WO2017030228A1 - Btb 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템 및 방법 - Google Patents

Btb 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템 및 방법 Download PDF

Info

Publication number
WO2017030228A1
WO2017030228A1 PCT/KR2015/008911 KR2015008911W WO2017030228A1 WO 2017030228 A1 WO2017030228 A1 WO 2017030228A1 KR 2015008911 W KR2015008911 W KR 2015008911W WO 2017030228 A1 WO2017030228 A1 WO 2017030228A1
Authority
WO
WIPO (PCT)
Prior art keywords
btb
microgrid
current
unit
control
Prior art date
Application number
PCT/KR2015/008911
Other languages
English (en)
French (fr)
Inventor
김학만
유형준
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Publication of WO2017030228A1 publication Critical patent/WO2017030228A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks

Definitions

  • the present invention relates to multi-frequency control of back-to-back (BTB) voltage source converter (VSC) based microgrids.
  • BTB back-to-back
  • VSC voltage source converter
  • microgrids with new renewable energy sources based on distributed power and energy storage devices are being actively distributed to the islands.
  • various systems such as campus microgrids, military microgrids, industrial complex microgrids, etc. It is spreading in the form.
  • independent operation mode the conventional microgrid is designed and operated to operate at a commercially rated frequency (60 Hz or 50 Hz), but the microgrid has a different electrical quality requirement level from the load. Operation at the same commercial nominal frequency would require some excessive investment in equipment economically.
  • microgrids are installed in island regions, and linkage between independent microgrids (hereinafter, a plurality of standalone microgrids) is inevitable for economic and stable operation.
  • a plurality of standalone microgrids linkage between independent microgrids
  • the present invention uses a multi-function back-to-back (BTB) voltage source converter (VSC) composed of a rectifier and an inverter connected to an interconnection point of a microgrid.
  • BTB back-to-back
  • VSC voltage source converter
  • the company aims to provide power quality compensation and enhancement techniques to address power degradation in each microgrid.
  • the rectifier unit comprises a stand-alone or off-grid microgrid including at least one distributed power supply and an energy storage device, a rectifier unit and an inverter unit.
  • a common DC link between the inverter and the inverter, and a plurality of standalone microgrids are connected through an AC line to provide back-to-back (BTB) voltage for controlling load quality of each microgrid and performing multi-frequency control simultaneously.
  • BTB back-to-back
  • VSC voltage source converter
  • the present invention is composed of a rectifier (rectifier) and an inverter (inverter) to share a common DC link between the regular base and the inverter unit, by connecting a plurality of independent microgrids through the AC line to each micro Normalizing the allowable frequencies of a plurality of independent microgrids input through a back-to-back (BTB) voltage source converter (VSC) unit to perform multi-frequency control at the same time as the load quality control by grid;
  • BBB back-to-back
  • VSC voltage source converter
  • tidal control between each microgrid when tidal control between each microgrid is required, not only tidal control is possible through constant power control, but also it is possible to improve harmonics and power factor reduction.
  • the present invention overcomes the shortcomings of the multi-frequency control technology in the multiple independent microgrids due to the evolution of the linkage technology of the multiple independent microgrids, and each of the multiple microgrid systems operated in the same frequency tolerance range based on the AC power line. If the frequency due to power transfer problem in the microgrid is out of the allowable frequency, the frequency can be maintained and controlled through frequency control.
  • FIG. 1 is a schematic diagram illustrating a multi-frequency control system of a multi-grid micro-grid based on a BTB converter according to an embodiment of the present invention.
  • FIG. 2 is a detailed control block diagram of a multi-frequency control system of multiple microgrids based on a BTB converter according to an embodiment of the present invention.
  • FIG. 3 is a block diagram for performing frequency control of a VSC for each microgrid for n microgrids in a multi-frequency control system based on a BTB converter according to an embodiment of the present invention.
  • 4 to 7 are exemplary diagrams showing simulation results to which a multi-frequency control method of a multiple microgrid based BTB converter according to an embodiment of the present invention is applied.
  • FIG. 8 is a flowchart illustrating a multi-frequency control method of a multiple microgrid based on a BTB converter according to an embodiment of the present invention.
  • the present invention relates to multi-frequency control of multiple independent microgrids, and more particularly, to a multi-functional back-to-back (BTB) voltage type consisting of a rectifier and an inverter connected to an interconnection point of the microgrid.
  • a voltage source converter VSC not only controls the frequency of each microgrid to its permissible range, but also parallels to the nonlinear load in the microgrid for power quality control to address power degradation in each microgrid.
  • the d-axis current of the rectifier is generated based on the current setpoint for harmonic compensation and the current setpoint for DC link voltage control by extracting the harmonics generated from the nonlinear load from the rectifier connected to Power factor compensation and voltage control are performed by generating a q-axis current.
  • the current flow can be controlled through the constant power control when tidal flow control between each microgrid is required by following the preset active current and reactive current. Rather, it is intended to provide a technique capable of improving harmonics and power factor reduction.
  • the present invention is to normalize the allowable frequencies for a plurality of independent microgrids, and through the local control of the BTB VSC unit to correct the error between frequencies corresponding to the normalized microgrid frequency to 0 to the BTB VSC-based first and By controlling the normalized frequencies related to the allowable frequencies of a plurality of microgrids by equalizing the allowable frequencies differently set for each microgrid so that the difference between the normalized frequencies between the second microgrids is 0 to -1 to 1, By controlling the balance of power supply and demand, it is possible to adaptively execute multi-frequency control considering the load quality level of each of the independent independent microgrids, and adjust the power supply of the microgrids to respond quickly to frequency fluctuations.
  • the present invention aims to provide a technology capable of maintaining and controlling the frequency through frequency control.
  • each of the back-to-back (BTB) voltage source converters (VSCs) connected to the unit microgrid and the unit microgrid connection point is respectively set to a predetermined number.
  • BTB back-to-back
  • VSCs voltage source converters
  • the present invention is applied to the multi-frequency control of a plurality of independent microgrids, and in the present invention described below, since the independent operation mode of the grid-connected type and the independent microgrid is the same concept, the multi-frequency of the independent operation mode of the multi-grid type microgrid is the same concept. It is to be noted that the proposed range is extended to the frequency control method.
  • FIGS. 1 to 2 a configuration of a multi-frequency control system of a multiple microgrid based on a BTB converter according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 2.
  • FIG. 1 is a schematic diagram illustrating a multi-frequency control system based on a BTB converter based on multiple microgrids according to an embodiment of the present invention.
  • the microgrid system 100 includes a plurality of independent microgrids 110, 112, and 114 corresponding back to back for each of the microgrids 110, 112, and 114.
  • -to-back (BTB) voltage source converters VSCs, 111, 113, 115).
  • the microgrids 110, 112, and 114 refer to standalone microgrids including at least one distributed power supply and an energy storage device.
  • microgrids 110, 112, 114 are commercial energy storage systems, emergency energy storage devices, static transfer switches (STSs), switches, automatic It further includes a load switching switch and a load consuming load, and optionally includes power elements such as wind turbines, solar arrays and distributed power sources such as engine generators.
  • STSs static transfer switches
  • power elements such as wind turbines, solar arrays and distributed power sources such as engine generators.
  • the BTB VSCs 11, 113, and 115 are composed of a rectifier unit and an inverter unit to share a common DC link between the rectifier unit and the inverter, and the plurality of independent microgrids 110, 112, 114) is connected through the AC line to perform multi-frequency control considering the load quality level of each microgrid.
  • the microgrid system 100 including the BTB VSCs 11, 113, and 115 independently controls reactive power and active power, and PWM (for the rectifier and inverter)
  • PWM for the rectifier and inverter
  • the rectifier unit and the inverter unit are back-to-back connected to each other by a VSC under a pulse width modulation control strategy.
  • the rectifier unit operates in a DC voltage control mode for DC link voltage control of a back-to-back converter, and the inverter unit operates in an active power and reactive power control mode for transmitting power.
  • the BTB VSCs 11, 113, and 115 are installed at connection points of the stand-alone microgrids 110, 112, and 114 to convert AC power in the unit-independent microgrids 110, 112, and 114 to DC, and back to AC. Performs a power conversion function to convert and supply to the unit-independent microgrid (110, 112, 114), and performs the multi-frequency control considering the load quality level for each microgrid (110, 112, 114).
  • FIG. 2 is a detailed control block diagram of a multi-frequency control system of a multiple microgrid based on a BTB converter according to an embodiment of the present invention.
  • the BTB VSC 210 to which the present invention is applied includes a rectifier unit 212 and an inverter unit 214, and the rectifier unit 212 and the inverter unit 214. Share a common DC link 215 (where P: active power of the BTB VSC, : Reactive power of rectifier part (Rec.) Of BTB VSC, Is the compensation current of a BTB VSC to compensate for harmonics in nonlinear loads, : Reactive power of inverter (Inv.) Side of BTB VSC).
  • the BTB VSC unit 210 includes a harmonic current extractor 216, a first current controller 218, a DC link voltage controller 220, a constant output controller 222, and a second.
  • the current controller 224, the multi-frequency controller 226, the reactive power compensator 228, and the BTB VSC controller 230 are included.
  • the BTB VSC 210 includes a harmonic current extractor 216 that extracts a harmonic pattern corresponding to a nonlinear load 206 in the microgrid 205 on a predetermined cycle basis.
  • the BTB VSC controller 230 controls the overall operation of the BTB VSC 210, and the above-described harmonic current extractor 216, the first current controller 218, the DC link voltage controller 220, and the positive Reactive power compensation for improving an active filter and power factor using the output controller 222, the second current controller 224, the multi-frequency controller 226, and the reactive power compensation unit 228.
  • Control the operation to solve the harmonic problem and power factor degradation problem perform constant power control when the microgrid tidal current control is necessary, and the frequency and voltage can be maintained above the allowable frequency due to the power transfer problem per microgrid In this case, it performs control for a multifunctional role that performs both voltage and frequency control.
  • the BTB VSC controller 230 sets a current command value for harmonic compensation extracted based on a preset reference current through the first current controller 218, and shares it through the DC link voltage controller 220. Control to set a voltage setpoint for DC link voltage control based on the measured voltage from the DC link 215.
  • the BTB VSC controller 230 may set a preset active current and a reactive current through active current and reactive current based reactive power control measured from a rectifier 212 connected in parallel to a load 206 in the microgrid 205. By following the current, power factor correction through the power factor controller 225 and voltage control through the first voltage controller 223 are performed.
  • the BTB VSC controller 230 may include a reactive power controller 227 and a second voltage based on the active current and the reactive current measured from the inverter unit 214 connected back-to-back with the rectifier unit 212.
  • the controller 229 controls a reactive power compensation unit 228 that operates to perform reactive power supply to a microgrid (not shown) on the inverter unit 214 side by following a preset active current and reactive current.
  • the inverter unit 214 may follow the active current and the reactive current preset from the active current and the reactive current-based second current unit 224 output under the control of the BTB VSC controller 230 and control the first power through active power control. Active power control and frequency control are performed between the microgrid and the second microgrid, which are performed through the active power control unit 233 and the frequency control unit 231, respectively.
  • the BTB VSC 210 includes a multi-frequency control unit 226 connected to the connection point of the microgrid 205 to normalize the frequency for each microgrid.
  • the multi-frequency control unit 226 normalizes differently set allowable frequencies for each microgrid to -1 to 1 using Equation 1 below.
  • the multi-frequency control unit 226 controls the difference between normalized frequencies between the BTB VSC 210 based first and second microgrids through local control of the BTB VSC 210 under the control of the BTB VSC control unit 230. It is equal to 0 to equally control the allowable frequency related normalized frequencies of the associated multiple microgrids.
  • the local control of the BTB VSC 210 is connected to the first microgrid corresponding to a predetermined BTB VSC and the output terminal of the inverter unit 214 without generating a communication path for mutual data sharing with adjacent microgrids. It means that the control between the first microgrid and the adjacent microgrid, for example, the second microgrid.
  • a communication path for mutual data sharing between corresponding BTB VSCs for each of a plurality of microgrids based on AC line linkage is not generated.
  • the multi-frequency control unit 226 of the multi-frequency control system of a plurality of independent microgrids to which the present invention is applied is connected through a corresponding BTB VSC for each of the microgrids to simultaneously control the different load power quality for each microgrid and to simultaneously adapt the multi-frequency. Control is performed.
  • a plurality of microgrids are set to different frequencies from each other, which is an allowable frequency for each microd.
  • the allowable frequency range of the first microgrid 110 in FIG. 1 is 59.2 to 60.8 Hz
  • the second microgrid 112 is 59.7 to 60.3 Hz
  • the third microgrid 114 is 59.5 to 60.5 Hz. Different from each other.
  • the BTB VSC 210 to which the present invention is applied normalizes a differently set allowable frequency for each microgrid to -1 to 1 using Equation 1 through the multi-frequency control unit 226.
  • the BTB VSC 210 performs a control for making the difference between two adjacent microgrid normalization values to “0” in order to make the normalization value of all the grid-connected microgrids the same.
  • control unit for equalizing the normalized frequency of each independent microgrid in the microgrid system through the BTB VSC according to an embodiment of the present invention will be described in block by control unit through FIG. 3.
  • the normalized frequency difference of the microgrid i and the microgrid (i + 1) is input to the PI controller.
  • the PI control unit is the amount of power of the BTB VSC for controlling the normalized frequency difference to 0 Outputs
  • the amount of power in the BTB VSC ( D-axis current to output To find the equation ) And obtain the d-axis current setpoint ( ) Is measured Is input to the current controller to reduce the difference to zero.
  • Is i the frequency of the (i + 1) th microgrid
  • V is the AC voltage of the microgrid.
  • the multi-frequency control unit 300 of the BTB VSC for each microgrid may allow the input frequencies of the plurality of microgrids to be input.
  • the multi-frequency control unit 300 may allow the input frequencies of the plurality of microgrids to be input.
  • the respective error output unit 310 to correct the error between frequencies corresponding to the normalized microgrid frequency to 0.
  • the frequencies are input, respectively, and the PI controller 312 performs correction to zero the output error between the normalized frequencies.
  • the PI controller 310 multiplies an appropriate proportional constant gain based on the e output from the error output unit 310 related to the frequency difference between the two microgrids, and integrates e. Outputs
  • the current for each microgrid is determined through a predetermined current determination equation of the BTB VSC controller.
  • the current determination formula is In order to change the frequency of the microgrid on the assumption of a known frequency formula and an active power formula, the effective power must be changed so that the d-axis current for frequency control is determined through the BTB VSC control unit. The error of the d-axis current is output, respectively, and a control signal for multi-frequency control is output through the current controller.
  • FIGS. 4 to 7 show simulation results to which a multi-frequency control method of a plurality of standalone microgrids based on a BTB converter according to an embodiment of the present invention is applied.
  • the allowable frequencies of the microgrids are 59.2 to 60.8 Hz, respectively.
  • grid 1, MG1), 59.6-60.6 Hz (microgrid 2, MG 2), and 59.4-60.4 Hz (microgrid 3, MG 3) the simulation scenario will reduce the load of microgrid 2 in 35 seconds, in 45 seconds. Increase the load on microgrid 1, set to increase the load on microgrid 3 in 55 seconds.
  • the BTB converter connecting MG 1 and MG 2 is MG 2, MG 1, MG 3 at 35 seconds, 45 seconds, and 55 seconds as shown in FIG. 7. It can be seen that the amount of power flowing from MG 1 to MG 2 changes due to the change in load.
  • the frequency of MG 1 is controlled within an allowable frequency (59.2 to 60.8 Hz) as shown in FIG. 4B according to the variation in the output amount of the BTB converter connecting MG 1 and MG 2.
  • the BTB converter connecting MG 2 and MG 3 changes the amount of power flowing from MG 2 to MG 3 due to the load change of MG 2, MG 1, and MG 3 at 35, 45, and 55 seconds. It can be seen.
  • the frequency of MG 2 is controlled within an allowable frequency (59.6 to 60.4 Hz) as shown in FIG. 5B according to the variation in the output amount of the BTB converter connecting MG 2 and MG 3.
  • the frequency of MG 3 is controlled within an allowable frequency (59.4 to 60.6 Hz) as shown in FIG. 6B according to the variation in the output amount of the BTB converter connecting MG 3 and MG 1.
  • FIG. 7 illustrates a simulation of active filter operation of a BTB VSC in a multi-frequency control system of a multi-grid microgrid based on a BTB converter according to an embodiment of the present invention.
  • the function of the BTB converter is not input, and the distortion state of the load current can be checked, and in 1 second to 2 seconds, the active filter function of the BTB converter is input.
  • the distortion of the load current is reduced than before, and as shown in FIG. 7, the current total harmonics distortion (THD) between 0 seconds and 1 second is equal to 12.37%, and the current THD between 1 and 2 seconds. It can be seen that the harmonic content is reduced to 1.89%.
  • THD current total harmonics distortion
  • FIG. 8 is a flowchart illustrating a multi-frequency control method of a plurality of standalone microgrids based on a BTB converter according to an embodiment of the present invention.
  • a rectifier unit and an inverter unit share a common DC link between the regular unit and the inverter unit, and a plurality of independent microgrids are connected through an AC line. Normalizes the allowable frequencies for a number of independent microgrids input through a back-to-back (BTB) voltage source converter (VSC) section for multi-frequency control with consideration of load quality levels for each microgrid. do.
  • BTB back-to-back
  • VSC voltage source converter
  • step 812 the error output unit outputs an error between frequencies corresponding to the normalized frequency of each microgrid.
  • step 814 a correction is performed to zero the output error between the normalized frequencies through the PI control unit.
  • the reference d-axis current is determined through a predetermined equation, and the error between the reference d-axis current and the actual d-axis current determined in operation 818 is output through the error output unit.
  • active power and frequency control for performing multi-frequency control simultaneously with the load quality control for each microgrid are performed through steps 820 to 822.
  • the BTB VSC unit extracts a harmonic pattern corresponding to a non-linear load in the microgrid based on a preset cycle, and sets a current command value for harmonic compensation extracted based on a preset reference current through a first current controller.
  • active voltage and reactive current based reactive power measured from a rectifier connected in parallel to the load in the microgrid by controlling to set a voltage setpoint for DC link voltage control based on the voltage measured from the shared DC link.
  • the power factor correction and the voltage control are performed by following the preset active current and reactive current through the control.
  • the BTB VSC unit is configured to follow a preset active current and a reactive current through active current and reactive current based reactive power control measured from an inverter unit connected to the rectifier unit in a back-to-back reactive power to the microgrid on the inverter side.
  • the supply is operated to be performed.
  • the BTB VSC unit does not generate a communication path for mutual data sharing between adjacent microgrid control-based BTB VSCs through local control between corresponding BTB VSCs for each of a plurality of microgrids based on AC line linkage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)

Abstract

본 발명은 마이크로그리드의 연계점에 연결된 정류기(rectifier)와 인버터(inverter)로 구성된 다기능 백투백(back-to-back, BTB) 전압형 컨버터(voltage source converter, VSC)를 통해 각 마이크로그리드별 주파수를 각 허용 범위로 제어할 뿐 아니라 각 마이크로그리드의 전력 품질 저하가 발생할 경우 이를 해결하기 위한 전력 품질 보상 및 향상을 위해 적어도 하나 이상의 분산 전원과 에너지 저장 장치를 포함하는 독립형(stand-alone 또는 off-grid) 마이크로그리드와, 정류기(rectifier)부와 인버터(inverter)부로 구성되어 상기 정류기부와 인버터 간 공통의 DC 링크를 공유하고, 다수의 상기 독립형 마이크로그리드들을 AC 선로를 통해 연계하여 각 마이크로그리드별 부하 품질 수준이 고려된 멀티 주파수 제어 수행을 위한 백투백(back-to-back, BTB) 전압형 컨버터(voltage source converter, VSC)를 포함함을 특징으로 한다.

Description

BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템 및 방법
본 발명은 백투백(back-to-back, BTB) 전압형 컨버터(voltage source converter, VSC) 기반 마이크로그리드의 멀티 주파수 제어에 관한 것이다.
최근 신재생에너지원 기반의 분산전원과 에너지저장장치를 적용한 독립형 마이크로그리드가 도서지방에 보급이 활발하게 진행되고 있으며, 육지에서는 계통 연계형으로 캠퍼스 마이크그리드, 군용 마이크로그리드, 산업단지 마이크로그리드 등 다양한 형태로 보급이 진행되고 있다.
특히, 독립형 또는 연계형의 독립 운전모드(이하, 독립 운전모드)의 경우 종래 마이크로그리드는 상용 정격 주파수 (60Hz 또는 50Hz)로 운전되도록 설계되어 운전되고 있으나, 부하의 전기품질 요구수준이 다른 마이크로그리드에 동일하게 상용 정격 주파수로 운전하는 것은 경제적인 측면에서 다소 과다한 설비투자가 요구된다.
또한, 현재는 주로 단일 마이크로그리드의 기술이 보급되고 있으나, 도서 지역에 다수의 마이크로그리드가 설치되고 경제적이고 안정한 운영을 위해서 독립 마이크로그리드 간의 연계(이하 다수 독립형 마이크로그리드)는 불가피하며, 추후 많은 다수 독립형 마이크로그리드의 출현이 예상된다.
이와 관련하여 경제적인 관점에서 독립형 또는 독립 운전 모드의 마이크로그리드별 부하 전력품질 수준에 맞는 주파수 관리가 요구되며, 이와 관련한 기술 개발이 요구되고 있는 실정이다.
특히, 다수 독립형 마이크로그리드가 AC 전력선으로 연계하여 운전하는 경우 모든 마이크로그리드의 주파수가 동일하게 되므로 각 마이크로그리드의 부하의 전력 품질 수준을 고려한 멀티 주파수 제어가 불가능하여 이를 실현할 새로운 기술이 필요하다.
또한, 마이크로그리드 내에 전력변환장치를 이용한 분산전원 및 비선형 부하가 증가함에 따라 고조파 및 역률 저하와 같은 전력품질 문제가 발생한다.
이를 해결하기 위해 본 발명은 마이크로그리드의 연계점에 연결된 정류기(rectifier)와 인버터(inverter)로 구성된 다기능 백투백(back-to-back, BTB) 전압형 컨버터(voltage source converter, VSC)를 통해 각 마이크로그리드의 주파수를 각 허용 범위로 제어할 뿐 아니라 각 마이크로그리드의 전력 품질 저하가 발생할 경우 이를 해결하기 위한 전력 품질 보상 및 향상 기술을 제공하고자 한다.
본 발명의 일 견지에 따르면, 적어도 하나 이상의 분산 전원과 에너지 저장 장치를 포함하는 독립형(stand-alone 또는 off-grid) 마이크로그리드와, 정류기(rectifier)부와 인버터(inverter)부로 구성되어 상기 정류기부와 인버터 간 공통의 DC 링크를 공유하고, 다수의 상기 독립형 마이크로그리드들을 AC 선로를 통해 연계하여 각 마이크로그리드별 부하 품질 제어와 동시에 멀티 주파수 제어 수행을 위한 백투백(back-to-back, BTB) 전압형 컨버터(voltage source converter, VSC)를 포함함을 특징으로 한다.
본 발명의 다른 견지에 따르면, 정류기(rectifier)부와 인버터(inverter)부로 구성되어 상기 정규기부와 인버터부 간 공통의 DC 링크를 공유하고, 다수의 독립형 마이크로그리드들을 AC 선로를 통해 연계하여 각 마이크로그리드별 부하 품질 제어와 동시에 멀티 주파수 제어 수행을 위한 백투백(back-to-back, BTB) 전압형 컨버터(voltage source converter, VSC)부를 통해 입력된 다수의 독립형 마이크로그리드별 허용 주파수를 정규화하는 과정과, 오차 출력부를 통해 정규화된 마이크로그리드별 주파수에 대응하는 주파수 간 오차를 출력하는 과정과, PI 제어부를 통해 정규화된 주파수간의 출력된 오차를 0이 되게 하기 위한 보정을 수행하고, 기설정된 수학식을 통해 기준 DC 전류를 결정하는 과정과, 결정된 상기 기준 d축 전류와 실제 d축 전류의 오차를 오차 출력부를 통해 출력하여 전류 제어부를 통해 멀티 주파수 제어를 위한 제어 신호를 발생하는 과정을 포함함을 특징으로 한다.
본 발명은 각각의 마이크로그리드 간의 조류 제어 필요 시 정출력 제어를 통하여 조류 제어가 가능할 뿐만 아니라, 고조파 및 역률 저하를 개선 가능한 효과가 있다.
또한, 마이크로그리드별 전력 공급과 수요의 균형을 제어하여 연계된 다수 독립형 마이크로그리드별 부하 품질 제어와 동시에 멀티 주파수 제어를 적응적으로 실행 가능하고, 마이크로그리드의 전력 수급을 조정하여 주파수 변동에 신속하게 대응할 수 있으며, 이를 통해 과도상태를 최소화시켜 마이크로그리드 시스템을 안정적으로 운영할 수 있는 효과가 있다.
그리고 본 발명은 다수 독립형 마이크로그리드의 연계 기술 진화에 따른 다수 독립형 마이크로그리드에서의 멀티 주파수 제어 기술의 미미함을 극복하여 AC 전력선을 기반으로 동일한 주파수 허용 범위에 한해 운용되는 다수 마이크로그리드 시스템에서 각각의 마이크로그리드 내에 전력수수 문제에 기인한 주파수가 허용 주파수를 벗어날 경우 주파수 제어를 통하여 주파수 유지ㆍ제어 가능한 효과가 있다.
도 1은 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템을 개략적으로 도시한 구성도.
도 2는 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템의 상세 제어 블록도.
도 3은 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템에 있어서, n개의 마이크로그리드에 대해서 각 마이크로그리드별 VSC의 주파수 제어 수행을 위한 블록도.
도 4 내지 도 7은 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 방법이 적용된 시뮬레이션 결과를 보인 예시도.
도 8은 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 방법에 관한 전체 흐름도.
이하 본 발명에 따른 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 하기 설명에서는 구체적인 구성 장치 등과 같은 특정 사항들이 나타나고 있는데, 이는 본 발명에 있어서 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들이 본 발명의 범위 내에서 소정의 변형이나 혹은 변경이 이루어질 수 있음은 이 기술 분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다.
본 발명은 다수 독립형 마이크로그리드의 멀티 주파수 제어에 관한 것으로, 더욱 상세하게는 마이크로그리드의 연계점에 연결된 정류기(rectifier)와 인버터(inverter)로 구성된 다기능 백투백(back-to-back, BTB) 전압형 컨버터(voltage source converter, VSC)를 통해 각 마이크로그리드별 주파수를 각 허용 범위로 제어할 뿐 아니라 각 마이크로그리드의 전력 품질 저하가 발생할 경우 이를 해결하기 위한 전력 품질 제어를 위해 마이크로그리드 내 비선형 부하에 병렬로 연결되어 있는 정류기로부터 비선형 부하에서 발생하는 고조파를 추출하여 추출된 고조파 보상을 위한 전류 지령치와 DC 링크 전압 제어를 위한 전류 지령치를 기반으로 정류기의 d축 전류가 생성되고, 기설정된 무효 전력을 추종하는 q축 전류를 생성하여 역률 보상 및 전압 제어를 수행한다. 또한, 인버터부로부터 측정된 유효 전류 및 무효 전류 기반 유효 전력 및 무효 전력 제어를 통해 기설정된 유효 전류 및 무효 전류를 추종하여 각각의 마이크로그리드 간의 조류 제어 필요 시 정출력 제어를 통하여 조류 제어가 가능할 뿐만 아니라, 고조파 및 역률 저하를 개선 가능한 기술을 제공하고자 한다.
또한, 본 발명은 다수 독립형 마이크로그리드별 허용 주파수를 정규화하고, 정규화된 마이크로그리드별 주파수에 대응하는 주파수 간 오차를 0이 되게 보정하기 위하여 상기 BTB VSC부의 로컬 제어를 통해 상기 BTB VSC 기반 제1 및 제2 마이크로그리드간 정규화된 주파수의 차이를 0이 되게 각 마이크로그리드별 상이하게 설정된 허용 주파수를 -1 ~ 1로 정규화하여 다수의 마이크로그리드의 허용 주파수 관련 정규화된 주파수를 동일하게 제어함으로써 마이크로그리드별 전력 공급과 수요의 균형을 제어하여 연계된 다수 독립형 마이크로그리드별 부하 품질 수준이 고려된 멀티 주파수 제어를 적응적으로 실행 가능하고, 마이크로그리드의 전력 수급을 조정하여 주파수 변동에 신속하게 대응할 수 있으며, 이를 통해 과도상태를 최소화시켜 마이크로그리드 시스템을 안정적으로 운영할 수 있을 뿐만 아니라, 최근 성장하는 다수 독립형 마이크로그리드의 연계 기술 진화에 따른 다수 독립형 마이크로그리드에서의 멀티 주파수 제어 기술의 미미함을 극복하여 AC 전력선을 기반으로 동일한 주파수 허용 범위에 한해 운용되는 다수 마이크로그리드 시스템에서 각각의 마이크로그리드 내에 전력수수 문제로 주파수가 허용 주파수를 벗어날 경우 주파수 제어를 통하여 주파수 유지ㆍ제어 가능한 기술을 제공하고자 한다.
그리고 이하 후술되는 마이크로그리드의 멀티 주파수 제어 시스템 설명에서 단위 마이크로그리드 및 단위 마이크로그리드 연계점에 연결되어 있는 백투백(back-to-back, BTB) 전압형 컨버터(voltage source converter, VSC)를 각각 소정 개로 예를 들어 설명하지만 본 발명이 이에 한정되지 않음은 자명하며, 본 발명이 적용된 시스템은 적어도 2개 이상의 다수 마이크로그리드가 BTB VSC를 통하여 연결되어 전력 공급 및 수전이 가능함을 미리 밝혀 두는 바이다.
또한, 본 발명은 다수 독립형 마이크로그리드의 멀티 주파수 제어에 적용되며, 이하 후술 되는 본 발명에서 계통연계형의 독립운전 모드와 독립형 마이크로그리드는 동일한 개념이므로 다수 계통연계형 마이크로그리드의 독립 운전 모드의 멀티 주파수 제어 방법까지 적용 범위를 확장하여 제안됨을 미리 밝혀 두는 바이다.
이하, 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템의 구성을 도 1 내지 도 2를 참조하여 자세히 살펴보기로 한다.
우선, 도 1은 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템을 개략적으로 도시한 구성도이다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 마이크로그리드 시스템(100)은 다수 독립형 마이크로그리드(110, 112, 114)와 상기 각 마이크로그리드(110, 112, 114)별 대응되는 백투백(back-to-back, BTB) 전압형 컨버터(voltage source converter, VSC, 111, 113, 115)를 포함한다.
상기 마이크로그리드(110, 112, 114)는 적어도 하나 이상의 분산 전원과 에너지 저장 장치를 포함하는 독립형 마이크로그리드를 의미한다.
이러한 마이크로그리드(110, 112, 114)는 비록, 도 1에는 도시되어 있지 않지만, 상용 에너지저장장치(Energy Storage System), 비상용 에너지저장장치, 정지형 절제 스위치(STS: Static Transfer Switch), 스위치, 자동 부하 전환 스위치 및 전력을 소모하는 부하(Load)를 더 포함하며, 풍력발전기, 태양광 어레이, 엔진 발전기와 같은 분산 전원 등의 전력 요소를 필요에 따라 선택적으로 포함한다.
상기 BTB VSC(11, 113, 115)는 정류기(rectifier)부와 인버터(inverter)부로 구성되어 상기 정류기부와 인버터 간 공통의 DC 링크를 공유하고, 다수의 상기 독립형 마이크로그리드들(110, 112, 114)을 AC 선로를 통해 연계하여 각 마이크로그리드별 부하 품질 수준이 고려된 멀티 주파수 제어를 수행한다.
여기서, 본 발명의 일 실시 예에 따른 BTB VSC(11, 113, 115)이 포함된 마이크로그리드 시스템(100)은 는 무효 전력과 유효 전력을 독립적으로 제어하며, 상기 정류기부와 인버터부를 위해 PWM(Pulse Width Modulation) 제어 전략 하에 상기 정류기부와 인버터부가 백투백(back-to-back)으로 서로 연결된 서로 다른 타입의 VSC로 구성된다.
상기 정류기부는 백투백(back-to-back)컨버터의 DC 링크 전압제어를 위한 DC 전압 제어모드로 운영하고, 상기 인버터부는 전력을 전송하기 위한 유효전력 및 무효전력 제어 모드로 운영한다.
이러한 BTB VSC(11, 113, 115)는 독립형 마이크로그리드(110, 112, 114)의 연계점에 설치되어 단위 독립형 마이크로그리드(110, 112, 114) 내 AC 전력을 DC로 변환하고, 다시 AC로 변환하여 단위 독립형 마이크로그리드(110, 112, 114)로 공급하는 전력변환 기능을 수행하며, 또한 각 마이크로그리드(110, 112, 114)별 부하 품질 수준이 고려된 멀티 주파수 제어를 수행한다.
더욱 상세하게는 도 2를 참조하여 단위 독립형 마이크로그리드에 대응하는 BTB VSC의 제어 동작을 설명하도록 한다.
도 2는 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템의 상세 제어 블록도이다.
도 2에 도시된 바와 같이, 본 발명이 적용된 BTB VSC(210)은 정류기(rectifier)부(212)와 인버터(inverter)부(214)로 구성되어 상기 정류기부(212)와 인버터부(214) 간 공통의 DC 링크(215)를 공유한다(여기서, P: BTB VSC의 유효 전력,
Figure PCTKR2015008911-appb-I000001
: BTB VSC의 정류기부(Rec.)측 무효 전력,
Figure PCTKR2015008911-appb-I000002
: 비선형 부하의 고조파를 보상하기 위한 BTB VSC의 보상 전류,
Figure PCTKR2015008911-appb-I000003
: BTB VSC의 인버터(Inv.)측 무효 전력).
더욱 상세하게는, 상기 BTB VSC부(210)는, 고조파(harmonic) 전류 추출부(216), 제1 전류 제어부(218), DC 링크 전압 제어부(220), 정출력 제어부(222), 제2 전류 제어부(224), 멀티 주파수 제어부(226), 무효 전력 보상부(228) 및 BTB VSC 제어부(230)를 포함한다.
상기 BTB VSC부(210)는, 마이크로그리드(205) 내 비선형 부하(Nonlinear load, 206)에 대응하는 고조파 패턴을 기설정된 사이클 기준으로 추출하는 고조파(harmonic) 전류 추출부(216)를 포함하여 해당 전력 계통의 전류파형을 분석하고, 고조파 차수별 파형의 분해 등을 수행하여 전력 계통에 대해 고조파를 포함한 전력 품질을 평가할 수 있다.
상기 BTB VSC 제어부(230)는 BTB VSC(210)의 전반적인 동작을 제어하며, 상술한 고조파(harmonic) 전류 추출부(216), 제1 전류 제어부(218), DC 링크 전압 제어부(220), 정출력 제어부(222), 제2 전류 제어부(224), 멀티 주파수 제어부(226), 무효 전력 보상부(228)를 이용하여 능동 필터(active filter), 역률 향상을 위한 무효 전력 보상(reactive power compensation) 동작을 제어하여 고조파 문제 및 역률 저하 문제를 해결하고, 마이크로그리드별 조류 제어 필요 시 정출력(constant power) 제어를 수행하고, 상기 마이크로그리드별 전력 수수 문제로 주파수 및 전압이 허용 주파수 이상으로 유지될 경우 전압 및 주파수 제어를 모두 수행하는 다기능 역할을 위한 제어를 수행한다.
보다 상세하게는, BTB VSC 제어부(230)는 제1 전류 제어부(218)를 통해 기설정된 기준 전류를 기반으로 추출된 고조파 보상을 위한 전류 지령치를 설정하고, DC 링크 전압 제어부(220)를 통해 공유된 상기 DC 링크(215)로부터 측정된 전압을 기반으로 DC 링크 전압 제어를 위한 전압 지령치를 설정하도록 제어한다.
그리고 상기 BTB VSC 제어부(230)는 상기 마이크로그리드(205) 내 부하(load, 206)에 병렬 연결된 정류기부(212)로부터 측정된 유효 전류 및 무효 전류 기반 무효 전력 제어를 통해 기설정된 유효 전류 및 무효 전류를 추종하여 역률 제어부(225)를 통한 역률 보상 및 제1 전압 제어부(223)을 통한 전압 제어를 수행한다.
또한, 상기 BTB VSC 제어부(230)는 상기 정류기부(212)와 백투백으로 연결된 인버터부(214)로부터 측정된 유효 전류 및 무효 전류 기반으로 한 무효 전력(reactive power) 제어부(227), 제2 전압 제어부(229)를 통해 기설정된 유효 전류 및 무효 전류를 추종하여 상기 인버터부(214) 측의 마이크로그리드(미도시)에 무효전력 공급이 수행되도록 동작하는 무효전력 보상부(228)를 제어한다.
상기 인버터부(214)는, 상기 BTB VSC 제어부(230) 제어 하에 출력된 유효 전류 및 무효 전류 기반 제2 전류부(224)로부터 기설정된 유효 전류 및 무효 전류를 추종하여 유효 전력 제어를 통해 제1 마이크로그리드와 제2 마이크로그리드 간의 유효 전력 제어 및 주파수 제어를 수행하며 이는 각각 유효전력 제어부(233) 및 주파수 제어부(231)을 통해 수행된다.
계속해서, 상기 BTB VSC(210)는 마이크로그리드(205)의 연계점에 연결되어 각 마이크로그리드별 주파수를 정규화하는 멀티 주파수 제어부(226)를 포함한다.
여기서, 상기 멀티 주파수 제어부(226)는 하기의 수학식 1을 이용하여 각 마이크로그리드별 상이하게 설정된 허용 주파수를 -1 ~ 1로 정규화한다.
Figure PCTKR2015008911-appb-M000001
즉, 상기 멀티 주파수 제어부(226)는 BTB VSC 제어부(230)의 제어 하에 BTB VSC(210)의 로컬 제어를 통해 상기 BTB VSC(210) 기반 제1 및 제2 마이크로그리드간 정규화된 주파수의 차이를 0이 되게 하여 연계된 다수의 마이크로그리드의 허용 주파수 관련 정규화된 주파수를 동일하게 제어한다.
이때, 상기 BTB VSC(210)의 로컬 제어는, 인접 마이크로그리드와의 상호 데이터 공유를 위한 통신 경로의 생성 없이 소정 BTB VSC에 대응하는 제1 마이크로그리드와 상기 인버터부(214)의 출력단에 연계된 상기 제1 마이크로그리드와 인접한 마이크로그리드 예컨대, 제2 마이크로그리드간을 제어 가능함을 의미한다. 다시 말해, 본 발명이 적용된 BTB VSC는, AC 선로 연계 기반 다수의 마이크로그리드별 대응하는 각 BTB VSC 상호 간 상호 데이터 공유를 위한 통신 경로가 생성되지 않는다.
본 발명이 적용된 다수 독립형 마이크로그리드의 멀티 주파수 제어 시스템의 멀티 주파수 제어부(226)에서는 다수의 마이크로그리드별 대응하는 BTB VSC를 통해 연결되어 각 마이크로그리드별 서로 상이한 부하 전력 품질 제어와 동시에 적응적 멀티 주파수 제어가 수행된다.
여기서, 상기 적응적 멀티 주파수 제어에 관해 살펴보면, 먼저 본 발명의 일실시 예에 따른 다수의 마이크로그리드는 서로 상이한 주파수가 설정되며, 이는 해당 마이크로드별 허용 주파수가 된다. 예컨대, 도 1에서의 제1 마이크로그리드(110)는 59.2~60.8Hz, 제2 마이크로그리드(112)는 59.7~60.3Hz, 제3 마이크로그리드(114)는 59.5~60.5Hz와 같이 허용 주파수 범위가 서로 상이하다.
상기 BTB VSC(210)는 멀티주파수 제어부(226)를 통해 입력된 다수의 마이크로그리드별 주파수를 정규화하며, 각 독립형 마이크로그리드별 정규화된 주파수(-1 ~ 1)는 동일한 값으로 유지하도록 제어한다. 예컨대, 1개의 마이크로그리드의 주파수
Figure PCTKR2015008911-appb-I000004
= 0.1 이 되면 모든 마이크로그리드의 주파수
Figure PCTKR2015008911-appb-I000005
,
Figure PCTKR2015008911-appb-I000006
= 0.1로 유지되도록 제어한다.
이를 위해, 본 발명이 적용된 BTB VSC(210)는 멀티주파수 제어부(226)를 통해 수학식 1을 이용하여 각 마이크로그리드별 상이하게 설정된 허용 주파수를 -1 ~ 1로 정규화한다.
이때, 상기 BTB VSC(210)는 계통 연계된 전체 마이크로그리드의 정규화값을 동일하게 하기 위하여 인접한 두 개의 마이크로그리드 정규화 값의 차이를 "0"으로 만들기 위한 제어를 수행한다.
환언하면, 본 발명의 일 실시 예에 따른 BTB VSC를 통하여 마이크로그리드 시스템 내 각 독립형 마이크로그리드별 정규화된 주파수를 동일하게 하기 위한 제어는 도 3을 통해 제어 유닛별 블록화되어 설명된다.
연결된 마이크로그리드의 정규화된 주파수 차를 0으로 만들기 위한 제어를 수행하기 위하여 마이크로그리드 i, 마이크로그리드 (i+1)의 정규화된 주파수 차를 PI 제어부에 입력한다. 여기서, 상기 PI 제어부는 정규화된 주파수 차를 0으로 제어하기 위한 BTB VSC의 전력량
Figure PCTKR2015008911-appb-I000007
을 출력한다.
BTB VSC의 전력량(
Figure PCTKR2015008911-appb-I000008
)를 출력하기 위한 d축 전류(
Figure PCTKR2015008911-appb-I000009
)를 구하기 위하여 식 (
Figure PCTKR2015008911-appb-I000010
)을 이용하고, 이를 통하여 얻은 d축 전류 지령치(
Figure PCTKR2015008911-appb-I000011
)는 측정된
Figure PCTKR2015008911-appb-I000012
와 비교하여 그 차이를 “0”으로 줄이기 위하여 전류 제어부에 입력된다.
이때,
Figure PCTKR2015008911-appb-I000013
는 i, (i+1)번째 마이크로그리드의 주파수,
Figure PCTKR2015008911-appb-I000014
는 정규화된 주파수의 차를 “0”으로 만들기 위한 BTB 컨버터의 전력량, V는 마이크로그리드의 AC 전압을 나타낸다.
즉, 도 3에 도시된 바와 같이 각 마이크로그리드별 BTB VSC의 멀티주파수 제어부(300)은 입력된 다수의 마이크로그리드의 허용 주파수(
Figure PCTKR2015008911-appb-I000015
)를 정규화하고, 정규화된 마이크로그리드별 주파수에 대응하는 주파수 간 오차를 0이 되게 보정하기 위하여 상기 멀티주파수 제어부(300)로부터 해당 각 오차 출력부(310)로 각각 인접하는 두 마이크로그리드간 정규화된 주파수가 각각 입력되고, PI 제어부(312)를 이용하여 정규화된 주파수 간의 출력된 오차를 0이 되게 하기 위한 보정을 수행한다. 상기 PI 제어부(310)에서는 두 마이크로그리드별 주파수 차이 관련 오차 출력부(310)로부터 출력된 e에 기반하여 적당한 비례 상수 이득을 곱하고, 상기 e를 적분하여
Figure PCTKR2015008911-appb-I000016
를 출력한다.
이후, BTB VSC 제어부의 기설정된 전류 결정 식을 통해 각 마이크로그리드별 전류를 결정한다.
이때, 상기 전류 결정 식은
Figure PCTKR2015008911-appb-I000017
형태이며, 공지된 주파수 공식 및 유효전력 공식을 전제로 마이크로그리드의 주파수를 변동시키기 위해서는 유효전력을 바꿔야 하므로 BTB VSC 제어부를 통해 주파수 제어를 위한 d축 전류를 결정하고, 결정된 상기 d축 전류와 실제 d축 전류의 오차를 각각 출력하여 멀티 주파수 제어를 위한 제어 신호를 전류 제어부를 통해 출력한다.
한편, 도 4 내지 도 7은 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 독립형 마이크로그리드의 멀티 주파수 제어 방법이 적용된 시뮬레이션 결과를 보인 것으로, 각 마이크로그리드의 허용주파수는 각각 59.2~60.8Hz(마이크로그리드 1, MG1), 59.6~60.6Hz(마이크로그리드 2, MG 2), 59.4~60.4Hz(마이크로그리드 3, MG 3)으로 가정하에 시뮬레이션 시나리오는 35초에 마이크로그리드 2의 부하량 감소, 45초에 마이크로그리드 1의 부하량 증가, 55초에 마이크로그리드 3의 부하량이 증가되도록 설정한다.
이를 기반으로 먼저, 도 4를 살펴보면, 도 4a에 도시된 바와 같이, MG 1과 MG 2를 연결하는 BTB 컨버터는 그림 7과 같이 35초, 45초, 55초에 MG 2, MG 1, MG 3의 부하량 변화로 MG 1에서 MG 2로 흐르는 전력량이 변화함을 확인할 수 있다.
상술한 MG 1과 MG 2를 연결하는 BTB 컨버터의 출력량 변동에 따라 MG 1의 주파수는 도 4b와 같이 허용주파수(59.2~60.8Hz)내에서 제어되는 것을 확인할 수 있다.
MG 2와 MG 3를 연결하는 BTB 컨버터는 도 5a에 도시된 바와 같이, 35초, 45초, 55초에 MG 2, MG 1, MG 3의 부하량 변화로 MG 2에서 MG 3로 흐르는 전력량이 변화함을 알 수 있다.
상술한 MG 2와 MG 3을 연결하는 BTB 컨버터의 출력량 변동에 따라 MG 2의 주파수는 도 5b와 같이 허용 주파수(59.6~60.4Hz)내에서 제어되는 것을 확인할 수 있다.
MG 3과 MG 1을 연결하는 BTB 컨버터는 도 6a와 같이 35초, 45초, 55초에 MG 2, MG 1, MG 3의 부하량 변화로 MG 3에서 MG 1로 흐르는 전력량이 변화함을 알 수 있다.
전술한 MG 3과 MG 1을 연결하는 BTB 컨버터의 출력량 변동에 따라 MG 3의 주파수는 도 6b와 같이 허용 주파수(59.4~60.6Hz)내에서 제어되는 것을 확인할 수 있다.
도 7은 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템에 있어서, BTB VSC의 능동 필터 동작에 대한 시뮬레이션을 보인 것으로, 최초 마이크로그리드 내에 비선형 부하를 추가하고 0초 ~ 1초에서는 BTB 컨버터의 기능을 투입하지 않을 경우를 나타내고 있으며, 부하전류의 왜곡 상태를 확인할 수 있고, 1초 ~ 2초에서는 BTB 컨버터의 능동 필터(active filter) 기능을 투입할 경우를 나타내고 있으며, 부하전류의 왜곡이 투입하기 전보다 감소하였음을 확인할 수 있으며, 도 7에 도시된 바와 같이 0초 ~1초 사이의 전류 THD(total harmonics distortion)는 12.37%과 같고, 1~2초 사이의 전류 THD는 1.89% 로 고조파 함류량이 감소됨을 확인할 수 있다.
이상 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 독립형 마이크로그리드의 멀티 주파수 제어 시스템의 구성을 살펴보았다.
이하, 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 독립형 마이크로그리드의 멀티 주파수 제어 방법에 도 8을 참조하여 자세히 살펴보기로 한다.
도 8은 본 발명의 일 실시 예에 따른 BTB 컨버터 기반 다수 독립형 마이크로그리드의 멀티 주파수 제어 방법에 관한 전체 흐름도이다.
도 8을 참조하면, 먼저 810 과정에서는 정류기(rectifier)부와 인버터(inverter)부로 구성되어 상기 정규기부와 인버터부 간 공통의 DC 링크를 공유하고, 다수의 독립형 마이크로그리드들을 AC 선로를 통해 연계하여 각 마이크로그리드별 부하 품질 수준이 고려된 멀티 주파수 제어 수행을 위한 백투백(back-to-back, BTB) 전압형 컨버터(voltage source converter, VSC)부를 통해 입력된 다수의 독립형 마이크로그리드별 허용 주파수를 정규화한다.
812 과정에서는 오차 출력부를 통해 정규화된 마이크로그리드별 주파수에 대응하는 주파수 간 오차를 출력한다.
814 과정에서는 PI 제어부를 통해 정규화된 주파수간의 출력된 오차를 0이 되게 하기 위한 보정을 수행한다.
816 과정에서는 기설정된 수학식을 통해 기준 d축 전류를 결정하고, 818 과정에서 결정된 상기 기준 d축 전류와 실제 d축 전류의 오차를 오차 출력부를 통해 출력한다.
이후, 마이크로그리드별 부하 품질 제어와 동시에 멀티 주파수 제어 수행을 위한 유효 전력 및 주파수 제어를 820 과정 내지 822 과정을 통해 수행한다.
이때, 상기 BTB VSC부는, 상기 마이크로그리드 내 비선형 부하에 대응하는 고조파 패턴을 기설정된 사이클 기준으로 추출하여 제1 전류 제어부를 통해 기설정된 기준 전류를 기반으로 추출된 고조파 보상을 위한 전류 지령치를 설정하고, 공유된 상기 DC 링크로부터 측정된 전압을 기반으로 DC 링크 전압 제어를 위한 전압 지령치를 설정하도록 제어하여 상기 마이크로그리드 내 부하(load)에 병렬 연결된 정류기부로부터 측정된 유효 전류 및 무효 전류 기반 무효 전력 제어를 통해 기설정된 유효 전류 및 무효 전류를 추종하여 역률 보상 및 전압 제어를 수행한다.
그리고, 상기 BTB VSC부는, 상기 정류기부와 백투백으로 연결된 인버터부로부터 측정된 유효 전류 및 무효 전류 기반 무효 전력 제어를 통해 기설정된 유효 전류 및 무효 전류를 추종하여 상기 인버터부 측의 마이크로그리드에 무효전력 공급이 수행되도록 동작한다.
이때, BTB VSC부는, AC 선로 연계 기반 다수의 마이크로그리드별 대응하는 각 BTB VSC 상호 간 로컬(local) 제어를 통해 인접 마이크로그리드 제어 기반 BTB VSC간 상호 데이터 공유를 위한 통신 경로가 생성되지 않는다.
상기와 같이 본 발명에 따른 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템 및 방법에 관한 동작이 이루어질 수 있으며, 한편 상기한 본 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나 여러 가지 변형이 본 발명의 범위를 벗어나지 않고 실시될 수 있다. 따라서 본 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 청구범위와 청구범위의 균등한 것에 의하여 정하여져야 할 것이다.

Claims (13)

  1. 적어도 하나 이상의 분산 전원과 에너지 저장 장치를 포함하는 독립형(stand-alone 또는 off-grid) 마이크로그리드와,
    정류기(rectifier)부와 인버터(inverter)부로 구성되어 상기 정류기부와 인버터 간 공통의 DC 링크를 공유하고, 다수의 상기 독립형 마이크로그리드들을 AC 선로를 통해 연계하여 각 마이크로그리드별 부하 품질 제어와 동시에 멀티 주파수 제어 수행을 위한 백투백(back-to-back, BTB) 전압형 컨버터(voltage source converter, VSC)를 포함함을 특징으로 하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템.
  2. 제1항에 있어서, BTB VSC는,
    마이크로그리드의 연계점에 연결되어 각 마이크로그리드별 주파수를 정규화하는 멀티 주파수 제어부를 포함함을 특징으로 하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템.
  3. 제1항에 있어서, BTB VSC는,
    AC 선로 연계 기반 다수의 마이크로그리드별 대응하는 각 BTB VSC 상호 간 로컬(local) 제어를 통해 인접 마이크로그리드 제어 기반 BTB VSC간 상호 데이터 공유를 위한 통신 경로가 생성되지 않음을 특징으로 하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템.
  4. 제1항에 있어서, BTB VSC부는,
    상기 마이크로그리드 내 비선형 부하에 대응하는 고조파 패턴을 기설정된 사이클 기준으로 추출하는 고조파(harmonic) 전류 추출부와,
    제1 전류 제어부를 통해 기설정된 기준 전류를 기반으로 추출된 고조파 보상을 위한 전류 지령치를 설정하고, DC 링크 전압 제어부를 통해 공유된 상기 DC 링크로부터 측정된 전압을 기반으로 DC 링크 전압 제어를 위한 전압 지령치를 설정하도록 제어하는 BTB VSC 제어부와,
    상기 BTB VSC 제어부 제어 하에 상기 마이크로그리드 내 부하(load)에 병렬 연결된 정류기부로부터 측정된 유효 전류 및 무효 전류 기반 무효 전력 제어를 통해 기설정된 유효 전류 및 무효 전류를 추종하여 역률 보상 및 전압 제어를 수행하는 정출력 제어부를 포함하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템.
  5. 제4항에 있어서,
    상기 BTB VSC 제어부 제어 하에 상기 정류기부와 백투백으로 연결된 인버터부로부터 측정된 유효 전류 및 무효 전류 기반 무효 전력 제어부의 무효 전력 제어를 통해 기설정된 유효 전류 및 무효 전류를 추종하여 상기 인버터부 측의 마이크로그리드에 무효전력 공급이 수행되도록 동작하는 무효전력 보상부를 더 포함함을 특징으로 하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템.
  6. 제5항에 있어서, 상기 인버터부는,
    상기 BTB VSC 제어부 제어 하에 출력된 유효 전류 및 무효 전류 기반 제2 전류부로부터 기설정된 유효 전류 및 무효 전류를 추종하여 유효 전력 제어를 통해 제1 마이크로그리드와 제2 마이크로그리드 간의 유효 전력 제어 및 주파수 제어를 수행함을 특징으로 하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템.
  7. 제2항에 있어서, 상기 멀티 주파수 제어부는,
    하기의 수학식을 이용하여 각 마이크로그리드별 상이하게 설정된 허용 주파수를 -1 ~ 1로 정규화함을 특징으로 하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템.
    Figure PCTKR2015008911-appb-I000018
  8. 제7항에 있어서, 상기 멀티 주파수 제어부는,
    BTB VSC의 로컬 제어를 통해 상기 BTB VSC 기반 제1 및 제2 마이크로그리드간 정규화된 주파수의 차이를 0이 되게 하여 계통 연계된 다수의 마이크로그리드의 허용 주파수 관련 정규화된 주파수를 동일하게 제어함을 특징으로 하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템.
  9. 정류기(rectifier)부와 인버터(inverter)부로 구성되어 상기 정규기부와 인버터부 간 공통의 DC 링크를 공유하고, 다수의 독립형 마이크로그리드들을 AC 선로를 통해 연계하여 각 마이크로그리드별 부하 품질 수준이 고려된 멀티 주파수 제어 수행을 위한 백투백(back-to-back, BTB) 전압형 컨버터(voltage source converter, VSC)부를 통해 입력된 다수의 독립형 마이크로그리드별 허용 주파수를 정규화하는 과정과,
    오차 출력부를 통해 정규화된 마이크로그리드별 주파수에 대응하는 주파수 간 오차를 출력하는 과정과,
    PI 제어부를 통해 정규화된 주파수간의 출력된 오차를 0이 되게 하기 위한 보정을 수행하고, 기설정된 수학식을 통해 기준 DC 전류를 결정하는 과정과,
    결정된 상기 기준 d축 전류와 실제 d축 전류의 오차를 오차 출력부를 통해 출력하여 전류 제어부를 통해 멀티 주파수 제어를 위한 제어 신호를 발생하는 과정을 포함함을 특징으로 하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 방법.
  10. 제9항에 있어서,
    상기 멀티 주파수 제어를 위한 제어 신호를 발생하는 과정은,
    상기 BTB VSC부의 로컬 제어를 통해 상기 BTB VSC 기반 제1 및 제2 마이크로그리드간 정규화된 주파수의 차이를 0이 되게 하기의 수학식을 이용하여 각 마이크로그리드별 상이하게 설정된 허용 주파수를 -1 ~ 1로 정규화하여 다수의 마이크로그리드의 허용 주파수 관련 정규화된 주파수를 동일하게 제어함을 특징으로 하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 방법.
    Figure PCTKR2015008911-appb-I000019
  11. 제9항에 있어서, BTB VSC부는,
    AC 선로 연계 기반 다수의 마이크로그리드별 대응하는 각 BTB VSC 상호 간 로컬(local) 제어를 통해 인접 마이크로그리드 제어 기반 BTB VSC간 상호 데이터 공유를 위한 통신 경로가 생성되지 않음을 특징으로 하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 방법.
  12. 제9항에 있어서, 상기 BTB VSC부는,
    상기 마이크로그리드 내 비선형 부하에 대응하는 고조파 패턴을 기설정된 사이클 기준으로 추출하여 제1 전류 제어부를 통해 기설정된 기준 전류를 기반으로 추출된 고조파 보상을 위한 전류 지령치를 설정하고, 공유된 상기 DC 링크로부터 측정된 전압을 기반으로 DC 링크 전압 제어를 위한 전압 지령치를 설정하도록 제어하여 상기 마이크로그리드 내 부하(load)에 병렬 연결된 정류기부로부터 측정된 유효 전류 및 무효 전류 기반 무효 전력 제어를 통해 기설정된 유효 전류 및 무효 전류를 추종하여 역률 보상 및 전압 제어를 수행함을 특징으로 하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 방법.
  13. 제12항에 있어서, 상기 BTB VSC부는,
    상기 정류기부와 백투백으로 연결된 인버터부로부터 측정된 유효 전류 및 무효 전류 기반 무효 전력 제어를 통해 기설정된 유효 전류 및 무효 전류를 추종하여 상기 인버터부 측의 마이크로그리드에 무효 전력 공급이 수행되도록 동작함을 특징으로 하는 BTB 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 방법.
PCT/KR2015/008911 2015-08-20 2015-08-26 Btb 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템 및 방법 WO2017030228A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0117210 2015-08-20
KR1020150117210A KR101690742B1 (ko) 2015-08-20 2015-08-20 Btb 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2017030228A1 true WO2017030228A1 (ko) 2017-02-23

Family

ID=57724074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008911 WO2017030228A1 (ko) 2015-08-20 2015-08-26 Btb 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템 및 방법

Country Status (2)

Country Link
KR (1) KR101690742B1 (ko)
WO (1) WO2017030228A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108418244A (zh) * 2018-03-07 2018-08-17 上海交通大学 一种基于多微网柔性互联系统及其储能容量优化方法
CN108808716A (zh) * 2018-06-19 2018-11-13 西安端怡科技有限公司 一种特高压混合直流输电系统潮流在线反转控制方法
CN110212535A (zh) * 2019-05-27 2019-09-06 华中科技大学 一种交直流混合微电网的高次谐波有源稳定装置与方法
WO2022078527A1 (zh) * 2020-10-15 2022-04-21 许继电气股份有限公司 一种特高压混合直流输电系统暂态电压控制方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180121079A (ko) 2017-04-28 2018-11-07 엘에스산전 주식회사 계층형 전력 제어 시스템
US10700521B2 (en) 2017-04-28 2020-06-30 Lsis Co., Ltd. Hierarchical type power control system
KR20180127771A (ko) * 2017-05-22 2018-11-30 주식회사 럭스코 군용 마이크로그리드 시스템
KR102028134B1 (ko) * 2018-01-30 2019-10-02 인천대학교 산학협력단 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기 및 이를 이용한 독립형 다중 마이크로 그리드 시스템
WO2022231022A1 (ko) * 2021-04-28 2022-11-03 재단법인 녹색에너지연구원 공유형 ess 마이크로그리드

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070177319A1 (en) * 2003-11-07 2007-08-02 Responsiveload Limited Responsive electricity grid substation
US20110012352A1 (en) * 2009-07-14 2011-01-20 Nelson Robert J Bang-Bang Controller and Control Method For Variable Speed Wind Turbines During Abnormal Frequency Conditions
KR20110034898A (ko) * 2009-09-29 2011-04-06 명지대학교 산학협력단 직류송전을 위한 18-스텝 백-투-백 전압원 컨버터 시스템
KR20130102681A (ko) * 2012-03-08 2013-09-23 에스케이이노베이션 주식회사 주파수 제어 시스템 및 방법
JP2013258806A (ja) * 2012-06-11 2013-12-26 Panasonic Corp 周波数制御装置、電力入出力装置、周波数制御システム、周波数制御方法、及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070177319A1 (en) * 2003-11-07 2007-08-02 Responsiveload Limited Responsive electricity grid substation
US20110012352A1 (en) * 2009-07-14 2011-01-20 Nelson Robert J Bang-Bang Controller and Control Method For Variable Speed Wind Turbines During Abnormal Frequency Conditions
KR20110034898A (ko) * 2009-09-29 2011-04-06 명지대학교 산학협력단 직류송전을 위한 18-스텝 백-투-백 전압원 컨버터 시스템
KR20130102681A (ko) * 2012-03-08 2013-09-23 에스케이이노베이션 주식회사 주파수 제어 시스템 및 방법
JP2013258806A (ja) * 2012-06-11 2013-12-26 Panasonic Corp 周波数制御装置、電力入出力装置、周波数制御システム、周波数制御方法、及びプログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108418244A (zh) * 2018-03-07 2018-08-17 上海交通大学 一种基于多微网柔性互联系统及其储能容量优化方法
CN108808716A (zh) * 2018-06-19 2018-11-13 西安端怡科技有限公司 一种特高压混合直流输电系统潮流在线反转控制方法
CN110212535A (zh) * 2019-05-27 2019-09-06 华中科技大学 一种交直流混合微电网的高次谐波有源稳定装置与方法
CN110212535B (zh) * 2019-05-27 2021-06-29 华中科技大学 一种交直流混合微电网的高次谐波有源稳定装置与方法
WO2022078527A1 (zh) * 2020-10-15 2022-04-21 许继电气股份有限公司 一种特高压混合直流输电系统暂态电压控制方法及装置

Also Published As

Publication number Publication date
KR101690742B1 (ko) 2016-12-28

Similar Documents

Publication Publication Date Title
WO2017030228A1 (ko) Btb 컨버터 기반 다수 마이크로그리드의 멀티 주파수 제어 시스템 및 방법
WO2017018584A1 (ko) 마이크로그리드의 멀티 주파수 제어 시스템 및 방법
EP3664245B1 (en) Control system and control method for parallel converter system
WO2019132435A1 (ko) 전력 계통주파수 변동 저감을 위한 모듈러 멀티레벨 컨버터의 출력레벨 제어방법
US10998723B1 (en) Large-scale photovoltaic DC series boost grid-connected system with power balancer
CN107482665B (zh) 一种含柔性直流的交直流混合电网越限校正控制方法
Hoseinnia et al. A control scheme for voltage unbalance compensation in an islanded microgrid
US9209679B2 (en) Method and apparatus for transferring power between AC and DC power systems
Khadem et al. A comparative analysis of placement and control of UPQC in DG integrated grid connected network
CN110247421B (zh) 一种模块化双有源桥变流器系统及电气量均衡控制方法
Khadem et al. Integration of UPQC for Power Quality improvement in distributed generation network-a review
CN108336743B (zh) 一种基于分布式电源并网逆变器的本地电压控制方法
CN110858754A (zh) 一种mmc型能量路由器的两级控制方法及系统
US20220200290A1 (en) Power System
Jena et al. Distributed cooperative control for autonomous hybrid AC/DC microgrid clusters interconnected via back-to-back converter control
EP4138251A1 (en) Power supply system
CN108539769B (zh) 一种电力电子变压器降低配电网络电压不平衡度的方法
CN108475927B (zh) 使用本地可用参数进行独立有功和无功功率流控制的方法
Marzo et al. Reactive power limits of Cascaded H-Bridge STATCOMs in star and delta configuration under negative-sequence current withstanding
CN103762583B (zh) 串联型多端直流输电系统及其功率控制方法
WO2023077741A1 (zh) 一种光伏系统及控制方法
CN104979822A (zh) 智能微电网电力质量管理的操作系统
WO2017023084A1 (ko) 하나의 변압기를 구비하는 upfc 장치
Chauhan et al. Control of Solar PV Arrays Based Microgrid Intertied to a 3-Phase 4-Wire Distribution Network
CN114076861A (zh) 一种通用变流器电气试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901768

Country of ref document: EP

Kind code of ref document: A1