WO2019132435A1 - 전력 계통주파수 변동 저감을 위한 모듈러 멀티레벨 컨버터의 출력레벨 제어방법 - Google Patents

전력 계통주파수 변동 저감을 위한 모듈러 멀티레벨 컨버터의 출력레벨 제어방법 Download PDF

Info

Publication number
WO2019132435A1
WO2019132435A1 PCT/KR2018/016408 KR2018016408W WO2019132435A1 WO 2019132435 A1 WO2019132435 A1 WO 2019132435A1 KR 2018016408 W KR2018016408 W KR 2018016408W WO 2019132435 A1 WO2019132435 A1 WO 2019132435A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmc converter
voltage
system frequency
command value
frequency
Prior art date
Application number
PCT/KR2018/016408
Other languages
English (en)
French (fr)
Inventor
김희진
이동수
허견
강재식
김상민
Original Assignee
효성중공업 주식회사
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효성중공업 주식회사, 연세대학교 산학협력단 filed Critical 효성중공업 주식회사
Priority to US16/958,268 priority Critical patent/US11575265B2/en
Publication of WO2019132435A1 publication Critical patent/WO2019132435A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention relates to a method of controlling an output level of an MMC (Modular Multilevel Converter) converter, and more particularly to a method of controlling an output level of an MMC converter in an MMC converter associated with a power system, To an output level control method of an MMC converter for reducing frequency fluctuation.
  • MMC Modular Multilevel Converter
  • an MMC converter includes a plurality of sub-modules serially connected to each other to convert a voltage and serve as a path for current for power transmission.
  • these MMC converters are being actively used in HVDC or MVDC (Medium Voltage DC Transmission), which converts the power generated from large-scale offshore wind farms to DC and transmits them to the land.
  • the system frequency of the power system is reduced due to the lack of electric energy due to the variation of the active power.
  • a low-frequency load cutoff relay is operated so as to cut off the load in proportion to the separated frequency in order to prevent a chain breakdown of the generator.
  • the lowest frequency of the power system becomes an important criterion for determining the reliability of the system after the disturbance occurs, and that the system frequency of the power system is not lowered to prevent the load interception.
  • the present invention has been made to solve the above problems of the prior art and it is an object of the present invention to reduce the fluctuation of the system frequency by adjusting the output level of the MMC converter in response to the fluctuation of the system frequency of the power system due to disturbance in the MMC converter associated with the power system And to provide a method of controlling the output level of an MMC converter for reducing the variation of the system frequency.
  • a method of controlling an output level of an MMC converter for reducing a variation of a system frequency includes detecting a system frequency of a system connected to an MMC converter in real time; A comparison step of comparing the detected systematic frequency with a preset reference system frequency; And adjusting the number of output levels of the MMC converter in a direction to reduce a difference between the system frequency and the reference system frequency when the detected system frequency is different from the reference system frequency.
  • the adjusting step is adjusted by the number of output levels of the MMC converter calculated by the following equation.
  • n level is the number of output levels of the adjusted MMC converter
  • V DC is the DC rated voltage of the MMC converter
  • V SM is the DC rated voltage of the MMC converter
  • avg is the total of the submodules of the MMC converter if the detected system frequency is equal to the reference system frequency Average voltage
  • the adjusting step is adjusted by the number of output levels of the MMC converter calculated by the following equation.
  • K2 1-0.75 and (f 0 -f) / (K f, max and f 0)
  • N level is the number of output levels of the MMC converter before adjustment, f 0 is the predetermined reference system frequency of the system, f is the system frequency detected in the system, K f, max is the predetermined control parameter constant)
  • the control method of the present invention may further include the step of transmitting a voltage corresponding to a difference between an output voltage of each sub-module operated according to the calculated number of output levels of the MMC converter and the DC rated voltage to the system after the adjustment step .
  • the adjusting comprises: generating a sub-module voltage command value corresponding to a difference between the grid frequency and the reference grid frequency; Generating a d-axis current control command value for controlling active power through PI control so as to reduce a difference between the generated sub-module voltage command value and an average voltage of the sub-module; And controlling the AC current output from the MMC converter according to the generated d-side current control command value.
  • the adjusting comprises: generating a DC voltage command value of the MMC converter corresponding to a difference between the grid frequency and the reference grid frequency; Generating a DC current command value through PI control to reduce a difference between the generated DC voltage command value and a DC voltage of the MMC converter; And controlling the DC current output from the MMC converter according to the generated DC current command value.
  • the adjusting comprises: generating a sub-module voltage command value corresponding to the difference between the DC voltage at the output of the MMC converter and the DC rated voltage; Generating a DC current command value through PI control to reduce a difference between the sub-module voltage command value and the average voltage of the sub-module; And controlling the DC current output from the MMC converter according to the generated DC current command value.
  • the fluctuation of the system frequency is minimized by adjusting the output level of the MMC converter when the system frequency fluctuates due to disturbance.
  • the inertia energy can be injected into the AC stage or the DC stage using the voltage of the submodule that fluctuates due to the adjustment of the output level of the MMC converter.
  • FIG. 1 is an exemplary configuration diagram of a power network system to which the present invention is applied.
  • FIG. 2 is an exemplary configuration diagram of an MMC converter according to an embodiment of the present invention.
  • FIG. 3 is an illustration of an output voltage of a sub-module according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of an MMC converter control system according to the present invention.
  • FIG 5 is an operational block diagram of an MMC converter control system according to the present invention.
  • FIG. 6 is a flowchart illustrating a method of controlling an output level of an MMC converter for reducing a variation of a system frequency according to an exemplary embodiment of the present invention.
  • FIG. 7 to 9 are flowcharts illustrating a process of adjusting the number of output levels of an MMC converter according to an embodiment of the present invention.
  • FIGS. 10 to 12 are graphs of experimental results for comparing before and after applying the method of controlling the output level of the MMC converter according to the embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are intended to distinguish the constituent elements from other constituent elements, and the terms do not limit the nature, order or order of the constituent elements.
  • a power conversion system includes an AC-DC-AC power conversion device 20 for transmitting bi-directional power through power conversion between a generator 10 and an AC system 30.
  • the AC-DC-AC current converter 20 is preferably composed of an MMC converter.
  • the generator 10 may be a power generating device, for example, a wind power generator
  • the AC-DC-AC current converting device 20 may include a first MMC converter 21 connected to the generator 10 side And a second MMC converter 22 connected to the AC system 30 side.
  • the first and second MMC converters 21 and 22 function as a rectifier and an inverter, respectively.
  • each of the first and second MMC converters is composed of three phases, and each phase is composed of an upper converter arm and a lower converter arm, and each converter arm is connected to a reactor And a plurality of sub-modules SM connected in series.
  • the first MMC converter 21 connected to the generator 10 and the second MMC converter 22 connected to the AC system 30 preferably have the same configuration but the switching of the internal semiconductor switches is applied differently. This switching results in AC-DC and DC-AC conversion, respectively.
  • Each sub-module SM is composed of a bridge circuit composed of a plurality of semiconductor switches and one capacitor.
  • the output voltage is formed as the capacitor voltage Vcap or zero voltage in accordance with the on / off state of the semiconductor switch. If the submodule of the converter arm is N, the maximum output voltage is N ⁇ Vcap and the minimum voltage is zero.
  • the plurality of sub modules SM constituting one converter arm includes N submodules 110 participating in the operation of the MMC converter and M spare submodules 120 ).
  • the failed submodule bypasses current and is excluded from operation.
  • the number of submodules participating in the operation is temporarily kept to N, because the spare submodule participates in the operation of the number of failures among the N submodules participating in the operation.
  • the M spare sub-modules 120 Since the M spare sub-modules 120 must be immediately put into operation when a failure occurs in the sub-module 110 during operation, the constant reserve voltage must be maintained in the capacitors. That is, when an accident occurs in the N submodules 110, some of the spare submodules 120 must be immediately inserted in order to prevent the operation of the MMC converter. Therefore, balancing of DC voltages of all N + M submodules Should be maintained. For this, carriers are allocated to all N + R submodules 110 and 120, including the spare submodule 120, to participate in on / off switching, thereby maintaining overall balancing.
  • N + M submodules are involved in switching while turning.
  • On / off of the N + M sub-modules is controlled by a control unit (not shown).
  • FIG. 3 is an illustration of an output voltage of a sub-module according to an embodiment of the present invention.
  • the switching time is determined by selecting an output level that is closer to the reference voltage among the output levels of the output voltages formed at each sampling time in the N submodules in operation.
  • the output voltage has 11 output levels with a difference of 1 from -5 to +5. Therefore, if the reference voltage at the instant of sampling is between 3.5 and 4.5, it is formed as 4. If it is 4.5 or more, it is formed as 5.
  • FIG. 4 is a block diagram of an MMC converter control system according to the present invention
  • FIG. 5 is an operational block diagram of an MMC converter control system according to the present invention.
  • the MMC converter control system according to the present invention includes an AC system frequency detector 210, first and second sub-module voltage detectors 220 and 230, first and second DC voltage detectors 240 and 250, A converter control unit 260 and a second MMC converter control unit 270.
  • the AC grid frequency detector 210 detects the grid frequency for the voltage in the AC grid system 30.
  • the AC voltage developed in the generator 10 is converted to an AC-DC-AC voltage through the AC-DC-AC power converter 20 and an AC voltage of a desired magnitude is supplied to the AC system 30.
  • a disturbance such as a dropout of a generator or a load fluctuation occurs in the system
  • a variation of the system frequency occurs.
  • the AC system frequency detector 210 detects the system frequency in real time.
  • Each of the first and second sub-module voltage detectors 220 and 230 detects a voltage stored in a capacitor inside the sub-module SM constituting each converter arm of the first and second MMC converters.
  • the first and second submodule voltage detectors 220 and 230 can detect not only the voltages of the plurality of submodules but also the voltages of the respective submodules and the voltages of the submodules, The input power and output power of the converter may also be detected.
  • the first and second DC voltage detectors 240 and 250 detect the DC voltage charged in the capacitors in the submodules of the first and second MMC converters.
  • the first MMC converter control unit 260 performs PI control to reduce the difference between the DC voltage of the sub-module detected by the first MMC converter 21 and the DC rated voltage of the predetermined sub-module to generate a DC current command value,
  • the generated DC current command value is used to control the DC current.
  • the second MMC converter controller 270 generates a sub-module voltage command value corresponding to the difference between the system frequency detected in the system and a preset reference system frequency, and calculates a difference between the sub- Axis current control command value to control the AC current output from the second MMC converter 22 according to the d-side current control command value.
  • the second MMC converter controller 270 generates a sub-module voltage command value corresponding to the difference between the system frequency detected in the system and the preset reference system frequency, and outputs the generated DC voltage command value to the second MMC converter 22 ), And controls the DC current output from the second MMC converter 22 in accordance with the set DC current command value.
  • FIG. 6 is a flowchart illustrating a method of controlling an output level of an MMC converter for reducing a variation of a system frequency according to an exemplary embodiment of the present invention.
  • the generator 10 according to the present invention is connected to a first MMC converter and to an AC system 20 side and a second MMC converter.
  • a plurality of sub-modules are connected in series, and a plurality of sub-modules are composed of N sub-modules participating in the operation of the MMC converter and M spare sub-modules provided in reserve.
  • the outputs of the N submodules participating in the operation form N + 1 output levels.
  • the system frequency of the system connected to the MMC converter is detected in real time (S101). Thereafter, the system frequency detected in real time is compared with a preset reference system frequency in the system (S103). If the detected system frequency is different from the reference system frequency, the number of output levels of the MMC converter is adjusted to reduce a difference between the detected system frequency and a predetermined reference system frequency (S105).
  • adjusting the number of output levels of the MMC converter means that the number of submodules participating in the operation of the MMC converter is adjusted. For example, when the N submodules participate in the operation to form the N + 1 output level, if the disturbance frequency differs from the reference system frequency due to disturbance, the difference between the system frequency and the reference system frequency is reduced, That is, the number of submodules participating in the operation is adjusted so as to be N + 1 + n or N + 1-n output levels.
  • the number of submodules is adjusted as described above, the DC voltage charged in each submodule varies. If the number of submodules participating in the operation of the MMC converter increases, the voltage charged to each submodule becomes smaller than the DC rated voltage. In this case, the voltage charged in each submodule becomes inertial Energy. As described above, in the present invention, the number of submodules participating in the operation of the MMC converter is adjusted to adjust the output level of the MMC converter, thereby varying the voltage charged to each submodule, and influencing the output of the MMC converter Let the remaining energy transfer inertial energy to the AC side or the DC side.
  • the output level of the MMC converter is adjusted as the disturbance occurs in the generator or the system. Even if the active power of the system fluctuates due to such disturbance, the inertia energy performs a damping function corresponding to the variation of the active power So that stable power supply is possible.
  • the voltage corresponding to the difference between the output voltage of each sub-module operated according to the number of output levels of the MMC converter and the predetermined DC rated voltage is transmitted to the AC side or the DC side .
  • n level is the number of output levels of the adjusted MMC converter
  • V DC is the DC rated voltage of the MMC converter
  • V SM is the sub-band of the MMC converter when the detected system frequency is equal to the reference system frequency
  • the overall average voltage of the module is the number of output levels of the adjusted MMC converter.
  • Equation (2) the number of output levels of the MMC converter can also be calculated by Equation (2). This is an example in which parameters applied as the same result as in Equation 1 are applied differently.
  • K2 1-0.75 and (f 0 -f) / (K f, max and f 0)
  • N level is the number of output levels of the MMC converter before adjustment
  • f 0 is a predetermined reference system frequency of the system
  • f is a system frequency detected in the system
  • K f and max are predetermined control parameter constants.
  • the number of output levels of the MMC converter before adjustment, the detected system frequency, and the reference frequency are taken as factors and the adjusted number of output levels is calculated.
  • the output levels of the upper converter arm and the lower converter arm can be determined according to Equation (3) corresponding to the number of output levels adjusted as described above in the MMC converter.
  • n uj, on is the number of output submodules of the upper converter arm when j is a, b, and c
  • n lj and on are the lower converter arms
  • M j is a modulation signal when j is a, b, c, and m z
  • j is a modulation signal that controls the circulation current when j is a, b, c
  • round is the closest integer .
  • FIG. 7 to 9 are flowcharts illustrating a process of adjusting the number of output levels of an MMC converter according to an embodiment of the present invention.
  • a sub-module voltage command value corresponding to the difference between the system frequency detected in the system and the predetermined reference system frequency is generated (S201).
  • a d-axis current control command value for controlling the active power is generated through proportional-integral (PI) control so as to reduce the difference between the sub-module voltage command value thus generated and the average voltage of the submodule of the MMC converter.
  • the AC current output from the MMC converter is controlled according to the d-side current control command value thus generated (S205).
  • each submodule switches its internal semiconductor switch according to the d-side current control command value.
  • a DC voltage command value of the MMC converter corresponding to the difference between the system frequency detected in the system and the predetermined reference system frequency is generated (S301).
  • the DC current command value is generated through the PI control so as to reduce the difference between the DC voltage command value thus generated and the DC voltage detected by the MMC converter (S303).
  • the DC current output from the MMC converter is controlled according to the generated DC current command value (S305).
  • the switching operation of the internal semiconductor switch is performed in accordance with the DC current command value.
  • a sub-module voltage command value corresponding to the difference between the DC voltage detected at the DC stage of the MMC converter and the DC rated voltage of the predetermined sub-module is generated (S401).
  • a DC current command value is generated through PI control to reduce the difference between the sub-module voltage command value and the average voltage of the sub-module.
  • the DC current output from the MMC converter is controlled according to the generated DC current command value (S403).
  • the switching operation of the internal semiconductor switch is performed in accordance with the DC current command value.
  • FIGS. 10 to 12 are graphs of experimental results for comparing before and after applying the method of controlling the output level of the MMC converter according to the embodiment of the present invention.
  • H MMC 0.8458, 60-59.6 Hz
  • the system frequency variation is less in the cases (b) and (c) in which the inertia is provided than in the case (a) in which inertia is not provided as a frequency response improving waveform after the system application.
  • 11 shows that the number of submodules participating in the operation increases in order to adjust the number of output levels of the MMC converter as a waveform for the voltage change of the submodule, so that the voltage of each submodule is lower than the rated voltage.
  • the amount of power change is small in the case of providing the inertia with (b) and (c) than in the case of (a) in which inertia is not provided as the power variation amount of the HVDC system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

본 발명은 전력계통과 연계된 MMC 컨버터에서 전력계통의 계통주파수 변동에 대응하여 MMC 컨버터의 출력레벨을 조정하도록 하는 계통주파수 변동 저감을 위한 MMC 컨버터의 출력레벨 제어방법에 관한 것이다. 본 발명에 따른 MMC 컨버터의 출력레벨 제어방법은, MMC 컨버터에 연계된 계통의 계통주파수를 실시간 검출하는 검출단계와, 상기 검출된 계통주파수와 기설정된 기준 계통주파수를 비교하는 비교단계와, 상기 검출된 계통주파수와 상기 기준 계통주파수가 다르면 상기 계통주파수와 상기 기준 계통주파수 간의 차이를 줄이는 방향으로 상기 MMC 컨버터의 출력레벨 수를 조정하는 조정단계를 포함한다.

Description

전력 계통주파수 변동 저감을 위한 모듈러 멀티레벨 컨버터의 출력레벨 제어방법
본 발명은 MMC(Modular Multilevel Converter) 컨버터의 출력레벨 제어방법에 관한 것으로서, 보다 상세하게는 전력계통과 연계된 MMC 컨버터에서 전력계통의 계통주파수 변동에 대응하여 MMC 컨버터의 출력레벨을 조정하도록 하는 계통주파수 변동 저감을 위한 MMC 컨버터의 출력레벨 제어방법에 관한 것이다.
일반적으로 MMC 컨버터는 서로 직렬로 연결된 복수의 서브모듈(sub-module)을 포함하여 전압을 변환하고 전력전송을 위한 전류의 통로 역할을 한다. 최근 이러한 MMC 컨버터는 대규모 해상풍력 단지에서 생산되는 전력을 직류로 변환하여 육상으로 전송하는 HVDC 또는 MVDC(Medium Voltage DC Transmission)에 적극 활용되고 있다.
이러한 전력계통에서 발전기의 탈락이나 부하 증가와 같은 외란이 발생하게 되면 유효전력의 변동에 따른 전기에너지의 부족으로 전력계통의 계통주파수는 감소하게 된다. 국내에서는 주파수가 60㎐ 이하로 감소하게 되면 발전기의 연쇄적인 탈락을 방지하기 위해 저주파수 부하 차단 계전기가 작동하여 떨어진 주파수에 비례하여 부하를 차단시키도록 한다.
따라서 외란 발생 이후 전력계통의 최저 주파수는 계통의 신뢰도를 결정짓는 중요한 기준이 되고 부하차단을 방지하기 위해서는 전력계통의 계통주파수가 떨어지지 않도록 하는 것이 중요하다.
종래에 풍력발전기의 관성에너지를 활용하는 기술로서 주로 대형 계통이나 동기발전기 기반의 계통에서 통용되는 풍력발전기 관성제어 시스템이 제시되었다. 이러한 풍력발전의 관성제어는 주파수 측정 기반으로 동작한다.
이는 발전기량이나 부하량 변동시 동기발전기의 주파수가 하락할 때 풍력발전의 관성에너지를 계통으로 내보내 주파수 하락과 변동을 완화하는데 이용하는 것으로서, 풍력발전의 관성제어에 한계가 있고 유효전력 변화에 대한 주파수 특성이 다른 계통에서는 적용하기 어렵다.
본 발명은 상기한 종래기술의 문제점을 해결하기 위한 것으로서 전력계통과 연계된 MMC 컨버터에서 외란발생으로 인한 전력계통의 계통주파수의 변동에 대응하여 MMC 컨버터의 출력레벨을 조정함으로써 계통주파수의 변동을 저감하도록 하는 계통주파수 변동 저감을 위한 MMC 컨버터의 출력레벨 제어방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 MMC 컨버터의 출력레벨의 제어에 따라 변동되는 서브모듈의 전압을 이용하여 AC단 또는 DC단으로 관성에너지를 주입할 수 있도록 하는 MMC 컨버터의 출력레벨 제어방법을 제공하는데 추가적인 목적이 있다.
본 발명의 일 실시 예에 따른 계통주파수 변동 저감을 위한 MMC 컨버터의 출력레벨 제어방법은, MMC 컨버터에 연계된 계통의 계통주파수를 실시간 검출하는 검출단계; 상기 검출된 계통주파수와 기설정된 기준 계통주파수를 비교하는 비교단계; 상기 검출된 계통주파수와 상기 기준 계통주파수가 다르면 상기 계통주파수와 상기 기준 계통주파수 간의 차이를 줄이는 방향으로 상기 MMC 컨버터의 출력레벨 수를 조정하는 조정단계를 포함한다.
본 발명에서, 상기 조정단계는 하기 수학식에 의해 산출된 상기 MMC 컨버터의 출력레벨 수로 조정한다.
Figure PCTKR2018016408-appb-I000001
(nlevel은 조정된 MMC 컨버터의 출력레벨 수, VDC는 상기 MMC 컨버터의 DC정격전압, VSM,avg는 상기 검출된 계통주파수와 상기 기준 계통주파수가 같은 경우 상기 MMC 컨버터의 서브모듈의 전체 평균전압)
본 발명에서, 상기 조정단계는 하기 수학식에 의해 산출된 상기 MMC 컨버터의 출력레벨 수로 조정한다.
Figure PCTKR2018016408-appb-I000002
K2 = 1-0.75ㆍ(f0-f)/(Kf,max ㆍf0)
(Nlevel은 조정전 MMC 컨버터의 출력레벨 수, f0는 계통의 기설정된 기준 계통주파수, f는 계통에서 검출된 계통주파수, Kf,max는 기설정된 제어파라미터 상수)
본 발명의 제어방법은, 상기 조정단계 이후에, 상기 산출된 MMC 컨버터의 출력레벨 수에 따라 운전되는 각 서브모듈의 출력전압과 상기 DC정격전압 간의 차이에 대응하는 전압을 계통으로 전달하는 단계를 더 포함할 수 있다.
일 실시 예에서 상기 조정단계는, 상기 계통주파수 및 기준 계통주파수 간의 차이에 대응하는 서브모듈 전압지령치를 생성하는 단계; 상기 생성된 서브모듈 전압지령치와 상기 서브모듈의 평균전압의 차이를 줄이도록 PI제어를 통해 유효전력을 제어하는 d축 전류제어 지령치를 생성하는 단계; 상기 생성된 d측 전류제어 지령치에 따라 상기 MMC 컨버터에서 출력되는 AC전류를 제어하는 단계를 포함할 수 있다.
다른 실시 예에서 상기 조정단계는, 상기 계통주파수 및 기준 계통주파수 간의 차이에 대응하는 상기 MMC 컨버터의 DC전압 지령치를 생성하는 단계; 상기 생성된 DC전압 지령치와 MMC 컨버터의 DC전압 간의 차이를 줄이도록 PI제어를 통해 DC전류 지령치를 생성하는 단계; 상기 생성된 DC전류 지령치에 따라 상기 MMC 컨버터에서 출력되는 DC전류를 제어하는 단계를 포함할 수 있다.
또 다른 실시 예에서 상기 조정단계는, 상기 MMC 컨버터의 출력단의 DC전압과 상기 DC정격전압 간의 차이에 대응하는 서브모듈 전압 지령치를 생성하는 단계; 상기 서브모듈 전압 지령치와 상기 서브모듈의 평균전압의 차이를 줄이도록 PI제어를 통해 DC전류 지령치를 생성하는 단계; 상기 생성된 DC전류 지령치에 따라 상기 MMC 컨버터에서 출력되는 DC전류를 제어하는 단계를 포함할 수도 있다.
본 발명에 의하면 계통과 연계된 MMC 컨버터에서 외란발생으로 인한 계통주파수의 변동시 MMC 컨버터의 출력레벨을 조정함으로써 계통주파수의 변동을 최소화하도록 한다.
또한, 본 발명에 의하면 MMC 컨버터의 출력레벨 조정으로 인해 변동되는 서브모듈의 전압을 이용하여 AC단 또는 DC단으로 관성에너지를 주입할 수 있다.
도 1은 본 발명이 적용되는 전력망 시스템의 예시적인 구성도이다.
도 2는 본 발명의 실시 예에 따른 MMC 컨버터의 예시적인 구성도이다.
도 3은 본 발명의 실시 예에 따른 서브모듈의 출력전압의 예시도이다.
도 4는 본 발명에 따른 MMC 컨버터 제어시스템의 블록 구성도이다.
도 5는 본 발명에 따른 MMC 컨버터 제어시스템의 동작 구성도이다.
도 6은 본 발명의 일 실시 예에 따른 계통주파수 변동 저감을 위한 MMC 컨버터의 출력레벨 제어방법을 나타낸 흐름도이다.
도 7 내지 도 9은 본 발명의 실시 예에 따른 MMC 컨버터의 출력레벨 수 조정과정을 설명하는 흐름도이다.
도 10 내지 도 12는 본 발명의 실시 예에 따른 MMC 컨버터의 출력레벨 제어방법의 적용 전과 후를 비교하기 위한 실험결과 그래프이다.
이하, 본 발명의 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명이 적용되는 전력변환 시스템의 예시적인 구성도이다. 도 1을 참조하면 본 발명에 따른 전력변환 시스템은 발전기(10)와 AC계통시스템(30) 간에 전력변환을 통해 양방향 전력을 전송하는 AC-DC-AC 전력변환장치(20)로 구성된다. AC-DC-AC 전류변환장치(20)는 바람직하게는 MMC 컨버터로 구성된다.
이러한 전력변환 시스템에서 발전기(10)는 전력을 생산하는 설비로서 예컨대 풍력발전기가 될 수 있고 AC-DC-AC 전류변환장치(20)는 발전기(10)측에 연결된 제1 MMC 컨버터(21)와 AC계통시스템(30)측에 연결된 제2 MMC 컨버터(22)로 구성되며, 제1 및 제2 MMC 컨버터(21,22)는 각각 정류기(rectifier)와 인버터(inverter) 기능을 수행한다.
도 2는 본 발명의 실시 예에 따른 MMC 컨버터의 예시적인 구성도이다. 도 2를 참조하면 본 발명에 따른 제1,2 MMC 컨버터는 각각 3개의 상(phase)으로 구성되고 각각의 상(phase)은 상위 컨버터암과 하위 컨버터암으로 구성되며, 각 컨버터암은 리액터와 직렬로 연결된 복수의 서브모듈(SM)으로 구성된다. 발전기(10)에 연결된 제1 MMC 컨버터(21)와 AC계통시스템(30)에 연결된 제2 MMC 컨버터(22)는 바람직하게는 동일한 구성을 가지지만 내부의 반도체스위치의 스위칭은 다르게 적용된다. 이러한 스위칭에 따라 각각 AC-DC 및 DC-AC 변환이 이루어진다.
각 서브모듈(SM)은 복수의 반도체스위치와 하나의 커패시터로 구성된 브릿지 회로로 구성된다. 반도체스위치의 온/오프(on/off)에 따라 출력전압을 커패시터 전압 Vcap 또는 0(zero) 전압으로 형성한다. 컨버터암의 서브모듈이 N개인 경우 최대로 출력할 수 있는 전압은 N×Vcap이며 최소 전압은 0이 된다.
하나의 컨버터암을 구성하는 복수의 서브모듈(SM)은 MMC 컨버터의 운전에 참여하는 N개의 서브모듈(110)과 N개의 서브모듈 중 고장이 발생하면 운전에 투입되는 M개의 예비 서브모듈(120)을 포함한다. 고장이 발생한 서브모듈은 전류를 바이패스시켜 운전에서 배제된다. 예비 서브모듈은 운전에 참여중인 N개의 서브모듈 중 고장이 발생한 개수만큼 운전에 참여하므로 운전에 참여하는 서브모듈의 개수는 순시적으로 N개로 유지된다.
M개의 예비 서브모듈(120)은 운전중이 서브모듈(110)에 고장발생 시 즉시 운전에 투입되어야 하므로 항상 커패시터에 일정전압을 유지하고 있어야 한다. 즉, N개의 서브모듈(110)에 사고가 발생하는 경우 MMC 컨버터의 동작에 문제가 없도록 하기 위해서는 즉시 예비 서브모듈(120) 중 일부가 투입되어야 하므로 전체 N+M개의 서브모듈의 DC전압의 밸런싱이 유지되어야 한다. 이를 위해 예비 서브모듈(120)을 포함한 전체 N+R개의 서브모듈(110,120)에 캐리어가 각각 할당되어 모두 온/오프 스위칭에 참여하도록 함으로써 전체적인 밸런싱을 유지하도록 한다. 이는 순시적으로 N+1의 출력레벨을 형성하기 위해 동작하는 서브모듈의 개수는 N개 이지만 N+M개의 서브모듈이 돌아가면서 스위칭에 참여하도록 하는 것이다. 이러한 N+M개의 서브모듈의 온/오프는 제어부(미도시)에 의해 제어된다.
도 3은 본 발명의 실시 예에 따른 서브모듈의 출력전압의 예시도이다. 도 3에 도시된 바와 같이 운전중인 N개의 서브모듈에서 매 샘플링 순간에 형성되는 출력전압의 출력레벨 중에서 기준전압에 보다 가까운 출력레벨을 택해 스위칭 시간을 정한다. 도 3의 일례와 같이 기준파가 5의 크기를 가지고 형성되는 전압의 출력레벨이 11 레벨이라고 하면 출력되는 전압은 -5에서 +5까지 1의 차이로 11개의 출력레벨이 존재한다. 따라서 샘플링하는 순간의 기준전압이 3.5~4.5 사이의 값이라고 하면 4로 형성되고 4.5 이상이라면 5로 형성된다.
이처럼 MMC 컨버터에서 N개의 서브모듈이 운전에 참여하면 N+1 레벨의 출력전압이 형성된다. N개 서브모듈의 커패시터 전압을 계단방식으로 누적하여 MMC 컨버터의 교류전압 파형을 생성하므로 각 커패시터 전압을 일정하게 유지하여야 교류전압의 고주파 레벨을 저감할 수 있다. 이에 MMC 컨버터에는 서브모듈의 각 커패시터 전압을 일정하게 유지하기 위한 알고리즘이 적용된다.
도 4는 본 발명에 따른 MMC 컨버터 제어시스템의 블록 구성도이고, 도 5는 본 발명에 따른 MMC 컨버터 제어시스템의 동작 구성도이다. 도 4 및 도 5를 참조하면 본 발명에 따른 MMC 컨버터 제어시스템은 AC계통주파수검출부(210), 제1,2서브모듈전압검출부(220,230), 제1,2DC전압검출부(240,250), 제1 MMC컨버터 제어부(260) 및 제2 MMC컨버터 제어부(270)를 포함하여 구성된다.
AC계통주파수검출부(210)는 AC계통시스템(30)에서의 전압에 대한 계통주파수를 검출한다. 발전기(10)에서 발전된 AC전압은 AC-DC-AC 전력변환장치(20)를 통해 AC-DC-AC 전압으로 변환되어 원하는 크기의 AC전압이 AC계통시스템(30)으로 공급된다. 이때 계통에서 발전기의 탈락이나 부하변동 등의 외란이 발생하는 경우 계통주파수의 변동이 발생되는데, 이러한 계통주파수를 AC계통주파수검출부(210)에서 실시간으로 검출한다.
제1,2서브모듈전압검출부(220,230)는 각각 제1,2 MMC 컨버터의 각 컨버터암을 구성하는 서브모듈(SM) 내부의 커패시터에 저장되는 전압을 각각 검출한다. 또한, 이러한 제1,2서브모듈전압검출부(220,230)는 복수의 서브모듈 각각에 대한 전압뿐만 아니라 각 상별로, 그리고 전체 서브모듈 전압도 검출할 수 있고, 이러한 서브모듈의 검출전압을 이용하여 MMC 컨버터의 입력전력 및 출력전력도 검출할 수도 있다.
제1,2DC전압검출부(240,250)는 제1,2 MMC 컨버터의 서브모듈 내 커패시터에 충전되는 DC전압을 검출한다.
제1 MMC 컨버터 제어부(260)는 제1 MMC 컨버터(21)에서 검출되는 서브모듈의 DC전압과 기설정된 서브모듈의 DC정격전압 간의 차이를 줄이도록 PI제어를 수행하여 DC전류 지령치를 생성하고, 이와 같이 생성된 DC전류 지령치를 이용하여 DC전류를 제어한다.
제2 MMC 컨버터 제어부(270)는 계통에서 검출된 계통주파수와 기설정된 기준 계통주파수 간의 차이에 대응하는 서브모듈 전압지령치를 생성하고, 이와 같이 생성된 서브모듈 전압지령치와 서브모듈의 평균전압 간의 차이를 줄이도록 PI제어를 통해 유효전력을 제어하는 d축 전류제어 지령치를 생성하여 d측 전류제어 지령치에 따라 제2 MMC 컨버터(22)에서 출력되는 AC전류를 제어하도록 한다.
또한, 제2 MMC 컨버터 제어부(270)는 계통에서 검출된 계통주파수와 기설정된 기준 계통주파수 간의 차이에 대응하는 서브모듈 전압지령치를 생성하고, 이와 같이 생성된 DC전압 지령치와 제2 MMC 컨버터(22)의 DC전압 간의 차이를 줄이도록 PI제어를 통해 DC전류 지령치를 생성하며, 이러한 DC전류 지령치에 따라 제2 MMC 컨버터(22)에서 출력되는 DC전류를 제어하도록 한다.
도 6은 본 발명의 일 실시 예에 따른 계통주파수 변동 저감을 위한 MMC 컨버터의 출력레벨 제어방법을 나타낸 흐름도이다. 도 6을 참조하면 본 발명에 따른 발전기(10)측과 제1 MMC 컨버터가 연결되고 AC계통시스템(20)측과 제2 MMC 컨버터와 연결된다.
이러한 MMC 컨버터는 복수의 서브보듈이 직렬로 연결되며, 복수의 서브모듈은 MMC 컨버터의 운전에 참가하는 N개의 서브모듈과 예비로 구비된 M개의 예비 서브모듈로 구성된다. 이때, 운전에 참가하는 N개의 서브모듈의 출력은 N+1개의 출력레벨을 형성한다.
본 발명에 따른 MMC 컨버터의 출력레벨 제어방법에서는 MMC 컨버터에 연계된 계통의 계통주파수를 실시간 검출한다(S101). 이후에 실시간 검출된 계통주파수와 계통에서의 기설정된 기준 계통주파수를 비교한다(S103). 이러한 비교결과에서 상기 검출된 계통주파수와 기준 계통주파수가 서로 다르다면, 상기 검출되는 계통주파수와 기설정된 기준 계통주파수 간의 차이를 줄이도록 MMC 컨버터의 출력레벨 수를 조정한다(S105).
이때, MMC 컨버터의 출력레벨 수를 조정한다는 것은 MMC 컨버터의 운전에 참여하는 서브모듈의 개수를 조정한다는 것을 의미한다. 예컨대, N개의 서브모듈이 운전에 참여하여 N+1의 출력레벨을 형성하는 중에 외란으로 계통주파수가 변동하여 기준 계통주파수와 차이가 발생하면 그 계통주파수와 기준 계통주파수 간의 차이를 줄이는 방향으로, 즉 N+1+n개 또는 N+1-n개의 출력레벨이 되도록 운전에 참여하는 서브모듈의 개수를 조정한다는 것이다.
여기서, 상기와 같이 서브모듈의 개수를 조정하게 되면 각 서브모듈에 충전되는 DC전압은 변동하게 된다. 만약 MMC 컨버터의 운전에 참여하는 서브모듈의 개수가 증가하게 되면 각 서브모듈에 충전되는 전압은 DC정격전압보다 작아지며, 이 경우 각 서브모듈에 충전되어 있던 전압은 AC단 또는 DC단을 통해 관성에너지로 전달하도록 한다. 이와 같이 본 발명에서는 MMC 컨버터의 운전에 참여하는 서브모듈의 개수를 조정하여 MMC 컨버터의 출력레벨을 조정함으로써 각 서브모듈에 충전되는 전압을 변동시키고 이러한 전압의 변동에 따라 MMC 컨버터의 출력에 영향을 주지 않으면서 남은 에너지를 AC측 또는 DC측으로 관성에너지를 전달하도록 한다.
이는 발전기 또는 계통에 외란이 발생함에 따라 MMC 컨버터의 출력레벨을 조정하는 것이어서, 이러한 외란에 의해 계통의 유효전력에 변동이 발생하더라도 관성에너지가 유효전력의 변동에 대응하여 댐핑(damping)기능을 수행하므로 안정적인 전력공급이 가능하도록 하는 것이다.
이러한 관성에너지 전달을 위해 S105 단계 이후에, 상기와 같이 MMC 컨버터의 출력레벨 수에 따라 운전되는 각 서브모듈의 출력전압과 기설정된 DC정격전압 간의 차이에 대응하는 전압을 AC측의 계통 또는 DC측으로 전달할 수 있다.
도 6에서 MMC 컨버터의 출력레벨 수는 수학식 1에 의해 산출된다.
Figure PCTKR2018016408-appb-M000001
상기 수학식 1에서 nlevel은 조정된 MMC 컨버터의 출력레벨 수, VDC는 상기 MMC 컨버터의 DC정격전압, VSM,avg는 검출된 계통주파수와 기준 계통주파수가 같은 경우의 상기 MMC 컨버터의 서브모듈의 전체 평균전압이다.
또한, MMC 컨버터의 출력레벨 수는 수학식 2에 의해서도 산출될 수 있다. 이는 수학식 1과 동일한 결과로서 적용되는 파라미터가 다르게 적용된 예이다.
Figure PCTKR2018016408-appb-M000002
K2 = 1-0.75ㆍ(f0-f)/(Kf,max ㆍf0)
상기 수학식 2에서 Nlevel은 조정전 MMC 컨버터의 출력레벨 수, f0는 계통의 기설정된 기준 계통주파수, f는 계통에서 검출된 계통주파수, Kf,max는 기설정된 제어파라미터 상수이다. 상기 수학식 2에서는 조정전의 MMC 컨버터의 출력레벨 수와, 검출된 계통주파수, 그리고 기준주파수를 인자로 하여 고려하여 조정된 출력레벨 수를 계산하는 것이다.
이때, MMC 컨버터에서 상기와 같이 조정된 출력레벨 수에 대응하여 하기 수학식 3에 의해 상위 컨버터 암과 하위 컨버터 암의 출력레벨이 결정될 수 있다.
Figure PCTKR2018016408-appb-M000003
Figure PCTKR2018016408-appb-I000003
상기 수학식 3에서, nuj,on은 j가 a,b,c 상 일 때 상위 컨버터 암의 출력 서브모듈의 개수, nlj,on은 j가 a,b,c 상 일 때의 하위 컨버터 암 출력 서브모듈의 개수, mj는 j가 a,b,c 상일 때 모듈레이션 신호, mz,j는 j가 a,b,c 상 일 때, 순환전류를 제어하는 모듈레이션 신호, round는 가장 가까운 정수를 만드는 함수이다.
도 7 내지 도 9은 본 발명의 실시 예에 따른 MMC 컨버터의 출력레벨 수 조정과정을 설명하는 흐름도이다.
먼저 도 7의 일 실시 예에서는 계통에서 검출되는 계통주파수와 기설정된 기준 계통주파수 간의 차이에 대응하는 서브모듈 전압지령치를 생성한다(S201). 이와 같이 생성된 서브모듈 전압지령치와 MMC 컨버터의 서브모듈의 평균전압 간 차이를 줄이도록 비례적분(PI)제어를 통해 유효전력을 제어하는 d축 전류제어 지령치를 생성한다(S203). 이와 같이 생성된 d측 전류제어 지령치에 따라 MMC 컨버터에서 출력되는 AC전류를 제어하도록 한다(S205). 이러한 AC전류의 제어를 위해 d측 전류제어 지령치에 따라 각 서브모듈은 내부의 반도체스위치의 스위칭이 이루어진다.
도 8의 다른 실시 예에서는 계통에서 검출되는 계통주파수와 기설정된 기준 계통주파수 간의 차이에 대응하는 MMC 컨버터의 DC전압 지령치를 생성한다(S301). 이와 같이 생성된 DC전압 지령치와 MMC 컨버터에서 검출되는 DC전압 간의 차이를 줄이도록 PI제어를 통해 DC전류 지령치를 생성한다(S303). 이와 같이 생성된 DC전류 지령치에 따라 MMC 컨버터에서 출력되는 DC전류를 제어하도록 한다(S305). 이러한 DC전류의 제어를 위해 DC전류 지령치에 따라 각 서브모듈은 내부의 반도체스위치의 스위칭동작이 수행된다.
도 9의 또 다른 실시 예에서는 MMC 컨버터의 DC단에서 검출된 DC전압과 기설정된 서브모듈의 DC정격전압 간의 차이에 대응하는 서브모듈 전압 지령치를 생성한다(S401). 이와 같이 생성된 서브모듈 전압지령치와 서브모듈의 평균전압의 차이를 줄이도록 PI제어를 통해 DC전류 지령치를 생성한다(S403). 이와 같이 생성된 DC전류 지령치에 따라 MMC 컨버터에서 출력되는 DC전류를 제어하도록 한다(S403). 이러한 DC전류의 제어를 위해 DC전류 지령치에 따라 각 서브모듈은 내부의 반도체스위치의 스위칭동작이 수행된다.
도 10 내지 도 12는 본 발명의 실시 예에 따른 MMC 컨버터의 출력레벨 제어방법의 적용 전과 후를 비교하기 위한 실험결과 그래프이다. 도 10 내지 도 12는 MMC 컨버터의 관성을 제공하지 않은 경우와, HMMC=1.7, 60-59.8㎐에서 관성을 제공한 경우와, HMMC=0.8458, 60-59.6㎐에서 관성을 제공한 경우에 대하여 각각 계통주파수의 변화, 서브모듈의 전압변화, HVDC으 파워 변화량을 도시하고 있다.
도 10에서는 계통 적용 후 주파수 응답 개선 파형으로서 관성을 제공하지 않은 (a)의 경우보다 관성을 제공한 (b)와 (c)의 경우가 계통주파수의 변동이 적게 나타남을 알 수 있다. 도 11는 서브모듈의 전압변화에 대한 파형으로서 MMC 컨버터의 출력레벨 수를 조정하기 위해 운전에 참여하는 서브모듈의 개수를 증가시키게 되어 각 서브모듈의 전압은 정격전압보다 감소하게 됨을 알 수 있다. 도 12에서는 HVDC 시스템의 파워변화량으로서 관성을 제공하지 않은 (a)의 경우보다 (b)와 (c)와 가이 관성을 제공한 경우가 파워변화량이 적음을 알 수 있다.
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (7)

  1. MMC 컨버터에 연계된 계통의 계통주파수를 실시간 검출하는 검출단계;
    상기 검출된 계통주파수와 기설정된 기준 계통주파수를 비교하는 비교단계;
    상기 검출된 계통주파수와 상기 기준 계통주파수가 다르면 상기 계통주파수와 상기 기준 계통주파수 간의 차이를 줄이는 방향으로 상기 MMC 컨버터의 출력레벨 수를 조정하는 조정단계를 포함하는 MMC 컨버터의 출력레벨 제어방법.
  2. 제1항에 있어서, 상기 조정단계는 하기 수학식에 의해 산출된 상기 MMC 컨버터의 출력레벨 수로 조정하는 MMC 컨버터의 출력레벨 제어방법.
    Figure PCTKR2018016408-appb-I000004
    (nlevel은 조정된 MMC 컨버터의 출력레벨 수, VDC는 상기 MMC 컨버터의 DC정격전압, VSM,avg는 상기 검출된 계통주파수와 상기 기준 계통주파수가 같은 경우 상기 MMC 컨버터의 서브모듈의 전체 평균전압)
  3. 제1항에 있어서, 상기 조정단계는 하기 수학식에 의해 산출된 상기 MMC 컨버터의 출력레벨 수로 조정하는 MMC 컨버터의 출력레벨 제어방법.
    Figure PCTKR2018016408-appb-I000005
    K2 = 1-0.75ㆍ(f0-f)/(Kf,max ㆍf0)
    (Nlevel은 조정전 MMC 컨버터의 출력레벨 수, f0는 계통의 기설정된 기준 계통주파수, f는 계통에서 검출된 계통주파수, Kf,max는 기설정된 제어파라미터 상수)
  4. 제3항 또는 제4항에 있어서, 상기 조정단계 이후에, 상기 산출된 MMC 컨버터의 출력레벨 수에 따라 운전되는 각 서브모듈의 출력전압과 상기 DC정격전압 간의 차이에 대응하는 전압을 계통으로 전달하는 단계를 더 포함하는 MMC 컨버터의 출력레벨 제어방법.
  5. 제3항 또는 제4항에 있어서, 상기 조정단계는,
    상기 계통주파수 및 기준 계통주파수 간의 차이에 대응하는 서브모듈 전압지령치를 생성하는 단계;
    상기 생성된 서브모듈 전압지령치와 상기 서브모듈의 평균전압의 차이를 줄이도록 PI제어를 통해 유효전력을 제어하는 d축 전류제어 지령치를 생성하는 단계;
    상기 생성된 d측 전류제어 지령치에 따라 상기 MMC 컨버터에서 출력되는 AC전류를 제어하는 단계를 포함하는 MMC 컨버터의 출력레벨 제어방법.
  6. 제3항 또는 제4항에 있어서, 상기 조정단계는,
    상기 계통주파수 및 기준 계통주파수 간의 차이에 대응하는 상기 MMC 컨버터의 DC전압 지령치를 생성하는 단계;
    상기 생성된 DC전압 지령치와 MMC 컨버터의 DC전압 간의 차이를 줄이도록 PI제어를 통해 DC전류 지령치를 생성하는 단계;
    상기 생성된 DC전류 지령치에 따라 상기 MMC 컨버터에서 출력되는 DC전류를 제어하는 단계를 포함하는 MMC 컨버터의 출력레벨 제어방법.
  7. 제3항 또는 제4항에 있어서, 상기 조정단계는,
    상기 MMC 컨버터의 출력단의 DC전압과 상기 DC정격전압 간의 차이에 대응하는 서브모듈 전압 지령치를 생성하는 단계;
    상기 서브모듈 전압 지령치와 상기 서브모듈의 평균전압의 차이를 줄이도록 PI제어를 통해 DC전류 지령치를 생성하는 단계;
    상기 생성된 DC전류 지령치에 따라 상기 MMC 컨버터에서 출력되는 DC전류를 제어하는 단계를 포함하는 MMC 컨버터의 출력레벨 제어방법.
PCT/KR2018/016408 2017-12-28 2018-12-21 전력 계통주파수 변동 저감을 위한 모듈러 멀티레벨 컨버터의 출력레벨 제어방법 WO2019132435A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/958,268 US11575265B2 (en) 2017-12-28 2018-12-21 Method for controlling output level of modular multilevel converter for reducing power system frequency change

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170183190A KR102044511B1 (ko) 2017-12-28 2017-12-28 전력 계통주파수 변동 저감을 위한 모듈러 멀티레벨 컨버터의 출력레벨 제어방법
KR10-2017-0183190 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019132435A1 true WO2019132435A1 (ko) 2019-07-04

Family

ID=67067883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016408 WO2019132435A1 (ko) 2017-12-28 2018-12-21 전력 계통주파수 변동 저감을 위한 모듈러 멀티레벨 컨버터의 출력레벨 제어방법

Country Status (3)

Country Link
US (1) US11575265B2 (ko)
KR (1) KR102044511B1 (ko)
WO (1) WO2019132435A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101904101B1 (ko) * 2016-12-26 2018-10-05 효성중공업 주식회사 Mmc 컨버터 출력단 직류성분 제거방법
EP3654517B1 (en) * 2018-11-19 2021-06-02 Maschinenfabrik Reinhausen GmbH Operating a modular multilevel converter
EP3654510A1 (en) * 2018-11-19 2020-05-20 Maschinenfabrik Reinhausen GmbH Pre-charging a modular multilevel converter
EP3977580B1 (de) * 2019-07-23 2024-02-14 Siemens Energy Global GmbH & Co. KG Vorrichtung zum verbinden zweier wechselspannungsnetze und verfahren zum betreiben der vorrichtung
CN112217234A (zh) * 2020-10-16 2021-01-12 Abb电网瑞士股份公司 电力网
FR3117707A1 (fr) 2020-12-11 2022-06-17 Electricite De France Procede de pilotage de convertisseurs bidirectionnels courant alternatif/courant continu pour la synchronisation de systemes electriques a courant alternatif raccordes entre eux par liaison a courant continue
KR102549613B1 (ko) 2021-01-28 2023-06-29 부경대학교 산학협력단 모듈형 컨버터의 직류단 전압 균형제어를 위한 장치 및 방법
EP4360182A2 (en) * 2021-06-23 2024-05-01 Nanyang Technological University System and method for stabilizing a power distribution network
CN113394824B (zh) * 2021-06-29 2022-05-31 长江勘测规划设计研究有限责任公司 无直流侧扰动的mmc交流有功功率快速调控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089937B1 (ko) * 2010-10-22 2011-12-05 영남대학교 산학협력단 Pwm 컨버터용 전해 커패시터의 esr 추정 방법 및 그 시스템
KR20130066862A (ko) * 2011-12-13 2013-06-21 주식회사 효성 전력 제어 시스템
KR101553480B1 (ko) * 2014-08-05 2015-09-16 영남대학교 산학협력단 모듈형 다단 컨버터의 서브 모듈 커패시터 용량 추정 시스템 및 그 방법
KR20170013773A (ko) * 2015-07-28 2017-02-07 엘에스산전 주식회사 에너지 저장 시스템
JP2017143618A (ja) * 2016-02-09 2017-08-17 株式会社東芝 電力変換装置の制御システムおよび制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318124B1 (ko) 2013-06-24 2013-10-16 전북대학교산학협력단 풍력발전단지의 관성 제어 방법
KR101450147B1 (ko) 2014-08-05 2014-10-13 전북대학교산학협력단 풍력발전기의 관성제어 방법
KR101673527B1 (ko) 2016-01-15 2016-11-07 연세대학교 산학협력단 인버터 기반 독립형 마이크로그리드에서의 풍력발전 관성 제어 시스템 및 방법
US11581737B2 (en) * 2017-08-30 2023-02-14 Siemens Energy Global GmbH & Co. KG Frequency stabilization arrangement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089937B1 (ko) * 2010-10-22 2011-12-05 영남대학교 산학협력단 Pwm 컨버터용 전해 커패시터의 esr 추정 방법 및 그 시스템
KR20130066862A (ko) * 2011-12-13 2013-06-21 주식회사 효성 전력 제어 시스템
KR101553480B1 (ko) * 2014-08-05 2015-09-16 영남대학교 산학협력단 모듈형 다단 컨버터의 서브 모듈 커패시터 용량 추정 시스템 및 그 방법
KR20170013773A (ko) * 2015-07-28 2017-02-07 엘에스산전 주식회사 에너지 저장 시스템
JP2017143618A (ja) * 2016-02-09 2017-08-17 株式会社東芝 電力変換装置の制御システムおよび制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KONSTANTINOU, G.S. ET AL.: "Effect of Redundant Sub-module Utilization on Modular Multilevel Converters", 2012 IEEE INT. CONF. ON INDUSTRIAL TECHNOLOGY, vol. 81, 19 March 2012 (2012-03-19), pages 5 - 820, XP032448174 *

Also Published As

Publication number Publication date
US20200335975A1 (en) 2020-10-22
US11575265B2 (en) 2023-02-07
KR102044511B1 (ko) 2019-11-13
KR20190080624A (ko) 2019-07-08

Similar Documents

Publication Publication Date Title
WO2019132435A1 (ko) 전력 계통주파수 변동 저감을 위한 모듈러 멀티레벨 컨버터의 출력레벨 제어방법
Friedrich Modern HVDC PLUS application of VSC in modular multilevel converter topology
KR101797796B1 (ko) Dc측 단락을 핸들링하기 위해 풀브리지 셀을 포함하는 hvdc 컨버터
JP6416436B2 (ja) 電力変換装置
WO2017018584A1 (ko) 마이크로그리드의 멀티 주파수 제어 시스템 및 방법
WO2012043919A1 (en) Power conversion system for energy storage system and controlling method of the same
US20120300510A1 (en) Method and apparatus for controlling a dc-transmission link
WO2017030228A1 (ko) Btb 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템 및 방법
Ahmed et al. New modified staircase modulation and capacitor balancing strategy of 21-level modular multilevel converter for HVDC transmission systems
US20160352239A1 (en) Power electronic converter
KR20210069223A (ko) Dc 마이크로그리드에서의 mas 기반의 분산형 제어 시스템 및 방법
US10193348B2 (en) Arrangement and installation for transmitting electric power with a reserve rectifier
US10763666B2 (en) Voltage source converter
EP3703214B1 (en) Converter control method and device
US20230155473A1 (en) Converter and method of operating a converter
CN111971890A (zh) 转换器控制器
WO2016108597A1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치
JP2019054641A (ja) 電力変換装置
WO2017023084A1 (ko) 하나의 변압기를 구비하는 upfc 장치
CN114221377A (zh) 一种并离网多储能响应控制方法及系统
CN113950785A (zh) 两用转换器
WO2017116083A1 (ko) Npc 변환 장치 및 npc 변환 방법
EP4136727B1 (en) Passive reactive compensation for a wind power plant
Le Métayer et al. Fault ride through of DC solid state transformer in medium voltage DC systems
CN116094015B (zh) 一种具有动态重构功能的柔性储变集成系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897729

Country of ref document: EP

Kind code of ref document: A1