的第三方面,提供一种发送节点,发送节点包括N个光源,包括:处理单元,用于生成N个物理帧,每个物理帧包括前导、模式指示和有效数据,模式指示用于指示N个光源的发送模式,发送模式为分集模式或复用模式,N为大于等于2的正整数;发送单元,用于通过N个光源发送N个物理帧,其中,一个光源发送一个物理帧。
结合第三方面,在一种可能的实现方式中,若模式指示所指示的N个光源的发送模式为复用模式,每个物理帧还包括端口指示。
本申请实施例的第四方面,提供一种接收节点,包括:接收单元,用于接收P个光源发送的P个物理帧,每个物理帧包括前导、模式指示和有效数据,模式指示用于指示发送节点的N个光源的发送模式,发送模式为分集模式或复用模式,N为大于等于2的正整数,P小于等于N;处理单元,用于根据模式指示确定发送节点的N个光源的发送模式;处理单元,还用于若模式指示所指示的N个光源的发送模式为分集模式,根据P个物理帧中一个或L个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据,L小于等于P。
结合第四方面,在一种可能的实现方式中,若模式指示所指示的N个光源的发送模式为复用模式,每个物理帧还包括端口指示,处理单元,还用于判断P是否等于N;处理单元,还用于若P等于N,根据P个物理帧的端口指示解析P个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据。
结合上述可能的实现方式,在另一种可能的实现方式中,每个物理帧的前导包括符号0至符号m+1,其中,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶UPWM调制所使用的所有m个占空比一一对应,m为物理帧包括的有效数据所采用的调制阶数。需要 说明的是,在根据模式指示确定发送节点的N个光源的发送模式之前,需要根据前导对接收到的物理帧进行同步、相位纠错和非线性补偿。
结合上述可能的实现方式,在另一种可能的实现方式中,每个物理帧的前导包括符号0、符号m+1和T个前导块中的一个,其中,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,T为N个光源的分组数,T个前导块中的每个前导块包括K个符号,K个符号对应的占空比为m阶UPWM调制所使用的所有m个占空比的一部分,T个前导块所包含的K×T个符号对应的占空比包含m个占空比,T为大于等于2的正整数,K为大于等于1且小于等于m的整数。
结合上述可能的实现方式,在另一种可能的实现方式中,在根据前导对接收到的物理帧进行同步、相位纠错和非线性补偿之前,对每个物理帧包括的前导块进行合并,组成前导。
结合上述可能的实现方式,在另一种可能的实现方式中,每个物理帧的模式指示包括第一符号,若模式指示所指示的N个光源的发送模式为分集模式,第一符号对应的占空比为第三占空比,若模式指示所指示的N个光源的发送模式为复用模式,第一符号对应的占空比为第四占空比。
结合上述可能的实现方式,在另一种可能的实现方式中,每个物理帧的模式指示包括第二符号和第三符号,每个物理帧的第二符号对应的占空比相同,每个物理帧的第三符号对应的占空比相同,若模式指示所指示的N个光源的发送模式为分集模式,每个物理帧的第二符号对应的占空比和第三符号对应的占空比不同,若模式指示所指示的N个光源的发送模式为复用模式,每个物理帧的第二符号对应的占空比和第三符号对应的占空比相同;或者,若模式指示所指示的N个光源的发送模式为分集模式,每个物理帧的第二符号对应的占空比和第三符号对应的占空比相同,若模式指示所指示的N个光源的发送模式为复用模式,每个物理帧的第二符号对应的占空比和第三符号对应的占空比不同。
结合上述可能的实现方式,在另一种可能的实现方式中,若模式指示所指示的N个光源的发送模式为分集模式,每个物理帧包括的有效数据包括待发送的原始数据;若模式指示所指示的N个光源的发送模式为复用模式,每个物理帧包括的有效数据包括一个数据块,数据块包括N分之一的待发送的原始数据。
结合上述可能的实现方式,在另一种可能的实现方式中,端口指示包括光源总数字段和第一光源序号字段,光源总数字段用于表示发送节点发送N个物理帧的光源数N,第一光源序号字段用于表示发送当前物理帧的光源的序号,或者,端口指示包括光源总数字段、第一光源序号字段和第一校验位字段,或者,端口指示包括第一光源序号字段和第N光源指示字段,第N光源指示字段用于指示第一光源序号字段表示的光源是否是第N光源,或者,端口指示包括第一光源序号字段、第N光源指示字段和第一校验位字段,或者,端口指示包括扩展指示字段、第N光源指示字段、第二光源序号字段和第二校验位字段,或者,端口指示包括扩展指示字段、第N光源指示字段、第二光源序号字段、第二校验位字段、第三光源序号字段和第三校验位字段,或者,端口指示包括Q个符号,Q个符号用于指示光源总数和光源序号,光源总数表示发送节点发送N个物理帧的光源数N,光源序号表示发送当前物理帧的光源的序号,或者, 端口指示包括Q个符号,Q个符号中Q-1个符号用于指示光源序号,Q个符号中除Q-1个符号之外的符号用于指示光源序号表示的光源是否是第N光源。
本申请实施例的第五方面,提供一种通信方法,方法应用于发送节点,发送节点包括N个光源,方法包括:首先,生成N个物理帧,每个物理帧包括前导和有效数据,N为大于等于2的正整数;然后,通过N个光源发送N个物理帧,其中,一个光源发送一个物理帧;其中,前导包括符号0至符号m+1,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶UPWM调制所使用的所有m个占空比一一对应,m为物理帧包括的有效数据所采用的调制阶数,前导包括的符号1至符号m的不同顺序用于指示发送节点的N个光源的发送模式,或者,前导包括的符号1至符号m中X1个符号的不同顺序用于指示发送模式,发送模式为分集模式或复用模式。本申请实施例提供的通信方法,利用前导来指示N个光源的发送模式,即N个光源发送原始数据的发送模式,从而,实现N个光源同时传输,提高传输效率,进一步以便于接收节点根据前导来解析接收到的物理帧,获取原始数据。
结合第一方面,在一种可能的实现方式中,若前导包括的符号1至符号m的不同顺序所指示的发送模式为复用模式,每个物理帧还包括第一端口指示;若前导包括的符号1至符号m中X1个符号的不同顺序所指示的发送模式为复用模式,且每个物理帧的前导包括的符号1至符号m中除X1个符号之外的X2个符号用于指示光源序号时,每个物理帧还包括第二端口指示,X1+X2≤m,或者,前导包括的符号1至符号m中除X1个符号和X2个符号之外的X3个符号用于指示光源总数,X1+X2+X3≤m,光源序号表示发送当前物理帧的光源的序号,光源总数表示发送节点发送N个物理帧的光源数N。
本申请实施例的第六方面,提供一种通信方法,方法应用于接收节点,包括:接收P个光源发送的P个物理帧,每个物理帧包括前导和有效数据,其中,前导包括符号0至符号m+1,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶UPWM调制所使用的所有m个占空比一一对应,m为物理帧包括的有效数据所采用的调制阶数,前导包括的符号1至符号m的不同顺序用于指示发送节点的N个光源的发送模式,或者,前导包括的符号1至符号m中X1个符号的不同顺序用于指示发送模式,发送模式为分集模式或复用模式,N为大于等于2的正整数,P小于等于N;根据前导确定发送节点的N个光源的发送模式;若前导所指示的发送模式为分集模式,根据P个物理帧中一个或L个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据,L小于等于P。本申请实施例提供的通信方法,利用前导来指示N个光源的发送模式,即N个光源发送原始数据的发送模式,从而,实现N个光源同时传输,提高传输效率,使得接收节点根据前导来解析接收到的物理帧,获取原始数据。
结合第六方面,在一种可能的实现方式中,若前导包括的符号1至符号m的不同顺序所指示的发送模式为复用模式,每个物理帧还包括第一端口指示,若前导包括的符号1至符号m中X1个符号的不同顺序所指示的发送模式为复用模式,且每个物理帧的前导包括的符号1至符号m中除X1个符号之外的X2个符号用于指示光源序号 时,每个物理帧还包括第二端口指示,X1+X2≤m,或者,前导包括的符号1至符号m中除X1个符号和X2个符号之外的X3个符号用于指示光源总数,X1+X2+X3≤m,光源序号表示发送当前物理帧的光源的序号,光源总数表示发送节点发送N个物理帧的光源数N,方法还包括:判断P是否等于N;若P等于N,根据P个物理帧的前导和/或端口指示解析P个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据,端口指示包括第一端口指示或第二端口指示。使得接收节点根据前导和端口指示来解析接收到的物理帧,获取原始数据。
本申请实施例的第七方面,提供一种发送节点,发送节点包括N个光源,包括:处理单元,用于生成N个物理帧,每个物理帧包括前导和有效数据,N为大于等于2的正整数;发送单元,用于通过N个光源发送N个物理帧,其中,一个光源发送一个物理帧;其中,前导包括符号0至符号m+1,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶UPWM调制所使用的所有m个占空比一一对应,m为物理帧包括的有效数据所采用的调制阶数,前导包括的符号1至符号m的不同顺序用于指示发送节点的N个光源的发送模式,或者,前导包括的符号1至符号m中X1个符号的不同顺序用于指示发送模式,发送模式为分集模式或复用模式。
结合第七方面,在一种可能的实现方式中,若前导包括的符号1至符号m的不同顺序所指示的发送模式为复用模式,每个物理帧还包括第一端口指示;若前导包括的符号1至符号m中X1个符号的不同顺序所指示的发送模式为复用模式,且每个物理帧的前导包括的符号1至符号m中除X1个符号之外的X2个符号用于指示光源序号时,每个物理帧还包括第二端口指示,X1+X2≤m,或者,前导包括的符号1至符号m中除X1个符号和X2个符号之外的X3个符号用于指示光源总数,X1+X2+X3≤m,光源序号表示发送当前物理帧的光源的序号,光源总数表示发送节点发送N个物理帧的光源数N。
本申请实施例的第八方面,提供一种接收节点,包括:接收单元,用于接收P个光源发送的P个物理帧,每个物理帧包括前导和有效数据,其中,前导包括符号0至符号m+1,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶UPWM调制所使用的所有m个占空比一一对应,m为物理帧包括的有效数据所采用的调制阶数,前导包括的符号1至符号m的不同顺序用于指示发送节点的N个光源的发送模式,或者,前导包括的符号1至符号m中X1个符号的不同顺序用于指示发送模式,发送模式为分集模式或复用模式,N为大于等于2的正整数,P小于等于N;处理单元,用于根据前导确定发送节点的N个光源的发送模式;处理单元,还用于若前导所指示的发送模式为分集模式,根据P个物理帧中一个或L个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据,L小于等于P。
结合第八方面,在一种可能的实现方式中,若前导包括的符号1至符号m的不同顺序所指示的发送模式为复用模式,每个物理帧还包括第一端口指示,若前导包括的符号1至符号m中X1个符号的不同顺序所指示的发送模式为复用模式,且每个物理帧的前导包括的符号1至符号m中除X1个符号之外的X2个符号用于指示光源序号 时,每个物理帧还包括第二端口指示,X1+X2≤m,或者,前导包括的符号1至符号m中除X1个符号和X2个符号之外的X3个符号用于指示光源总数,X1+X2+X3≤m,光源序号表示发送当前物理帧的光源的序号,光源总数表示发送节点发送N个物理帧的光源数N,处理单元,还用于判断P是否等于N;处理单元,还用于若P等于N,根据P个物理帧的前导和/或端口指示解析P个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据,端口指示包括第一端口指示或第二端口指示。
结合上述可能的实现方式,在另一种可能的实现方式中,符号1至符号m降序排序,发送模式为分集模式,符号1至符号m升序排序,发送模式为复用模式;或者,符号1至符号m升序排序,发送模式为分集模式,符号1至符号m降序排序,发送模式为复用模式。
结合上述可能的实现方式,在另一种可能的实现方式中,第一端口指示包括光源总数字段和第一光源序号字段,光源总数字段用于表示发送节点发送N个物理帧的光源数N,第一光源序号字段用于表示发送当前物理帧的光源的序号,或者,第一端口指示包括光源总数字段、第一光源序号字段和第一校验位字段,或者,第一端口指示包括第一光源序号字段和第N光源指示字段,第N光源指示字段用于指示第一光源序号字段表示的光源是否是第N光源,或者,第一端口指示包括第一光源序号字段、第N光源指示字段和第一校验位字段,或者,第一端口指示包括扩展指示字段、第N光源指示字段、第二光源序号字段和第二校验位字段,或者,第一端口指示包括扩展指示字段、第N光源指示字段、第二光源序号字段、第二校验位字段、第三光源序号字段和第三校验位字段,或者,第一端口指示包括Q个符号,Q个符号用于指示光源总数和光源序号,光源总数表示发送节点发送N个物理帧的光源数N,光源序号表示发送当前物理帧的光源的序号,或者,第一端口指示包括Q个符号,Q个符号中Q-1个符号用于指示光源序号,Q个符号中除Q-1个符号之外的符号用于指示光源序号表示的光源是否是第N光源。
结合上述可能的实现方式,在另一种可能的实现方式中,第二端口指示包括光源总数字段,光源总数字段用于表示发送节点发送N个物理帧的光源数N,或者,第二端口指示包括光源总数字段和第四校验位字段,或者,第二端口指示包括R个符号,R个符号用于指示光源总数或指示光源序号表示的光源是否是第N光源。
需要说明的是,上述第三方面、第四方面、第七方面和第八方面功能模块可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。例如,收发器,用于完成接收单元和发送单元的功能,处理器,用于完成处理单元的功能,存储器,用于处理器处理本申请实施例的通信方法的程序指令。处理器、收发器和存储器通过总线连接并完成相互间的通信。具体的,可以参考第一方面和第五方面提供的通信方法中发送节点的行为的功能,以及第二方面和第六方面提供的通信方法中接收节点的行为的功能。
本申请实施例的第九方面,提供一种发送节点,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该处理器运行时,该处理器执行该存储器存储的该计算机执行指令,以使该发送节点执行如上述任意方面的方法。
本申请实施例的第十方面,提供一种接收节点,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该处理器运行时,该处理器执行该存储器存储的该计算机执行指令,以使该接收节点执行如上述任意方面的方法。
本申请实施例的第十一方面,提供一种计算机可读存储介质,包括:计算机软件指令;当计算机软件指令在发送节点或内置在发送节点的芯片中运行时,使得发送节点执行上述的通信方法。
本申请实施例的第十二方面,提供一种计算机可读存储介质,包括:计算机软件指令;当计算机软件指令在接收节点或内置在接收节点的芯片中运行时,使得接收节点执行上述的通信方法。
本申请实施例的第十三方面,提供一种包含指令的计算机程序产品,当计算机程序产品在发送节点或内置在发送节点的芯片中运行时,使得发送节点执行上述的通信方法。
本申请实施例的第十四方面,提供一种包含指令的计算机程序产品,当计算机程序产品在接收节点或内置在接收节点的芯片中运行时,使得接收节点执行上述的通信方法。
另外,上述任意方面的设计方式所带来的技术效果可参见第一方面和第五方面中不同设计方式所带来的技术效果,此处不再赘述。
本申请实施例中,发送节点和接收节点的名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本申请实施例类似,属于本申请权利要求及其等同技术的范围之内。
附图说明
图1为本申请实施例提供的一种光学相机通信系统架构示意图;
图2为本申请实施例提供的一种通信方法流程图;
图3为现有技术提供的一种物理帧的结构示意图;
图4为本申请实施例提供的一种物理帧的结构示意图;
图5为本申请实施例提供的一种前导的结构示意图;
图6为本申请实施例提供的一种端口指示的结构示意图;
图7为本申请实施例提供的另一种端口指示的结构示意图;
图8为本申请实施例提供的又一种端口指示的结构示意图;
图9为本申请实施例提供的再一种端口指示的结构示意图;
图10为本申请实施例提供的再一种端口指示的结构示意图;
图11为本申请实施例提供的再一种端口指示的结构示意图;
图12为本申请实施例提供的另一种通信方法流程图;
图13为本申请实施例提供的另一种物理帧的结构示意图;
图14为本申请实施例提供的再一种端口指示的结构示意图;
图15为本申请实施例提供的一种发送节点的结构示意图;
图16为本申请实施例提供的一种接收节点的结构示意图;
图17为本申请实施例提供的一种计算机设备的组成示意图;
图18为本申请实施例提供的另一种发送节点的结构示意图;
图19为本申请实施例提供的另一种接收节点的结构示意图。
具体实施方式
本申请实施例提供的一种通信方法可以应用于多种通信系统。例如,可以是光学相机通信(Optical Camera Communications,OCC)系统。
示例性的,图1为本申请实施例提供的一种光学相机通信系统架构示意图。系统包括发送节点和接收节点。其中,发送节点至少包括OCC发射机,OCC发射机配置有LED阵列或LD阵列,可以是具有OCC功能的照明灯具、汽车的前后车灯、交通信号灯等。接收节点至少包括OCC接收机。例如,OCC接收机可以是具有OCC功能的内置相机的智能手机、平板电脑、监控摄像头以及行车记录仪等。需要说明的是,本申请实施例所述的内置相机可以采用全局快门(Global Shutter,GS)或卷帘快门(Rolling Shutter,RS)曝光方式。
本申请实施例提供的通信方法,应用于发送节点和接收节点,发送节点包括N个光源,方法包括:首先,发送节点生成N个物理帧,每个物理帧包括前导、模式指示和有效数据,模式指示用于指示N个光源的发送模式,发送模式为分集模式或复用模式,N为大于等于2的正整数;然后,发送节点通过N个光源发送N个物理帧,其中,一个光源发送一个物理帧。接收节点接收P个光源发送的P个物理帧,根据模式指示确定发送节点的N个光源的发送模式,若模式指示所指示的N个光源的发送模式为分集模式,根据P个物理帧中一个或L个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据。本申请实施例提供的通信方法,通过在物理帧的帧结构中增加模式指示,利用模式指示来指示N个光源的发送模式,即N个光源发送原始数据的发送模式,从而,实现N个光源同时传输,提高传输效率,进一步使得接收节点根据模式指示来解析接收到的物理帧,获取原始数据。
需要说明的是,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
下面将结合附图对本申请实施例的实施方式进行详细描述。
图2为本申请实施例提供的一种通信方法流程图,发送节点包括N个光源,如图2所示,该方法可以包括:
S201、发送节点生成N个物理帧。
在现有技术中,光学相机通信系统的发送节点包括一个LED或一个LD时,通常发送节点发送的物理帧(PHY帧)包括前导(preamble)、帧头(header)和载荷(payload),如图3所示。
对于光学相机通信系统的发送节点包括LED阵列或LD阵列,即多路光源的场景,在本申请实施例中,N个物理帧中的每个物理帧包括前导、模式指示和有效数据。图4为本申请实施例提供的一种物理帧的结构示意图。其中,端口指示为物理帧的可选字段。模式指示和端口指示组成多输入多输出(Multiple-Input Multiple-Output,MIMO)信息指示。下面对本申请实施例上述物理帧包括前导、模式指示、端口指示和有效数 据的格式分别进行详细介绍。
对于前导,在一种可实现方式中,每个物理帧的前导由m+2个UPWM符号构成,用于同步、相位错误判断以及非线性补偿。m+2个UPWM符号包括符号0至符号m+1,m为物理帧的帧头和载荷所采用的调制阶数。符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶UPWM调制所使用的所有m个占空比一一对应。第一占空比可以为0%。第二占空比可以为100%。如图5所示,S0表示符号0,S1至Sm表示符号1至符号m,Sm+1表示符号m+1。m为正整数,m的取值可以是2的整数次幂,例如2、4、8、16等,也可以是2的非整数次幂,例如,3、6、12、23等。
在另一种可实现方式中,每个物理帧的前导包括符号0、符号m+1和T个前导块中的一个,其中,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,T为N个光源的分组数,T个前导块中的每个前导块包括K个符号,K个符号对应的占空比为m阶UPWM调制所使用的所有m个占空比的一部分,T个前导块所包含的K×T个符号对应的占空比包含m个占空比,T为大于等于2的正整数,K为大于等于1且小于等于m的整数。需要说明的是,本申请实施例对光源的分组的方式和前导的第二部分的分组的方式不做具体限定。
示例的,假设T=2,N个光源分为2组。例如,以光源序号的偶数和奇数对光源进行分组,即偶数序号的光源分为一组,奇数序号的光源分为一组。S1至Sm的前半部分为一组,S1至Sm的后半部分为一组。偶数序号的光源发送的前导包括S0、S1至Sm的前半部分和Sm+1。奇数序号的光源发送的的前导包括S0、S1至Sm的后半部分和Sm+1。需要说明的是,m为偶数时,S1至Sm的前半部分指S1至Sm/2;S1至Sm的后半部分指S(m/2+1)至Sm。m为奇数时,S1至Sm的前半部分指S1至S(m+1)/2;S1至Sm的后半部分指S(m+1)/2至Sm。
可选的,假设T=2,N个光源分为2组。例如,以光源序号的偶数和奇数对光源进行分组,即偶数序号的光源分为一组,奇数序号的光源分为一组。m为偶数时,S1至Sm中奇数序号的为一组,S1至Sm中偶数序号的为一组。偶数序号的光源发送的前导包括S0、S1、S3、…、Sm-1和Sm+1;奇数序号的光源发送的前导包括S0、S2、S4、…、Sm和Sm+1。m为奇数时,对S1至Sm中的S1至Sm-1进行分组,奇数序号的为一组,偶数序号的为一组。偶数序号的光源发送的前导包括S0、S1、S3、…、Sm-2、Sm和Sm+1;奇数序号的光源发送的前导包括S0、S2、S4、…、Sm-1、Sm和Sm+1。
模式指示用于指示N个光源的发送模式,即N个光源发送物理帧的发送模式。发送模式为分集模式或复用模式。分集模式为N个光源中每个光源发送的有效数据相同,可以理解为每个光源发送的物理帧均包括全部的原始数据。复用模式为N个光源中每个光源发送的有效数据不同,可以理解为每个光源发送的物理帧包括的原始数据的一部分。例如,将待发送的原始数据根据发送节点的光源数N划分为N份,得到N个数据块,分别将N个数据块映射到N个物理帧的有效数据中。若存在原始数据的N分之一份的数据长度不等于N的整数倍时,补0或1。N为大于等于2的正整数。可选的,将原始数据逐比特映射到N个光源上,依次循环。其中,原始数据为光学相机 通信系统的发送节点包括一个LED或一个LD时,发送节点发送的物理帧中的帧头和载荷,其中,载荷为可选项,部分物理帧只包括帧头,不包括载荷。
在一种可实现方式中,每个物理帧的模式指示包括第一符号,若模式指示所指示的N个光源的发送模式为分集模式,第一符号对应的占空比为第三占空比,若模式指示所指示的N个光源的发送模式为复用模式,第一符号对应的占空比为第四占空比。第三占空比和第四占空比可以为互补的两个占空比。例如,第三占空比为X%,第四占空比为1-X%,或者,第三占空比为1-X%,第四占空比为X%,其中,X%可以为0%,1-X%可以为100%。
在另一种可实现方式中,每个物理帧的模式指示包括第二符号和第三符号,每个物理帧的第二符号对应的占空比相同,每个物理帧的第三符号对应的占空比相同。若模式指示所指示的N个光源的发送模式为分集模式,每个物理帧的第二符号对应的占空比和第三符号对应的占空比不同,若模式指示所指示的N个光源的发送模式为复用模式,每个物理帧的第二符号对应的占空比和第三符号对应的占空比相同。如表1所示。
表1
Figure PCTCN2018071668-appb-000001
其中,X%可以为0%,1-X%可以为100%。
可选的,若模式指示所指示的N个光源的发送模式为分集模式,每个物理帧的第二符号对应的占空比和第三符号对应的占空比相同,若模式指示所指示的N个光源的发送模式为复用模式,每个物理帧的第二符号对应的占空比和第三符号对应的占空比不同。
进一步的,若模式指示所指示的N个光源的发送模式为复用模式,每个物理帧还包括端口指示。以便于接收节点根据模式指示和端口指示来解析接收到的物理帧,获取原始数据。端口指示用于指示发送有效数据的N个光源的信息。
示例的,图6为本申请实施例提供的一种端口指示的结构示意图。端口指示包括光源总数字段(LED Num)和第一光源序号字段(Port ID)。可选的,端口指示还包括第一校验位字段。光源总数字段用于表示发送节点发送N个物理帧的光源数N。在实际应用中可以根据期望支持的光源数N设置光源总数字段的比特位的个数。第一光源序号字段用于表示发送当前物理帧的光源的序号,例如,N=4,发送节点有4个光源,第一个光源的序号为1,第二个光源的序号为2,第三个光源的序号为3,第四个光源的序号为4。在实际应用中可以根据期望支持的光源数N设置第一光源序号字段的比特位的个数。第一校验位字段用于校验光源总数字段和第一光源序号字段,校验的方法可以采用奇偶校验或循环冗余校验(Cyclic Redundancy Check,CRC)等,本申请实施例在此不做限定。
图7为本申请实施例提供的另一种端口指示的结构示意图。端口指示包括第一光 源序号字段和第N光源指示字段。可选的,端口指示还包括第一校验位字段。第N光源指示字段用于指示第一光源序号字段表示的光源是否是第N光源。第N光源可以是光源序号取值与N相等的光源,例如光源总数为16时,N个光源的光源序号分别为1至16,第N光源是指光源序号为16的光源。如果第一光源序号字段表示的光源是第N光源,该第N光源指示字段可以设置为1;如果第一光源序号字段表示的光源不是第N光源,该第N光源指示字段可以设置为0。第一校验位字段用于校验第一光源序号字段和第N光源指示字段。
图8为本申请实施例提供的又一种端口指示的结构示意图。端口指示包括扩展指示字段、第N光源指示字段、第二光源序号字段和第二校验位字段。
图9为本申请实施例提供的再一种端口指示的结构示意图。端口指示包括扩展指示字段、第N光源指示字段、第二光源序号字段、第二校验位字段、第三光源序号字段和第三校验位字段。
示例的,对于图8和图9所述的端口指示中各个字段的含义如表2所示。
表2
Figure PCTCN2018071668-appb-000002
需要说明的是,如果扩展指示字段设置为0,此时,第二光源序号字段与第一光源序号字段相同,填写的是光源的完整序号。其中,扩展指示字段可以占1个比特,第N光源指示字段可以占1个比特,第二光源序号字段可以占5个比特,第二校验位字段可以占1个比特。第三光源序号字段可以占7个比特,第二校验位字段可以占1个比特。
图10为本申请实施例提供的再一种端口指示的结构示意图。端口指示包括分组指示字段、组序号字段、第一光源序号字段、组内光源总数字段和第四校验位字段。分组指示字段用于指示N个光源是否进行了分组。如果N个光源进行了分组,该分组指示字段可以设置为1。同时,组序号字段用于表示该组的序号,每组都有一个序号。 组内光源总数字段用于表示该组包括的光源个数。如果N个光源未进行分组,该分组指示字段可以设置为0。端口指示包括分组指示字段、第一光源序号字段、光源总数字段和第四校验位字段。
图11为本申请实施例提供的再一种端口指示的结构示意图。端口指示包括分组指示字段、组序号字段、第一光源序号字段、第N光源指示字段和第四校验位字段。分组指示字段用于指示N个光源是否进行了分组。如果N个光源进行了分组,该分组指示字段可以设置为1。同时,组序号字段用于表示该组的序号。如果N个光源未进行分组,该分组指示字段可以设置为0。端口指示包括分组指示字段、第一光源序号字段、第N光源指示字段和第四校验位字段。第N光源指示字段的解释可以参考上述说明。
可以选择的,端口指示包括Q个符号,Q个符号用于指示光源总数和光源序号。光源总数表示发送节点发送N个物理帧的光源数N。光源序号表示发送当前物理帧的光源的序号。例如,Q=6,前三个符号用于指示光源总数,后三个符号用于指示光源序号。符号1的占空比、符号3的占空比以及符号4和符号6的占空比取值范围为[0%,100%],符号2和符号5的占空比取值范围包括[0%,100%,该调制阶数m对应的部分或所有支持的占空比值],共计m’+2(m’≤m)个取值,可支持指示2*(m’+2)*2个光源。
可以选择的,端口指示包括Q个符号,Q个符号中Q-1个符号用于指示光源序号,Q个符号中除Q-1个符号之外的符号用于指示光源序号表示的光源是否是第N光源。例如,Q=4,符号1、2、3用于指示光源序号,符号4用于指示光源序号表示的光源是否是第N光源。符号1的占空比、符号3的占空比取值范围为[0%,100%],符号2的占空比取值范围包括[0%,100%,该调制阶数m对应的部分或所有支持的占空比值],共计m’+2(m’≤m)个取值,可支持指示2*(m’+2)*2个光源的光源序号。符号4的占空比取值可以是0%或100%。当符号4的占空比取值是0%时,符号4可以指示光源序号表示的光源是第N光源。当符号4的占空比取值是100%时,符号4可以指示光源序号表示的光源不是第N光源。
可选的,若模式指示所指示的N个光源的发送模式为分集模式,每个物理帧的模式指示均包括一个符号。其中,K1个光源发送的物理帧的模式指示包括的一个符号对应的占空比为第三占空比,K2个光源发送的物理帧的模式指示包括的一个符号对应的占空比为第四占空比,其中K1+K2为光源总数。若模式指示所指示的N个光源的发送模式为复用模式,所有的光源发送的物理帧的模式指示包括的一个符号对应的占空比均相同。
S202、发送节点通过N个光源发送N个物理帧,其中,一个光源发送一个物理帧。
发送节点可以以光信号的形式将N个物理帧通过N个光源向接收节点发送。一个光源发送一个光信号,一个光信号携带一个物理帧。
S203、接收节点接收P个光源发送的P个物理帧。
接收节点可能接收到N个光源发送的N个全部物理帧,也可能只接收到N个光源发送的N个物理帧的一部分,即P小于等于N,N为大于等于2的正整数。每个物理帧包括前导、模式指示和有效数据。物理帧包括前导、模式指示、端口指示和有效 数据的详细解释可以参考S201的阐述,本申请实施例在此不再赘述。
需要说明的是,对于前导进行分组发送,即物理帧中的前导包括符号0、符号m+1和T个前导块中的一个的情况下,其中,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,T为N个光源的分组数,T个前导块中的每个前导块包括K个符号,K个符号对应的占空比为m阶UPWM调制所使用的所有m个占空比的一部分,T个前导块所包含的K×T个符号对应的占空比包含m个占空比,T为大于等于2的正整数,K为大于等于1且小于等于m的整数,接收节点首先需要对接收到的N个物理帧进行组合,合并N个物理帧包括的前导块组成完整的前导,进行同步、相位纠错和非线性补偿。其中,完整的前导包括符号0至符号m+1的前导,其中,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶UPWM调制所使用的所有m个占空比一一对应,m为物理帧包括的有效数据所采用的调制阶数。
S204、接收节点根据模式指示确定发送节点的N个光源的发送模式。
在一种可能的实现方式中,模式指示包括第一符号。若第一符号对应的占空比为第三占空比,接收节点确定模式指示所指示的N个光源的发送模式为分集模式,若第一符号对应的占空比为第四占空比,接收节点确定模式指示所指示的N个光源的发送模式为复用模式。
在另一种可能的实现方式中,每个物理帧的模式指示包括第二符号和第三符号,每个物理帧的第二符号对应的占空比相同,每个物理帧的第三符号对应的占空比相同。
若每个物理帧的第二符号对应的占空比和第三符号对应的占空比不同,接收节点确定模式指示所指示的N个光源的发送模式为分集模式,若每个物理帧的第二符号对应的占空比和第三符号对应的占空比相同,接收节点确定模式指示所指示的N个光源的发送模式为复用模式;或者,若每个物理帧的第二符号对应的占空比和第三符号对应的占空比相同,接收节点确定模式指示所指示的N个光源的发送模式为分集模式,若每个物理帧的第二符号对应的占空比和第三符号对应的占空比不同,接收节点确定模式指示所指示的N个光源的发送模式为复用模式。
若模式指示所指示的N个光源的发送模式为分集模式,执行S205。
S205、接收节点根据P个物理帧中一个或L个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据。
在N个光源的发送模式为分集模式下,每个物理帧包括的有效数据均为原始数据,此时,可以解析P个物理帧中一个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据。当然,也可以解析P个物理帧中L个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据。利用L个物理帧的有效数据进行解析得到发送节点通过N个光源发送的原始数据,在于可以利用L个物理帧的有效数据之间进行合并,以降低误码。L小于等于P。
进一步的,若模式指示所指示的N个光源的发送模式为复用模式,如图12所示,所述通信方法还包括以下详细步骤:
S206、接收节点判断P是否等于N。
根据端口指示判断接收节点是否对N个光源发送的N个物理帧是否接收完,即可 以判断P是否等于N。若P等于N,执行S207;若P小于N,执行S208。
例如,如图6所示,接收节点可以根据光源总数字段的指示确定发送节点的光源数N,判断P是否等于N。若P等于N,表示接收节点接收到N个光源发送的所有N个物理帧,若P小于N,表示接收节点未能接收到N个光源发送的所有N个物理帧。
例如,如图7所示,接收节点可以根据第N光源指示字段的指示判断第一光源序号字段表示的光源是否是第N光源,如果接收到的P个物理帧中有一个物理帧的第一光源序号字段表示的光源是第N光源,接收节点根据该物理帧中指示的端口序号确定N的值,并判断P是否等于N。如果接收到的P个物理帧中没有一个物理帧的第一光源序号字段表示的光源是第N光源,表示接收节点对N个光源发送的N个物理帧未接收完,接收节点判断P小于N。
S207、接收节点根据P个物理帧的端口指示解析P个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据。
S208、接收节点不对P个物理帧进行处理或丢弃P个物理帧。
当然,若P小于N,如果P个物理帧的有效数据包括了原始数据,也可以根据P个物理帧的端口指示解析P个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据。
本申请实施例提供的通信方法,通过在物理帧的帧结构中增加模式指示,利用模式指示来指示N个光源的发送模式,即N个光源发送原始数据的发送模式,从而,实现N个光源同时传输,提高传输效率,使得接收节点根据模式指示来解析接收到的物理帧,获取原始数据。
以上实施例提供的通信方法中N个物理帧中的每个物理帧包括前导、模式指示和有效数据,在模式指示所指示的N个光源的发送模式为复用模式时,物理帧还包括端口指示。在另一种可能的实现中,N个物理帧中的每个物理帧包括前导和有效数据,在模式指示所指示的N个光源的发送模式为复用模式时,物理帧还包括端口指示。图13为本申请实施例提供的另一种物理帧的结构示意图。与以上实施例的不同点在于,本申请实施例中可以采用前导指示发送节点的N个光源的发送模式。
本申请实施例所述的前导可以如图5所示的前导,包括符号0至符号m+1,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶UPWM调制所使用的所有m个占空比一一对应,m为物理帧包括的有效数据所采用的调制阶数。其中,前导包括的符号1至符号m的不同顺序用于指示发送节点的N个光源的发送模式,或者,前导包括的符号1至符号m中X1个符号的不同顺序用于指示发送模式,发送模式为分集模式或复用模式。
若前导包括的符号1至符号m的不同顺序所指示的发送模式为复用模式,每个物理帧还包括第一端口指示,第一端口指示的具体实现方式可以参考上述实施例中端口指示的详细阐述,本申请实施例在此不再赘述。
示例的,符号1至符号m降序排序,发送模式为分集模式,符号1至符号m升序排序,发送模式为复用模式;或者,符号1至符号m升序排序,发送模式为分集模式,符号1至符号m降序排序,发送模式为复用模式。如表3所示。假设m=3,符号1对应的占空比为25%,符号2对应的占空比为50%,符号3对应的占空比为75%。按照 符号1至符号3的升序排序,发送模式为复用模式,按照符号1至符号3的降序排序,发送模式为分集模式。
表3
Figure PCTCN2018071668-appb-000003
在接收节点接收到物理帧后,若符号1至符号m降序排序,接收节点确定发送模式为分集模式,若符号1至符号m升序排序,接收节点确定发送模式为复用模式;或者,若符号1至符号m升序排序,接收节点确定发送模式为分集模式,若符号1至符号m降序排序,接收节点确定发送模式为复用模式。
若前导包括的符号1至符号m中X1个符号的不同顺序所指示的发送模式为复用模式,在一种可能的实现方式中,每个物理帧的前导包括的符号1至符号m中除X1个符号之外的X2个符号用于指示光源序号,每个物理帧还包括第二端口指示,X1+X2≤m,光源序号表示发送当前物理帧的光源的序号,光源总数表示发送节点发送N个物理帧的光源数N。
图14为本申请实施例提供的再一种端口指示的结构示意图。第二端口指示包括光源总数字段。可选的,第二端口指示还包括第五校验位字段。
可选的,第二端口指示包括R个符号,R个符号用于指示光源总数或指示光源序号表示的光源是否是第N光源。其中,这R个符号中第一个符号对应的占空比可以为0%,第R个符号对应的占空比可以为100%。
在接收节点接收到物理帧后,接收节点根据前导包括的符号1至符号m中X1个符号所指示的发送模式,确定发送模式为分集模式或复用模式。
若前导包括的符号1至符号m中X1个符号的不同顺序所指示的发送模式为复用模式,在另一种可能的实现方式中,前导包括的符号1至符号m中除X1个符号和X2个符号之外的X3个符号用于指示光源总数,X1+X2+X3≤m。
示例的,符号1至符号m的前X1个符号(S1至SX1)的不同顺序用于指示发送模式,符号1至符号m的中间X2个符号(SX1+1至SX1+X2)的不同顺序用于指示光源序号,符号1至符号m的最后X3个符号(SX1+X2+1至Sm)的不同顺序用于指示光源总数。X1可以等于2。另外,对于分集模式,中间X2个符号和最后X3个符号的顺序不变,应该设置为一个固定的顺序,则中间X2个符号的占空比序列也不变,最后X3个符号的占空比序列也不变。
在接收节点接收到物理帧后,接收节点根据前导包括的符号1至符号m中X1个符号所指示的发送模式,确定发送模式为分集模式或复用模式。
在接收节点确定发送模式后,若前导所指示的发送模式为分集模式,根据P个物 理帧中一个或L个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据,L小于等于P。若前导包括的符号1至符号m的不同顺序所指示的发送模式为复用模式,每个物理帧还包括第一端口指示,若前导包括的符号1至符号m中X1个符号的不同顺序所指示的发送模式为复用模式,且每个物理帧的前导包括的符号1至符号m中除X1个符号之外的X2个符号用于指示光源序号时,每个物理帧还包括第二端口指示,X1+X2≤m,或者,前导包括的符号1至符号m中除X1个符号和X2个符号之外的X3个符号用于指示光源总数,X1+X2+X3≤m,光源序号表示发送当前物理帧的光源的序号,光源总数表示发送节点发送N个物理帧的光源数N,接收节点判断P是否等于N;若P等于N,根据P个物理帧的前导和/或端口指示解析P个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据,端口指示包括第一端口指示或第二端口指示。其中,详细解释可以参考上述实施例中的阐述,本申请实施例在此不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发送节点、接收节点为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发送节点、接收节点进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图15示出了上述和实施例中涉及的发送节点的一种可能的组成示意图,如图15所示,该发送节点可以包括:处理单元1501和发送单元1502。
其中,处理单元1501,用于支持发送节点执行图2所示的通信方法中的S201,图12所示的通信方法中的S201。
发送单元1502,用于支持发送节点执行图2所示的通信方法中的S202,图12所示的通信方法中的S202。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的发送节点,用于执行上述通信方法,因此可以达到与上述通信方法相同的效果。
在采用对应各个功能划分各个功能模块的情况下,图16示出了上述和实施例中涉及的接收节点的一种可能的组成示意图,如图16所示,该接收节点可以包括:接收单元1601和处理单元1602。
其中,接收单元1601,用于支持接收节点执行图2所示的通信方法中的S203,图 12所示的通信方法中的S203。
处理单元1602,用于支持接收节点执行图2所示的通信方法中的S204、S205,图12所示的通信方法中的S204至S208。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的接收节点,用于执行上述通信方法,因此可以达到与上述通信方法相同的效果。
图17为本申请实施例提供的一种计算机设备的组成示意图,如图17所示,计算机设备可以包括至少一个处理器171,存储器172、通信接口173、通信总线174。
下面结合图17对计算机设备的各个构成部件进行具体的介绍:
处理器171是计算机设备的控制中心,可以是一个处理器,也可以是多个处理元件的统称。在具体的实现中,作为一种实施例,处理器171可以包括一个中央处理器(Central Processing Unit,CPU)或多个CPU,例如图17中所示的CPU0和CPU1。处理器171也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,以处理器171是一个或多个CPU为例,处理器171可以通过运行或执行存储在存储器172内的软件程序,以及调用存储在存储器172内的数据,执行计算机设备的各种功能。
在具体实现中,作为一种实施例,计算机设备可以包括多个处理器,例如图17中所示的处理器171和处理器175。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在本申请实施例的一种可实现的方式中,计算机设备可以是发送节点,处理器171主要用于生成N个物理帧。
在本申请实施例的另一种可实现的方式中,计算机设备可以是接收节点,处理器171主要用于根据模式指示确定发送节点的N个光源的发送模式,以及根据P个物理帧中一个或L个物理帧的有效数据,或者,根据P个物理帧的端口指示解析P个物理帧的有效数据,得到发送节点通过N个光源发送的原始数据。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的接收节点或发送节点,用于执行上述通信方法,因此可以达到与上述通信方法相同的效果。
存储器172可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压 缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器172可以是独立存在,通过通信总线174与处理器171相连接。存储器172也可以和处理器171集成在一起。
其中,所述存储器172用于存储执行本申请方案的软件程序,并由处理器171来控制执行。
通信接口173,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。通信接口173可以包括接收单元实现接收功能,以及发送单元实现发送功能。
通信总线174,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图17中示出的设备结构并不构成计算机设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。例如,在本申请实施例中还可以包括LED阵列或LD阵列。
在采用集成的单元的情况下,图18示出了上述实施例中所涉及的发送节点的另一种可能的组成示意图。如图18所示,该发送节点包括:处理模块1801和通信模块1802。
处理模块1801用于对发送节点的动作进行控制管理,例如,处理模块1801用于支持发送节点执行图2中的S201,和/或用于本文所描述的技术的其它过程。通信模块1802用于支持发送节点与其他网络实体的通信。具体的,如通信模块1802用于执行发送节点执行图2中的S203。发送节点还可以包括存储模块1803,用于存储发送节点的程序代码和数据。
其中,处理模块1801可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1802可以是收发器、收发电路或通信接口等。存储模块1803可以是存储器。
当处理模块1801为处理器,通信模块1802为通信接口,存储模块1803为存储器时,本申请实施例所涉及的发送节点可以为图17所示的计算机设备。
在采用集成的单元的情况下,图19示出了上述实施例中所涉及的接收节点的另一种可能的组成示意图。如图19所示,该接收节点包括:处理模块1901和通信模块1902。
处理模块1901用于对接收节点的动作进行控制管理。例如,处理模块1901用于支持接收节点执行图2中的S204、S205,图12中的S204至S208、和/或用于本文所描述的技术的其它过程。通信模块1902用于支持接收节点与其他网络实体的通信。具体的,如通信模块1902用于执行接收节点执行图2中的S203。接收节点还可以包括存储模块1903,用于存储接收节点的程序代码和数据。
其中,处理模块1901可以是处理器或控制器。其可以实现或执行结合本申请公开 内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1902可以是收发器、收发电路或通信接口等。存储模块1903可以是存储器。
当处理模块1901为处理器,通信模块1902为通信接口,存储模块1903为存储器时,本申请实施例所涉及的接收节点可以为图17所示的计算机设备。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种通信方法,其特征在于,所述方法应用于发送节点,所述发送节点包括N个光源,所述方法包括:
    生成N个物理帧,每个所述物理帧包括前导、模式指示和有效数据,所述模式指示用于指示所述N个光源的发送模式,所述发送模式为分集模式或复用模式,N为大于等于2的正整数;
    通过所述N个光源发送所述N个物理帧,其中,一个所述光源发送一个物理帧。
  2. 根据权利要求1所述的方法,其特征在于,若所述模式指示所指示的所述N个光源的发送模式为所述复用模式,每个所述物理帧还包括端口指示。
  3. 一种通信方法,其特征在于,所述方法应用于接收节点,包括:
    接收P个光源发送的P个物理帧,每个所述物理帧包括前导、模式指示和有效数据,所述模式指示用于指示发送节点的N个光源的发送模式,所述发送模式为分集模式或复用模式,N为大于等于2的正整数,P小于等于N;
    根据所述模式指示确定所述发送节点的N个光源的发送模式;
    若所述模式指示所指示的所述N个光源的发送模式为所述分集模式,根据所述P个物理帧中一个或L个物理帧的有效数据,得到所述发送节点通过所述N个光源发送的原始数据,L小于等于P。
  4. 根据权利要求3所述的方法,其特征在于,若所述模式指示所指示的所述N个光源的发送模式为所述复用模式,每个所述物理帧还包括端口指示,所述方法还包括:
    判断P是否等于N;
    若P等于N,根据所述P个物理帧的端口指示解析所述P个物理帧的有效数据,得到所述发送节点通过所述N个光源发送的原始数据。
  5. 一种发送节点,其特征在于,所述发送节点包括N个光源,包括:
    处理单元,用于生成N个物理帧,每个所述物理帧包括前导、模式指示和有效数据,所述模式指示用于指示所述N个光源的发送模式,所述发送模式为分集模式或复用模式,N为大于等于2的正整数;
    发送单元,用于通过所述N个光源发送所述N个物理帧,其中,一个所述光源发送一个物理帧。
  6. 根据权利要求5所述的发送节点,其特征在于,若所述模式指示所指示的所述N个光源的发送模式为所述复用模式,每个所述物理帧还包括端口指示。
  7. 一种接收节点,其特征在于,包括:
    接收单元,用于接收P个光源发送的P个物理帧,每个所述物理帧包括前导、模式指示和有效数据,所述模式指示用于指示发送节点的N个光源的发送模式,所述发送模式为分集模式或复用模式,N为大于等于2的正整数,P小于等于N;
    处理单元,用于根据所述模式指示确定所述发送节点的N个光源的发送模式;
    所述处理单元,还用于若所述模式指示所指示的所述N个光源的发送模式为所述分集模式,根据所述P个物理帧中一个或L个物理帧的有效数据,得到所述发送节点通过所述N个光源发送的原始数据,L小于等于P。
  8. 根据权利要求7所述的接收节点,其特征在于,若所述模式指示所指示的所述N个光源的发送模式为所述复用模式,每个所述物理帧还包括端口指示,
    所述处理单元,还用于判断P是否等于N;
    所述处理单元,还用于若P等于N,根据所述P个物理帧的端口指示解析所述P个物理帧的有效数据,得到所述发送节点通过所述N个光源发送的原始数据。
  9. 根据权利要求1-8任一项所述的方法、发送节点或接收节点,其特征在于,每个所述物理帧的前导包括符号0至符号m+1,其中,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶欠采样脉冲宽度调制所使用的所有m个占空比一一对应,m为物理帧包括的有效数据所采用的调制阶数。
  10. 根据权利要求1-8任一项所述的方法、发送节点或接收节点,其特征在于,每个所述物理帧的前导包括符号0、符号m+1和T个前导块中的一个,其中,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,T为所述N个光源的分组数,所述T个前导块中的每个前导块包括K个符号,所述K个符号对应的占空比为m阶欠采样脉冲宽度调制所使用的所有m个占空比的一部分,所述T个前导块所包含的K×T个符号对应的占空比包含所述m个占空比,T为大于等于2的正整数,K为大于等于1且小于等于m的整数。
  11. 根据权利要求9或10所述的方法、发送节点或接收节点,其特征在于,每个所述物理帧的模式指示包括第一符号,若所述模式指示所指示的所述N个光源的发送模式为所述分集模式,所述第一符号对应的占空比为第三占空比,若所述模式指示所指示的所述N个光源的发送模式为所述复用模式,所述第一符号对应的占空比为第四占空比。
  12. 根据权利要求9或10所述的方法、发送节点或接收节点,其特征在于,每个所述物理帧的模式指示包括第二符号和第三符号,所述每个物理帧的第二符号对应的占空比相同,所述每个物理帧的第三符号对应的占空比相同,
    若所述模式指示所指示的所述N个光源的发送模式为所述分集模式,所述每个物理帧的所述第二符号对应的占空比和所述第三符号对应的占空比不同,若所述模式指示所指示的所述N个光源的发送模式为所述复用模式,所述每个物理帧的所述第二符号对应的占空比和所述第三符号对应的占空比相同;
    或者,若所述模式指示所指示的所述N个光源的发送模式为所述分集模式,所述每个物理帧的所述第二符号对应的占空比和所述第三符号对应的占空比相同,若所述模式指示所指示的所述N个光源的发送模式为所述复用模式,所述每个物理帧的所述第二符号对应的占空比和所述第三符号对应的占空比不同。
  13. 根据权利要求1-12任一项所述的方法、发送节点或接收节点,其特征在于,若所述模式指示所指示的所述N个光源的发送模式为所述分集模式,每个所述物理帧包括的有效数据包括待发送的原始数据;若所述模式指示所指示的所述N个光源的发送模式为所述复用模式,每个所述物理帧包括的有效数据包括一个数据块,所述数据块包括N分之一的所述待发送的原始数据。
  14. 根据权利要求2、4、6或8所述的方法、发送节点或接收节点,其特征在于,
    所述端口指示包括光源总数字段和第一光源序号字段,所述光源总数字段用于表示所述发送节点发送N个物理帧的光源数N,所述第一光源序号字段用于表示发送当前物理帧的光源的序号,
    或者,所述端口指示包括所述光源总数字段、所述第一光源序号字段和第一校验位字段,
    或者,所述端口指示包括所述第一光源序号字段和第N光源指示字段,所述第N光源指示字段用于指示所述第一光源序号字段表示的光源是否是第N光源,
    或者,所述端口指示包括所述第一光源序号字段、所述第N光源指示字段和所述第一校验位字段,
    或者,所述端口指示包括扩展指示字段、所述第N光源指示字段、第二光源序号字段和第二校验位字段,
    或者,所述端口指示包括所述扩展指示字段、所述第N光源指示字段、所述第二光源序号字段、所述第二校验位字段、第三光源序号字段和第三校验位字段,
    或者,所述端口指示包括Q个符号,所述Q个符号用于指示光源总数和光源序号,所述光源总数表示所述发送节点发送N个物理帧的光源数N,所述光源序号表示发送当前物理帧的光源的序号,
    或者,所述端口指示包括所述Q个符号,所述Q个符号中Q-1个符号用于指示所述光源序号,所述Q个符号中除所述Q-1个符号之外的符号用于指示所述光源序号表示的光源是否是第N光源。
  15. 一种通信方法,其特征在于,所述方法应用于发送节点,所述发送节点包括N个光源,所述方法包括:
    生成N个物理帧,每个所述物理帧包括前导和有效数据,N为大于等于2的正整数;
    通过所述N个光源发送所述N个物理帧,其中,一个所述光源发送一个物理帧;
    其中,所述前导包括符号0至符号m+1,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶欠采样脉冲宽度调制所使用的所有m个占空比一一对应,m为物理帧包括的有效数据所采用的调制阶数,所述前导包括的符号1至符号m的不同顺序用于指示发送节点的N个光源的发送模式,或者,所述前导包括的所述符号1至符号m中X1个符号的不同顺序用于指示所述发送模式,所述发送模式为分集模式或复用模式。
  16. 根据权利要求15所述的方法,其特征在于,
    若所述前导包括的符号1至符号m的不同顺序所指示的发送模式为所述复用模式,每个所述物理帧还包括第一端口指示;
    若所述前导包括的所述符号1至符号m中X1个符号的不同顺序所指示的所述发送模式为所述复用模式,且每个所述物理帧的所述前导包括的所述符号1至符号m中除所述X1个符号之外的X2个符号用于指示光源序号时,每个所述物理帧还包括第二端口指示,X1+X2≤m,或者,所述前导包括的所述符号1至符号m中除所述X1个符号和所述X2个符号之外的X3个符号用于指示光源总数,X1+X2+X3≤m,所述光源序号表示发送当前物理帧的光源的序号,所述光源总数表示所述发送节点发送N个 物理帧的光源数N。
  17. 一种通信方法,其特征在于,所述方法应用于接收节点,包括:
    接收P个光源发送的P个物理帧,每个所述物理帧包括前导和有效数据,其中,所述前导包括符号0至符号m+1,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶欠采样脉冲宽度调制所使用的所有m个占空比一一对应,m为物理帧包括的有效数据所采用的调制阶数,所述前导包括的符号1至符号m的不同顺序用于指示发送节点的N个光源的发送模式,或者,所述前导包括的所述符号1至符号m中X1个符号的不同顺序用于指示所述发送模式,所述发送模式为分集模式或复用模式,N为大于等于2的正整数,P小于等于N;
    根据所述前导确定所述发送节点的N个光源的发送模式;
    若所述前导所指示的所述发送模式为所述分集模式,根据所述P个物理帧中一个或L个物理帧的有效数据,得到所述发送节点通过所述N个光源发送的原始数据,L小于等于P。
  18. 根据权利要求17所述的方法,其特征在于,若所述前导包括的符号1至符号m的不同顺序所指示的发送模式为所述复用模式,每个所述物理帧还包括第一端口指示,若所述前导包括的所述符号1至符号m中X1个符号的不同顺序所指示的所述发送模式为所述复用模式,且每个所述物理帧的所述前导包括的所述符号1至符号m中除所述X1个符号之外的X2个符号用于指示光源序号时,每个所述物理帧还包括第二端口指示,X1+X2≤m,或者,所述前导包括的所述符号1至符号m中除所述X1个符号和所述X2个符号之外的X3个符号用于指示光源总数,X1+X2+X3≤m,所述光源序号表示发送当前物理帧的光源的序号,所述光源总数表示所述发送节点发送N个物理帧的光源数N,所述方法还包括:
    判断P是否等于N;
    若P等于N,根据所述P个物理帧的所述前导和/或端口指示解析所述P个物理帧的有效数据,得到所述发送节点通过所述N个光源发送的原始数据,所述端口指示包括所述第一端口指示或所述第二端口指示。
  19. 一种发送节点,其特征在于,所述发送节点包括N个光源,包括:
    处理单元,用于生成N个物理帧,每个所述物理帧包括前导和有效数据,N为大于等于2的正整数;
    发送单元,用于通过所述N个光源发送所述N个物理帧,其中,一个所述光源发送一个物理帧;
    其中,所述前导包括符号0至符号m+1,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶欠采样脉冲宽度调制所使用的所有m个占空比一一对应,m为物理帧包括的有效数据所采用的调制阶数,所述前导包括的符号1至符号m的不同顺序用于指示发送节点的N个光源的发送模式,或者,所述前导包括的所述符号1至符号m中X1个符号的不同顺序用于指示所述发送模式,所述发送模式为分集模式或复用模式。
  20. 根据权利要求19所述的发送节点,其特征在于,
    若所述前导包括的符号1至符号m的不同顺序所指示的发送模式为所述复用模式,每个所述物理帧还包括第一端口指示;
    若所述前导包括的所述符号1至符号m中X1个符号的不同顺序所指示的所述发送模式为所述复用模式,且每个所述物理帧的所述前导包括的所述符号1至符号m中除所述X1个符号之外的X2个符号用于指示光源序号时,每个所述物理帧还包括第二端口指示,X1+X2≤m,或者,所述前导包括的所述符号1至符号m中除所述X1个符号和所述X2个符号之外的X3个符号用于指示光源总数,X1+X2+X3≤m,所述光源序号表示发送当前物理帧的光源的序号,所述光源总数表示所述发送节点发送N个物理帧的光源数N。
  21. 一种接收节点,其特征在于,包括:
    接收单元,用于接收P个光源发送的P个物理帧,每个所述物理帧包括前导和有效数据,其中,所述前导包括符号0至符号m+1,符号0对应的占空比为第一占空比,符号m+1对应的占空比为第二占空比,符号1至符号m中m个符号对应的占空比与m阶欠采样脉冲宽度调制所使用的所有m个占空比一一对应,m为物理帧包括的有效数据所采用的调制阶数,所述前导包括的符号1至符号m的不同顺序用于指示发送节点的N个光源的发送模式,或者,所述前导包括的所述符号1至符号m中X1个符号的不同顺序用于指示所述发送模式,所述发送模式为分集模式或复用模式,N为大于等于2的正整数,P小于等于N;
    处理单元,用于根据所述前导确定所述发送节点的N个光源的发送模式;
    所述处理单元,还用于若所述前导所指示的所述发送模式为所述分集模式,根据所述P个物理帧中一个或L个物理帧的有效数据,得到所述发送节点通过所述N个光源发送的原始数据,L小于等于P。
  22. 根据权利要求21所述的接收节点,其特征在于,若所述前导包括的符号1至符号m的不同顺序所指示的发送模式为所述复用模式,每个所述物理帧还包括第一端口指示,若所述前导包括的所述符号1至符号m中X1个符号的不同顺序所指示的所述发送模式为所述复用模式,且每个所述物理帧的所述前导包括的所述符号1至符号m中除所述X1个符号之外的X2个符号用于指示光源序号时,每个所述物理帧还包括第二端口指示,X1+X2≤m,或者,所述前导包括的所述符号1至符号m中除所述X1个符号和所述X2个符号之外的X3个符号用于指示光源总数,X1+X2+X3≤m,所述光源序号表示发送当前物理帧的光源的序号,所述光源总数表示所述发送节点发送N个物理帧的光源数N,
    所述处理单元,还用于判断P是否等于N;
    所述处理单元,还用于若P等于N,根据所述P个物理帧的所述前导和/或端口指示解析所述P个物理帧的有效数据,得到所述发送节点通过所述N个光源发送的原始数据,所述端口指示包括所述第一端口指示或所述第二端口指示。
  23. 根据权利要求15-22任一项所述的方法、发送节点或接收节点,其特征在于,所述符号1至符号m降序排序,所述发送模式为所述分集模式,所述符号1至符号m升序排序,所述发送模式为所述复用模式;
    或者,所述符号1至符号m升序排序,所述发送模式为所述分集模式,所述符号 1至符号m降序排序,所述发送模式为所述复用模式。
  24. 根据权利要求23所述的方法、发送节点或接收节点,其特征在于,
    所述第一端口指示包括光源总数字段和第一光源序号字段,所述光源总数字段用于表示所述发送节点发送N个物理帧的光源数N,所述第一光源序号字段用于表示发送当前物理帧的光源的序号,
    或者,所述第一端口指示包括所述光源总数字段、所述第一光源序号字段和第一校验位字段,
    或者,所述第一端口指示包括所述第一光源序号字段和第N光源指示字段,所述第N光源指示字段用于指示所述第一光源序号字段表示的光源是否是第N光源,
    或者,所述第一端口指示包括所述第一光源序号字段、所述第N光源指示字段和所述第一校验位字段,
    或者,所述第一端口指示包括扩展指示字段、所述第N光源指示字段、第二光源序号字段和第二校验位字段,
    或者,所述第一端口指示包括所述扩展指示字段、所述第N光源指示字段、所述第二光源序号字段、所述第二校验位字段、第三光源序号字段和第三校验位字段,
    或者,所述第一端口指示包括Q个符号,所述Q个符号用于指示光源总数和光源序号,所述光源总数表示所述发送节点发送N个物理帧的光源数N,所述光源序号表示发送当前物理帧的光源的序号,
    或者,所述第一端口指示包括所述Q个符号,所述Q个符号中Q-1个符号用于指示所述光源序号,所述Q个符号中除所述Q-1个符号之外的符号用于指示所述光源序号表示的光源是否是第N光源。
  25. 根据权利要求16、18、20或22所述的方法、发送节点或接收节点,其特征在于,所述第二端口指示包括光源总数字段,所述光源总数字段用于表示所述发送节点发送N个物理帧的光源数N,或者,所述第二端口指示包括所述光源总数字段和第四校验位字段,或者,所述第二端口指示包括R个符号,所述R个符号用于指示所述光源总数或指示所述光源序号表示的光源是否是第N光源。
  26. 一种发送节点,其特征在于,包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令以使得所述发送节点执行如权利要求1、2、9-14、15、16和23-25任一项所述的方法。
  27. 一种接收节点,其特征在于,包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令以使得所述接收节点执行如权利要求3、4、9-14、17、18和23-25任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,包括:计算机软件指令;
    当所述计算机软件指令在发送节点或内置在发送节点的芯片中运行时,使得所述发送节点执行如权利要求1、2、9-14、15、16和23-25任一项所述的通信方法。
  29. 一种计算机可读存储介质,其特征在于,包括:计算机软件指令;
    当所述计算机软件指令在接收节点或内置在接收节点的芯片中运行时,使得所述接收节点执行如权利要求3、4、9-14、17、18和23-25任一项所述的通信方法。
PCT/CN2018/071668 2018-01-05 2018-01-05 一种通信方法及装置 WO2019134143A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/071668 WO2019134143A1 (zh) 2018-01-05 2018-01-05 一种通信方法及装置
CN201880081677.9A CN111492597B (zh) 2018-01-05 2018-01-05 一种通信方法及装置
US16/919,913 US11233567B2 (en) 2018-01-05 2020-07-02 Light sources communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071668 WO2019134143A1 (zh) 2018-01-05 2018-01-05 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/919,913 Continuation US11233567B2 (en) 2018-01-05 2020-07-02 Light sources communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2019134143A1 true WO2019134143A1 (zh) 2019-07-11

Family

ID=67143606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071668 WO2019134143A1 (zh) 2018-01-05 2018-01-05 一种通信方法及装置

Country Status (3)

Country Link
US (1) US11233567B2 (zh)
CN (1) CN111492597B (zh)
WO (1) WO2019134143A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI836131B (zh) 2019-08-22 2024-03-21 大陸商北京外號信息技術有限公司 光通信裝置以及用於傳輸和接收資訊的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090310971A1 (en) * 2008-06-17 2009-12-17 Samsung Electronics Co., Ltd. Visible light communication method and system
CN102415020A (zh) * 2009-04-28 2012-04-11 西门子公司 数据的光传输方法和装置
CN106605377A (zh) * 2015-02-27 2017-04-26 松下电器(美国)知识产权公司 信号生成方法、信号生成装置以及程序

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040246891A1 (en) * 1999-07-23 2004-12-09 Hughes Electronics Corporation Air interface frame formatting
KR101000518B1 (ko) * 2008-12-22 2010-12-14 한국전자통신연구원 Wdm-pon에서의 멀티캐스트 또는 브로드캐스트 프레임 전송방법 및 그 장치
CN101778448B (zh) * 2009-01-13 2012-08-22 华为技术有限公司 用户分集指示方法、装置及系统
WO2011034383A2 (en) * 2009-09-19 2011-03-24 Samsung Electronics Co., Ltd. Method and apparatus for channel allocation in a visible light communication system
KR101654934B1 (ko) * 2009-10-31 2016-09-23 삼성전자주식회사 가시광 통신 방법 및 장치
CN102158268B (zh) * 2011-01-19 2014-07-09 华为技术有限公司 分集发射及接收的方法、装置及系统
US10277317B2 (en) * 2015-02-10 2019-04-30 Brightcodes Technologies Ltd. System and method for providing optically coded information
CN113839760B (zh) * 2015-09-25 2023-03-28 中兴通讯股份有限公司 数据传输方法和节点
US10998971B2 (en) * 2016-06-30 2021-05-04 Telefonaktiebolaget Lm Ericsson (Publ) Controlling communications between visible light communication access points and user equipments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090310971A1 (en) * 2008-06-17 2009-12-17 Samsung Electronics Co., Ltd. Visible light communication method and system
CN102415020A (zh) * 2009-04-28 2012-04-11 西门子公司 数据的光传输方法和装置
CN106605377A (zh) * 2015-02-27 2017-04-26 松下电器(美国)知识产权公司 信号生成方法、信号生成装置以及程序

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI836131B (zh) 2019-08-22 2024-03-21 大陸商北京外號信息技術有限公司 光通信裝置以及用於傳輸和接收資訊的方法

Also Published As

Publication number Publication date
US11233567B2 (en) 2022-01-25
US20200336206A1 (en) 2020-10-22
CN111492597B (zh) 2021-08-13
CN111492597A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
US11296807B2 (en) Techniques to operate a time division multiplexing(TDM) media access control (MAC)
US9246617B2 (en) Reformating a plurality of signals to generate a combined signal comprising a higher data rate than a data rate associated with the plurality of signals
CN106130632B (zh) 数据传输方法及电子设备
WO2018130045A1 (zh) 数据传输装置及方法、喷墨打印系统
US11025342B2 (en) Camera communication method and apparatus
WO2019134143A1 (zh) 一种通信方法及装置
US10432582B2 (en) Technologies for scalable local addressing in high-performance network fabrics
CN110830152B (zh) 接收码块流的方法、发送码块流的方法和通信装置
CN203851159U (zh) 一种智能汇聚千兆交换机
US11330596B2 (en) Method and device for indicating transmission resources and storage medium
CN205545622U (zh) 一种多镜头全景相机数据统一存储的电路结构
WO2017000737A1 (zh) 一种传输校验方法、节点、系统与计算机存储介质
JP6998876B2 (ja) 複数速度のデータを処理する方法および装置
WO2018196833A1 (zh) 报文发送方法和报文接收方法及装置
US9661110B2 (en) System and method for enabling channel access enhancements in existing communication networks
CN106301568B (zh) 信号编码方法、装置、ht端口及处理器
CN110830153B (zh) 接收码块流的方法、发送码块流的方法和通信装置
CN114513523B (zh) 数据同步方法、装置、设备及存储介质
US11005564B2 (en) Communication method and apparatus using hybrid modulation scheme in communication system
CN115065408B (zh) 基于光学相机的多优先级分层编码方法、装置及存储介质
KR102301985B1 (ko) 신호 변조 및 복조 방법 및 장치
CN117675101A (zh) 数据传输方法、装置、系统及计算机可读存储介质
WO2023246346A1 (zh) 一种数据传输装置
CN108616375B (zh) 基于as5643协议的指定周期传输数据的方法和电路
CN113946541A (zh) 一种具有轮询仲裁和地址编码更新简化功能的异步路由器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898687

Country of ref document: EP

Kind code of ref document: A1