CN108539769B - 一种电力电子变压器降低配电网络电压不平衡度的方法 - Google Patents

一种电力电子变压器降低配电网络电压不平衡度的方法 Download PDF

Info

Publication number
CN108539769B
CN108539769B CN201810449983.5A CN201810449983A CN108539769B CN 108539769 B CN108539769 B CN 108539769B CN 201810449983 A CN201810449983 A CN 201810449983A CN 108539769 B CN108539769 B CN 108539769B
Authority
CN
China
Prior art keywords
voltage
power
phase
alternating current
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810449983.5A
Other languages
English (en)
Other versions
CN108539769A (zh
Inventor
董雷
张涛
孙英云
陈乃仕
蒲天骄
柳丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electric Power Research Institute Co Ltd CEPRI
North China Electric Power University
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
China Electric Power Research Institute Co Ltd CEPRI
North China Electric Power University
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electric Power Research Institute Co Ltd CEPRI, North China Electric Power University, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical China Electric Power Research Institute Co Ltd CEPRI
Priority to CN201810449983.5A priority Critical patent/CN108539769B/zh
Publication of CN108539769A publication Critical patent/CN108539769A/zh
Application granted granted Critical
Publication of CN108539769B publication Critical patent/CN108539769B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Abstract

本发明公开了属于降低配电网络电压不平衡度技术领域的一种电力电子变压器降低配电网络电压不平衡度的方法。所述方法通过收集含有电力电子变压器的交直流混合配电网络运行参数,建立优化模型,并以交流网络各节点负序电压和零序电压平方和最小为目标函数,进行优化计算,从而求解电力电子变压器的端口控制值。本发明是针对基于电力电子变压器形成的交直流混合配电网络,直流网络可以为交流网络提供能量支撑。本发明以降低交流网络所有节点的电压不平衡度为目标,且同时考虑了负序电压和零序电压,既可以降低负序电压不平衡度也可以降低零序电压不平衡度,可以综合抑制多节点的电压不平衡,相比现有的降低电压不平衡度方法更加经济、准确、可靠。

Description

一种电力电子变压器降低配电网络电压不平衡度的方法
技术领域
本发明属于降低配电网络电压不平衡度技术领域,尤其涉及一种电力电子变压器降低配电网络电压不平衡度的方法。
背景技术
低压配电网通常采用四线制供电模式,单、三相负荷并存,三相不平衡问题将难以避免,不平衡负载的接入导致三相电压失衡,会给电网安全和效率带来不利影响。一个不平衡的配电系统将产生更多的损耗和热效应,三相电压不平衡也会对感应电动机、电力电子变流器和调速驱动器等设备产生负面影响甚至危害。除此之外,三相不平衡产生的负序电流可能引起电网负序保护动作,影响供电安全。
目前,针对三相不平衡问题,治理措施主要分为负荷补偿和负荷相序平衡两大类。负荷补偿主要是通过在配网电源侧或负荷侧增设补偿装置,对三相不对称负荷进行调补,从而降低三相电压不平衡度。如基于Steinmetz理论的无源补偿方式,即在不平衡负载旁安装特定参数的无源设备,将其变为一个等效三相平衡负载,此方式主要适合于补偿固定不平衡负载,适用范围有限;有源补偿方式,如采用SVC、SVG、STATCOM等设备,其补偿指令可以灵活调节,具有响应速度快,补偿精度高等特点,但需要加装额外的电能质量调节器,且都只是针对电网局部不平衡进行补偿,当待治理区域有多个分散不平衡源时,需要多台补偿设备协同运行,控制的难度和成本都将大大增加。负荷相序平衡法是指在不改变电网原有拓扑结构的前提下,通过对线路的运行情况进行检测分析,依靠人工换相或自动换相,将不平衡负荷合理地平均分配到各相上,从而减小三相电压不平衡度。然而由于负荷使用的随机性,人工换相调整滞后、不准确,实际效果并不理想;而由晶闸管构成的换相开关虽然能够快速安全的换相,但需要设计复杂的驱动装置,换相成本过高。这种方法只能做到暂时性的三相平衡,换相过程又可能导致重要负荷断电,因此可靠性太差。总体来说对于降低配电网络电压不平衡度的问题,目前缺少一种经济、准确、可靠的解决方法。
发明内容
针对上述问题,本发明提出了一种电力电子变压器降低配电网络电压不平衡度的方法,其特征在于,包括以下步骤:
步骤1:收集含有电力电子变压器的交直流混合配电网络运行参数;
步骤2:考虑低压交流系统的三相四线制供电模式,建立四线制网络的功率平衡方程,以配电网中交流系统所有节点的负序电压和零序电压平方和最小为目标函数,以网络安全稳定运行作为约束条件建立优化模型;
步骤3:对步骤2建立的优化模型求解,得到的各分布式电源出力、电力电子变压器的端口电压和功率,并将求解得到的结果反馈给各控制系统;
步骤4:各控制系统以优化计算后的变量作为参考值,控制可控设备的实际值跟踪参考值;
步骤5:检测优化控制后各交流节点的三相电压,计算电压不平衡度,评判优化效果。
所述含有电力电子变压器的交直流混合配电网络运行参数包括网络的拓扑结构、母线编号、名称、负荷有功、交流系统负荷无功、配电线路支路号、首端节点和末端节点编号、电力电子变压器的交直流端口编号。
所述方法依据电力电子变压器交流端口的电压幅值和相位独立可控,通过引入电力电子变压器对低压交流网络的三相电压幅值和相位进行分相控制,以保持三相电压的相对独立性,不受网络潮流的影响,能够综合降低全网多节点的电压不平衡度;其中,三相电压幅值和相位满足以下约束条件:
Figure BDA0001658204230000021
式中,
Figure BDA0001658204230000031
为交流端口三相电压幅值的最小值,
Figure BDA0001658204230000032
为交流端口三相电压幅值的最大值,
Figure BDA0001658204230000033
为交流端口三相电压幅值;
Figure BDA0001658204230000034
为交流端口三相电压相角的最大值,
Figure BDA0001658204230000035
为交流端口三相电压相角的最小值,
Figure BDA0001658204230000036
为交流端口三相电压相角。
所述步骤2建立的优化模型为:
目标函数:
Figure BDA0001658204230000037
式中,n表示交流网络总的节点个数,Vk,2r和Vk,2i分别为节点k负序电压的实部和虚部,Vk,0r和Vk,0i分别为节点k零序电压的实部和虚部;
约束条件:
(1)等式约束条件
1)三相四线制交流网络的功率平衡约束
Figure BDA0001658204230000038
其中,每个节点i需满足中性线的电流平衡方程:
Figure BDA0001658204230000039
式中,
Figure BDA00016582042300000310
φ={a,b,c,n},γ={a,b,c,n}为电气集合,m为交流节点的个数, n表示中性相,
Figure BDA00016582042300000311
为节点i电源及负荷的三相注入功率,
Figure BDA00016582042300000312
为节点i的三相电压,
Figure BDA00016582042300000313
为中性线电压,
Figure BDA00016582042300000314
为节点k的四相电压,
Figure BDA00016582042300000315
为导纳矩阵元素;
2)直流网络的功率平衡约束
Figure BDA00016582042300000316
式中,m为直流网络总的节点个数,PGi为直流网络节点i发电机输出的有功功率,PDi为直流节点i负荷消耗的有功功率、Vi为节点i的电压幅值,Gij表示支路ij之间的电导值;
3)电力电子变压器的功率平衡约束
Phv=Pac+Pdc+Ploss
式中,Phv为主网流入的有功功率,Pac为交流端口输出功率,Pdc为直流端口的输出功率,Ploss为电力电子变压器的有功损耗;
(2)不等式约束条件
4)运行电压幅值约束
Figure BDA0001658204230000041
式中,Vidc为直流网络节点i的电压幅值,
Figure BDA0001658204230000042
为交流网络节点i的三相电压幅值,Vidc.min和Vidc.max分别为直流网络节点i的电压最小、最大值,
Figure BDA0001658204230000043
Figure BDA0001658204230000044
分别为交流网络节点i的三相电压最小、最大值;
5)可控分布式电源出力约束
直流侧分布式电源有功出力的上下限约束:
Pgdc.min≤Pgdc≤Pgdc.max
交流侧分布式电源三相有功、无功出力的上下限约束:
Figure BDA0001658204230000045
式中,Pgdc.min为直流侧分布式电源有功出力最小值,Pgdc.max为直流侧分布式电源有功出力最大值,Pgdc为直流侧分布式电源有功出力值;
Figure BDA0001658204230000046
为交流侧分布式电源有功出力最小值,
Figure BDA0001658204230000047
为交流侧分布式电源有功出力最大值、
Figure BDA0001658204230000048
为交流侧分布式电源有功出力值;
Figure BDA0001658204230000049
为交流侧分布式电源无功出力最小值、
Figure BDA00016582042300000410
为交流侧分布式电源无功出力最大值、
Figure BDA00016582042300000411
为交流侧分布式电源无功出力值;
6)电力电子变压器的不等式约束
交、直流端口电压约束:
Figure BDA0001658204230000051
交、直流端口输出功率约束:
Figure BDA0001658204230000052
式中,
Figure BDA0001658204230000053
为交流端口三相电压幅值的最小值,
Figure BDA0001658204230000054
为交流端口三相电压幅值的最大值、
Figure BDA0001658204230000055
为交流端口三相电压幅值,
Figure BDA0001658204230000056
为交流端口三相电压相角的最小值,
Figure BDA0001658204230000057
为交流端口三相电压相角的最大值,
Figure BDA0001658204230000058
为交流端口三相电压相角值,udc.min为直流端口电压幅值的最小值、udc为直流端口电压幅值,udc.max为直流端口电压幅值的最大值,
Figure BDA0001658204230000059
为交流端口三相有功的最小值、
Figure BDA00016582042300000510
为交流端口三相有功的最大值、
Figure BDA00016582042300000511
为交流端口三相输出有功,
Figure BDA00016582042300000512
为交流端口三相输出无功,
Figure BDA00016582042300000513
为交流端口三相无功的最小值,
Figure BDA00016582042300000514
为交流端口三相无功的最大值,Pdc.min为直流端口有功的最小值,Pdc.max为直流端口有功的最大值,Pdc为直流端口输出有功;
所述步骤5计算电压不平衡度的数学公式为:
Figure BDA00016582042300000515
式中,VUF和VUF0分别为节点负序电压不平衡度和节点零序电压不平衡度, Vk,2r和Vk,2i分别为节点k负序电压的实部和虚部,Vk,0r和Vk,0i分别为节点k零序电压的实部和虚部。
本发明的有益效果在于:
(1)本发明不需要加装额外的电能质量调节器,直接利用电力电子变压器实现功率传输,对变压器端口施加控制就可以实现其降低配电网电压不平衡度的作用,可以在充分挖掘电力电子变压器功能的同时节约用于提高电能质量的成本,还能起到电能质量治理工作。
(2)本发明以降低整个交流网络中所有节点的电压不平衡度为目标,而不是降低个别节点的电压不平衡度,将优化模型引入到降低电压不平衡度中去,可以保证计算结果中所有节点具有较低的电压不平衡度,从而可以综合抑制多节点的电压不平衡,而不是对局部范围进行治理,治理范围更为广泛,大大提高了该方法的准确性。
(3)本发明对各控制变量的调整是通过对优化模型求解得到的,然后再反馈给控制系统,无需进行换相操作,不会造成重要负荷断电,具有较好的可靠性。
(4)交直流系统具有不同的电气特性和运行目标,降低交流网络电压不平衡度时,本发明的直流网络可以为交流网络提供能量支撑,在交直流网络互补运行的同时,还可以降低配电网的电压不平衡度,满足系统的经济运行。
(5)本发明无需复杂的检测控制技术,只需要检测电压、功率等基本的电气量,通过相应的优化计算,就可以实现降低电压不平衡度的功能。
(6)本发明考虑到可再生分布式能源的间隙性和波动性,在优化计算时可以通过相应的预测技术,从而实现长时间尺度下三相电压不平衡的治理工作。
附图说明
附图1为本发明电力电子变压器降低配电网络电压不平衡度的流程图;
附图2为本发明电力电子变压器降低配电网络电压不平衡度的含有电力电子变压器的交直流混合配电网络;
附图3为本发明电力电子变压器降低配电网络电压不平衡度的所用电力电子变压器的拓扑结构;
附图4为本发明电力电子变压器降低配电网络电压不平衡度的所用多端口电力电子变压器的功率流动图;
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
本发明提出的用电力电子变压器去降低配电网络电压不平衡度的方法,是针对基于电力电子变压器形成的交直流混合配电网络,其中直流网络可以为交流网络提供能量支撑,考虑到电力电子变压器端口的可控性,以此为基础建立优化数学模型,以交流网络各节点负序电压和零序电压平方和最小为目标函数,进行优化计算,从而可以求解出电力电子变压器的端口控制值。本发明的电力电子变压器降低配电网络电压不平衡度的流程图如图1所示,所述方法包括如下步骤:
步骤1:收集含有电力电子变压器的交直流混合配电网络运行参数;
步骤2:考虑低压交流系统的三相四线制供电模式,建立四线制网络的功率平衡方程,以配电网中交流系统所有节点的负序电压和零序电压平方和最小为目标函数,以网络安全稳定运行作为约束条件建立优化模型;
步骤3:对步骤2建立的优化模型求解,得到的各分布式电源出力、电力电子变压器的端口电压和功率,并将求解得到的结果反馈给各控制系统;
步骤4:各控制系统以优化计算后的变量作为参考值,控制可控设备的实际值跟踪参考值;
步骤5:检测优化控制后各交流节点的三相电压,计算电压不平衡度,评判优化效果。
具体的,所述步骤1中,收集的含有电力电子变压器的交直流混合配电网络参数如图2所示,具体包括网络的拓扑结构、母线编号、名称、负荷有功、交流系统负荷无功、配电线路支路号、首端节点和末端节点编号、电力电子变压器的交直流端口编号等。
具体的,所述步骤2中,在收集含有电力电子变压器的交直流混合配电网络参数的基础上,建立以交流网络中所有节点负序电压和零序电压平方和最小为目标函数,以网络安全稳定运行作为约束条件的优化模型,以实现利用电力电子变压器的柔性控制能力降低配电网络电压不平衡度的功能。为降低交流系统的电压不平衡度,交流侧分布式电源无法实现充分利用,意味着从电力电子变压器端口注入交流网络的有功功率会相应增加,利用PET形成的灵活可调的混合网络,直流侧可以为交流侧提供一定的能量支撑。
所述优化模型表示为:
Figure BDA0001658204230000081
为了降低整个交流网络的电压不平衡度,本发明建立如下目标函数:
Figure BDA0001658204230000082
式中,n表示交流网络总的节点个数,Vk,2r和Vk,2i分别为节点k负序电压的实部和虚部,Vk,0r和Vk,0i分别为节点k零序电压的实部和虚部;
从优化模型的目标函数中可以看出,本发明是以降低四线制交流网络所有节点的电压不平衡度为目标,而不是降低个别节点或局部区域,且同时考虑了负序电压和零序电压,既可以降低负序电压不平衡度也可以降低零序电压不平衡度,可以综合抑制多节点的电压不平衡问题。
上述降低配电网络电压不平衡度优化模型的约束条件包括等式约束条件和不等式约束条件。
1、等式约束条件包括:
1)三相四线制交流网络的功率平衡约束
对于交流配电网络中的每个节点i,其三相注入功率方程为:
Figure BDA0001658204230000091
与此同时,每个节点i还应满足中性线的电流平衡方程:
Figure BDA0001658204230000092
式中,
Figure BDA0001658204230000093
φ={a,b,c,n},γ={a,b,c,n}为电气集合,m为交流节点的个数, n表示中性相,
Figure BDA0001658204230000094
为节点i电源及负荷的三相注入功率,
Figure BDA0001658204230000095
为节点i的三相电压,
Figure BDA0001658204230000096
为中性线电压,
Figure BDA0001658204230000097
为节点k的四相电压,
Figure BDA0001658204230000098
为导纳矩阵元素;
2)直流网络的功率平衡约束
对于直流配电网络中的每个节点i,需要满足如下约束:
Figure BDA0001658204230000099
式中m表示直流网络总的节点个数,PGi表示直流网络节点i发电机输出的有功功率、PDi表示直流节点i负荷消耗的有功功率、Vi表示节点i的电压幅值、Gij表示支路ij之间的电导值。由于直流网络中不存在无功功率,因此只需要满足有功平衡即可。
3)电力电子变压器的功率平衡约束
附图3为本发明电力电子变压器降低配电网络电压不平衡度的所用电力电子变压器的拓扑结构,由输入整流级、中间隔离级和输出逆变级共同组成。附图4为所述多端口电力电子变压器的功率流动图,应满足如下功率方程:
Phv=Pac+Pdc+Ploss (6)
式中,Phv表示主网流入的有功功率,Pac表示交流端口输出功率,Pdc为直流端口的输出功率,Ploss为电力电子变压器的有功损耗。综上,公式(3)-(6) 构成了本发明电力电子变压器降低配电网络电压不平衡度优化模型的等式约束条件。
2、不等式约束条件包括:
1)运行电压幅值约束
Figure BDA0001658204230000101
式中,Vidc为直流网络节点i的电压幅值,
Figure BDA0001658204230000102
为交流网络节点i的三相电压幅值,Vidc.min和Vidc.max分别为直流网络节点i的电压最小、最大值,
Figure BDA0001658204230000103
Figure BDA0001658204230000104
分别为交流网络节点i的三相电压最小、最大值。
2)可控分布式电源出力约束
直流侧分布式电源有功出力的上下限约束:
Pgdc.min≤Pgdc≤Pgdc.max (8)
交流侧分布式电源三相有功、无功出力的上下限约束
Figure BDA0001658204230000105
式中,Pgdc.min为直流侧分布式电源有功出力最小值,Pgdc.max为直流侧分布式电源有功出力最大值,Pgdc为直流侧分布式电源有功出力值;
Figure BDA0001658204230000106
为交流侧分布式电源有功出力最小值,
Figure BDA0001658204230000107
为交流侧分布式电源有功出力最大值、
Figure BDA0001658204230000108
为交流侧分布式电源有功出力值;
Figure BDA0001658204230000109
为交流侧分布式电源无功出力最小值、
Figure BDA00016582042300001010
为交流侧分布式电源无功出力最大值、
Figure BDA00016582042300001011
为交流侧分布式电源无功出力值;
3)电力电子变压器的不等式约束
交、直流端口电压约束:
Figure BDA00016582042300001012
交、直流端口输出功率约束:
Figure BDA00016582042300001013
式中,
Figure BDA0001658204230000111
为交流端口三相电压幅值的最小值,
Figure BDA0001658204230000112
为交流端口三相电压幅值的最大值、
Figure BDA0001658204230000113
为交流端口三相电压幅值,
Figure BDA0001658204230000114
为交流端口三相电压相角的最小值,
Figure BDA0001658204230000115
为交流端口三相电压相角的最大值,
Figure BDA0001658204230000116
为交流端口三相电压相角值,udc.min为直流端口电压幅值的最小值、udc为直流端口电压幅值,udc.max为直流端口电压幅值的最大值,
Figure BDA0001658204230000117
为交流端口三相有功的最小值、
Figure BDA0001658204230000118
为交流端口三相有功的最大值、
Figure BDA0001658204230000119
为交流端口三相输出有功,
Figure BDA00016582042300001110
为交流端口三相输出无功,
Figure BDA00016582042300001111
为交流端口三相无功的最小值,
Figure BDA00016582042300001112
为交流端口三相无功的最大值,Pdc.min为直流端口有功的最小值,Pdc.max为直流端口有功的最大值,Pdc为直流端口输出有功;
公式(10)、(11)分别表示电力电子变压器交直流端口的电压以及传输功率的上下限约束,与传统变压器不同,电力电子变压器含有中间直流变换环节使得高、低压两侧的交流系统实现了有效的电气隔离,二者只能通过电力电子变压器进行功率的相互交换,低压交流网络的不对称电流不会传至高压侧从而影响其三相对称性;除此之外,电力电子变压器通过引入电力电子变换器能够对低压交流网络的三相电压幅值
Figure BDA00016582042300001113
和相位
Figure BDA00016582042300001114
进行分相控制,以保持三相电压的相对独立性,不受网络潮流的影响,如若将端口电压控制为三相完全对称虽能有效抑制临近节点的不平衡电压,但却不利于降低全网各节点的电压不平衡度,鉴于此,考虑电力电子变压器交流端口的电压幅值和相角都作为可控变量,进行寻优求解。
综上,公式(7)-(11)构成了本发明电力电子变压器降低配电网络电压不平衡度优化模型的不等式约束条件。以上部分即为本发明电力电子变压器降低配电网络电压不平衡度所建立的数学优化模型,为后续的计算机求解打下了基础。
具体的,所述步骤3中,根据构建的用于降低配电网络电压不平衡度的优化模型,利用计算机仿真软件对其进行求解,并将求解得到的结果反馈给各控制系统。在步骤1获取交直流混合配电网络运行参数后,将其带入到步骤2的优化模型中去,然后利用计算机软件去进行求解,如采用基于Matlab、C或C++等语言来编写求解。
具体的,所述步骤4中,各控制系统以优化计算后的变量作为参考值,控制各分布式电源,电力电子变压器等可控设备的实际值跟踪参考值。
具体的,所述步骤5中,检测优化控制后的交流网络各节点三相电压,计算其电压不平衡度,从而来评判优化效果。
Figure 1
式中,Vk,r和Vk,i分别为节点k正序电压、负序电压和零序电压的实部和虚部,VUF和VUF0分别表示节点的负序电压不平衡度和零序电压不平衡度。检测优化控制后交流网络各节点的三相电压,将其进行相序变换,然后带入式(12),从而验证本发明电力电子变压器降低配电网络电压不平衡度的有效性。
此实施例仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (5)

1.一种电力电子变压器降低配电网络电压不平衡度的方法,其特征在于,包括以下步骤:
步骤1:收集含有电力电子变压器的交直流混合配电网络运行参数;
步骤2:考虑低压交流系统的三相四线制供电模式,建立四线制网络的功率平衡方程,以配电网中交流系统所有节点的负序电压和零序电压平方和最小为目标函数,以网络安全稳定运行作为约束条件建立优化模型;
步骤3:对步骤2建立的优化模型求解,得到的各分布式电源出力、电力电子变压器的端口电压和功率,并将求解得到的结果反馈给各控制系统;
步骤4:各控制系统以优化计算后的变量作为参考值,控制可控设备的实际值跟踪参考值;
步骤5:检测优化控制后各交流节点的三相电压,计算电压不平衡度,评判优化效果。
2.根据权利要求1所述的一种电力电子变压器降低配电网络电压不平衡度的方法,其特征在于,所述含有电力电子变压器的交直流混合配电网络运行参数包括网络的拓扑结构、母线编号、名称、负荷有功、交流系统负荷无功、配电线路支路号、首端节点和末端节点编号、电力电子变压器的交直流端口编号。
3.根据权利要求1所述的一种电力电子变压器降低配电网络电压不平衡度的方法,其特征在于,所述方法依据电力电子变压器交流端口的电压幅值和相位独立可控,通过引入电力电子变压器对低压交流网络的三相电压幅值和相位进行分相控制,以保持三相电压的相对独立性,不受网络潮流的影响,能够综合降低全网多节点的电压不平衡度;其中,三相电压幅值和相位满足以下约束条件:
Figure FDA0001658204220000021
式中,
Figure FDA0001658204220000022
为交流端口三相电压幅值的最小值,
Figure FDA0001658204220000023
为交流端口三相电压幅值的最大值,
Figure FDA0001658204220000024
为交流端口三相电压幅值;
Figure FDA0001658204220000025
为交流端口三相电压相角的最大值,
Figure FDA0001658204220000026
为交流端口三相电压相角的最小值,
Figure FDA0001658204220000027
为交流端口三相电压相角。
4.根据权利要求1所述的一种电力电子变压器降低配电网络电压不平衡度的方法,其特征在于,所述步骤2建立的优化模型为:
目标函数:
Figure FDA0001658204220000028
式中,n表示交流网络总的节点个数,Vk,2r和Vk,2i分别为节点k负序电压的实部和虚部,Vk,0r和Vk,0i分别为节点k零序电压的实部和虚部;
约束条件:
(1)等式约束条件
1)三相四线制交流网络的功率平衡约束
Figure FDA0001658204220000029
其中,每个节点i需满足中性线的电流平衡方程:
Figure FDA00016582042200000210
式中,
Figure FDA00016582042200000211
φ={a,b,c,n},γ={a,b,c,n}为电气集合,m为交流节点的个数,n表示中性相,
Figure FDA00016582042200000212
为节点i电源及负荷的三相注入功率,
Figure FDA00016582042200000218
为节点i的三相电压,
Figure FDA00016582042200000219
为中性线电压,
Figure FDA00016582042200000215
为节点k的四相电压,
Figure FDA00016582042200000216
为导纳矩阵元素;
2)直流网络的功率平衡约束
Figure FDA00016582042200000217
式中,m为直流网络总的节点个数,PGi为直流网络节点i发电机输出的有功功率,PDi为直流节点i负荷消耗的有功功率、Vi为节点i的电压幅值,Gij表示支路ij之间的电导值;
3)电力电子变压器的功率平衡约束
Phv=Pac+Pdc+Ploss
式中,Phv为主网流入的有功功率,Pac为交流端口输出功率,Pdc为直流端口的输出功率,Ploss为电力电子变压器的有功损耗;
(2)不等式约束条件
4)运行电压幅值约束
Figure FDA0001658204220000031
式中,Vidc为直流网络节点i的电压幅值,
Figure FDA0001658204220000032
为交流网络节点i的三相电压幅值,Vidc.min和Vidc.max分别为直流网络节点i的电压最小、最大值,
Figure FDA0001658204220000033
Figure FDA0001658204220000034
分别为交流网络节点i的三相电压最小、最大值;
5)可控分布式电源出力约束
直流侧分布式电源有功出力的上下限约束:
Pgdc.min≤Pgdc≤Pgdc.max
交流侧分布式电源三相有功、无功出力的上下限约束:
Figure FDA0001658204220000035
式中,Pgdc.min为直流侧分布式电源有功出力最小值,Pgdc.max为直流侧分布式电源有功出力最大值,Pgdc为直流侧分布式电源有功出力值;
Figure FDA0001658204220000036
为交流侧分布式电源有功出力最小值,
Figure FDA0001658204220000037
为交流侧分布式电源有功出力最大值、
Figure FDA0001658204220000038
为交流侧分布式电源有功出力值;
Figure FDA0001658204220000039
为交流侧分布式电源无功出力最小值、
Figure FDA00016582042200000310
为交流侧分布式电源无功出力最大值、
Figure FDA0001658204220000041
为交流侧分布式电源无功出力值;
6)电力电子变压器的不等式约束
交、直流端口电压约束:
Figure FDA0001658204220000042
交、直流端口输出功率约束:
Figure FDA0001658204220000043
式中,
Figure FDA0001658204220000044
为交流端口三相电压幅值的最小值,
Figure FDA0001658204220000045
为交流端口三相电压幅值的最大值、
Figure FDA0001658204220000046
为交流端口三相电压幅值,
Figure FDA0001658204220000047
为交流端口三相电压相角的最小值,
Figure FDA0001658204220000048
为交流端口三相电压相角的最大值,
Figure FDA0001658204220000049
为交流端口三相电压相角值,udc.min为直流端口电压幅值的最小值、udc为直流端口电压幅值,udc.max为直流端口电压幅值的最大值,
Figure FDA00016582042200000410
为交流端口三相有功的最小值、
Figure FDA00016582042200000411
为交流端口三相有功的最大值、
Figure FDA00016582042200000412
为交流端口三相输出有功,
Figure FDA00016582042200000413
为交流端口三相输出无功,
Figure FDA00016582042200000414
为交流端口三相无功的最小值,
Figure FDA00016582042200000415
为交流端口三相无功的最大值,Pdc.min为直流端口有功的最小值,Pdc.max为直流端口有功的最大值,Pdc为直流端口输出有功。
5.根据权利要求1所述的一种电力电子变压器降低配电网络电压不平衡度的方法,其特征在于,所述步骤5计算电压不平衡度的数学公式为:
Figure FDA00016582042200000416
式中,VUF和VUF0分别为节点负序电压不平衡度和节点零序电压不平衡度,Vk,2r和Vk,2i分别为节点k负序电压的实部和虚部,Vk,0r和Vk,0i分别为节点k零序电压的实部和虚部。
CN201810449983.5A 2018-05-11 2018-05-11 一种电力电子变压器降低配电网络电压不平衡度的方法 Expired - Fee Related CN108539769B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810449983.5A CN108539769B (zh) 2018-05-11 2018-05-11 一种电力电子变压器降低配电网络电压不平衡度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810449983.5A CN108539769B (zh) 2018-05-11 2018-05-11 一种电力电子变压器降低配电网络电压不平衡度的方法

Publications (2)

Publication Number Publication Date
CN108539769A CN108539769A (zh) 2018-09-14
CN108539769B true CN108539769B (zh) 2020-08-07

Family

ID=63477004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810449983.5A Expired - Fee Related CN108539769B (zh) 2018-05-11 2018-05-11 一种电力电子变压器降低配电网络电压不平衡度的方法

Country Status (1)

Country Link
CN (1) CN108539769B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103890B (zh) * 2018-09-27 2022-07-26 云南电网有限责任公司临沧供电局 一种低压配电网中电压调节方法及系统
CN109617147B (zh) * 2019-01-04 2022-06-17 华北电力大学 一种电力电子变压器运行策略优化组合方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578803A (zh) * 2015-02-04 2015-04-29 荣信电力电子股份有限公司 一种高压直流-直流电力电子变压器
CN105870944A (zh) * 2016-03-30 2016-08-17 国网智能电网研究院 一种电力电子变压器相间功率均衡控制方法
CN107966626A (zh) * 2017-12-01 2018-04-27 中国科学院电工研究所 一种电力电子变压器功率模块测试系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008317006A1 (en) * 2007-10-21 2009-04-30 Citrix Systems, Inc. Systems and methods to adaptively load balance user sessions to reduce energy consumption
CN103219908B (zh) * 2013-03-26 2015-04-01 东南大学 基于零序和负序电压注入的级联型并网逆变器直流侧平衡控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578803A (zh) * 2015-02-04 2015-04-29 荣信电力电子股份有限公司 一种高压直流-直流电力电子变压器
CN105870944A (zh) * 2016-03-30 2016-08-17 国网智能电网研究院 一种电力电子变压器相间功率均衡控制方法
CN107966626A (zh) * 2017-12-01 2018-04-27 中国科学院电工研究所 一种电力电子变压器功率模块测试系统

Also Published As

Publication number Publication date
CN108539769A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
Brandao et al. Centralized control of distributed single-phase inverters arbitrarily connected to three-phase four-wire microgrids
CN108134401B (zh) 交直流混合系统多目标潮流优化及控制方法
WO2022088554A1 (zh) 一种多端口交流电网柔性互联装置及其控制方法和系统
Jiang et al. A novel approach for modeling voltage-sourced converter-based FACTS controllers
Yao et al. Mitigating voltage unbalance using distributed solar photovoltaic inverters
CN110247421B (zh) 一种模块化双有源桥变流器系统及电气量均衡控制方法
CN106655199A (zh) 一种提高电压稳定性的vsc‑hvdc功率控制方法
dos Santos Alonso et al. Distributed selective harmonic mitigation and decoupled unbalance compensation by coordinated inverters in three-phase four-wire low-voltage networks
CN110943471A (zh) 基于系统能量最优分布的mmc故障控制策略
CN109149549A (zh) 一种采用多电压均衡器并联的双极直流系统分层结构及控制方法
CN108539769B (zh) 一种电力电子变压器降低配电网络电压不平衡度的方法
CN108418231B (zh) 一种混合多端口铁路功率变换器及其功率协调控制方法
CN107508298B (zh) 一种微电网不平衡电压分层优化控制方法
CN110460056B (zh) 串联补偿环节与交直流母线接口变换器的协调控制方法
CN111725822B (zh) 用于供电系统光伏发电分相控制方法及光伏牵引供电系统
Shabestary et al. Maximum asymmetrical support in parallel-operated grid-interactive smart inverters
Khenar et al. A control strategy for a multi-terminal HVDC network integrating wind farms to the AC grid
CN106961113B (zh) 统一潮流控制器系统及换流器无功控制方法
Callegari et al. Voltage support and selective harmonic current compensation in advanced ac microgrids
WO2024001201A1 (zh) 低压台区分相输出功率调节系统、调节方法及存储介质
Yao et al. Applying Steinmetz circuit design to mitigate voltage unbalance using distributed solar PV
Tu et al. Study on an novel multi-port energy router for AC-DC hybrid microgrid
Hu et al. Research on steady state control strategies of wind farm integration by VSC-LCC hybrid HVDC transmission
Gabbar et al. Smart distribution system Volt/VAR control using the intelligence of smart transformer
CN107910870B (zh) 一种分布式静止串联补偿器的投退控制方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200807