WO2019132413A1 - 자성코어, 인덕터 및 이를 포함하는 emi 필터 - Google Patents

자성코어, 인덕터 및 이를 포함하는 emi 필터 Download PDF

Info

Publication number
WO2019132413A1
WO2019132413A1 PCT/KR2018/016326 KR2018016326W WO2019132413A1 WO 2019132413 A1 WO2019132413 A1 WO 2019132413A1 KR 2018016326 W KR2018016326 W KR 2018016326W WO 2019132413 A1 WO2019132413 A1 WO 2019132413A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic body
magnetic
resin material
disposed
layers
Prior art date
Application number
PCT/KR2018/016326
Other languages
English (en)
French (fr)
Inventor
나현민
남택훈
김성산
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to CN202311515371.9A priority Critical patent/CN117542620A/zh
Priority to CN202311519061.4A priority patent/CN117577434A/zh
Priority to CN202311515016.1A priority patent/CN117558536A/zh
Priority to US16/954,606 priority patent/US11289259B2/en
Priority to CN201880084831.8A priority patent/CN111566764B/zh
Priority to JP2020534607A priority patent/JP7198553B2/ja
Publication of WO2019132413A1 publication Critical patent/WO2019132413A1/ko
Priority to US17/673,144 priority patent/US11842831B2/en
Priority to JP2022199960A priority patent/JP2023030029A/ja
Priority to US18/386,286 priority patent/US20240062941A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0315Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/288Shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H1/0007Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of radio frequency interference filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/005Wound, ring or feed-through type inductor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0057Constructional details comprising magnetic material

Definitions

  • the present invention relates to a magnetic core, an inductor, and an EMI filter including the same.
  • An inductor is one of electronic components applied on a printed circuit board, and can be applied to a resonance circuit, a filter circuit, a power circuit, and the like due to its electromagnetic characteristics.
  • an EMI (Electro Magnetic Interference) filter applied to the power board passes a signal required for circuit operation and removes noise.
  • FIG. 1 shows a block diagram of a general power board to which an EMI filter is applied, connected to a power supply and a load.
  • the type of noise transmitted from the power board of the EMI filter shown in FIG. 1 can be roughly classified into a radio noise of 30 MHz to 1 GHz radiated from the power board and a conductive noise of 150 to 30 MHz conducted through the power line .
  • the transmission mode of the conductive noise may be classified into a differential mode and a common mode.
  • the common mode noise returns to a large loop even if a small amount of noise is generated, so that it may affect electronic devices far away.
  • This common mode noise is caused by the impedance imbalance of the wiring system, and becomes more remarkable in a high frequency environment.
  • the inductor applied to the EMI filter shown in Fig. 1 generally uses a toroidal magnetic core including a Mn-Zn ferrite material.
  • Mn-Zn ferrite has a high magnetic permeability at 100 kHz to 1 MHz, so that common mode noise can be effectively removed.
  • Fig. 2 shows a perspective view of a general inductor 100.
  • the inductor 100 may include a magnetic core 110 and a coil 120 wound on the magnetic core 110.
  • the magnetic core 110 may be toroidal in shape and the coil 120 may include a first coil 122 wound on the magnetic core 110 and a second coil 122 wound to face the first coil 122. [ And may include a coil 124. Each of the first coil 122 and the second coil 124 may be wound on the upper surface S1, the side surface S2 and the lower surface S3 of the toroidal magnetic core 110.
  • the magnetic core 110 may further include a bobbin (not shown) for insulation from the coil 120, and the coil 120 may be formed of a wire whose surface is coated with an insulating material.
  • Fig. 3 shows an exploded perspective view of the magnetic core shown in Fig. 2, further comprising a bobbin, and Fig. 4 shows a process perspective view of the magnetic core shown in Fig.
  • the magnetic core 110 may be received in the bobbin 130.
  • the bobbin 130 may include an upper bobbin 132 and a lower bobbin 134.
  • the magnetic core (not shown) is attached to the bottom surface of the lower bobbin 132 in a state where the upper bobbin 132, the magnetic core 110, and the lower bobbin 132 are provided, 110 may be disposed.
  • the upper bobbin 131 may be coupled to the resultant structure shown in FIG. 4 (a). At this time, each component can be bonded to each other through an adhesive material.
  • an Fe-Si-based metal ribbon may be disposed on at least a part of a surface of a magnetic core of a toroidal shape including a Mn-Zn ferrite material as described above.
  • the metallic ribbon is usually accompanied by a heat treatment at a high temperature (for example, 500 ° C to 600 ° C) in order to obtain a high magnetic property (that is, a high permeability).
  • a high temperature for example, 500 ° C to 600 ° C
  • the metal ribbon after heat treatment at a high temperature has improved magnetic properties but becomes too brittle due to too weak a strength, which makes transportation and handling very difficult in the manufacturing process. This results in lowering workability and yield There is a problem that it causes deterioration.
  • the present invention provides a magnetic core component having excellent magnetic characteristics and strength, and an inductor and an EMI filter including the same.
  • the inductor includes a first magnetic body having a toroidal shape and including a ferrite and a second magnetic body disposed on an outer circumferential surface or an inner circumferential surface of the first magnetic body and the second magnetic body is disposed along the circumferential direction of the first magnetic body
  • a resin material comprising a first resin material disposed to cover an outer surface of a plurality of metal ribbons and a second resin material disposed in at least a part of a plurality of interlayer spaces, .
  • the first magnetic material may include Mn-Zn ferrite
  • the second magnetic material may include Fe-Si based metal ribbon
  • the second resin material may include 0% To 5% and between 95% and 100%.
  • the radial thickness of the first magnetic material may be greater than the radial thickness of the second magnetic material, and the radial thickness of the second magnetic material may be thicker than the radial thickness of the first resin material.
  • the thickness of the first resin material may be 20 [mu] m to 30 [mu] m.
  • the height of the first resin material layer may be higher than the height of the second magnetic material.
  • the second resin material may be disposed between 15% and 30% of the interlayer space of the plurality of layers.
  • the second resin material may be disposed 20% to 25% of the interlayer space of the plurality of layers.
  • An EMI filter includes an inductor and a capacitor, the inductor has a toroidal shape, and includes a first magnetic body including ferrite and a second magnetic body disposed on an outer circumferential surface or an inner circumferential surface of the first magnetic body,
  • the magnetic body may include a plurality of layers of metal ribbon and resin material wound along the circumferential direction of the first magnetic body.
  • the resin material may include a first resin material disposed to cover the outer surface of the plurality of metal ribbons and a second resin material disposed in at least a portion of the interlayer space of the plurality of layers.
  • the first magnetic material may include Mn-Zn ferrite
  • the second magnetic material may include Fe-Si based metal ribbon
  • the second resin material may include 0% To 5% and between 95% and 100%.
  • a portion of the second resin material may be disposed between 15% and 30% of the interlayer space of the plurality of layers.
  • the inductor and the EMI filter including the same according to the embodiment have excellent magnetic properties while improving the strength because the wound metallic layers of the magnetic ribbon in the form of metal ribbon are coated with the resin material.
  • FIG. 1 shows a block diagram of a general power board to which an EMI filter is applied, connected to a power supply and a load.
  • FIG. 2 shows a perspective view of a general inductor.
  • Fig. 3 shows an exploded perspective view of the case where the magnetic core shown in Fig. 2 further includes a bobbin.
  • FIG. 4 shows a process perspective view of the magnetic core shown in Fig.
  • FIG. 5 is a perspective view and a cross-sectional view of a magnetic core according to an embodiment of the present invention.
  • FIG. 6 is a process diagram of the magnetic core of Fig.
  • FIG. 7 to 9 are a perspective view and a cross-sectional view of a magnetic core according to another embodiment of the present invention.
  • FIG. 10 is a graph showing permeability and inductance of a ferrite material and a metal ribbon material.
  • 11 is a cross-sectional image showing the epoxy ratio of the interlayer space according to the dilution ratio of the epoxy coating liquid according to the embodiment.
  • FIG. 12 is a view for explaining a sample measurement area according to the embodiment, and FIG. 13 shows a measurement result according to the area of FIG.
  • EMI filter 14 is an example of an EMI filter including an inductor according to the embodiment.
  • the terms including ordinal, such as second, first, etc. may be used to describe various elements, but the elements are not limited to these terms. The terms are used only for the purpose of distinguishing one component from another.
  • the second component may be referred to as a first component, and similarly, the first component may also be referred to as a second component.
  • / or < / RTI &gt includes any combination of a plurality of related listed items or any of a plurality of related listed items.
  • each layer (film), area, pattern or structure may be referred to as being "on” or “under” a substrate, a layer, Includes all that is formed directly or via another layer.
  • the criteria for top / bottom or bottom / bottom of each layer are described with reference to the drawings.
  • the thickness or size of each layer (film), region, pattern or structure in the drawings may be modified for clarity and convenience of explanation, and thus does not entirely reflect the actual size.
  • the magnetic core may include a first magnetic body and a second magnetic body made of different materials.
  • the second magnetic body may be disposed on at least a part of the surface of the first magnetic body, and may include a plurality of wound metal ribbons.
  • the second magnetic body according to this embodiment may include a resin material to solve the problem of strength reduction after heat treatment of the wound multiple layers of metal ribbon.
  • the resin material may include a resin material covering the outer surface of the wound plurality of metal ribbons and a resin material disposed in at least a part of the interlayer space of the plurality of layers.
  • the interlayer space may mean a space formed between the outer peripheral surface of a layer relatively close to the centrifuge and the inner peripheral surface of a layer farther from the centrifuge, relative to the two ribbon layers adjacent to each other in the centrifugal direction as the metal ribbon is wound.
  • FIG. 5 is a perspective view and a cross-sectional view of a magnetic core according to an embodiment of the present invention
  • FIG. 6 is a process diagram of the magnetic core of FIG. 5
  • FIGS. 7 to 9 are a perspective view and a cross-sectional view of a magnetic core according to another embodiment of the present invention to be.
  • the magnetic core 800 includes a first magnetic body 810 and a second magnetic body 820.
  • the first magnetic body 810 and the second magnetic body 820 are different from each other and the second magnetic body 810 820 may be disposed on at least a portion of the surface of the first magnetic body 810.
  • the second magnetic material 820 may have a higher saturation magnetic flux density than the first magnetic material 810.
  • the first magnetic body 810 includes ferrite and the second magnetic body 820 may include a metal ribbon.
  • the magnetic permeability ( ⁇ ) of the ferrite may be 2,000 to 15,000, and the permeability ( ⁇ ) of the metal ribbon may be 100,000 to 150,000.
  • the ferrite may be a Mn-Zn ferrite
  • the metal ribbon may be a Fe-based nanocrystalline metal ribbon.
  • the Fe-based nanocrystalline metal ribbon may be a nanocrystalline metal ribbon comprising Fe and Si.
  • the thickness of the metal ribbon may be 15 ⁇ to 20 ⁇ , but is not limited thereto.
  • the second magnetic body 820 includes a second outer magnetic body 822 disposed on an outer circumferential surface S2 of the first magnetic body 810.
  • the thicknesses of the second outer magnetic body 822 and the second inner magnetic body 824 are thinner than the thickness of the first magnetic body 810, respectively. If at least one of the ratio between the thickness of the second outer magnetic body 822 and the thickness of the first magnetic body 810 and the ratio between the thickness of the second inner magnetic body 824 and the thickness of the first magnetic body 810 are adjusted, The magnetic permeability of the magnetic layer 800 can be controlled.
  • two second magnetic bodies 822 and 824 are prepared as shown in FIG.
  • Each of the second magnetic bodies 822 and 824 may be formed of a resin material on the metal ribbon wound in a plurality of layers.
  • the second inner magnetic body 824 corresponding to the inner circumferential surface S4 of the toroidal first magnetic body 810 among the prepared second magnetic bodies 822 and 824 can be inserted into the hollow of the first magnetic body 810,
  • the first magnetic body 810 can be inserted again into the hollow of the second outer magnetic body 822 corresponding to the outer circumferential surface S2.
  • the relative order of coupling between the second magnetic bodies with respect to the first magnetic body 810 may be changed.
  • the outer circumferential surface S2 of the first magnetic body 810, the second outer magnetic body 822, the inner circumferential surface S4 of the first magnetic body 810, and the second inner magnetic body 824 can be bonded by an adhesive.
  • the adhesive may be an adhesive containing at least one of epoxy resin, acrylic resin, silicone resin and varnish. As described above, when a different kind of magnetic material is bonded by using an adhesive, performance deterioration does not occur even during physical vibration.
  • each of the second magnetic bodies 822 and 824 may include a metal ribbon that is wound a plurality of times and stacked in a plurality of layers, as shown in FIG.
  • the thickness and the magnetic permeability of the second magnetic bodies 822 and 824 may be varied according to the number of layers of the metal ribbon stacked so that the magnetic permeability of the magnetic core 800 may be varied, Noise removal performance may vary.
  • the thickness of the second magnetic material elements 822 and 824 the higher the noise removing performance can be.
  • the thickness of the second magnetic material 822, 824 disposed in the region where the coil is wound is larger than the thickness of the second magnetic material 822, 824 disposed in the region where the coil is not wound, The number of layers of ribbon can be adjusted.
  • the number of layers of the metal ribbon can be controlled by the number of windings, the winding start point and the winding end point. As shown in FIG. 5A, the relationship between the starting point and the ending point of the winding will be described with reference to the second outer magnetic body 822 disposed on the outer circumferential surface S2 of the first magnetic body 810 as follows. Of course, the second outer magnetic body 822 is completed until the formation of the resin material (not shown) as well as the winding before being coupled with the first magnetic body 810. However, for convenience of explanation, It is assumed that the winding starts on the basis of one point on the outer circumferential surface of the rotor 810.
  • the second outer magnetic body 822 when winding one time from the winding start point, the second outer magnetic body 822 may include a single layer of metal ribbon, The second outer magnetic body 822 may include a two-layer metal ribbon.
  • the second outer magnetic body 822 when the winding start point and the winding end point are different from each other, for example, when winding is performed one-half from the winding start point, the second outer magnetic body 822 is formed by stacking a metal ribbon in one layer, .
  • the second outer magnetic body 822 when winding two turns from the winding starting point, the second outer magnetic body 822 includes a region where the metal ribbon is laminated in two layers and a region where the metal ribbon is laminated in three layers. In this case, if the coil is disposed in a region where the number of stacked layers is larger, the noise canceling performance of the EMI filter to which the magnetic core 800 according to the embodiment of the present invention is applied can be further enhanced.
  • the magnetic core 800 is toroidal in shape and the first coil 122 and the second coil 124 are wound on the magnetic core 800 to be symmetrical to each other
  • the first coil 122 is disposed in a region where the number of layers of the second outer magnetic body 822 disposed on the outer circumferential face is large and the second inner magnetic body 824 disposed in the inner peripheral face of the first magnetic body 810
  • the second coil 124 can be disposed in a region where the number of layers is large. Accordingly, both the first coil 122 and the second coil 124 can be disposed in the region where the number of layers stacked in the second magnetic bodies 822 and 824 is large. In the region where the number of stacked layers is small, the first coil 122 And the second coil 124 are not disposed, a high noise removing performance can be obtained.
  • the second outside magnetic material 822 and the second inside magnetic material 824 are illustrated as having the same material and thickness, but are not limited thereto.
  • the second outer magnetic body 822 and the second inner magnetic body 824 may have different materials or different magnetic permeabilities and may have different thicknesses. Accordingly, the magnetic permeability of the magnetic core 800 can have various ranges.
  • the height h1 of the first magnetic body 810 may be higher than the height h2 of the second magnetic body 820.
  • a metal ribbon having a width shorter than the height h1 of the first magnetic body 810 may be wound around the second magnetic body 820 in the manufacturing process.
  • the second outer magnetic body 822 is disposed at the boundary between the upper surface S1 and the outer peripheral surface S2 of the first magnetic body 810 and the boundary between the lower surface S3 and the outer peripheral surface S2 of the first magnetic body 810
  • the second inner magnetic body 824 is disposed at the boundary between the upper surface S1 and the inner peripheral surface S4 of the first magnetic body 810 and the boundary between the lower surface S3 and the inner peripheral surface S4 of the first magnetic body 810 .
  • the second magnetic body 820 may be disposed only on the outer peripheral surface S2 of the first magnetic body 810 or the second magnetic body 820 may be disposed on the inner peripheral surface of the first magnetic body 810 S4.
  • the magnetic core 800 when the magnetic core 800 includes heterogeneous magnetic bodies having different magnetic permeability, it is possible to remove noise in a wide frequency band. Particularly, since magnetic flux is prevented from being magnetized on the surface of a magnetic core made of Mn-Zn ferrite, the effect of removing high frequency noise is high and the degree of internal saturation is low, so that it can be applied to high power products. Further, by controlling the magnetic permeability, the volume ratio, etc. of the first magnetic body 810 and the second magnetic body 820, the performance of the magnetic core 800 can be adjusted.
  • the magnetic core including both the ferrite material and the metal ribbon material having different magnetic permeability per frequency exhibits a high inductance in a predetermined frequency region, thereby achieving high noise removing performance.
  • the resin material may be formed by heat-treating a metal ribbon wound in a plurality of layers, dipping the resultant of the heat treatment into a coating solution, and then drying the resultant.
  • the drying process may include a thermal drying process in an environment of 60 to 150 degrees.
  • the resin material R in the second magnetic body 820 can be disposed on the outer surface (upper surface, lower surface, inner peripheral surface, outer peripheral surface) of the wound metal ribbon MR, (Not shown) between the wound metal ribbons.
  • the coating liquid may be a mixed liquid in which an epoxy resin and a diluent are mixed at a predetermined ratio.
  • the diluent is not limited to a specific component as long as it can dissolve the epoxy resin. Tables 1 to 4 below show an example of a result of measuring the inductance reduction ratio by varying the ratio of the epoxy resin and the diluent.
  • Epoxy Thinner ratio Sample Inductance (@ 16kHz) Decrease (%) Before impregnation After impregnation 5: 5 #One 65.52 45.16 -31.08 #2 60.43 42.78 -29.2 # 3 59.42 41.72 -29.79 #4 65.25 46.03 -29.46 # 5 64.23 47.08 -26.7 # 6 55.08 41.16 -25.28 # 7 62.06 41.94 -32.42 #8 64.57 43.49 -32.64 # 9 63.11 43.49 -31.09 # 10 72.68 50.88 -29.99 Avg. 63.23 44.37 -29.76
  • Epoxy Thinner ratio Sample Inductance (@ 16kHz) Decrease (%) Before impregnation After impregnation 3: 7 #One 60.96 58.96 -3.28 #2 76.36 66.32 -13.15 # 3 75.26 64.16 -14.75 #4 64.41 49.25 -23.54 # 5 58.02 50.02 -13.79 # 6 61.46 45.99 -25.18 # 7 51.35 44.05 -14.22 #8 52.56 45.64 -13.15 # 9 53.93 46.08 -14.56 # 10 49.89 42.64 -14.54 Avg. 60.42 51.31 -15.02
  • Epoxy Thinner ratio Sample Inductance (@ 16kHz) Decrease (%) Before impregnation After impregnation 2: 8 #One 60.92 53.93 -11.47 #2 55.4 53.68 -3.1 # 3 49.27 44.4 -9.88 #4 45.79 48.19 5.24 # 5 58.26 54.78 -5.97 # 6 61.64 54.8 -11.1 # 7 62.14 56.59 -8.93 #8 53.22 51.44 -3.34 # 9 49.35 46.89 -4.98 # 10 44.92 43.28 -3.65 Avg. 54.09 50.8 -5.72
  • Table 5 shows the external force in g in which fracture occurs when one end of the outer circumferential surface is pressed in the radial direction after heat treatment of the metal ribbon wound in 15 turns. Referring to Table 5, it can be seen that the metal ribbon before impregnation into the coating liquid is broken when an external force of about 70 g is applied, but the strength is improved by about 3 to 10 times depending on the ratio of the epoxy resin and the diluting liquid.
  • the difference in the strength improvement by the dilution ratio is due to the difference in the viscosity of the epoxy resin depending on the dilution ratio of the coating solution (that is, the impregnation solution), and the reason why a larger amount of epoxy is fixed on the outer surface of the metal ribbon But also due to an increase in the amount of epoxy resin that has penetrated into the interlayer spaces of a plurality of layers of the metal ribbon wound in the impregnation solution. In addition, in an interlayer space of a plurality of layers of the rolled metal ribbon, the volume of the epoxy resin is expanded during the drying process, and microcracks are increased in the metal ribbon, thereby reducing the inductance. This will be described with reference to FIGS. 11 to 13. FIG.
  • the position where the resin material is disposed in the interlayer space of the ribbon wound in Figs. 11 to 13 is defined as the total height of the second magnetic body 820 in the direction from the lower surface to the upper surface Between 0% and 5% and between 95% and 100%. Preferably between 0% and 15% and between 85% and 100% relative to the total height in the direction from the lower surface to the upper surface. More preferably between 0% and 30% and between 70% and 100% relative to the total height in the direction from the lower surface to the upper surface.
  • the strength improvement and the inductance decreasing rate may be insignificant if they are arranged between 31% and 69% of the total height in the direction from the lower surface to the upper surface.
  • FIG. 11 is a cross-sectional image showing the epoxy ratio of the interlayer space according to the dilution ratio of the epoxy coating liquid according to the embodiment.
  • FIG. 11 shows an enlarged cross-section of a second magnetic material impregnated with an epoxy coating solution having 15 different turns of metal ribbon in different dilution ratios in the circumferential direction.
  • each image has a bottom in the centrifugal direction, and the upper image is an image in which all metal ribbons of the 15th layer are displayed by each dilution ratio, and the lower image is an image enlarged so that only the metal ribbon of the fifth layer appears.
  • the circles in each lower image mean the area where the epoxy resin is located.
  • the epoxy resin when the ratio of the epoxy to the diluent is 1: 9, the epoxy resin is located in a space between adjacent ribbon layers in the centrifugal direction, that is, about 10% of the total interlayer space, and the ratio of epoxy to diluent 2: 8, the epoxy resin is located at a ratio of about 25%.
  • the ratio of epoxy to diluent is 3: 7, the epoxy resin is located at a ratio of about 30% of the total interlayer space.
  • the ratio of epoxy to diluent is 5: 5 the epoxy resin is located at a ratio of about 50%.
  • the ratio of epoxy to diluent was 2: 8 and 1: 9, respectively. In terms of strength improvement, the ratio of epoxy to diluent was 2: 8 and 3: 7, respectively. And showed similar excellence.
  • FIG. 12 is a view for explaining a sample measurement area according to the embodiment, and FIG. 13 shows a measurement result according to the area of FIG.
  • FIG. 12 there is shown a top view of a second magnetic body 820 that has been impregnated with a coating liquid having a dilution ratio of 2: 8 and dried according to an embodiment.
  • a coating liquid having a dilution ratio of 2: 8 In order to measure the epoxy ratio of the interlayer space, one second magnetic body 820 is divided into four areas of Area_1 to Area_4, and a sectional image cut in each circumferential direction is taken. Therefore, the epoxy ratio of interlayer space was measured four times for one second magnetic sample, and a total of 20 measurements were performed using five samples.
  • FIG. 13 shows an enlarged sectional view of a metal ribbon wound in 15 turns in a circumferential direction after cutting a second magnetic material impregnated with an epoxy coating solution having a dilution ratio of 2: 8 in a circumferential direction.
  • each image has a common bottom end in the centrifugal direction, each top image shows which part of the cross section the image at the bottom corresponds to, and the bottom image is an image further enlarged to show only the five metal ribbons,
  • the circles in each lower image mean the area where the epoxy resin is located.
  • epoxy resin accounts for 15% of the interlayer space, and 20% in FIG. 13 (b), 25% in FIG. 13 (c), and 30% in FIG. , Respectively.
  • the epoxy ratio of the interlayer space is 15% to 30%, which is the range including the maximum value and the minimum value, and the results of 20 measurements are shown in Table 6 below.
  • the epoxy ratio of the interlayer space may be 15% to 30%, preferably 20% to 25%, more preferably 23% to 25%.
  • the thickness of the outer coating layer of the second magnetic material may be 10 [mu] m to 40 [mu] m, and preferably 20 [mu] m to 30 [mu] m. If the thickness is less than 10 mu m, the strength may be lowered and the metal ribbon may be damaged. When the thickness is larger than 40 mu m, the inductance reduction rate may be increased and the performance may be decreased.
  • the inductor according to the above-described embodiment may be included in the line filter.
  • the line filter may be a line filter for noise reduction applied to an AC-to-DC converter.
  • 14 is an example of an EMI filter including an inductor according to the embodiment.
  • the EMI filter 2000 may include a plurality of X-capacitors Cx, a plurality of Y-capacitors Cy, and an inductor L.
  • FIG. 14 the EMI filter 2000 may include a plurality of X-capacitors Cx, a plurality of Y-capacitors Cy, and an inductor L.
  • the X-capacitor Cx is connected between the first terminal P1 of the live line LIVE and the third terminal P3 of the neutral line NEUTRAL and between the second terminal P2 of the live line LIVE and the neutral line NEUTRAL) of the first and second terminals P4 and P4, respectively.
  • the plurality of Y-capacitors Cy may be arranged in series between the second terminal P2 of the live line LIVE and the fourth terminal P4 of the neutral line NEUTRAL.
  • the inductor L may be disposed between the first terminal P1 and the second terminal P2 of the live line LIVE and between the third terminal P3 and the fourth terminal P4 of the neutral line NEUTRAL have.
  • the inductor L may be the inductor 100 according to the above-described embodiment.
  • the EMI filter 2000 removes the common mode noise due to the primary inductance and the composite impedance characteristic of the Y-capacitor Cy when the common-mode noise is introduced.
  • the primary side inductance of the live line LIVE is obtained by measuring the inductance between the first and second terminals P1 and P2 while the third and fourth terminals P3 and P4 are opened
  • the primary side inductance of the neutral line NEUTRAL is obtained by measuring the inductance between the third and fourth terminals P3 and P4 while the first and second terminals P1 and P2 are opened .
  • the EMI filter 2000 eliminates differential mode noise with the leakage inductance and the combined impedance characteristic of the X-capacitor Cx when differential mode noise is introduced.
  • the leakage inductance of the live line LIVE can be obtained by measuring the inductance between the first and second terminals P1 and P2 in a state where the third and fourth terminals P3 and P4 are short-
  • the leakage inductance of the neutral line NEUTRAL can be obtained by measuring the inductance between the third and fourth terminals P3 and P4 in a state where the first and second terminals P1 and P2 are short-circuited.
  • the inductor of the EMI filter 2000 according to the embodiment corresponds to the inductor according to the above-described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)

Abstract

본 발명의 일 실시예에 따른 인덕터는 토로이달 형상을 가지며, 페라이트를 포함하는 제1 자성체와 제1 자성체의 외주면 또는 내주면에 배치되는 제2 자성체를 포함하고, 제2 자성체는 제1 자성체의 원주 방향을 따라 감겨있는 복수층의 금속 리본 및 수지물질을 포함하고, 수지물질은 복수층의 금속 리본의 외표면을 덮도록 배치된 제1 수지물질과 복수층의 층간 공간 중 적어도 일부에 배치된 제2 수지물질을 포함한다.

Description

자성코어, 인덕터 및 이를 포함하는 EMI 필터
본 발명은 자성코어, 인덕터 및 이를 포함하는 EMI 필터에 관한 것이다.
인덕터는 인쇄회로기판 상에 적용되는 전자부품 중 하나이며, 전자기적 특성으로 인하여 공진 회로, 필터 회로, 파워 회로 등에 적용될 수 있다.
한편, 파워보드 내에 적용되는 EMI(Electro Magnetic Interference) 필터는 회로 동작에 필요한 신호는 통과시키고, 잡음은 제거하는 역할을 한다.
도 1은 EMI 필터가 적용된 일반적인 파워보드가 전원과 부하에 연결된 블럭도를 나타낸다.
도 1에 도시된 EMI 필터의 파워보드로부터 전달되는 잡음의 종류는 크게 파워보드에서 방사되는 30 ㎒ 내지 1 ㎓의 방사성 잡음과 전원 라인을 통하여 전도되는 150 ㎑ 내지 30 ㎒의 전도성 잡음으로 구분할 수 있다.
전도성 잡음의 전달 방식은 차동 모드(differential mode) 및 공통 모드(common mode)로 구분될 수 있다. 이 중에서, 공통 모드 잡음은 적은 양이더라도 큰 루프를 그리며 되돌아오기 때문에, 멀리 떨어져 있는 전자기기에도 영향을 미칠 수 있다. 이러한 공통 모드 잡음은 배선계의 임피던스 불평행에 의하여 발생하기도 하며, 고주파 환경일수록 현저해진다.
공통 모드 잡음을 제거하기 위하여, 도 1에 도시된 EMI 필터에 적용되는 인덕터는 일반적으로 Mn-Zn 계 페라이트(Ferrite) 소재를 포함하는 토로이달(toroidal) 형상의 자성코어를 사용한다. Mn-Zn 계 페라이트는 100 ㎑ 내지 1 ㎒에서 투자율이 높으므로, 공통 모드 잡음을 효과적으로 제거할 수 있다.
도 2는 일반적인 인덕터(100)의 사시도를 나타낸다.
도 2를 참조하면, 인덕터(100)는 자성코어(110) 및 자성코어(110) 상에 권선된 코일(120)을 포함할 수 있다.
자성코어(110)는 토로이달(toroidal) 형상일 수 있으며, 코일(120)은 자성코어(110) 상에 권선된 제1 코일(122) 및 제1 코일(122)에 대향하도록 권선된 제2 코일(124)을 포함할 수 있다. 제1 코일(122) 및 제2 코일(124) 각각은 토로이달 형상의 자성코어(110)의 상면(S1), 측면(S2) 및 하면(S3)에 권선될 수 있다.
자성코어(110)는 코일(120)과 절연하기 위한 보빈(미도시)을 더 포함할 수 있으며, 코일(120)은 표면이 절연 소재로 피복된 도선으로 이루어질 수 있다.
도 3은 도 2에 도시된 자성 코어가 보빈을 더 포함하는 경우의 분해 사시도를 나타내고, 도 4는 도 3에 도시된 자성코어의 공정 사시도를 나타낸다.
도 3을 참조하면, 자성코어(110)는 보빈(130)에 수용될 수 있다. 보빈(130)은 상부 보빈(132) 및 하부 보빈(134)을 포함할 수 있다.
다음으로, 도 4의 (a)를 참조하면, 도 3과 같이 상부 보빈(132), 자성코어(110) 및 하부 보빈(132)이 마련된 상태에서 하부 보빈(132)의 바닥면에 자성코어(110)가 배치될 수 있다. 이후, 도 4의 (b)와 같이 도 4의 (a)에 도시된 결과물에 상부 보빈(131)이 결합될 수 있다. 이때, 각 구성 요소는 접착물질을 통해 서로 접착될 수 있다.
상술한 인덕터의 성능 개선을 위해, 자성코어(110)를 이종 물질로 구성하는 등, 다양한 노력이 있어 왔다. 일례로, 전술한 바와 같은 Mn-Zn 계 페라이트(Ferrite) 소재를 포함하는 토로이달(toroidal) 형상의 자성코어 표면의 적어도 일부에 Fe-Si계열의 금속 리본이 배치될 수 있다. 그런데, 금속 리본은 높은 자성 특성(즉, 높은 투자율)을 얻기 위하여 고온(예컨대, 500℃ 내지 600℃)의 열처리가 수반되는 것이 보통이다. 그러나, 고온의 열처리를 거친 금속 리본은 자성 특성은 향상되나 강도가 지나치게 약해져 작은 충격에도 깨지기 쉬운(Brittle) 상태가 되어, 제작 공정 상 운송과 취급이 매우 어려워지며, 이는 작업성 저하와 완제품의 수율 저하를 야기하는 문제점이 있다.
본 발명이 이루고자 하는 기술적 과제는 자성 특성과 강도가 우수한 자성 코어 부품과 이를 포함하는 인덕터 및 EMI 필터를 제공하는 것이다.
일 실시예에 따른 인덕터는 토로이달 형상을 가지며, 페라이트를 포함하는 제1 자성체와 제1 자성체의 외주면 또는 내주면에 배치되는 제2 자성체를 포함하고, 제2 자성체는 제1 자성체의 원주 방향을 따라 감겨있는 복수층의 금속 리본 및 수지물질을 포함하고, 수지물질은 복수층의 금속 리본의 외표면을 덮도록 배치된 제1 수지물질과 복수층의 층간 공간 중 적어도 일부에 배치된 제2 수지물질을 포함한다.
예를 들어, 제1 자성체는 Mn-Zn 계 페라이트를 포함하고, 제2 자성체는 Fe-Si계 금속 리본을 포함하고, 제2 수지물질은 제2 자성체의 전체 높이 대비 하면에서부터 상면 방향으로 0% 내지 5% 사이 및 95% 내지 100% 사이에 배치될 수 있다.
예를 들어, 제 1 자성체의 직경 방향 두께는 제2 자성체의 직경 방향 두께보다 두껍고, 제2 자성체의 직경 방향 두께는 제1 수지물질의 직경 방향 두께보다 두꺼울 수 있다.
예를 들어, 제1 수지물질의 두께는 20μm 내지 30μm일 수 있다.
예를 들어, 제1 수지 물질층 높이는 제2 자성체의 높이보다 높을 수 있다.
예를 들어, 제2 수지물질은 복수 층의 층간 공간대비 15% 내지 30% 배치될 수 있다.
예를 들어, 제2 수지물질은 복수 층의 층간 공간대비 20% 내지 25% 배치될 수 있다.
실시예에 따른 EMI 필터는, 인덕터 및 캐패시터를 포함하고, 인덕터는 토로이달 형상을 가지며, 페라이트를 포함하는 제1 자성체와 제1 자성체의 외주면 또는 내주면에 배치되는 제2 자성체를 포함하고, 제2 자성체는 제1 자성체의 원주 방향을 따라 감겨있는 복수층의 금속 리본 및 수지물질을 포함할 수 있다. 여기서 수지물질은 복수층의 금속 리본의 외표면을 덮도록 배치된 제1 수지물질과 복수층의 층간 공간 중 적어도 일부에 배치된 제2 수지물질을 포함할 수 있다.
예를 들어, 제1 자성체는 Mn-Zn 계 페라이트를 포함하고, 제2 자성체는 Fe-Si계 금속 리본을 포함하고, 제2 수지물질은 제2 자성체의 전체 높이 대비 하면에서부터 상면 방향으로 0% 내지 5% 사이 및 95% 내지 100% 사이에 배치될 수 있다.
예를 들어, 제2 수지물질의 일부는 복수 층의 층간 공간대비 15% 내지 30% 배치될 수 있다.
실시 예에 의한 인덕터 및 이를 포함하는 EMI 필터는 권취된 복수 층의 금속 리본 형상의 자성 코어가 수지물질에 의해 코팅되므로 강도가 향상되면서도 우수한 자성 특성을 갖는다.
도 1은 EMI 필터가 적용된 일반적인 파워보드가 전원과 부하에 연결된 블럭도를 나타낸다.
도 2는 일반적인 인덕터의 사시도를 나타낸다.
도 3은 도 2에 도시된 자성 코어가 보빈을 더 포함하는 경우의 분해 사시도를 나타낸다.
도 4는 도 3에 도시된 자성코어의 공정 사시도를 나타낸다.
도 5는 본 발명의 일 실시예에 따른 자성코어의 사시도 및 단면도이다.
도 6은 도 5의 자성코어의 공정도이다.
도 7 내지 9는 본 발명의 또 다른 실시예에 따른 자성코어의 사시도 및 단면도이다.
도 10은 페라이트 소재 및 금속리본 소재의 투자율 및 인덕턴스를 나타내는 그래프이다.
도 11은 실시 예에 따른 에폭시 코팅액의 희석 비율에 따른 층간 공간의 에폭시 비율을 나타내는 단면 이미지이다.
도 12는 실시예에 따른 샘플 측정 영역을 설명하기 위한 도면이며, 도 13은 도 12의 영역에 따른 측정 결과를 나타낸다.
도 14는 실시예에 의한 인덕터를 포함하는 EMI 필터의 일례이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
실시예들의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조들이 기판, 각층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성된다는 기재는, 직접(directly) 또는 다른 층을 개재하여 형성되는 것을 모두 포함한다. 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다. 또한, 도면에서 각 층(막), 영역, 패턴 또는 구조물들의 두께나 크기는 설명의 명확성 및 편의를 위하여 변형될 수 있으므로, 실제 크기를 전적으로 반영하는 것은 아니다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 발명의 일 실시예에 의하면, 자성코어는 서로 다른 물질로 구성된 제1 자성체와 제2 자성체를 포함할 수 있다. 여기서 제2 자성체는 제1 자성체의 적어도 일부 표면에 배치될 수 있으며, 권취된 복수 층의 금속 리본을 포함할 수 있다. 본 실시예에 따른 제2 자성체는, 권취된 복수 층의 금속 리본의 열처리 후의 강도 약화 문제를 해소하기 위해 수지물질을 포함할 수 있다. 수지물질은 권취된 복수 층의 금속 리본의 외표면을 덮는 수지물질과, 복수 층의 층간 공간의 적어도 일부에 배치된 수지물질을 포함할 수 있다. 여기서 층간 공간이라 함은, 금속 리본이 권취됨에 따라 원심 방향으로 서로 인접한 두 리본 층에서, 상대적으로 원심에 가까운 층의 외주면과 상대적으로 원심에서 먼 층의 내주면 사이에 형성된 공간을 의미할 수 있다. 수지물질의 형성 방법과 특성은 보다 상세히 후술하기로 하고, 먼저 도 5 내지 8을 참조하여 본 발명의 실시예들에 따른 이종의 자성체들이 자성 코어를 구성하는 다양한 형태를 설명한다. 설명의 편의를 위하여, 도 5 내지 도 7에서 수지물질의 도시는 생략되었다.
도 5는 본 발명의 일 실시예에 따른 자성코어의 사시도 및 단면도이고, 도 6는 도 5의 자성코어의 공정도이고, 도 7 내지 9는 본 발명의 다른 실시예에 따른 자성코어의 사시도 및 단면도이다.
도 5를 참조하면, 자성코어(800)는 제1 자성체(810) 및 제2 자성체(820)를 포함하고, 제1 자성체(810) 및 제2 자성체(820)는 이종이며, 제2 자성체(820)는 제1 자성체(810)의 적어도 일부 표면에 배치될 수 있다. 이때, 제2 자성체(820)는 제1 자성체(810)보다 높은 포화자속밀도를 가질 수 있다.
여기서, 제1 자성체(810)는 페라이트를 포함하고, 제2 자성체(820)는 금속리본을 포함할 수 있다. 여기서, 페라이트의 투자율(μ)은 2,000내지 15,000일 수 있으며, 금속리본의 투자율(μ)은 100,000 내지 150,000일 수 있다. 예를 들어, 페라이트는 Mn-Zn 계 페라이트일 수 있으며, 금속리본은 Fe계 나노결정질 금속리본일 수 있다. Fe계 나노결정질 금속리본은 Fe 및 Si를 포함하는 나노결정질 금속리본일 수 있다. 금속 리본의 두께는 15μm 내지 20μm일 수 있으나, 반드시 이에 한정되는 것은 아니다.
이때, 제1 자성체(810) 및 제2 자성체(820)는 각각 토로이달 형상이며, 제2 자성체(820)는 제1 자성체(810)의 외주면(S2)에 배치되는 제2 외측자성체(822) 및 제1 자성체(810)의 내주면(S4))에 배치되는 제2 내측자성체(824)를 포함할 수 있다.
이때, 제2 외측자성체(822) 및 제2 내측자성체(824)의 두께는 각각 제1 자성체(810)의 두께보다 얇다. 제2 외측자성체(822)의 두께와 제1 자성체(810)의 두께 간 비율 및 제2 내측자성체(824)의 두께와 제1 자성체(810)의 두께 간 비율 중 적어도 하나를 조절하면, 자성코어(800)의 투자율을 조절할 수 있다.
이와 같은 자성코어를 제작하기 위하여, 도 6에서와 같이 두 개의 제2 자성체(822, 824)가 각각 준비된다. 각 제2 자성체(822, 824)는 복수 층으로 권취된 금속 리본에 수지물질이 형성된 것일 수 있다. 준비된 제2 자성체(822, 824) 중 토로이달 형상의 제1 자성체(810)의 내주면(S4)에 대응되는 제2 내측자성체(824)는 제1 자성체(810)의 중공에 삽입될 수 있으며, 제1 자성체(810)는 다시 외주면(S2)에 대응되는 제2 외측자성체(822)의 중공에 삽입될 수 있다. 물론, 제2 자성체들간의 제1 자성체(810)에 대한 상대적인 결합 순서는 변경되어도 무관하다.
이때, 제1 자성체(810)의 외주면(S2)과 제2 외측자성체(822) 및 제1 자성체(810)의 내주면(S4)과 제2 내측자성체(824)는 접착제에 의하여 접착될 수 있다. 이때, 접착제는 에폭시계 수지, 아크릴계 수지, 실리콘계 수지 및 니스 중 적어도 하나를 포함하는 접착제일 수 있다. 이와 같이, 접착제를 이용하여 이종의 자성체를 접합시키면, 물리적인 진동 시에도 성능 저하가 발생하지 않게 된다.
여기서, 제2 자성체(822, 824) 각각은 도 5에서 도시된 바와 같이, 복수 회 와인딩되어 복수 층으로 적층된 금속리본을 포함할 수 있다. 적층된 금속리본의 층 수에 따라 제2 자성체(822, 824)의 두께 및 투자율이 달라질 수 있으며, 이에 따라 자성코어(800)의 투자율이 달라질 수 있고, 자성코어(800)가 적용된 EMI 필터의 노이즈 제거 성능이 달라질 수 있다.
즉, 제2 자성체(822, 824)의 두께가 클수록 노이즈 제거 성능이 높아질 수 있다. 이러한 원리를 이용하여, 코일이 권선되는 영역에 배치되는 제2 자성체(822, 824)의 두께가 코일이 권선되지 않는 영역에 배치되는 제2 자성체(822, 824)의 두께보다 두껍도록 적층된 금속리본의 층 수를 조절할 수 있다.
금속리본의 층 수는 와인딩 횟수, 와인딩 시작 지점 및 와인딩 종료 지점에 의하여 조절될 수 있다. 도 5의 (a)에 도시된 바와 같이 제1 자성체(810)의 외주면(S2)에 배치된 제2 외측자성체(822)를 기준으로 와인딩의 시작점과 종료 지점의 관계를 설명하면 다음과 같다. 물론, 제2 외측자성체(822)는 제1 자성체(810)와 결합되기 이전에 와인딩은 물론 수지물질(미도시)의 형성까지 완료된 상태임은 전술한 바와 같으나, 설명의 편의를 위해 제1 자성체(810)의 외주면 일 지점을 기준으로 와인딩이 시작되는 것으로 가정한다.
금속리본인 제2 외측자성체(822)를 와인딩하는 경우, 와인딩 시작 지점으로부터 한 바퀴 와인딩할 경우 제2 외측자성체(822)는 1층의 금속리본을 포함할 수 있고, 와인딩 시작 지점으로부터 두 바퀴 와인딩할 경우 제2 외측자성체(822)는 2층의 금속리본을 포함할 수 있다. 한편, 와인딩 시작 지점과 와인딩 종료 지점이 상이한 경우, 예를 들어 와인딩 시작 지점으로부터 한바퀴 반 와인딩할 경우 제2 외측자성체(822)는 1층으로 금속리본이 적층된 영역과 2층으로 금속리본이 적층된 영역을 포함하게 된다. 또는, 와인딩 시작 지점으로부터 두 바퀴 반 와인딩할 경우 제2 외측자성체(822)는 2층으로 금속리본이 적층된 영역과 3층으로 금속리본이 적층된 영역을 포함하게 된다. 이러한 경우, 적층된 층 수가 더 많은 영역에 코일을 배치하면, 본 발명의 실시예에 따른 자성코어(800)가 적용된 EMI 필터의 노이즈 제거 성능을 더욱 높일 수 있다.
예를 들어, 자성코어(800)가 토로이달 형상이고, 자성코어(800) 상에 제1 코일(122) 및 제2 코일(124)이 서로 대칭되도록 권선되는 경우, 제1 자성체(810)의 외주면에 배치되는 제2 외측자성체(822)의 적층된 층 수가 많은 영역에 제1 코일(122)을 배치하고, 제1 자성체(810)의 내주면에 배치되는 제2 내측자성체(824)의 적층된 층 수가 많은 영역에 제2 코일(124)을 배치할 수 있다. 이에 따라, 제1 코일(122) 및 제2 코일(124) 모두 제2 자성체(822, 824)에서 적층된 층 수가 많은 영역에 배치될 수 있고, 적층된 층 수가 적은 영역에는 제1 코일(122) 및 제2 코일(124)이 배치되지 않으므로, 높은 노이즈 제거 성능을 얻을 수 있다.
제2 외측자성체(822) 및 제2 내측자성체(824)가 동일한 소재 및 두께를 가지는 것으로 예시되어 있으나, 이로 제한되는 것은 아니다. 제2 외측자성체(822) 및 제2 내측자성체(824)는 상이한 소재 또는 상이한 투자율을 가질 수 있으며, 상이한 두께를 가질 수 있다. 이에 따라, 자성코어(800)의 투자율은 다양한 범위를 가질 수 있다.
한편, 도 7과 같이, 제1 자성체(810)의 높이(h1)가 제2 자성체(820)의 높이(h2)보다 높을 수 있다. 이를 위하여, 제2 자성체(820)의 제조 공정 상에서, 제1 자성체(810)의 높이(h1)보다 폭이 짧은 금속리본을 권취하면 된다. 이에 따르면, 제2 외측자성체(822)는 제1 자성체(810)의 상면(S1)과 외주면(S2) 간의 경계 및 제1 자성체(810)의 하면(S3)과 외주면(S2) 간의 경계에 배치되지 않으며, 제2 내측자성체(824)는 제1 자성체(810)의 상면(S1)과 내주면(S4) 간의 경계 및 제1 자성체(810)의 하면(S3)과 내주면(S4) 간의 경계에 배치되지 않을 수 있다. 이에 따라, 제1 자성체(810)의 상면(S1)과 외주면(S2) 간의 경계, 제1 자성체(810)의 하면(S3)과 외주면(S2) 간의 경계, 제1 자성체(810)의 상면(S1)과 내주면(S4) 간의 경계 및 제1 자성체(810)의 하면(S3)과 내주면(S4) 간의 경계 등에서 제2 외측자성체(822)의 크랙을 방지할 수 있다.
또는, 도 8과 같이, 제2 자성체(820)가 제1 자성체(810)의 외주면(S2)에만 배치되거나, 도 9와 같이, 제2 자성체(820)가 제1 자성체(810)의 내주면(S4)에만 배치될 수도 있다.
이와 같이, 자성코어(800)가 투자율이 상이한 이종의 자성체를 포함하면, 광범위한 주파수 대역의 노이즈 제거가 가능하다. 특히, Mn-Zn 계 페라이트로만 이루어진 토로이달 형태의 자성코어에 비하여, 표면에 자속이 몰리는 현상이 방지되므로 고주파 노이즈 제거 효과가 크고, 내부 포화도가 낮아지므로 고전력 제품에 적용이 가능하다. 또한, 제1 자성체(810) 및 제2 자성체(820)의 투자율, 부피비 등을 조절하면, 자성코어(800)의 성능 조절이 가능하다.
한편, 도 10을 참조하면, 주파수 별 투자율이 상이한 페라이트 소재와 금속리본 소재를 모두 포함하는 자성코어는 소정 주파수 영역에서 인덕턴스가 높게 나타나며, 이에 따라 높은 노이즈 제거 성능을 얻을 수 있음을 알 수 있다.
지금까지 실시예들에 따른 제1 자성체와 제2 자성체의 상호 배치 관계에 대하여 설명하였다. 이하에서는 본 발명의 일 실시예에 따른 제2 자성체의 수지물질을 보다 상세히 설명한다.
일 실시예에 의하면, 수지물질은 복수의 층으로 권취된 금속 리본을 열처리 후, 열처리 결과물을 코팅액에 함침시킨(dipping) 후 건조시키는 방법으로 형성될 수 있다. 실시예에 따라, 건조 과정은 60도 내지 150도의 환경에서 열건조 과정을 포함할 수 있다.
도 8의 (c)에 도시된 바와 같이, 제2 자성체(820)에서 수지물질(R)은 권취된 금속리본(MR)의 외표면(상면, 하면, 내주면, 외주면)에 배치될 수 있으며, 권취된 금속 리본 사이사이(미도시)에도 배치될 수 있다.
일 실시예에 의하면, 코팅액은 에폭시 수지와 희석제가 소정 비율로 혼합된 혼합액일 수 있다. 희석제는 에폭시 수지를 용해시킬 수만 있다면, 특정 성분에 국한되는 것은 아니다. 아래의 표 1 내지 표 4는 에폭시 수지와 희석제의 비율을 달리하여 인덕턴스 감소율을 측정한 결과의 일례를 나타낸다.
에폭시: 희석제비율 샘플 인덕턴스(@16kHz) 감소율(%)
함침 전 함침 후
5:5 #1 65.52 45.16 -31.08
#2 60.43 42.78 -29.2
#3 59.42 41.72 -29.79
#4 65.25 46.03 -29.46
#5 64.23 47.08 -26.7
#6 55.08 41.16 -25.28
#7 62.06 41.94 -32.42
#8 64.57 43.49 -32.64
#9 63.11 43.49 -31.09
#10 72.68 50.88 -29.99
Avg. 63.23 44.37 -29.76
에폭시: 희석제비율 샘플 인덕턴스(@16kHz) 감소율(%)
함침 전 함침 후
3:7 #1 60.96 58.96 -3.28
#2 76.36 66.32 -13.15
#3 75.26 64.16 -14.75
#4 64.41 49.25 -23.54
#5 58.02 50.02 -13.79
#6 61.46 45.99 -25.18
#7 51.35 44.05 -14.22
#8 52.56 45.64 -13.15
#9 53.93 46.08 -14.56
#10 49.89 42.64 -14.54
Avg. 60.42 51.31 -15.02
에폭시: 희석제비율 샘플 인덕턴스(@16kHz) 감소율(%)
함침 전 함침 후
2:8 #1 60.92 53.93 -11.47
#2 55.4 53.68 -3.1
#3 49.27 44.4 -9.88
#4 45.79 48.19 5.24
#5 58.26 54.78 -5.97
#6 61.64 54.8 -11.1
#7 62.14 56.59 -8.93
#8 53.22 51.44 -3.34
#9 49.35 46.89 -4.98
#10 44.92 43.28 -3.65
Avg. 54.09 50.8 -5.72
에폭시: 희석제비율 샘플 인덕턴스(@16kHz) 감소율(%)
함침 전 함침 후
1:9 #1 49.14 46.18 -6.02
#2 44.47 42.21 -5.09
#3 38.33 36.68 -4.3
#4 38.92 36.43 -6.39
#5 40.07 36.93 -7.85
#6 49.13 49.68 1.13
#7 57.5 55.41 -3.63
#8 44.08 42.13 -4.43
#9 41.62 41.4 -0.54
#10 44.62 40.23 -9.84
Avg. 44.79 42.73 -4.7
표 1 내지 표 4를 참조하면, 에폭시 수지의 비율이 높을수록 인덕턴스 감소율이 높으며, 희석제의 비율이 높을수록 인턱턴스 감소율이 적음을 알 수 있다. 구체적으로, 에폭시 수지와 희석제의 비율이 5:5 인 경우 30퍼센트에 가까운 인덕턴스 감소율이 나타났으며, 에폭시 수지와 희석제의 비율이 3:7인 경우 약 15퍼센트에 가까운 인덕턴스 감소율이 나타났다. 다만, 에폭시 수지와 희석제의 비율이 2:8인 경우와 1:9인 경우의 인덕턴스 감소율은 각각 5.72%와 4.7%로 차이는 크지 않되, 비교적 양호한 인턱턴스 감소율을 보였다.
다음으로, 표 5를 참조하여 각 희석제별 강도를 비교한다.
샘플 함침 전 에폭시: 희석제 함량 비율
5:5 3:7 2:8 1:9
#1 75 757 515 386 240
#2 56 806 494 511 297
#3 62 770 544 420 250
#4 68 774 580 583 213
#5 80 857 482 467 222
#6 61 821 543 520 236
#7 88 890 490 478 221
#8 69 874 340 478 234
#9 76 745 422 460 219
#10 63 717 499 425 174
Avg. 69.8 801.1 490.9 472.8 230.6
표 5는 15층(turn)으로 권취된 금속 리본을 열처리 후 외주면의 일 지점을 지름방향으로 가압할 때 파손이 발생하는 외력을 g 단위로 나타낸 것이다. 표 5를 참조하면, 코팅액에 함침하기 전의 금속 리본은 약 70g의 외력이 가해질 때 파손되나, 에폭시 수지와 희석액의 비율에 따라 약 3배에서 10배 이상의 강도 향상이 있음을 알 수 있다.
이러한 희석 비율별 강도 향상의 차이는, 코팅액(즉, 함침액)의 희석 비율에 따라 에폭시 수지의 점성 차이로 함침 후 금속 리본을 건져 올릴 때 금속 리본의 외각에 보다 많은 양의 에폭시가 정착되는 이유도 있으나, 함침액 속에서 권취된 금속 리본의 복수 층의 층간 공간에 침투한 에폭시 수지의 양 또한 커짐에서 기인한다. 또한, 권취된 금속 리본의 복수 층의 층간 공간에서 에폭시 수지가 건조 과정에서 부피가 팽창하여 금속 리본에 미세 크랙이 증가하여 인덕턴스 감소 효과가 발생할 수 있다. 이를 도 11 내지 도 13을 참조하여 설명한다. 도시되지 않았지만, 도 11 내지 도 13 에서 권취된 리본의 층간 공간에서 수지물질이 배치되는 위치는 제 2 자성체(820)의 전체 높이를 하면에서부터 상면까지로 정의할 때, 하면으로부터 상면 방향으로 전체 높이 대비0% 내지5% 사이 및 95% 내지 100% 사이에 배치될 수 있다. 바람직하게는 하면으로부터 상면 방향으로 전체 높이 대비 0% 내지 15% 사이 및 85% 내지 100% 사이에 배치될 수 있다. 더욱 바람직하게는 하면으로부터 상면 방향으로 전체 높이 대비 0% 내지 30% 사이 및 70% 내지 100% 사이에 배치될 수 있다. 하면으로부터 상면 방향으로 전체 높이 대비 31% 내지 69% 사이에 배치될 경우 강도 향상 및 인덕턴스 감소율이 미미할 수 있다.
도 11은 실시 예에 따른 에폭시 코팅액의 희석 비율에 따른 층간 공간의 에폭시 비율을 나타내는 단면 이미지이다. 도 11에서는 15층(turn)으로 권취된 금속 리본을 희석 비율을 각각 달리한 에폭시 코팅액에 함침한 제2 자성체를 원주방향으로 절단한 후 단면을 확대한 이미지를 나타낸다. 또한 도 11에서 각 이미지는 공통적으로 하단이 원심 방향이며, 각 희석 비율별로 상단 이미지는 15층의 금속 리본이 모두 나타난 이미지이며, 하단 이미지는 5층의 금속 리본만 나타나도록 더욱 확대한 이미지이며, 각 하단 이미지의 원들은 에폭시 수지가 위치한 영역을 의미한다.
도 11을 참조하면, 에폭시와 희석제의 비율이 1:9인 경우 원심 방향으로 인접한 리본층 사이의 공간, 즉, 층간 공간 전체 대비 약 10% 비율로 에폭시 수지가 위치하며, 에폭시와 희석제의 비율이 2:8인 경우 약 25% 비율로 에폭시 수지가 위치한다. 또한, 에폭시와 희석제의 비율이 3:7인 경우 층간 공간 전체 대비 약 30% 비율로 에폭시 수지가 위치하며, 에폭시와 희석제의 비율이 5:5인 경우 약 50% 비율로 에폭시 수지가 위치한다.
도 11에 나타난 바와 같이, 층간 공간에 에폭시 수지가 차지하는 비율에 따라 강도가 달라짐을 알 수 있다.
이하에서는 표 1내지 4의 인덕턴스 감소량과, 표 5의 강도 향상을 종합적으로 비교한다.
에폭시와 희석액의 비율이 5:5인 경우 가장 강도가 높아지나 인덕턴스 감소율이 너무 높았으며, 에폭시와 희석액의 비율이 1:9인 경우 인덕턴스 감소율이 가장 낮으나, 강도 향상폭이 낮았다.
또한, 에폭시와 희석액의 비율이 각각 2:8인 경우와 1:9인 경우 인덕턴스 감소율 측면에서 유사한 우수성을 보였으며, 강도 향상 측면에서는 에폭시와 희석액의 비율이 각각 2:8과 3:7인 경우 유사한 우수성을 보였다.
종합해보면, 에폭시와 희석액의 비율이 2:8인 경우, 인덕턴스 감소율은 1:9인 경우와 유사할 정도의 우수성을 보였으며, 강도는 3:7인 경우와 유사할 정도의 우수성을 보인 바, 가장 바람직한 비율이라 할 수 있다.
따라서, 이하에서는 에폭시와 희석액의 비율이 2:8인 경우 층간 공간의 에폭시 비율을 도 12 내지 도 13을 참조하여 보다 구체적으로 살펴본다.
도 12는 실시예에 따른 샘플 측정 영역을 설명하기 위한 도면이며, 도 13은 도 12의 영역에 따른 측정 결과를 나타낸다.
도 12를 참조하면, 실시 예에 따른 2:8의 희석비를 갖는 코팅액에 함침된 후 건조된 제2 자성체(820)의 평면도가 도시된다. 층간 공간의 에폭시 비율을 측정하기 위해, 하나의 제 2 자성체(820)가 Area_1 내지 Area_4의 4개 영역으로 분할되며, 각각의 원주방향으로 절단된 단면 영상이 촬영된다. 따라서, 하나의 제2 자성체 샘플에 대하여 층간 공간의 에폭시 비율이 4회 측정되며, 5개의 샘플을 이용하여 총 20회의 측정이 수행되었다.
도 13에서는 이러한 측정 과정에서 촬영된 일부 샘플의 이미지가 도시된다. 도 13에서 15층(turn)으로 권취된 금속 리본을 2:8의 희석비율을 갖는 에폭시 코팅액에 함침한 제2 자성체를 원주방향으로 절단한 후 단면을 확대한 이미지를 나타낸다. 또한, 도 13에서 각 이미지는 공통적으로 하단이 원심 방향이며, 각 상단 이미지는 하단의 이미지가 단면의 어느 부분에 해당하는지를 나타내며, 하단 이미지는 5층의 금속 리본만 나타나도록 더욱 확대한 이미지이며, 각 하단 이미지의 원들은 에폭시 수지가 위치한 영역을 의미한다.
도 13의 (a)에서는 층간 공간에 에폭시 수지가 15% 비율을 차지하며, 도 13의 (b)에서는 20%, 도 13의 (c)에서는 25%, 도 13의 (d)에서는 30%의 비율을 각각 에폭시가 차지하는 것으로 나타나 있다.
종합하면, 희석비가 2:8 인 경우, 층간 공간의 에폭시 비율은 15% 내지 30% 이나, 이는 최대 값과 최소 값을 포함하는 범위로, 20회의 측정 결과는 아래 표 6과 같다.
샘플구분 Area_1 Area_2 Area_3 Area_4 Total
#1 15 25 30 25
#2 25 20 25 20
#3 25 15 25 20
#4 30 30 25 30
#5 25 25 20 25
평균 24 23 25 24 24
표 6을 참조하면, 총 20회 실험에서 15%인 경우가 2회, 20%인 경우가 4회, 25%인 경우가 7회, 30%인 경우가 3회로 각각 나타났다. 따라서, 희석비가 2:8인 경우, 층간 공간의 에폭시 비율은 15% 내지 30%, 바람직하게는 20% 내지 25%, 보다 바람직하게는 23% 내지 25%일 수 있다. 또한, 도시되지는 않았으나 제2 자성체의 외각 코팅층의 두께는 10μm 내지 40μm 일 수 있으며, 바람직하게는20μm 내지 30μm일 수 있다. 두께가 10μm보다 작을 경우 강도가 낮아져 금속 리본이 파손될 수 있으며, 40μm보다 클 경우 인덕턴스 감소율이 커져서 성능이 감소될 수 있다.
한편, 전술한 실시 예에 의한 인덕터는 라인 필터에 포함될 수 있다. 예를 들어, 라인 필터는 교류/직류 변환기(AC-to-DC converter)에 적용되는 잡음 저감용 라인 필터일 수 있다. 도 14는 실시예에 의한 인덕터를 포함하는 EMI 필터의 일례이다.
도 14를 참조하면, EMI 필터(2000)는 복수의 X-커패시터(Cx), 복수의 Y-커패시터(Cy) 및 인덕터(L)를 포함할 수 있다.
X-커패시터(Cx)는 라이브 라인(LIVE)의 제1 단자(P1)와 뉴트럴 라인(NEUTRAL)의 제3 단자(P3) 사이 및 라이브 라인(LIVE)의 제2 단자(P2)와 뉴트럴 라인(NEUTRAL)의 제4 단자(P4) 사이에 각각 배치된다.
복수의 Y-커패시터(Cy)는 라이브 라인(LIVE)의 제2 단자(P2)와 뉴트럴 라인(NEUTRAL)의 제4 단자(P4) 사이에 직렬로 배치될 수 있다.
인덕터(L)는 라이브 라인(LIVE)의 제1 단자(P1)와 제2 단자(P2) 사이 및 뉴트럴 라인(NEUTRAL)의 제3 단자(P3)와 제4 단자(P4) 사이에 배치될 수 있다. 여기서, 인덕터(L)는 전술한 실시예에 의한 인덕터(100)일 수 있다.
EMI 필터(2000)는 공통 모드 잡음이 유입될 때, 일차측 인덕턴스(Primary Inductance)와 Y-커패시터(Cy)의 합성 임피던스 특성으로 공통 모드 잡음을 제거한다. 여기서, 라이브 라인(LIVE)의 일차측 인덕턴스는 제3 및 제4 단자(P3, P4)를 오픈(Open)시킨 상태에서 제1 및 제2 단자(P1, P2) 사이의 인덕턴스를 측정하여 획득될 수 있고, 뉴트럴 라인(NEUTRAL)의 일차측 인덕턴스는 제1 및 제2 단자(P1, P2)를 오픈(Open)시킨 상태에서 제3 및 제4 단자(P3, P4) 사이의 인덕턴스를 측정하여 획득될 수 있다.
EMI 필터(2000)는 차동 모드 잡음이 유입될 때, 누설 인덕턴스(leakage Inductance)와 X-커패시터(Cx)의 합성 임피던스 특성으로 차동 모드 잡음을 제거한다. 여기서, 라이브 라인(LIVE)의 누설 인덕턴스는 제3 및 제4 단자(P3, P4)를 단락(short)시킨 상태에서 제1 및 제2 단자(P1, P2) 사이의 인덕턴스를 측정하여 획득될 수 있고, 뉴트럴 라인(NEUTRAL)의 누설 인덕턴스는 제1 및 제2 단자(P1, P2)를 단락시킨 상태에서 제3 및 제4 단자(P3, P4) 사이의 인덕턴스를 측정하여 획득될 수 있다.
실시예에 의한 EMI 필터(2000)의 인덕터가 전술한 실시예들에 의한 인덕터에 해당한다.
전술한 실시 예 각각에 대한 설명은 서로 내용이 상충되지 않는 한, 다른 실시 예에 대해서도 적용될 수 있다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 토로이달 형상을 가지며, 페라이트를 포함하는 제1 자성체; 및
    상기 제1 자성체의 외주면 또는 내주면에 배치되는 제2 자성체를 포함하고,
    상기 제2 자성체는 상기 제1 자성체의 원주 방향을 따라 감겨있는 복수층의 금속 리본 및 수지물질을 포함하고,
    상기 수지물질은
    상기 복수층의 금속 리본의 외표면을 덮도록 배치된 제1 수지물질; 및
    상기 복수층의 층간 공간 중 적어도 일부에 배치된 제2 수지물질을 포함하는 인덕터.
  2. 제1항에 있어서,
    상기 제1 자성체는 Mn-Zn 계 페라이트를 포함하고, 상기 제2 자성체는 Fe-Si계 금속 리본을 포함하고,
    상기 제2 수지물질은 상기 제2 자성체의 전체 높이 대비 하면에서부터 상면 방향으로 0% 내지 5% 사이 및 95% 내지 100% 사이에 배치된 인덕터.
  3. 제1항에 있어서,
    상기 제 1 자성체의 직경 방향 두께는 상기 제2 자성체의 직경 방향 두께보다 두껍고,
    상기 제2 자성체의 직경 방향 두께는 상기 제1 수지물질의 직경 방향 두께보다 두꺼운 인덕터.
  4. 제3항에 있어서,
    상기 제1 수지물질의 두께는 20μm 내지 30μm인 인덕터.
  5. 제3항에 있어서,
    상기 제1 수지 물질층 높이는 상기 제2 자성체의 높이보다 높은 인덕터.
  6. 제1항에 있어서,
    상기 제2 수지물질은 상기 복수 층의 층간 공간대비 15% 내지 30% 배치된 인덕터.
  7. 제6항에 있어서,
    상기 제2 수지물질은 상기 복수 층의 층간 공간대비 20% 내지 25% 배치된 인덕터.
  8. 인덕터; 및
    커패시터를 포함하고,
    상기 인덕터는
    토로이달 형상을 가지며, 페라이트를 포함하는 제1 자성체; 및
    상기 제1 자성체의 외주면 또는 내주면에 배치되는 제2 자성체를 포함하고,
    상기 제2 자성체는 상기 제1 자성체의 원주 방향을 따라 감겨있는 복수층의 금속 리본 및 수지물질을 포함하고,
    상기 수지물질은
    상기 복수층의 금속 리본의 외표면을 덮도록 배치된 제1 수지물질; 및
    상기 복수층의 층간 공간 중 적어도 일부에 배치된 제2 수지물질을 포함하는 EMI 필터.
  9. 제8항에 있어서,
    상기 제1 자성체는 Mn-Zn 계 페라이트를 포함하고, 상기 제2 자성체는 Fe-Si계 금속 리본을 포함하고
    상기 제2 수지물질은 상기 제2 자성체의 전체 높이 대비 하면에서부터 상면 방향으로 0% 내지 5% 사이 및 95% 내지 100% 사이에 배치된 EMI 필터.
  10. 제9항에 있어서,
    상기 제2 수지물질의 일부는 상기 복수 층의 층간 공간대비 15% 내지 30% 배치된 인덕터.
PCT/KR2018/016326 2017-12-29 2018-12-20 자성코어, 인덕터 및 이를 포함하는 emi 필터 WO2019132413A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN202311515371.9A CN117542620A (zh) 2017-12-29 2018-12-20 磁芯、电感器和包括该电感器的emi滤波器
CN202311519061.4A CN117577434A (zh) 2017-12-29 2018-12-20 Emi滤波器
CN202311515016.1A CN117558536A (zh) 2017-12-29 2018-12-20 磁芯、电感器和包括该电感器的emi滤波器
US16/954,606 US11289259B2 (en) 2017-12-29 2018-12-20 Magnetic core, inductor, and EMI filter comprising same
CN201880084831.8A CN111566764B (zh) 2017-12-29 2018-12-20 磁芯、电感器和包括该电感器的emi滤波器
JP2020534607A JP7198553B2 (ja) 2017-12-29 2018-12-20 磁性コア、インダクター及びこれを含むemiフィルター
US17/673,144 US11842831B2 (en) 2017-12-29 2022-02-16 Magnetic core, inductor, and EMI filter comprising same
JP2022199960A JP2023030029A (ja) 2017-12-29 2022-12-15 磁性コア、インダクター及びこれを含むemiフィルター
US18/386,286 US20240062941A1 (en) 2017-12-29 2023-11-02 Magnetic core, inductor, and emi filter comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0183905 2017-12-29
KR1020170183905A KR102197085B1 (ko) 2017-12-29 2017-12-29 자성코어, 인덕터 및 이를 포함하는 emi 필터

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/954,606 A-371-Of-International US11289259B2 (en) 2017-12-29 2018-12-20 Magnetic core, inductor, and EMI filter comprising same
US17/673,144 Continuation US11842831B2 (en) 2017-12-29 2022-02-16 Magnetic core, inductor, and EMI filter comprising same

Publications (1)

Publication Number Publication Date
WO2019132413A1 true WO2019132413A1 (ko) 2019-07-04

Family

ID=67067775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016326 WO2019132413A1 (ko) 2017-12-29 2018-12-20 자성코어, 인덕터 및 이를 포함하는 emi 필터

Country Status (5)

Country Link
US (3) US11289259B2 (ko)
JP (2) JP7198553B2 (ko)
KR (1) KR102197085B1 (ko)
CN (4) CN111566764B (ko)
WO (1) WO2019132413A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102201782B1 (ko) 2020-06-11 2021-01-12 삼형전자(주) 라인 필터와 이를 적용한 emi 필터
KR102441952B1 (ko) * 2020-12-23 2022-09-07 엘지이노텍 주식회사 자성코어, 인덕터 및 이를 포함하는 emi 필터
KR20230008319A (ko) 2021-07-07 2023-01-16 삼형전자(주) 라인필터와 이를 적용한 emi 필터
CN114242412A (zh) * 2021-11-04 2022-03-25 华为数字能源技术有限公司 磁元件和电子设备
KR102604120B1 (ko) 2023-02-27 2023-11-22 삼형전자(주) 라인필터 어셈블리

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081239A (ja) * 2005-09-15 2007-03-29 Toshiba Corp 磁気デバイスおよびそれを用いたスイッチング電源
KR20080027371A (ko) * 2006-05-08 2008-03-26 이비덴 가부시키가이샤 인덕터 및 이것을 이용한 전원 회로
KR20100009381A (ko) * 2008-07-18 2010-01-27 주식회사 에이엠오 소음제거구조를 갖는 인덕터
KR20100128078A (ko) * 2009-05-27 2010-12-07 주식회사 아모그린텍 소음 제거 및 소형화 구조를 갖는 인덕터 코어 및 이를 이용한 인덕터
US20150287772A1 (en) * 2014-03-07 2015-10-08 International Business Machines Corporation Silicon process compatible trench magnetic device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8502849A (nl) * 1985-10-18 1987-05-18 Philips Nv Werkwijze voor het aanbrengen van een hechtende, elektrisch isolerende laag, metaallint bedekt met een dergelijke laag en magneetkern met lage verliezen.
US5242760A (en) 1990-10-09 1993-09-07 Mitsui Petrochemical Industries Ltd. Magnetic ribbon and magnetic core
US5441783A (en) 1992-11-17 1995-08-15 Alliedsignal Inc. Edge coating for amorphous ribbon transformer cores
JP3472075B2 (ja) * 1997-04-23 2003-12-02 株式会社東芝 絶縁樹脂注型品の製造方法
JPH1174138A (ja) * 1997-08-27 1999-03-16 Hitachi Ferrite Electronics Ltd 高圧トランス
JP2000208329A (ja) * 1999-01-11 2000-07-28 Vlt Corp 磁気コアにより囲まれた導体
JP2000208343A (ja) * 1999-01-19 2000-07-28 Okaya Electric Ind Co Ltd コモンモ―ドチョ―クコイル
US6762666B2 (en) * 2002-05-07 2004-07-13 Defond Manufacturing Limited Toroidal core for a toroid
JP2005116887A (ja) * 2003-10-09 2005-04-28 Mitsui Chemicals Inc 磁性金属薄帯比率の低い磁性積層体およびその用途
JP2006100465A (ja) * 2004-09-29 2006-04-13 Tdk Corp コイル及びこれを用いたフィルタ回路
CN100458988C (zh) * 2004-12-15 2009-02-04 台达电子工业股份有限公司 扼流线圈及其内埋型铁芯
JP2006238310A (ja) * 2005-02-28 2006-09-07 Tdk Corp Lc複合部品及びこれを用いたノイズ抑制回路
JP2007042678A (ja) * 2005-07-29 2007-02-15 Tdk Corp コイルおよびフィルタ回路
FR2906944B1 (fr) * 2006-10-06 2009-05-15 Schneider Toshiba Inverter Dispositif de filtrage de mode commun et variateur de vitesse comportant un tel dispositif
WO2013095036A1 (ko) 2011-12-21 2013-06-27 주식회사 아모센스 무선 충전기용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 무선충전기용 수신장치
CN102368424A (zh) * 2011-09-16 2012-03-07 陆明岳 一种用于电感器磁心
DE102012206225A1 (de) * 2012-04-16 2013-10-17 Vacuumschmelze Gmbh & Co. Kg Weichmagnetischer Kern mit ortsabhängiger Permeabilität
CN202650791U (zh) * 2012-07-09 2013-01-02 陕西省电子技术研究所 一种无需塑料保护盒的非晶带材卷绕磁芯
JP6153024B2 (ja) 2013-07-26 2017-06-28 パナソニックIpマネジメント株式会社 発光素子点灯装置、発光モジュール、照明装置及び発光素子の点灯方法
KR20150143251A (ko) * 2014-06-13 2015-12-23 삼성전기주식회사 코어 및 이를 갖는 코일 부품
JP6401119B2 (ja) * 2015-07-21 2018-10-03 太陽誘電株式会社 モジュール基板
JP2017195587A (ja) * 2016-04-13 2017-10-26 株式会社荏原製作所 ノイズフィルタユニットおよび回路装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081239A (ja) * 2005-09-15 2007-03-29 Toshiba Corp 磁気デバイスおよびそれを用いたスイッチング電源
KR20080027371A (ko) * 2006-05-08 2008-03-26 이비덴 가부시키가이샤 인덕터 및 이것을 이용한 전원 회로
KR20100009381A (ko) * 2008-07-18 2010-01-27 주식회사 에이엠오 소음제거구조를 갖는 인덕터
KR20100128078A (ko) * 2009-05-27 2010-12-07 주식회사 아모그린텍 소음 제거 및 소형화 구조를 갖는 인덕터 코어 및 이를 이용한 인덕터
US20150287772A1 (en) * 2014-03-07 2015-10-08 International Business Machines Corporation Silicon process compatible trench magnetic device

Also Published As

Publication number Publication date
KR102197085B1 (ko) 2020-12-31
CN117558536A (zh) 2024-02-13
CN117542620A (zh) 2024-02-09
KR20190081399A (ko) 2019-07-09
CN117577434A (zh) 2024-02-20
US11289259B2 (en) 2022-03-29
US20240062941A1 (en) 2024-02-22
US20200312515A1 (en) 2020-10-01
US20220172871A1 (en) 2022-06-02
CN111566764B (zh) 2023-12-01
JP2021509224A (ja) 2021-03-18
US11842831B2 (en) 2023-12-12
JP2023030029A (ja) 2023-03-07
JP7198553B2 (ja) 2023-01-04
CN111566764A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2019132413A1 (ko) 자성코어, 인덕터 및 이를 포함하는 emi 필터
KR102145921B1 (ko) 인덕터 및 이를 포함하는 emi 필터
WO2018151491A1 (ko) 자성코어, 인덕터 및 이를 포함하는 emi 필터
US9312062B2 (en) Common mode choke coil
US7342477B2 (en) Inductor
KR102661002B1 (ko) 자성코어, 인덕터 및 이를 포함하는 emi 필터
JP3359099B2 (ja) 薄膜インダクタおよび薄膜トランス
KR102310999B1 (ko) 자성코어, 인덕터 및 이를 포함하는 emi 필터
WO2018117595A1 (en) Magnetic core, coil component, and electronic component including same
KR20040042088A (ko) 평면 인덕터
JP2011015082A (ja) 薄膜バラン
WO2019027265A1 (ko) 듀얼 코어 평면 트랜스포머
WO2021060928A1 (ko) 다층 인덕터
KR100522348B1 (ko) 평면 인덕터
KR20190093310A (ko) 자성코어, 인덕터 및 이를 포함하는 emi 필터
JPH03156991A (ja) セラミック多層配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534607

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894720

Country of ref document: EP

Kind code of ref document: A1