WO2019131207A1 - 活性炭成形体 - Google Patents

活性炭成形体 Download PDF

Info

Publication number
WO2019131207A1
WO2019131207A1 PCT/JP2018/046065 JP2018046065W WO2019131207A1 WO 2019131207 A1 WO2019131207 A1 WO 2019131207A1 JP 2018046065 W JP2018046065 W JP 2018046065W WO 2019131207 A1 WO2019131207 A1 WO 2019131207A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
column
molded body
carbon molded
cross
Prior art date
Application number
PCT/JP2018/046065
Other languages
English (en)
French (fr)
Inventor
山本 孝治
光▲徳▼ 西田
人見 充則
山田 隆之
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201880083763.3A priority Critical patent/CN111511681A/zh
Priority to KR1020207016361A priority patent/KR102663974B1/ko
Priority to BR112020012954-2A priority patent/BR112020012954A2/pt
Priority to EP18894382.3A priority patent/EP3733599A4/en
Priority to JP2019562994A priority patent/JP7203761B2/ja
Priority to US16/957,412 priority patent/US20210070617A1/en
Priority to MX2020006838A priority patent/MX2020006838A/es
Priority to CA3086016A priority patent/CA3086016A1/en
Publication of WO2019131207A1 publication Critical patent/WO2019131207A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/382Making shaped products, e.g. fibres, spheres, membranes or foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3057Use of a templating or imprinting material ; filling pores of a substrate or matrix followed by the removal of the substrate or matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0854Details of the absorption canister
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/12Particle morphology extending in one dimension, e.g. needle-like with a cylindrical shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present invention relates to an activated carbon compact, a method of producing an activated carbon compact, and a canister comprising the activated carbon compact.
  • canisters capable of adsorbing and desorbing transpiration fuel are used to prevent the release of transpiration fuel from the fuel tank of the vehicle to the outside.
  • activated carbon is used as an adsorbent in the canister, and the activated carbon temporarily absorbs or collects the transpiration fuel from the fuel tank while the vehicle is at a standstill, and is fresh when the transpiration fuel adsorbed is absorbed during the operation. It is desorbed by replacing with air. Then, the desorbed transpiration fuel is burned in the internal combustion engine.
  • an adsorbent which is formed of activated carbon having high adsorption activity and a solid diluent as a non-adsorption portion inactive to adsorption, and which has a predetermined butane effective adsorption amount and butane desorption rate Has been proposed.
  • Patent Document 2 proposes an adsorbent for a canister in which macroscopic pores are formed by adding a meltable core which disappears at the time of sintering to a powder of activated carbon having microscopic pores together with a binder and baking the powder. .
  • the adsorbent active carbon molded body
  • the adsorbent has a certain size, for example, a particle diameter of about 4 mm disclosed in Patent Document 2, but such a large adsorption
  • some of the activated carbon located inside the individual adsorbents do not contribute to the adsorption or desorption of the transpiration fuel, and therefore the adsorption and desorption performance may be lower compared to fine activated carbon. Therefore, in the case of the activated carbon molded body having a large particle diameter disclosed in Patent Document 2, macroscopic pores are provided to secure the adsorption and desorption performance, but as a result, the strength of the activated carbon molded body may be reduced. Since the canister is mounted in a car, a stronger adsorbent may be required.
  • an object of the present invention is to provide an activated carbon molded body capable of realizing low emission performance of transpiration fuel not only by good adsorption of transpiration fuel from a car but also by stopping the car for a long time.
  • the limited problem of the present invention is not only the adsorption of the transpiration fuel from the car well, but also the low emission performance of the transpiration fuel by stopping the car for a long time can be realized, and the activated carbon molded with further improved strength It is to provide the body.
  • an activated carbon molded body having both a specific surface area per specific volume and an external surface area per specific volume, and has completed the present invention.
  • the present invention includes the following preferred embodiments.
  • the specific surface area per volume calculated from the specific surface area determined by the BET multipoint method and the packing density determined according to JIS K 1474 is 290 m 2 / mL to 520 m 2 / mL, outside the volume
  • the activated carbon molded body has a columnar structure, and the columnar structure is a column peripheral wall having a hollow opened at both ends in the column axial direction, and the hollow extending from one opening to the other opening
  • the activated carbon molded body according to the above-mentioned [1] comprising: a partition wall which divides into two or more compartments.
  • the partition wall an inner wall extending from one opening to the other opening to divide the hollow into two sections, and an inner wall and the pillar extending from one opening to the other opening
  • the activated carbon molded body according to the above [2] including a connecting wall connecting the peripheral wall.
  • [22] Mixing powdered or granular activated carbon, slip agent, and acid-soluble solid diluent, kneading the obtained mixture with a binder and water, and making the obtained kneaded material into a desired shape Any of the above [1] to [21], including forming, and after drying the formed product, eluting and removing at least a portion of the solid diluent by washing with an acid, and further drying The manufacturing method of the activated carbon molded object as described in a crab.
  • a canister comprising the activated carbon molded body according to any one of the above [1] to [21].
  • the activated carbon molded object which can implement
  • FIG. 2 is a schematic view of a cross section orthogonal to a column axis of the activated carbon molded body manufactured according to Example 1.
  • FIG. 7 is a schematic view of a cross section orthogonal to a column axis of the activated carbon molded body manufactured according to Example 2. It is a schematic diagram of the cross section orthogonal to the column axis of the activated carbon molded object manufactured according to Example 3.
  • FIG. It is a schematic diagram of the cross section orthogonal to the column axis of the activated carbon molded object manufactured according to Example 4.
  • FIG. It is a schematic diagram of the cross section orthogonal to the pillar axis
  • FIG. 2 is a schematic view of the side of the activated carbon molded body produced according to Example 1;
  • Activated carbon molded article of the present invention has a specific surface area per volume, which was calculated from the packing density determined according to the specific surface area and JIS K 1474 as determined by the BET multipoint method is be 290m 2 / mL ⁇ 520m 2 / mL
  • the external surface area per volume is 1.4 m 2 / L or more.
  • the specific surface area per volume is the product of the specific surface area determined by the BET multipoint method and the packing density determined in accordance with JIS K 1474, and can be determined by the method described in the examples described later. Moreover, the external surface area per volume is calculated
  • the specific surface area per volume is preferably 300 m 2 / mL to 500 m 2 / mL, more preferably 330 m 2 / mL to 470 m 2 / mL, and the external surface area per volume is preferably 1.41 m 2 / L or more It is. If the specific surface area per volume and the external surface area per volume satisfy the above specific numerical range or specific lower limit value above, the activated carbon molded body has high purge efficiency and low efficiency in addition to the desired butane effective adsorption amount. It tends to have butane residue.
  • Adjustment of the specific surface area per volume and the external surface area per volume to a specific numerical range or a specific lower limit can be achieved, for example, by adjusting the activity of activated carbon or the proportion of materials to be blended.
  • the activated carbon molded body has a columnar structure, and the columnar structure includes a column peripheral wall having hollows opened at both ends in the column axial direction, and one opening to the other opening And a septum extending to divide the hollow into two or more compartments.
  • Examples of the columnar structure include a columnar structure, an elliptic cylindrical structure, and a substantially prismatic structure.
  • the shape of the cross section of the column orthogonal to the column axis of these structures may have some irregularities or rounded corners, and may be a circle, an ellipse or a polygon as observed macroscopically.
  • the substantially prismatic structure includes a substantially triangular prismatic structure, a substantially quadrangular prismatic structure, a substantially pentagonal prismatic structure, a substantially hexagonal prismatic structure, a substantially octagonal prismatic structure, and the like. From the viewpoint of easily obtaining the wear strength, a substantially prismatic columnar structure in which the corner of the cross section of the column is rounded is preferable.
  • the columnar structure is more preferably a regular cylindrical structure from the viewpoint that a desired butane effective adsorption amount, a high purge efficiency and a low butane residual amount can be easily obtained.
  • the bulkheads are connected to the column circumferential wall and the bulkheads are not connected to one another.
  • a schematic view of a cross section of a column orthogonal to the column axis of a specific example of this embodiment is shown in FIGS. 1 and 4-11.
  • FIGS. 1 and 4-11 A schematic view of a cross section of a column orthogonal to the column axis of a specific example of this embodiment is shown in FIGS. 1 and 4-11.
  • the activated carbon molded body having these specific shapes in which the partition walls do not connect to each other causes a decrease in the contact efficiency between the activated carbon molded body and the transpiration fuel due to the increase in thickness at the connecting portion that occurs when the partition walls connect to each other.
  • it is easy to adjust the specific surface area per volume and the external surface area per volume to a specific numerical range or a specific lower limit value or more.
  • FIGS. 1, 4 and 5 there are one, two or three partitions not connected to each other, and each partition is connected to the column peripheral wall at its both ends to form an I-shape, II-shape or III-shape .
  • FIGS. 6-8 there are one, two, or three partitions that are not connected to each other, and each partition is connected to the column peripheral wall at its both ends to form an S shape, SS shape or SSS shape.
  • FIGS. 9 and 10 there are two or three partitions which are not connected to each other, and each partition is curved and connected to the column peripheral wall at its both ends.
  • FIG. 11 three partitions exist, and each partition is connected to the column peripheral wall at its both ends to form a triangle-like shape in which the sides are not connected to each other.
  • the present invention when observing a cross section of the column orthogonal to the column axis, at least two or more partition walls are connected to each other at a position other than the center of gravity of the cross section of the column.
  • two partitions when observing a cross section of the column orthogonal to the column axis, two partitions form a T shape, and three partitions form an H shape. And the like.
  • the partition walls when observing a cross section of the column orthogonal to the column axis, at least two or more partition walls are connected to each other at one or more positions on the column peripheral wall.
  • two partitions when observing a cross section of the column orthogonal to the column axis, two partitions form a V shape, and three partitions form an A shape or an N shape. And those in which the three partition walls form a triangle-like shape in which the apex of one or two is not closed.
  • the partition walls are connected to each other at a position on the column peripheral wall to form a triangle, a square or a pentagon.
  • FIGS. 1-10 A schematic view of the cross section of the column in this embodiment is shown in FIGS.
  • the activated carbon shaped body is used as a partition, extending from one opening to the other opening to divide the hollow into two compartments, and one opening to the other opening It includes a connecting wall that extends to connect the inner wall and the column peripheral wall.
  • the inner wall is circular, oval, triangular or square when observing a cross section of the column orthogonal to the column axis.
  • FIGS. 1 to 21 are all common, and are schematic views of the side surface of the activated carbon compact manufactured according to Example 1. It is the same as (FIG. 22).
  • the thickness of the partition is preferably in the range of -5% to + 5% of the center value of the thickness of the partition, It is more preferably in the range of 4% to + 4%, and particularly preferably in the range of -3% to + 3%. The closer the thickness of the partition is to the center value of the thickness of the partition, the more uniform the thickness of the partition is, which is preferable in the present invention.
  • the thickness of the column peripheral wall is preferably in the range of -5% to + 5% of the center value of the thickness of the column peripheral wall It is more preferably in the range of -4% to + 4%, and particularly preferably in the range of -3% to + 3%. The closer the thickness of the column peripheral wall is to the center value of the thickness of the column peripheral wall, the more uniform the thickness of the column peripheral wall is, which is preferable in the present invention.
  • the difference between the thickness of the partition wall and the thickness of the column peripheral wall is the longest external dimension when observing the cross section of the column orthogonal to the column axis, from the viewpoint of easily obtaining the desired butane effective adsorption amount, high purge efficiency and low butane residual amount. Is preferably 5% or less, more preferably 3% or less, and particularly preferably 0%.
  • the longest outside dimension is the column outer diameter or its equivalent when the column is a cylinder
  • the major axis of the cross section of the column when the column is an elliptic cylinder, or the column cross section when the column is a substantially prismatic column Means the longest diagonal of or equivalent to The smaller the difference, the more uniform the thickness of the partition wall and the thickness of the column peripheral wall, which is preferable in the present invention.
  • the column structure has the same cross-sectional shape in the column axis direction from the viewpoint of easily obtaining a desired butane effective adsorption amount, a high purge efficiency and a low butane residual amount.
  • a shape is obtained, for example, by producing an activated carbon molded body by extrusion molding or tableting molding.
  • the thickness of the column peripheral wall and the thickness of the partition wall are each relative to the longest outside dimension when observing the column cross section orthogonal to the column axis Is preferably in the range of 5 to 35%, more preferably in the range of 7 to 25%, and particularly preferably in the range of 10 to 20%.
  • the thickness of the column peripheral wall and the thickness of the partition wall are each preferably in the range of 0.3 to 1.0 mm, more preferably in the range of 0.4 to 0.95 mm, particularly preferably in the range of 0.5 to 0.9 mm It is.
  • a low butane residual amount and high hardness are easily obtained.
  • the ratio of the void area to the wall area in the column cross section perpendicular to the column axis is preferably 20 to 50%, more preferably 25 to 45%, and particularly preferably 30 to 40%. A low butane residual amount and high hardness are easy to be obtained as the said ratio is in the said range.
  • the longest external dimension when observing a cross section of the column orthogonal to the column axis is preferably in the range of 3 mm to 9 mm, more preferably in the range of 4 to 7 mm, and particularly preferably in the range of 4 to 6 mm.
  • a low butane residual amount can be easily obtained while suppressing the air flow resistance.
  • the thickness of the partition walls and the column peripheral wall, their center value, the longest outside dimension, and the ratio of the void area to the wall area can be determined by the method described in the examples described later. These values can be adjusted, for example, by adjusting the nozzle shape in the case of producing the activated carbon molded body by extrusion molding or the mold shape in the case of producing the activated carbon molded body by tableting molding.
  • the number of activated carbons present inside the wall surface rather than the wall surface is greater than that of the column peripheral wall and partition wall other than the connection portion. This is not preferable because it may lead to a decrease in the contact efficiency with the transpiration fuel. Therefore, it is preferable to reduce the amount of activated carbon present inside. Specifically, it is preferable to partially reduce the thickness of the column peripheral wall or partition wall at the connection portion, and for example, a nozzle shape in the case of manufacturing an activated carbon molded body by extrusion molding or a tableted activated carbon molded body This can be achieved by adjusting the mold shape in the case of manufacturing by molding.
  • the average pore diameter determined by the HK method of the activated carbon molded body of the present invention is preferably 2.1 nm to 2.6 nm, more preferably 2.1 nm to 2.4 nm, and particularly preferably 2.1 nm to 2.2 nm .
  • a desired butane effective adsorption amount is easy to be obtained as the said average pore diameter is in the said range.
  • the adjustment of the average pore size into the above range can be achieved, for example, by adjusting the activation of the activated carbon.
  • the said average pore diameter is calculated
  • the effective adsorption amount of butane determined according to ASTM D5228 of the activated carbon molded article of the present invention is preferably 8.0 g / dL to 10 g / dL, more preferably 8.0 g / dL to 9.8 g / dL, particularly Preferably, it is 8.0 g / dL to 9.7 g / dL.
  • the effective adsorption amount of butane is in the above range, the transpiration fuel can be easily desorbed well.
  • the adjustment of the effective adsorption amount of butane into the above range can be achieved, for example, by adjusting the degree of activation of activated carbon or the proportion of materials to be blended.
  • the butane residual amount determined according to ASTM D5228 of the activated carbon molded body of the present invention is preferably 1.30 g / dL or less, more preferably 1.25 g / dL or less, particularly preferably 1.20 g / dL or less .
  • Adjustment of the butane residual amount to the above value or less can be achieved, for example, by adjusting the degree of activation of the activated carbon or the proportion of materials to be blended.
  • the micro strength hardness (hereinafter also referred to as MS hardness) of the activated carbon molded body of the present invention is preferably 60% or more, more preferably 70% or more, and particularly preferably 75% or more.
  • the MS hardness is an indicator of resistance to weight loading and is measured by the method described in the examples below.
  • the activated carbon molded body has an MS hardness equal to or more than the above value, the abrasion strength when using the activated carbon molded body for a canister can be easily obtained. Adjustment of the MS hardness to the above value or more can be achieved, for example, by adjusting the blending amount of the binder.
  • the amount of fine powder of the activated carbon molded body of the present invention is preferably 0.12% or less, more preferably 0.10% or less, more preferably 0.07% or less, more preferably 0.05% or less, particularly preferably 0 .025% or less.
  • the adjustment of the amount of fine powder to the above value or less can be achieved, for example, by adjusting the amount of the binder.
  • the amount of fine powder can be determined by the method described in the examples below.
  • the pore volume determined by the BJH method of the activated carbon molded body of the present invention is preferably 0.480 to 0.555 mL / g, more preferably 0.490 to 0.545 mL / g, particularly preferably 0.500 to 0 It is .535 mL / g.
  • a desired butane effective adsorption amount can be easily obtained.
  • Adjustment of the pore volume determined by the BJH method into the above range can be achieved, for example, by adjusting the degree of activation of the activated carbon or the proportion of materials to be blended.
  • the said pore volume is calculated
  • the activated carbon molded body of the present invention has a specific surface area per volume calculated from a specific surface area determined by the BET multipoint method and a packing density determined according to JIS K 1474, and an external surface area per volume. Therefore, in addition to good adsorption of the transpiration fuel, low emission performance of the transpiration fuel can be realized. Moreover, the activated carbon molded body of the present invention can have a low amount of fine powder and high MS hardness. Thus, the activated carbon compact of the present invention is suitable for use in a canister. Accordingly, the present invention is also directed to a canister comprising the activated carbon compact of the present invention. In addition, the activated carbon molded body of the present invention is applicable not only to various transpiration fuels, for example, gasoline including alcohol as well as ordinary gasoline which is general automobile fuel.
  • the activated carbon molded body of the present invention can be obtained, for example, by mixing powdered or granular activated carbon, a sliding agent, and an acid-soluble solid diluent, and kneading the obtained mixture with a binder and water.
  • Manufactured by a method including forming the desired mixture into a desired shape and drying the formed product, eluting and removing at least a portion of the solid diluent by washing with an acid, and further drying Ru.
  • Powdered or granular activated carbon has an average particle diameter of, for example, 1 to 500 ⁇ m, preferably 1 to 100 ⁇ m, more preferably 10 to 50 ⁇ m, which is obtained by carbonizing and activating a carbonaceous material as a raw material. It was crushed.
  • the carbonaceous material is not particularly limited as long as it forms activated carbon by carbonization and activation, and can be selected from plant materials, mineral materials, natural materials, synthetic materials and the like.
  • plant-based carbonaceous materials include, for example, wood, bamboo, charcoal, shellfish, and fruit shells such as coconut shells
  • mineral-based carbonaceous materials include, for example, coals (eg Peat, lignite, sub-bituminous coal, bituminous coal, semi-anthracite coal and anthracite), petroleum-based and / or petroleum-based pitch, coke and the like.
  • Natural materials include, for example, starch, cellulose (natural fibers such as cotton and hemp), regenerated resins (regenerated fibers such as rayon and viscose rayon), and semi-synthetic resins (acetate and triacetate)
  • synthetic materials include polyamide resins such as nylon 66, polyvinyl alcohol resins such as vinylon, acrylic resins (polyacrylonitrile resins etc.), polyolefin resins (polyethylene and polypropylene etc.), Examples include vinyl chloride resins, polyurethane resins, phenol resins, furan resins, and epoxy resins. These carbonaceous materials may be used alone or in combination of two or more.
  • carbonaceous materials it is preferable to use a mineral-based carbonaceous material from the viewpoint of easily obtaining an activated carbon molded article having a desired butane effective adsorption amount, a high purge efficiency and a low butane residual amount. It is more preferred to use bituminous coal and / or anthracite.
  • the carbonization and activation conditions of the carbonaceous material are not particularly limited, and conventional conditions can be adopted.
  • carbonization of the carbonaceous material can be carried out, for example, at 400 to 800 ° C., preferably 500 to 800 ° C., more preferably 550 to 750 ° C., while blocking oxygen or air.
  • activation of the carbonized carbonaceous material can usually be carried out, for example, at 700 to 1200 ° C., preferably 800 to 1100 ° C., in an atmosphere of an activating gas (eg, water vapor or carbon dioxide gas).
  • an activating gas eg, water vapor or carbon dioxide gas
  • the effective adsorption amount of butane measured according to ASTM D5228 of the activated carbon obtained after activation is, for example, 10 to 20 g / dL, preferably 12.5 to 18 g / dL, more preferably 13 to 16 g / dL. .
  • the BET specific surface area of the activated carbon obtained after activation is, for example, 250 to 1500 m 2 / g, preferably 350 to 1400 m 2 / g, and more preferably 500 to 1300 m 2 / g.
  • the average pore size of the activated carbon obtained after activation is, for example, 0.1 to 100 nm, preferably 0.3 to 50 nm, more preferably 0.3 to 25 nm, more preferably 0.5 to 10 nm, particularly preferably 0.5 It is ⁇ 5 nm.
  • slip agent for example, one or more selected from the group consisting of bentonite compounds, cellulose compounds, and polyvinyl alcohol compounds can be used.
  • bentonite compounds include sodium bentonite and calcium bentonite.
  • a cellulose compound for example, cellulose, and cellulose derivatives [cellulose ethers, for example, alkylcelluloses such as methylcellulose (hereinafter, also referred to as MC); carboxymethylcellulose or salts thereof; hydroxyalkylcelluloses such as hydroxyethylcellulose, hydroxypropylcellulose, etc.
  • hydroxyalkyl alkyl celluloses such as hydroxypropyl methyl cellulose etc.] and the like, and it is preferable to use methyl cellulose and / or carboxymethyl cellulose.
  • polyvinyl alcohol compounds include polyvinyl alcohol and various modified polyvinyl alcohols.
  • the amount of the slip agent used is preferably 5 to 25 parts by mass, more preferably 5 to 20 parts by mass, particularly preferably 5 to 18 parts by mass, with respect to 100 parts by mass of powdered or granular activated carbon.
  • Acid-soluble solid diluent The acid-soluble solid diluent is at least partially eluted and removed in the subsequent acid washing step, and the eluted portion becomes pores in the activated carbon compact. Therefore, in addition to the fine pores of powdery or granular activated carbon formed by activation (hereinafter also referred to as "fine pores derived from activation"), the activated carbon molded body is formed by the elution and removal of the solid diluent ( Hereinafter, it is also referred to as “pores derived from elution removal”.
  • the packing density can be controlled by the formation of pores derived from elution removal, and in the present invention, the specific surface area per volume calculated from the specific surface area determined by the BET multipoint method and the packing density determined according to JIS K 1474 It can control.
  • Activated carbon molded articles having pores derived from elution removal have practical hardness.
  • inorganic compounds for example, metal oxides such as magnesium oxide, metal carbonates such as magnesium carbonate and calcium carbonate, metal hydroxides such as calcium hydroxide, etc .; basic polymers For example, homopolymers or copolymers having N, N-dialkylamino C 2-3 alkyl (meth) acrylate as a monomer can be mentioned.
  • These solid diluents may be used alone or in combination of two or more. For elution with acid, solid diluents that form low viscosity eluates are preferred over polymers that tend to be viscous.
  • Such solid diluents include calcium carbonate.
  • the average particle size of the solid diluent can be selected according to the size of the pore from elution removal desired, and is, for example, 0.1 to 30 ⁇ m, preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 15 ⁇ m, Particularly preferably, it is 0.2 to 10 ⁇ m.
  • the ratio of the average particle size of the powdery or granular activated carbon to the average particle size of the solid diluent is, for example, from 300/1 to 0.01 / 1, preferably from 250/1 to 1/1, more preferably from 100/1 to It is 10/1.
  • the amount of solid diluent used can be selected according to the desired size and proportion of pores derived from elution removal, and is, for example, 10 to 150 parts by mass, usually 25 to 150 parts by weight per 100 parts by mass of powdered or granular activated carbon.
  • the amount is preferably 40 to 150 parts by mass, more preferably 50 to 130 parts by mass, and particularly preferably 55 to 120 parts by mass.
  • the mixing of the powdered or granular activated carbon with the slip agent and the acid soluble solid diluent can be carried out in a conventional manner.
  • the resulting mixture is then kneaded with a binder and water.
  • binder a binder which is insoluble in an acid and does not elute or deteriorate within a short time in an adsorption and desorption atmosphere of transpiration fuel is used.
  • the binder may be a thermoplastic resin or a thermosetting resin.
  • polyolefin resins polyethylene, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene- (meth) acrylic acid copolymer, etc.
  • acrylic resin polyester
  • polyester examples include system resins, epoxy resins, and silicone resins.
  • These binders may be used alone or in combination of two or more.
  • the binder may be a heat adhesive resin such as a hot melt adhesive or the like, and may be aqueous (in a form dissolved or dispersed in an aqueous medium) or oily (in a form dissolved in an organic solvent).
  • the binder is often used in the form of a dispersion (in particular, an aqueous dispersion such as an emulsion) such as an acrylic resin emulsion.
  • the proportion of the binder is, for example, 5 to 35 parts by mass, preferably 7 to 30 parts by mass, more preferably 9 to 25 parts by mass, particularly preferably 10, in terms of solid content with respect to 100 parts by mass of powdery or granular activated carbon. 20 parts by mass.
  • water is also used for kneading the mixture of the powdered or granular activated carbon, the slip agent and the solid diluent, and the binder.
  • the amount of water used is, for example, 100 to 300 parts by mass, preferably 110 to 250 parts by mass, and more preferably 120 to 200 parts by mass, with respect to 100 parts by mass of powdered or granular activated carbon.
  • Kneading can be carried out by a general method using, for example, a mixer, a ribbon mixer, a static mixer, a ball mill, a sample mill or a kneader.
  • the kneading temperature is usually 0 to 50 ° C., preferably 5 to 40 ° C., from the viewpoint of reducing the change in water content.
  • the kneading time is usually 1 to 60 minutes, preferably 5 to 30 minutes, from the viewpoint of preventing oxidation deterioration of the binder and production efficiency.
  • the obtained kneaded product is formed into a desired shape, for example, by tableting or extrusion.
  • Extrusion of the blend also includes cutting of the extruded strands to obtain the desired shape after cutting.
  • the desired shape refers to the specific surface area per volume calculated from the specific surface area determined by the BET multipoint method and the packing density determined according to JIS K 1474, and the external surface area per volume for the activated carbon molded body.
  • the pillar structure has, for example, a columnar structure, and the columnar structure includes a column peripheral wall having a hollow open at both ends in the column axial direction, and extending from one opening to the other opening. And a partition that divides the hollow into two or more sections.
  • the resulting molded product is dried, washed with an acid to elute and remove the solid diluent, and further dried to obtain an activated carbon molded product.
  • the activated carbon molded body has pores derived from elution and removal.
  • the drying method before and after the acid washing is not particularly limited, and may be dried using an ordinary dryer under an atmosphere of air, inert gas (for example, nitrogen) or a mixture thereof.
  • the drying temperature is usually 60 to 150 ° C., preferably 70 to 140 ° C., from the viewpoint of prevention of binder degradation and production efficiency.
  • the drying time depends on the drying temperature and the like, but is usually 0.1 to 36 hours, preferably 0.5 to 24 hours.
  • acids for eluting and removing solid diluents include inorganic acids such as hydrochloric acid and nitric acid, and organic acids such as acetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid and citric acid. These acids may be used alone or in combination of two or more. From the viewpoint of safety, availability and cost, hydrochloric acid is preferred.
  • the acid is usually used in the form of an aqueous solution, and the concentration is usually 0.5 to 3 mol / L, preferably 0.8 to 2.5 mol / L.
  • the amount of the aqueous acid solution to be used is generally 0.5 to 2 L, preferably 0.8 to 1.5 L, per 100 g of the molded product.
  • washing efficiency can be improved by stirring, boiling or heating to 50 to 90 ° C. after mixing the dried molding and the aqueous acid solution.
  • an ultrasonic cleaner may be used.
  • the washing time depends on the temperature and the like, but is usually 0.1 to 48 hours, preferably 0.5 to 24 hours.
  • the number of washings is preferably 1 to 5 times for boiling acid washing and 1 to 10 times for warm acid washing.
  • the particle size of the powdered activated carbon as a raw material was measured by a laser diffraction measurement method. Specifically, a dispersion obtained by mixing powdered activated carbon to be measured, a surfactant and ion-exchanged water is measured with a laser diffraction / scattering particle size distribution measuring apparatus ("MT3300II" manufactured by Microtrac Bell Inc.) It measured by the permeation method using. The activated carbon concentration of the dispersion was adjusted to fall within the measurement concentration range displayed by the same device. Moreover, as a surfactant at the time of dispersion preparation, Wako Pure Chemical Industries, Ltd.
  • the specific surface area per volume of the activated carbon molded body was calculated from the specific surface area determined by the BET multipoint method and the packing density determined according to JIS K 1474.
  • the specific surface area was determined using BELSORP-max (manufactured by Microtrac Bell Co., Ltd.) to obtain a nitrogen adsorption isotherm at 77 K, and from this adsorption isotherm using the BET multipoint method (Brunauer Emmett Teller multipoint method)
  • the packing density was determined in accordance with JIS K 1474. From the obtained specific surface area and packing density, the specific surface area per volume was calculated by the following equation.
  • a nitrogen adsorption isotherm at 77 K was obtained using BELSORP-max (manufactured by Microtrac Bell Co., Ltd.), and the pore volume of the activated carbon molded body was determined from the adsorption isotherm by the HK method (Horvath Kawazoe method). From the obtained pore volume and the specific surface area determined by the BET multipoint method, the average pore diameter determined by the HK method was calculated by the following equation.
  • the external surface area per volume of the activated carbon molded body was calculated by the following equation.
  • the packing density in the above formula was determined in accordance with JIS K 1474.
  • the average weight of the activated carbon molded body in the above formula was determined by measuring the weight of 33 or more activated carbon molded bodies dried to a constant weight at 120 ° C. and calculating the average value.
  • the external surface area per activated carbon molded body in the above equation was calculated from the average of the outer diameter of the column, the inner diameter of the column, the partition length in the column cross section, the column length and the wall thickness of the activated carbon molded body.
  • [Fine powder amount] The amount of fine powder of the activated carbon molded body is measured by weighing about 100 g of the activated carbon molded body to be measured according to ASTM D2862 (A [g]), and using a sieve shaker, with a 60 mesh sieve for 10 minutes with a low tap. After sieving, the weight under the sieve was weighed (B [g]). The amount of fine powder was determined by the following equation.
  • Example 1 A coal-based activated carbon having a BWC of 15.6 g / dL, produced by activating bituminous coal at 1000 ° C. in a fluidized bed furnace and having a BWC of 15.6 g / dL measured according to ASTM D5228, is pulverized to a powder with an average particle diameter of 25 ⁇ m by a pulverizer. Was obtained.
  • Boiling was performed using 1 mol of 2 mol / L hydrochloric acid per 100 g of the dried molded product, the calcium carbonate component was removed from the molded product, and dried at 120 ° C. for 12 hours to obtain an activated carbon molded product. .
  • the evaluation results are shown in Table 1.
  • Example 2 An activated carbon molded body was obtained in the same manner as in Example 1 except that extrusion was performed so that the cross section had the shape shown in FIG. 2 using a vacuum extruder. The evaluation results are shown in Table 1.
  • Example 3 An activated carbon molded body was obtained in the same manner as in Example 1 except that extrusion was performed so that the cross section had the shape shown in FIG. 3 using a vacuum extruder. The evaluation results are shown in Table 1.
  • Example 4 An activated carbon molded body was obtained in the same manner as in Example 1 except that extrusion was performed so that the cross section had the shape shown in FIG. 4 using a vacuum extruder. The evaluation results are shown in Table 1.
  • Comparative Example 1 60 parts by mass of calcium carbonate (average particle diameter 7 ⁇ m) and 5 parts by mass of a slip agent (MC) are mixed with 100 parts by mass of powdered activated carbon obtained in the same manner as in Example 1 to obtain a mixture Were kneaded with 35 parts by mass of a binder resin (manufactured by Nippon Zeon Co., Ltd., acrylic emulsion “Nipol LX-851 C”, solid content 45% by mass) and 165 parts by mass of water.
  • a binder resin manufactured by Nippon Zeon Co., Ltd., acrylic emulsion “Nipol LX-851 C”, solid content 45% by mass
  • the resulting kneaded product was extruded into a cylindrical shape with a diameter of about 2.5 mm by a hydraulic extruder, and the extruded strand was cut into a length of 3 to 4 mm and dried at 120 ° C. for 3 hours. Boiling was performed using 1 mol of 2 mol / L hydrochloric acid per 100 g of the dried molded product, the calcium carbonate component was removed from the molded product, and dried at 120 ° C. for 12 hours to obtain an activated carbon molded product. .
  • the evaluation results are shown in Table 1.
  • Comparative example 2 Coal activated carbon produced by activating anthracite at 900 to 950 ° C. by a rotary kiln and having a BWC of 15.6 g / dL measured according to ASTM D5228 is pulverized to a powder with an average particle diameter of 25 ⁇ m by a crusher An activated carbon molded body was obtained in the same manner as in Comparative Example 1 except that the powdery activated carbon was used and was extruded into a cylindrical shape having a diameter of about 2.0 mm. The evaluation results are shown in Table 1.
  • Comparative Examples 3 to 7 In Comparative Examples 3 to 7, the following commercially available activated carbon was used. The shapes of these activated carbons are all cylindrical. Each evaluation result is shown in Table 1. Comparative example 3: “2 GK” manufactured by Kuraray Co., Ltd. Comparative example 4: “BAX-1100” manufactured by Ingevity Comparative example 5: “2GK-H” manufactured by Kuraray Co., Ltd. Comparative example 6: “BAX-1500” manufactured by Ingevity Comparative example 7: “BAX-LBE” manufactured by Ingevity
  • the activated carbon molded articles according to the present invention had the desired butane effective adsorption amount, high purge efficiency and low butane residual amount. This shows that, in addition to the good adsorption of the transpiration fuel, the low emission performance of the transpiration fuel can be realized when the activated carbon molded body of the present invention is used for a canister.
  • the activated carbon moldings of the present invention also have low fines content and high MS hardness. This is advantageous for canister applications where increased wear strength is required.
  • an activated carbon molded body having no specific surface area per volume or external surface area per volume calculated from the specific surface area determined by the specific BET multipoint method and the packing density determined according to JIS K 1474 did not have the desired butane effective adsorption amount, high purge efficiency and low butane residual amount.
  • the activated carbon molded bodies of Comparative Examples 4 to 7 had high fine powder amount and low MS strength, it was found that the canister performance is inferior to that of the activated carbon molded body of the present invention in practical use.
  • the activated carbon molded body of the present invention Since the activated carbon molded body of the present invention has desired butane effective adsorption amount, high purge efficiency, and low butane residual amount, it has excellent desorption performance in addition to adsorption performance. Therefore, the activated carbon molded body of the present invention is useful as an adsorbent for gas adsorption, and is particularly useful as an adsorbent for processing of transpiration fuel from a fuel tank for an automobile, for example, because it is excellent in desorption performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

自動車からの蒸散燃料を良好に吸着するだけでなく、長時間の自動車の停車による蒸散燃料の低エミッション性能を実現できる活性炭成形体を提供すること。 BET多点法により求めた比表面積とJIS K 1474に準拠して求めた充填密度とから算出した容積あたりの比表面積が290m2/mL~520m2/mLであり、容積あたりの外表面積が1.4m2/L以上である、活性炭成形体。

Description

活性炭成形体
 本発明は、活性炭成形体、活性炭成形体の製造方法、および活性炭成形体を備えるキャニスタに関する。
 例えば自動車には、車両の燃料タンクからの蒸散燃料の外部への放出を防止するために、蒸散燃料の吸着および脱着が可能なキャニスタが用いられている。キャニスタには一般に吸着材として活性炭が使用されており、活性炭は、停車中には燃料タンクからの蒸散燃料を一時的に吸着または捕集し、運転中には吸着された蒸散燃料を吸気したフレッシュエアーにより置換することで脱着する。そして、脱着された蒸散燃料は、内燃機関にて燃焼される。
 このようなキャニスタで使用される活性炭としては、蒸散燃料を吸着するための微細な細孔を有するものが広く用いられる。
 そのような活性炭として、例えば特許文献1では、吸着活性の高い活性炭と吸着に不活性な非吸着部としての固体希釈剤とで形成され、所定のブタン有効吸着量およびブタン脱着率を有する吸着剤が提案されている。
 また、特許文献2では、微視的細孔を有する活性炭の粉末に、焼成時に消失するメルタブルコアをバインダーとともに加えて焼成することで巨視的細孔が形成されたキャニスタ用吸着材が提案されている。
特開2013-177889号公報 特開2013-011243号公報
 近年、ガソリンエンジンと電気モーターを併用するハイブリッド車が増えている。このハイブリッド車では、キャニスタで吸着された蒸散燃料を脱着し、エンジンへ導入して燃料として使用するためのパージ空気量が、ガソリン車と比べて大幅に低減されるため、キャニスタへの負荷量は大きくなる。このようにキャニスタへの負荷量が大きい場合でも、低エミッション性能の達成が要求される。そのためには、蒸散燃料の吸着性能および脱着性能の双方の特性をキャニスタが備えることが重要となる。
 キャニスタとして重要な通気抵抗の観点からは、吸着材(活性炭成形体)がある程度の大きさ、例えば特許文献2に開示されている4mm程度の粒径を有することが好ましいが、このように大きな吸着材では、個々の吸着材の内部に位置する一部の活性炭が蒸散燃料の吸着または脱着に寄与せず、従って微細な活性炭と比較して吸脱着性能が低くなり得る。そのため、上記特許文献2に開示される粒径の大きい活性炭成形体では、吸脱着性能を確保するために巨視的細孔を設けているが、その結果、活性炭成形体の強度が低下し得る。キャニスタは自動車に搭載されるため、より強度の高い吸着材が求められることがあった。
 従って、本発明は、自動車からの蒸散燃料を良好に吸着するだけでなく、長時間の自動車の停車による蒸散燃料の低エミッション性能を実現できる活性炭成形体を提供することを課題とする。
 また、本発明の限定的な課題は、自動車からの蒸散燃料を良好に吸着するだけでなく、長時間の自動車の停車による蒸散燃料の低エミッション性能を実現でき、さらに向上した強度を有する活性炭成形体を提供することである。
 本発明者らは鋭意検討した結果、特定の容積あたりの比表面積と特定の容積あたりの外表面積とを併せ持つ活性炭成形体により上記課題が解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の好適な態様を包含する。
[1]BET多点法により求めた比表面積とJIS K 1474に準拠して求めた充填密度とから算出した容積あたりの比表面積が290m/mL~520m/mLであり、容積あたりの外表面積が1.4m/L以上である、活性炭成形体。
[2]前記活性炭成形体は柱状構造を有し、該柱状構造は、柱軸方向の両端で開口した中空を内部に有する柱周壁と、一方の開口から他方の開口まで延在して該中空を2つ以上の区画に分割する隔壁とを含む、上記[1]に記載の活性炭成形体。
[3]前記隔壁は前記柱周壁と接続し、前記隔壁は互いに接続しない、上記[2]に記載の活性炭成形体。
[4]柱軸と直交する柱断面を観察したときに、前記隔壁は、1、2または3個存在し、各隔壁のその両端部で前記柱周壁と接続している、上記[2]または[3]に記載の活性炭成形体。
[5]柱軸と直交する柱断面を観察したときに、少なくとも2個以上の隔壁は、柱断面の重心以外の位置で互いに接続している、上記[2]に記載の活性炭成形体。
[6]柱軸と直交する柱断面を観察したときに、少なくとも2個以上の隔壁は、前記柱周壁上の1若しくは2以上の位置で互いに接続している、上記[2]または[5]に記載の活性炭成形体。
[7]柱軸と直交する柱断面を観察したときに、前記隔壁は、前記柱周壁上の位置で互いに接続して三角形、四角形または五角形を形成している、上記[6]に記載の活性炭成形体。
[8]前記隔壁として、一方の開口から他方の開口まで延在して前記中空を2つの区画に分割する内部壁と、一方の開口から他方の開口まで延在して該内部壁と前記柱周壁とを連結する連結壁とを含む、上記[2]に記載の活性炭成形体。
[9]柱軸と直交する柱断面を観察したときに、前記内部壁は円形状、楕円形状、三角形状または四角形状である、上記[8]に記載の活性炭成形体。
[10]前記連結壁は2、3または4個存在する、上記[8]または[9]に記載の活性炭成形体。
[11]前記隔壁の厚みは、前記隔壁の厚みの中心値の-5%~+5%の範囲内である、上記[2]~[10]のいずれかに記載の活性炭成形体。
[12]前記柱周壁の厚みは、前記柱周壁の厚みの中心値の-5%~+5%の範囲内である、上記[2]~[11]のいずれかに記載の活性炭成形体。
[13]前記隔壁の厚みと前記柱周壁の厚みとの差は、柱軸と直交する柱断面を観察したときの最長外寸法に対して5%以下である、上記[2]~[12]のいずれかに記載の活性炭成形体。
[14]前記柱状構造は、柱軸方向に同一断面形状を有する、上記[2]~[13]のいずれかに記載の活性炭成形体。
[15]前記柱周壁の厚みおよび前記隔壁の厚みはそれぞれ、柱軸と直交する柱断面を観察したときの最長外寸法に対して5~35%の範囲内である、上記[2]~[14]のいずれかに記載の活性炭成形体。
[16]前記柱周壁の厚みおよび前記隔壁の厚みはそれぞれ0.3~1.0mmの範囲内である、上記[2]~[15]のいずれかに記載の活性炭成形体。
[17]柱軸と直交する柱断面において壁部面積に対する空隙部面積の割合は20~50%である、上記[2]~[16]のいずれかに記載の活性炭成形体。
[18]柱軸と直交する柱断面を観察したときの最長外寸法は3mm~9mmの範囲内である、上記[2]~[17]のいずれかに記載の活性炭成形体。
[19]HK法により求めた平均細孔径は2.1nm~2.6nmである、上記[1]~[18]のいずれかに記載の活性炭成形体。
[20]ASTM D5228に準拠して求めたブタンの有効吸着量は8.0g/dL~10g/dLである、上記[1]~[19]のいずれかに記載の活性炭成形体。
[21]BJH法により求めた細孔容積は0.480~0.555mL/gである、請求項1~20のいずれかに記載の活性炭成形体。
[22]粉末状または粒状の活性炭と、滑り剤と、酸に可溶な固体希釈剤とを混合すること、得られた混合物をバインダーおよび水と混練し、得られた混練物を所望形状に成形すること、並びに得られた成形物を乾燥した後、酸で洗浄することにより少なくとも一部の固体希釈剤を溶出除去し、さらに乾燥することを含む、上記[1]~[21]のいずれかに記載の活性炭成形体の製造方法。
[23]上記[1]~[21]のいずれかに記載の活性炭成形体を備えるキャニスタ。
 本発明によれば、自動車からの蒸散燃料を良好に吸着するだけでなく、長時間の自動車の停車による蒸散燃料の低エミッション性能を実現できる活性炭成形体を提供することができる。
実施例1に従って製造した活性炭成形体の、柱軸と直交する断面の模式図である。 実施例2に従って製造した活性炭成形体の、柱軸と直交する断面の模式図である。 実施例3に従って製造した活性炭成形体の、柱軸と直交する断面の模式図である。 実施例4に従って製造した活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 本発明の一態様の活性炭成形体の、柱軸と直交する断面の模式図である。 実施例1に従って製造した活性炭成形体の側面の模式図である。
[活性炭成形体]
 本発明の活性炭成形体は、BET多点法により求めた比表面積とJIS K 1474に準拠して求めた充填密度とから算出した容積あたりの比表面積が290m/mL~520m/mLであり、容積あたりの外表面積が1.4m/L以上である。
 容積あたりの比表面積は、BET多点法により求めた比表面積とJIS K 1474に準拠して求めた充填密度との積であり、後述の実施例に記載の方法により求められる。また、容積あたりの外表面積は、後述の実施例に記載の方法により求められる。容積あたりの比表面積および容積あたりの外表面積が上記した特定の数値範囲または特定の下限値以上であることを満たさないと、活性炭成形体は、所望のブタン有効吸着量、高いパージ効率および低いブタン残留量を併せ持つことはできない。パージ効率が高くブタン残留量が低いことは、脱着性能に優れることを意味する。脱着性能に優れると、パージ空気量が少なくても蒸散燃料は良好に脱着され、その結果、ブタン残留量が低下することから、蒸散燃料の低エミッション性能が実現される。
 容積あたりの比表面積は、好ましくは300m/mL~500m/mL、より好ましくは330m/mL~470m/mLであり、容積あたりの外表面積は、好ましくは1.41m/L以上である。容積あたりの比表面積および容積あたりの外表面積が上記した特定の数値範囲または特定の下限値以上であることを満たすと、活性炭成形体は、所望のブタン有効吸着量に加えて高いパージ効率および低いブタン残留量を有しやすい。
 容積あたりの比表面積および容積あたりの外表面積の特定の数値範囲または特定の下限値以上への調整は、例えば、活性炭の賦活度、または配合する材料の割合を調整することによって達成できる。
 また、容積あたりの比表面積および容積あたりの外表面積の特定の数値範囲または特定の下限値以上への調整は、活性炭成形体が特定の形状を有することによって達成できる。従って、本発明の特定の態様では、活性炭成形体は柱状構造を有し、該柱状構造は、柱軸方向の両端で開口した中空を内部に有する柱周壁と、一方の開口から他方の開口まで延在して該中空を2つ以上の区画に分割する隔壁とを含む。
 上記柱状構造としては、円柱状構造、楕円柱状構造、および略角柱状構造等が挙げられる。これらの構造の柱軸と直交する柱断面の形状は、一部凹凸を含んだり角が丸みを帯びたりしてよく、巨視的に観察して円、楕円または多角形であればよい。略角柱状構造としては、略三角柱状構造、略四角柱状構造、略五角柱状構造、略六角柱状構造および略八角柱状構造等が挙げられるが、活性炭成形体をキャニスタに使用する場合に要求される摩耗強度が得られやすい観点からは、柱断面の角が丸みを帯びた略角柱状構造が好ましい。同様の観点から、円柱状構造および楕円柱状構造も好ましい。所望のブタン有効吸着量、高いパージ効率および低いブタン残留量が得られやすい観点から、柱状構造は、正円柱状構造であることがより好ましい。
 以下において、必要により添付図面を参照しつつ特定の態様を詳細に説明する。
 本発明の特定の態様において、隔壁は柱周壁と接続し、隔壁は互いに接続しない。この態様の具体的な例の、柱軸と直交する柱断面の模式図を、図1および4~11に示す。
 また、本発明の特定の態様において、柱軸と直交する柱断面を観察したときに、隔壁は、1、2または3個存在し、各隔壁のその両端部で柱周壁と接続している。この態様の具体的な例の、柱軸と直交する柱断面の模式図を、図1および4~11に示す。
 隔壁が互いに接続しないこれらの特定の形状を活性炭成形体が有することにより、隔壁が互いに接続する場合に生じる接続部での厚みの増大に起因した活性炭成形体と蒸散燃料との接触効率の低下が発現し得ないため、容積あたりの比表面積および容積あたりの外表面積を特定の数値範囲または特定の下限値以上に調整しやすい。
 図1、4および5では、互いに接続しない隔壁が1、2または3個存在し、各隔壁がその両端部で柱周壁と接続してI字形、II字型またはIII字型を形成している。
 図6~8では、互いに接続しない隔壁が1、2または3個存在し、各隔壁がその両端部で柱周壁と接続してS字形、SS字型またはSSS字型を形成している。
 図9および10では、互いに接続しない隔壁が2または3個存在し、各隔壁が湾曲してその両端部で柱周壁と接続している。
 図11では、隔壁が3個存在し、各隔壁がその両端部で柱周壁と接続して、辺が互いに接続しない三角形様の形状を形成している。
 本発明の特定の態様において、柱軸と直交する柱断面を観察したときに、少なくとも2個以上の隔壁は、柱断面の重心以外の位置で互いに接続している。この態様の具体的な例としては、柱軸と直交する柱断面を観察したときに、2個の隔壁がT字形を形成しているもの、および3個の隔壁がH字形を形成しているもの等が挙げられる。
 本発明の特定の態様において、柱軸と直交する柱断面を観察したときに、少なくとも2個以上の隔壁は、柱周壁上の1若しくは2以上の位置で互いに接続している。この態様の具体的な例としては、柱軸と直交する柱断面を観察したときに、2個の隔壁がV字形を形成しているもの、および3個の隔壁がA字形またはN字形を形成しているもの、3個の隔壁が1若しくは2の頂点が閉じていない三角形様の形状を形成しているもの等が挙げられる。
 本発明の特定の態様において、柱軸と直交する柱断面を観察したときに、隔壁は、柱周壁上の位置で互いに接続して三角形、四角形または五角形を形成している。この態様の柱断面の模式図を、図2、3および12に示す。
 本発明の別の特定の態様において、活性炭成形体は、隔壁として、一方の開口から他方の開口まで延在して中空を2つの区画に分割する内部壁と、一方の開口から他方の開口まで延在して内部壁と柱周壁とを連結する連結壁とを含む。
 本発明の特定の態様において、柱軸と直交する柱断面を観察したときに、内部壁は円形状、楕円形状、三角形状または四角形状である。
 本発明の特定の態様において、連結壁は2、3または4個存在する。
 これらの態様の具体的な例の、柱軸と直交する柱断面の模式図を、図13~21に示す。
 柱軸と直交する柱断面が図1~21に示されている活性炭成形体の真横からの側面の模式図は、全て共通しており、実施例1に従って製造した活性炭成形体の側面の模式図(図22)と同じである。
 所望のブタン有効吸着量、高いパージ効率および低いブタン残留量が得られやすい観点から、隔壁の厚みは、隔壁の厚みの中心値の-5%~+5%の範囲内であることが好ましく、-4%~+4%の範囲内であることがより好ましく、-3%~+3%の範囲内であることが特に好ましい。隔壁の厚みが隔壁の厚みの中心値に近接するほど、隔壁の厚みがより均一であることを意味しており、本発明では好ましい。
 所望のブタン有効吸着量、高いパージ効率および低いブタン残留量が得られやすい観点から、柱周壁の厚みは、柱周壁の厚みの中心値の-5%~+5%の範囲内であることが好ましく、-4%~+4%の範囲内であることがより好ましく、-3%~+3%の範囲内であることが特に好ましい。柱周壁の厚みが柱周壁の厚みの中心値に近接するほど、柱周壁の厚みがより均一であることを意味しており、本発明では好ましい。
 所望のブタン有効吸着量、高いパージ効率および低いブタン残留量が得られやすい観点から、隔壁の厚みと柱周壁の厚みとの差は、柱軸と直交する柱断面を観察したときの最長外寸法に対して5%以下であることが好ましく、3%以下であることがより好ましく、0%であることが特に好ましい。ここで、最長外寸法とは、柱が円柱の場合は柱外径またはそれに相当するもの、柱が楕円柱の場合は柱断面の長径またはそれに相当するもの、柱が略角柱の場合は柱断面の最長対角線またはそれに相当するものを意味する。上記差が小さい程、隔壁の厚みと柱周壁の厚みがより均一であることを意味しており、本発明では好ましい。
 所望のブタン有効吸着量、高いパージ効率および低いブタン残留量が得られやすい観点から、柱状構造は、柱軸方向に同一断面形状を有する。このような形状は、例えば、活性炭成形体を押出成形または打錠成型によって製造することにより得られる。
 所望のブタン有効吸着量、高いパージ効率および低いブタン残留量が得られやすい観点から、柱周壁の厚みおよび隔壁の厚みはそれぞれ、柱軸と直交する柱断面を観察したときの最長外寸法に対して5~35%の範囲内であることが好ましく、7~25%の範囲内であることがより好ましく、10~20%の範囲内であることが特に好ましい。
 柱周壁の厚みおよび隔壁の厚みはそれぞれ、好ましくは0.3~1.0mmの範囲内、より好ましく0.4~0.95mmの範囲内、特に好ましくは0.5~0.9mmの範囲内である。柱周壁の厚みおよび隔壁の厚みが上記範囲内であると、低いブタン残留量や高い硬度が得られやすい。
 柱軸と直交する柱断面において壁部面積に対する空隙部面積の割合は、好ましくは20~50%、より好ましくは25~45%、特に好ましくは30~40%である。上記割合が上記範囲内であると、低いブタン残留量や高い硬度が得られやすい。
 柱軸と直交する柱断面を観察したときの最長外寸法は、好ましくは3mm~9mmの範囲内、より好ましくは4~7mmの範囲内、特に好ましくは4~6mmの範囲内である。最長外寸法が上記範囲内であると、通気抵抗を抑えつつ、低いブタン残留量が得られやすい。
 隔壁および柱周壁の厚み、それらの中心値、最長外寸法、並びに壁部面積に対する空隙部面積の割合は、後述の実施例に記載の方法により求められる。これらの値は、例えば、活性炭成形体を押出成形によって製造する場合のノズル形状または活性炭成形体を打錠成型によって製造する場合の金型形状を調節することにより調整できる。
 柱周壁と隔壁との接続部または隔壁と隔壁との接続部では、接続部以外での柱周壁および隔壁より、壁表面でなく内部に存在する活性炭が多い。これは、蒸散燃料との接触効率の低下を招き得るため好ましくない。従って、前記内部に存在する活性炭を少なくすることが好ましい。具体的には、前記接続部において柱周壁または隔壁の厚みを部分的に薄くすることが好ましく、これは、例えば、活性炭成形体を押出成形によって製造する場合のノズル形状または活性炭成形体を打錠成型によって製造する場合の金型形状を調節することにより達成できる。
 本発明の活性炭成形体のHK法により求めた平均細孔径は、好ましくは2.1nm~2.6nm、より好ましくは2.1nm~2.4nm、特に好ましくは2.1nm~2.2nmである。上記平均細孔径が上記範囲内であると、所望のブタン有効吸着量が得られやすい。平均細孔径の上記範囲内への調整は、例えば、活性炭の賦活度を調整することによって達成できる。上記平均細孔径は、後述の実施例に記載の方法により求められる。
 本発明の活性炭成形体のASTM D5228に準拠して求めたブタンの有効吸着量は、好ましくは8.0g/dL~10g/dL、より好ましくは8.0g/dL~9.8g/dL、特に好ましくは8.0g/dL~9.7g/dLである。ブタンの有効吸着量が上記範囲内であると、蒸散燃料を良好に脱着しやすい。ブタンの有効吸着量の上記範囲内への調整は、例えば、活性炭の賦活度、または配合する材料の割合を調整することによって達成できる。
 本発明の活性炭成形体のASTM D5228に準拠して求めたブタン残留量は、好ましくは1.30g/dL以下、より好ましくは1.25g/dL以下、特に好ましくは1.20g/dL以下である。ブタン残留量が低い程、脱着性能に優れることを意味しており、本発明では好ましい。ブタン残留量の上記値以下への調整は、例えば、活性炭の賦活度、または配合する材料の割合を調整することによって達成できる。
 本発明の活性炭成形体のマイクロストレングス硬度(以下、MS硬度とも称する)は、好ましくは60%以上、より好ましくは70%以上、特に好ましくは75%以上である。MS硬度は、重量負荷に対する抵抗の指標であり、後の実施例に記載の方法により測定される。活性炭成形体が上記値以上のMS硬度を有すると、活性炭成形体をキャニスタに使用する際の摩耗強度が得られやすい。MS硬度の上記値以上への調整は、例えば、バインダーの配合量を調整することによって達成できる。
 本発明の活性炭成形体の微粉量は、好ましくは0.12%以下、より好ましくは0.10%以下、より好ましくは0.07%以下、より好ましくは0.05%以下、特に好ましくは0.025%以下である。微粉量が上記値以下であると、活性炭成形体をキャニスタに使用する際の塵埃が低減されやすい。微粉量の上記値以下への調整は、例えば、バインダーの配合量を調整することによって達成できる。微粉量は、後述の実施例に記載の方法により求められる。
 本発明の活性炭成形体のBJH法により求めた細孔容積は、好ましくは0.480~0.555mL/g、より好ましくは0.490~0.545mL/g、特に好ましくは0.500~0.535mL/gである。BJH法により求めた細孔容積が上記範囲内であると、所望のブタン有効吸着量が得られやすい。BJH法により求めた細孔容積の上記範囲内への調整は、例えば、活性炭の賦活度、または配合する材料の割合を調整することによって達成できる。上記細孔容積は、後述の実施例に記載の方法により求められる。
 本発明の活性炭成形体は、特定の、BET多点法により求めた比表面積とJIS K 1474に準拠して求めた充填密度とから算出した容積あたりの比表面積、および容積あたりの外表面積を有するため、蒸散燃料の良好な吸着に加えて、蒸散燃料の低エミッション性能を実現できる。また、本発明の活性炭成形体は、低い微粉量および高いMS硬度を有することができる。よって、本発明の活性炭成形体は、キャニスタへの使用に適している。従って、本発明は、本発明の活性炭成形体を備えるキャニスタも対象とする。なお、本発明の活性炭成形体は、種々の蒸散燃料、例えば、一般的な自動車燃料である通常のガソリンだけでなく、アルコールを含有するガソリン等にも適用可能である。
[活性炭成形体の製造方法]
 本発明の活性炭成形体は、例えば、粉末状または粒状の活性炭と、滑り剤と、酸に可溶な固体希釈剤とを混合すること、得られた混合物をバインダーおよび水と混練し、得られた混練物を所望形状に成形すること、並びに得られた成形物を乾燥した後、酸で洗浄することにより少なくとも一部の固体希釈剤を溶出除去し、さらに乾燥することを含む方法によって製造される。
〔粉末状または粒状の活性炭〕
 粉末状または粒状の活性炭は、原料となる炭素質材料を炭化し賦活することにより得られた活性炭を、例えば1~500μm、好ましくは1~100μm、より好ましくは10~50μmの平均粒子径を有するよう粉砕したものである。
 炭素質材料としては、炭化および賦活により活性炭を形成するものであれば特に制限はなく、植物系、鉱物系、天然素材および合成素材等から選択できる。具体的には、植物系炭素質材料としては、例えば、木材、竹、木炭、籾ガラ、およびヤシ殻等の果実殻等が挙げられ、鉱物系炭素質材料としては、例えば、石炭類(例えば、泥炭、亜炭、亜瀝青炭、瀝青炭、半無煙炭および無煙炭等)、石油系および/または石油系ピッチ、並びにコークス等が挙げられる。天然素材としては、例えば、デンプン、セルロース(木綿および麻等の天然繊維等)、再生樹脂(レーヨンおよびビスコースレーヨン等の再生繊維等)、および半合成樹脂(アセテートおよびトリアセテート等の半合成繊維等)等が挙げられ、合成素材としては、例えば、ナイロン66等のポリアミド系樹脂、ビニロン等のポリビニルアルコール系樹脂、アクリル系樹脂(ポリアクリロニトリル系樹脂等)、ポリオレフィン系樹脂(ポリエチレンおよびポリプロピレン等)、塩化ビニル系樹脂、ポリウレタン系樹脂、フェノール系樹脂、フラン系樹脂、およびエポキシ系樹脂等が挙げられる。これらの炭素質材料は、単独でまたは二種以上組み合わせて使用してよい。
 これらの炭素質材料の中でも、所望のブタン有効吸着量、高いパージ効率および低いブタン残留量を有する活性炭成形体が得られやすい観点から、鉱物系炭素質材料を用いることが好ましく、石炭類を用いることがより好ましく、瀝青炭および/または無煙炭を用いることが特に好ましい。
 炭素質材料の炭化および賦活条件は特に制限されず、慣用の条件を採用できる。通常、炭素質材料の炭化は、酸素または空気を遮断して、例えば400~800℃、好ましくは500~800℃、より好ましくは550~750℃で実施できる。また、炭化した炭素質材料の賦活は、通常、賦活ガス(例えば、水蒸気または二酸化炭素ガス等)の雰囲気下、例えば700~1200℃、好ましくは800~1100℃で実施できる。
 賦活後に得た活性炭の、ASTM D5228に準拠して測定されたブタンの有効吸着量は、例えば10~20g/dL、好ましくは12.5~18g/dL、より好ましくは13~16g/dLである。
 賦活後に得た活性炭のBET比表面積は、例えば250~1500m/g、好ましくは350~1400m/g、より好ましくは500~1300m/gである。
 賦活後に得た活性炭の平均細孔径は、例えば0.1~100nm、好ましくは0.3~50nm、より好ましくは0.3~25nm、より好ましくは0.5~10nm、特に好ましくは0.5~5nmである。
〔滑り剤〕
 滑り剤としては、例えば、ベントナイト系化合物、セルロース系化合物およびポリビニルアルコール系化合物からなる群から選ばれた1種以上を使用できる。ベントナイト系化合物としては、例えば、ナトリウムベントナイトおよびカルシウムベントナイト等が挙げられる。セルロース系化合物としては、例えば、セルロース、およびセルロース誘導体〔セルロースエーテル類、例えば、メチルセルロース(以下、MCとも称する)等のアルキルセルロース;カルボキシメチルセルロースまたはその塩;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のヒドロキシアルキルセルロース;ヒドロキシプロピルメチルセルロース等のヒドロキシアルキルアルキルセルロース等〕等が挙げられ、メチルセルロースおよび/またはカルボキシメチルセルロースを使用することが好ましい。ポリビニルアルコール系化合物としては、例えば、ポリビニルアルコールおよび各種変性ポリビニルアルコール等が挙げられる。
 滑り剤の使用量は、粉末状または粒状の活性炭100質量部に対して、好ましくは5~25質量部、より好ましくは5~20質量部、特に好ましくは5~18質量部である。
〔酸に可溶な固体希釈剤〕
 酸に可溶な固体希釈剤は、後続の酸洗浄工程で少なくとも一部溶出除去され、溶出除去部が活性炭成形体において細孔となる。従って、活性炭成形体は、賦活により形成された粉末状または粒状活性炭の微細孔(以下、「賦活由来の微細孔」とも称する)に加えて、固体希釈剤の溶出除去により形成された細孔(以下、「溶出除去由来の細孔」とも称する)を有する。溶出除去由来の細孔の形成により充填密度を制御でき、本発明における、BET多点法により求めた比表面積とJIS K 1474に準拠して求めた充填密度とから算出した容積あたりの比表面積を制御できる。溶出除去由来の細孔を有する活性炭成形体は、実用的な硬度を有する。
 酸に可溶な固体希釈剤としては、無機化合物、例えば、酸化マグネシウム等の金属酸化物、炭酸マグネシウムおよび炭酸カルシウム等の金属炭酸塩、水酸化カルシウム等の金属水酸化物等;塩基性高分子、例えば、N,N-ジアルキルアミノC2~3アルキル(メタ)アクリレートを単量体とする単独または共重合体等が挙げられる。これらの固体希釈剤は、単独でまたは二種以上組み合わせて使用してよい。酸による溶出において、粘稠となりやすい高分子よりも、低粘度の溶出物を形成する固体希釈剤が好ましい。このような固体希釈剤としては、炭酸カルシウムが挙げられる。
 固体希釈剤の平均粒子径は、所望する溶出除去由来の細孔の大きさに応じて選択でき、例えば0.1~30μm、好ましくは0.1~20μm、より好ましくは0.2~15μm、特に好ましくは0.2~10μmである。粉末状または粒状活性炭の平均粒子径と固体希釈剤の平均粒子径との比率は、例えば300/1~0.01/1、好ましくは250/1~1/1、より好ましくは100/1~10/1である。
 固体希釈剤の使用量は、所望する溶出除去由来の細孔の大きさおよび割合に応じて選択でき、粉末状または粒状活性炭100質量部に対して、例えば10~150質量部、通常25~150質量部、好ましくは40~150質量部、より好ましくは50~130質量部、特に好ましくは55~120質量部である。
 粉末状または粒状の活性炭と、滑り剤と、酸に可溶な固体希釈剤との混合は、一般的な方法で実施できる。
 次いで、得られた混合物をバインダーおよび水と混練する。
〔バインダー〕
 バインダーとしては、蒸散燃料の吸着および脱着雰囲気で短時間内に溶出または劣化せず、酸に対して不溶であるものが用いられる。また、バインダーの種類および使用量によって活性炭成形体の硬度が決定すること、およびバインダーによって活性炭の細孔閉塞が起こり得ることに鑑み、バインダーの種類を選択し、使用量を調整する必要がある。
 バインダーは、熱可塑性樹脂または熱硬化性樹脂であってよい。その例としては、ポリオレフィン系樹脂〔ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸エステル共重合体、およびエチレン-(メタ)アクリル酸共重合体等〕、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびシリコーン系樹脂等が挙げられる。これらのバインダーは、単独でまたは二種以上組み合わせて使用してよい。バインダーは、ホットメルト接着剤等のように熱接着性樹脂であってもよく、水性(水性媒体に溶解若しくは分散した形態)または油性(有機溶剤に溶解した形態)であってもよい。バインダーは、アクリル系樹脂エマルジョン等のように、分散体(特に、エマルジョン等の水性分散体)の形態で使用する場合が多い。
 バインダーの割合は、粉末状または粒状活性炭100質量部に対して、固形分換算で、例えば5~35質量部、好ましくは7~30質量部、より好ましくは9~25質量部、特に好ましくは10~20質量部である。
 混練物の密度および混練性を調整するため、粉末状または粒状活性炭と滑り剤と固体希釈剤との混合物と、バインダーとの混練に、水も用いる。水の使用量は、粉末状または粒状活性炭100質量部に対して、例えば100~300質量部、好ましくは110~250質量部、より好ましくは120~200質量部である。
 混練は、例えばミキサー、リボンミキサー、スタティックミキサー、ボールミル、サンプルミルまたはニーダー等を用いた一般的な方法で実施できる。混練温度は、水分量の変化を低減する観点から、通常0~50℃、好ましくは5~40℃である。混練時間は、バインダーの酸化劣化防止および生産効率の観点から、通常1~60分であり、好ましくは5~30分である。
 続いて、得られた混練物を、例えば打錠成型または押出成形により、所望形状に成形する。混練物の押出成形は、押出されたストランドの切断も含み、切断後に所望形状が得られる。所望形状とは、活性炭成形体に、特定の、BET多点法により求めた比表面積とJIS K 1474に準拠して求めた充填密度とから算出した容積あたりの比表面積、および容積あたりの外表面積をもたらす形状であって、例えば、柱状構造を有し、該柱状構造は、柱軸方向の両端で開口した中空を内部に有する柱周壁と、一方の開口から他方の開口まで延在して該中空を2つ以上の区画に分割する隔壁とを含む形状である。
 次いで、得られた成形物を乾燥した後、酸で洗浄することにより固体希釈剤を溶出除去し、さらに乾燥することにより、活性炭成形体が得られる。先に述べたように、活性炭成形体は、賦活由来の微細孔に加えて、溶出除去由来の細孔を有する。
 酸洗浄前後の乾燥方法はいずれも特に限定されず、空気、不活性ガス(例えば窒素)またはそれらの混合物の雰囲気下で、一般的な乾燥機を用いて乾燥してよい。バインダーの劣化防止および生産効率の観点から、乾燥温度は、通常60~150℃、好ましくは70~140℃である。乾燥時間は、乾燥温度等に依存するが、通常0.1~36時間、好ましくは0.5~24時間である。
 固体希釈剤を溶出除去するための酸の例としては、塩酸および硝酸等の無機酸、並びに酢酸、トリクロロ酢酸、トリフルオロ酢酸、蟻酸およびクエン酸等の有機酸が挙げられる。これらの酸は単独でまたは二種以上組み合わせて使用してよい。安全面、入手のしやすさ、コストの観点から、塩酸が好ましい。
 酸は通常水溶液の形態で使用され、その濃度は通常0.5~3mol/L、好ましくは0.8~2.5mol/Lである。酸水溶液の使用量は、成形物100gに対して、通常0.5~2L、好ましくは0.8~1.5Lである。
 洗浄方法としては、乾燥した成形物と酸水溶液とを接触させればよい。乾燥した成形物と酸水溶液とを混合した後に、撹拌したり、煮沸または50~90℃に加温したりすることにより、洗浄効率を向上できる。また、超音波洗浄機を使用してもよい。
 洗浄時間は、温度等に依存するが、通常0.1~48時間、好ましくは0.5~24時間である。洗浄回数は、好ましくは、煮沸酸洗浄では1~5回、加温酸洗浄では1~10回である。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はかかる実施例により何ら限定されるものではない。なお、それぞれの実施例および比較例で得られた活性炭成形体の特性は、以下のようにして評価した。
〔平均粒子径〕
 原料となる粉末状活性炭の粒径は、レーザー回折測定法により測定した。具体的には、測定する粉末状活性炭、界面活性剤およびイオン交換水を混合して得た分散液を、レーザー回折・散乱式粒子径分布測定装置(マイクロトラック・ベル株式会社製「MT3300II」)を用いて透過法にて測定した。なお、分散液の活性炭濃度は、同装置で表示される測定濃度範囲に収まるように調整した。また、分散液調製時の界面活性剤としては、和光純薬工業株式会社製「ポリオキシエチレン(10)オクチルフェニルエーテル」を用い、測定に影響する気泡等が発生しない適当量添加した。分析条件を以下に示す。
  測定回数:1回
  測定時間:30秒
  分布表示:体積
  粒径区分:標準
  計算モード:MT3000II
  溶媒名:WATER
  測定上限:2000μm
  測定下限:0.021μm
  残分比:0.00
  通過分比:0.00
  残分比設定:無効
  粒子透過性:透過
  粒子屈折率:1.81
  粒子形状:非球形
  溶媒屈折率:1.333
  DV値:0.0150~0.0700
  透過率(TR):0.700~0.950
 測定結果において、D50の値を平均粒子径とした。
〔容積あたりの比表面積〕
 活性炭成形体の容積あたりの比表面積は、BET多点法により求めた比表面積とJIS K 1474に準拠して求めた充填密度とから算出した。
 比表面積は、BELSORP-max(マイクロトラック・ベル株式会社製)を用いて77Kでの窒素吸着等温線を得、この吸着等温線からBET多点法(Brunauer Emmett Teller多点法)を用いて求めた。
 充填密度は、JIS K 1474に準拠して求めた。
 得られた比表面積と充填密度とから、下記式により容積あたりの比表面積を算出した。
Figure JPOXMLDOC01-appb-M000001
〔HK法により求めた平均細孔径〕
 BELSORP-max(マイクロトラック・ベル株式会社製)を用いて77Kでの窒素吸着等温線を得、この吸着等温線からHK法(Horvath Kawazoe法)により、活性炭成形体の細孔容積を求めた。
 得られた細孔容積とBET多点法により求めた比表面積とから、下記式によりHK法により求めた平均細孔径を算出した。
Figure JPOXMLDOC01-appb-M000002
〔柱断面の最長外寸法(柱外径)、柱長さおよび壁(隔壁、柱周壁)厚み、それらの平均値、並びに壁厚みの中心値〕
 ノギスを用いて33個以上の活性炭成形体の柱外径、柱長さおよび壁厚みを測定し、各々の平均値を求めた。
 また、測定した壁厚みを小さい順に並べたとき中央に位置する値を、壁厚みの中心値として求めた。
〔容積あたりの外表面積〕
 活性炭成形体の容積あたりの外表面積は、下記式により算出した。
Figure JPOXMLDOC01-appb-M000003
 上記式中の充填密度は、JIS K 1474に準拠して求めた。
 上記式中の活性炭成形体の平均重量は、120℃で一定重量になるまで乾燥した、33個以上の活性炭成形体の重量を測定し、その平均値を計算することにより求めた。
 上記式中の活性炭成形体1個あたりの外表面積は、活性炭成形体の柱外径、柱内径、柱断面における隔壁の長さ、柱長さおよび壁厚みの各平均値から算出した。
〔柱断面の最長外寸法(柱外径)に対する壁厚み(周壁厚みまたは隔壁厚み)〕
Figure JPOXMLDOC01-appb-M000004
〔柱断面における壁部面積に対する空隙部面積の割合〕
Figure JPOXMLDOC01-appb-M000005
 上記式中の柱断面における壁部面積および空隙部面積は、活性炭成形体の柱外径、柱内径、柱断面における隔壁の長さおよび壁厚みの各平均値から算出した。
〔MS硬度〕
 内径25.4mm、長さ304.8mmの鋼製ポットに、8mmの鋼球を10個入れ、さらに、乾燥した活性炭成形体約5.0g(0.1gの桁まで秤量)を入れ、密閉した。この鋼製ポットを測定器に取り付け、1分間に25回転の速度で40分間回転させた。その後試料を取り出し、鋼球を取り除いた後、50mesh篩で篩過した。下記式に従い、篩上に残った試料の、最初に鋼製ポットに入れた試料に対する割合(単位:%)を算出し、MS硬度とした。
Figure JPOXMLDOC01-appb-M000006
〔ブタンの有効吸着量(BWC)、吸着率、パージ効率、および残留量〕
 n-ブタンの有効吸着量、吸着率、パージ効率、および残留量は、ASTM D5228に準拠して求めた。
〔微粉量〕
 活性炭成形体の微粉量は、ASTM D2862に準拠して、測定する活性炭成形体を100g程度秤量(A[g])し、篩振とう機を用いて、60メッシュの篩網によりロータップで10分間篩分けした後、篩下重量を秤量した(B[g])。下記式により、微粉量を求めた。
Figure JPOXMLDOC01-appb-M000007
〔BJH法により求めた細孔容積〕
 BELSORP-max(マイクロトラック・ベル株式会社製)を用いて77Kでの窒素吸着等温線を得、この吸着等温線からBJH法(Barrett-Joyner-Halenda法)により、活性炭成形体の細孔容積を求めた。
実施例1
 瀝青炭を流動炉により1000℃で賦活することによって製造され、ASTM D5228に準拠して測定したBWCが15.6g/dLの石炭系活性炭を、粉砕機で平均粒子径25μmの粉末に粉砕し、粉末状活性炭を得た。
 得られた粉末状活性炭100質量部に対して、60質量部の炭酸カルシウム(平均粒子径7μm)および15質量部の滑り剤(MC)を混合し、得られた混合物を、35質量部のバインダー樹脂(日本ゼオン株式会社製、アクリルエマルション「ニポールLX-851C」、固形分45質量%)および165質量部の水と混練した。
 得られた混練物を、真空押出成形機により、断面が図1の形状となるよう押出し、押出されたストランドを3~5mmの長さに切断し、120℃で3時間乾燥した。乾燥した成形物100gに対して2mol/Lの塩酸を1Lの割合で用いて煮沸洗浄し、炭酸カルシウム成分を成形物から除去し、120℃で12時間乾燥させることにより、活性炭成形体を得た。評価結果を表1に示す。
実施例2
 真空押出成形機により、断面が図2の形状となるよう押出したこと以外は実施例1と同様にして、活性炭成形体を得た。評価結果を表1に示す。
実施例3
 真空押出成形機により、断面が図3の形状となるよう押出したこと以外は実施例1と同様にして、活性炭成形体を得た。評価結果を表1に示す。
実施例4
 真空押出成形機により、断面が図4の形状となるよう押出したこと以外は実施例1と同様にして、活性炭成形体を得た。評価結果を表1に示す。
比較例1
 実施例1と同様にして得られた粉末状活性炭100質量部に対して、60質量部の炭酸カルシウム(平均粒子径7μm)および5質量部の滑り剤(MC)を混合し、得られた混合物を、35質量部のバインダー樹脂(日本ゼオン株式会社製、アクリルエマルション「ニポールLX-851C」、固形分45質量%)および165質量部の水と混練した。
 得られた混練物を、油圧式押出成形機により、直径約2.5mmの円柱状に押出し、押出されたストランドを3~4mmの長さに切断し、120℃で3時間乾燥した。乾燥した成形物100gに対して2mol/Lの塩酸を1Lの割合で用いて煮沸洗浄し、炭酸カルシウム成分を成形物から除去し、120℃で12時間乾燥させることにより、活性炭成形体を得た。評価結果を表1に示す。
比較例2
 無煙炭をロータリーキルンにより900~950℃で賦活することによって製造され、ASTM D5228に準拠して測定したBWCが15.6g/dLの石炭系活性炭を、粉砕機で平均粒子径25μmの粉末に粉砕したものを粉末状活性炭として使用したこと、および直径約2.0mmの円柱状に押出したこと以外は比較例1と同様にして、活性炭成形体を得た。評価結果を表1に示す。
比較例3~7
 比較例3~7では、以下の市販の活性炭を用いた。これらの活性炭の形状は、いずれも円柱状である。それぞれの評価結果を表1に示す。
  比較例3:株式会社クラレ製の「2GK」
  比較例4:Ingevity製の「BAX-1100」
  比較例5:株式会社クラレ製の「2GK-H」
  比較例6:Ingevity製の「BAX-1500」
  比較例7:Ingevity製の「BAX-LBE」
Figure JPOXMLDOC01-appb-T000008
 表1に示されているとおり、特定の、BET多点法により求めた比表面積とJIS K 1474に準拠して求めた充填密度とから算出した容積あたりの比表面積、および容積あたりの外表面積を有する本発明の活性炭成形体(実施例1~4)は、所望のブタン有効吸着量、高いパージ効率および低いブタン残留量を併せ持っていた。これは、本発明の活性炭成形体をキャニスタに用いると、蒸散燃料の良好な吸着に加えて、蒸散燃料の低エミッション性能を実現できることを示す。本発明の活性炭成形体はまた、低い微粉量および高いMS硬度を有する。これは、向上した摩耗強度が要求されるキャニスタ用途にとって有利である。
 一方、特定の、BET多点法により求めた比表面積とJIS K 1474に準拠して求めた充填密度とから算出した容積あたりの比表面積、または容積あたりの外表面積を有さない活性炭成形体(比較例1~7)は、所望のブタン有効吸着量、高いパージ効率および低いブタン残留量を併せ持っていなかった。また、比較例4~7の活性炭成形体は、高い微粉量および低いMS強度を有したことから、実使用面でキャニスタ性能が本発明の活性炭成形体より劣ることが分かった。
 本発明の活性炭成形体は、所望のブタン有効吸着量、高いパージ効率および低いブタン残留量を併せ持つことから、吸着性能に加えて脱着性能に優れる。従って、本発明の活性炭成形体は、ガス吸着用の吸着材として有用であり、特に脱着性能に優れることから、例えば自動車用燃料タンクからの蒸散燃料の処理用等の吸着材として有用である。

Claims (23)

  1.  BET多点法により求めた比表面積とJIS K 1474に準拠して求めた充填密度とから算出した容積あたりの比表面積が290m/mL~520m/mLであり、容積あたりの外表面積が1.4m/L以上である、活性炭成形体。
  2.  前記活性炭成形体は柱状構造を有し、該柱状構造は、柱軸方向の両端で開口した中空を内部に有する柱周壁と、一方の開口から他方の開口まで延在して該中空を2つ以上の区画に分割する隔壁とを含む、請求項1に記載の活性炭成形体。
  3.  前記隔壁は前記柱周壁と接続し、前記隔壁は互いに接続しない、請求項2に記載の活性炭成形体。
  4.  柱軸と直交する柱断面を観察したときに、前記隔壁は、1、2または3個存在し、各隔壁のその両端部で前記柱周壁と接続している、請求項2または3に記載の活性炭成形体。
  5.  柱軸と直交する柱断面を観察したときに、少なくとも2個以上の隔壁は、柱断面の重心以外の位置で互いに接続している、請求項2に記載の活性炭成形体。
  6.  柱軸と直交する柱断面を観察したときに、少なくとも2個以上の隔壁は、前記柱周壁上の1若しくは2以上の位置で互いに接続している、請求項2または5に記載の活性炭成形体。
  7.  柱軸と直交する柱断面を観察したときに、前記隔壁は、前記柱周壁上の位置で互いに接続して三角形、四角形または五角形を形成している、請求項6に記載の活性炭成形体。
  8.  前記隔壁として、一方の開口から他方の開口まで延在して前記中空を2つの区画に分割する内部壁と、一方の開口から他方の開口まで延在して該内部壁と前記柱周壁とを連結する連結壁とを含む、請求項2に記載の活性炭成形体。
  9.  柱軸と直交する柱断面を観察したときに、前記内部壁は円形状、楕円形状、三角形状または四角形状である、請求項8に記載の活性炭成形体。
  10.  前記連結壁は2、3または4個存在する、請求項8または9に記載の活性炭成形体。
  11.  前記隔壁の厚みは、前記隔壁の厚みの中心値の-5%~+5%の範囲内である、請求項2~10のいずれかに記載の活性炭成形体。
  12.  前記柱周壁の厚みは、前記柱周壁の厚みの中心値の-5%~+5%の範囲内である、請求項2~11のいずれかに記載の活性炭成形体。
  13.  前記隔壁の厚みと前記柱周壁の厚みとの差は、柱軸と直交する柱断面を観察したときの最長外寸法に対して5%以下である、請求項2~12のいずれかに記載の活性炭成形体。
  14.  前記柱状構造は、柱軸方向に同一断面形状を有する、請求項2~13のいずれかに記載の活性炭成形体。
  15.  前記柱周壁の厚みおよび前記隔壁の厚みはそれぞれ、柱軸と直交する柱断面を観察したときの最長外寸法に対して5~35%の範囲内である、請求項2~14のいずれかに記載の活性炭成形体。
  16.  前記柱周壁の厚みおよび前記隔壁の厚みはそれぞれ0.3~1.0mmの範囲内である、請求項2~15のいずれかに記載の活性炭成形体。
  17.  柱軸と直交する柱断面において壁部面積に対する空隙部面積の割合は20~50%である、請求項2~16のいずれかに記載の活性炭成形体。
  18.  柱軸と直交する柱断面を観察したときの最長外寸法は3mm~9mmの範囲内である、請求項2~17のいずれかに記載の活性炭成形体。
  19.  HK法により求めた平均細孔径は2.1nm~2.6nmである、請求項1~18のいずれかに記載の活性炭成形体。
  20.  ASTM D5228に準拠して求めたブタンの有効吸着量は8.0g/dL~10g/dLである、請求項1~19のいずれかに記載の活性炭成形体。
  21.  BJH法により求めた細孔容積は0.480~0.555mL/gである、請求項1~20のいずれかに記載の活性炭成形体。
  22.  粉末状または粒状の活性炭と、滑り剤と、酸に可溶な固体希釈剤とを混合すること、
     得られた混合物をバインダーおよび水と混練し、得られた混練物を所望形状に成形すること、並びに
     得られた成形物を乾燥した後、酸で洗浄することにより少なくとも一部の固体希釈剤を溶出除去し、さらに乾燥すること
    を含む、請求項1~21のいずれかに記載の活性炭成形体の製造方法。
  23.  請求項1~21のいずれかに記載の活性炭成形体を備えるキャニスタ。
PCT/JP2018/046065 2017-12-27 2018-12-14 活性炭成形体 WO2019131207A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201880083763.3A CN111511681A (zh) 2017-12-27 2018-12-14 活性炭成形体
KR1020207016361A KR102663974B1 (ko) 2017-12-27 2018-12-14 활성탄 성형체
BR112020012954-2A BR112020012954A2 (pt) 2017-12-27 2018-12-14 artigo moldado de carbono ativado
EP18894382.3A EP3733599A4 (en) 2017-12-27 2018-12-14 ACTIVATED CARBON MOLDED BODY
JP2019562994A JP7203761B2 (ja) 2017-12-27 2018-12-14 活性炭成形体
US16/957,412 US20210070617A1 (en) 2017-12-27 2018-12-14 Activated carbon molded article
MX2020006838A MX2020006838A (es) 2017-12-27 2018-12-14 Articulo moldeado de carbon activado.
CA3086016A CA3086016A1 (en) 2017-12-27 2018-12-14 Activated carbon molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-252391 2017-12-27
JP2017252391 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019131207A1 true WO2019131207A1 (ja) 2019-07-04

Family

ID=67067273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046065 WO2019131207A1 (ja) 2017-12-27 2018-12-14 活性炭成形体

Country Status (9)

Country Link
US (1) US20210070617A1 (ja)
EP (1) EP3733599A4 (ja)
JP (1) JP7203761B2 (ja)
KR (1) KR102663974B1 (ja)
CN (1) CN111511681A (ja)
BR (1) BR112020012954A2 (ja)
CA (1) CA3086016A1 (ja)
MX (1) MX2020006838A (ja)
WO (1) WO2019131207A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11896950B1 (en) * 2023-10-10 2024-02-13 King Faisal University Activated carbon composite flakes using olive stone-polyethylene waste

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576754A (ja) * 1991-09-21 1993-03-30 Mizusawa Ind Chem Ltd 成形複合吸着剤及びその製法
JPH08224468A (ja) * 1995-02-20 1996-09-03 Kanebo Ltd 円筒ペレット状炭素系吸着剤
JP2006213544A (ja) * 2005-02-02 2006-08-17 Kuraray Chem Corp 粒状活性炭とその製造方法
WO2007077985A1 (ja) * 2006-01-06 2007-07-12 Cataler Corporation 活性炭及びこれを用いたキャニスター
WO2009031467A1 (ja) * 2007-09-07 2009-03-12 Kuraray Chemical Co., Ltd. 吸着材及びその製造方法、並びにキャニスタ及びその使用方法
JP2009131837A (ja) * 2007-11-02 2009-06-18 Osaka Gas Chem Kk ハニカム状吸着材およびその製造法
JP2013011243A (ja) 2011-06-30 2013-01-17 Mahle Filter Systems Japan Corp キャニスタ用吸着材およびキャニスタ
JP2013177889A (ja) 2012-02-10 2013-09-09 Kuraray Chemical Co Ltd 蒸散燃料エミッションの低減方法、キャニスタ並びにその吸着剤
JP2017075068A (ja) * 2015-10-14 2017-04-20 大阪ガスケミカル株式会社 活性炭
US20180207611A1 (en) * 2017-01-25 2018-07-26 Ingevity South Carolina, Llc Particulate adsorbent material and methods of making the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139814A (en) * 1979-04-18 1980-11-01 Takeda Chem Ind Ltd Production of purifying filter
MY121452A (en) * 1998-04-07 2006-01-28 Chiyoda Corp Desulfurization of exhaust gases using activated carbon catalyst.
US7077891B2 (en) * 2002-08-13 2006-07-18 Air Products And Chemicals, Inc. Adsorbent sheet material for parallel passage contactors
JP2006063859A (ja) * 2004-08-26 2006-03-09 Kuraray Chem Corp 蒸散燃料ガス吸着材及び蒸散燃料ガス捕集装置
JP2006248890A (ja) * 2005-02-14 2006-09-21 Nippon Steel Chem Co Ltd 活性炭構造体およびその製造方法
CN106794444A (zh) * 2014-09-16 2017-05-31 株式会社可乐丽 包含活性炭的吸附剂的制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576754A (ja) * 1991-09-21 1993-03-30 Mizusawa Ind Chem Ltd 成形複合吸着剤及びその製法
JPH08224468A (ja) * 1995-02-20 1996-09-03 Kanebo Ltd 円筒ペレット状炭素系吸着剤
JP2006213544A (ja) * 2005-02-02 2006-08-17 Kuraray Chem Corp 粒状活性炭とその製造方法
WO2007077985A1 (ja) * 2006-01-06 2007-07-12 Cataler Corporation 活性炭及びこれを用いたキャニスター
WO2009031467A1 (ja) * 2007-09-07 2009-03-12 Kuraray Chemical Co., Ltd. 吸着材及びその製造方法、並びにキャニスタ及びその使用方法
JP2009131837A (ja) * 2007-11-02 2009-06-18 Osaka Gas Chem Kk ハニカム状吸着材およびその製造法
JP2013011243A (ja) 2011-06-30 2013-01-17 Mahle Filter Systems Japan Corp キャニスタ用吸着材およびキャニスタ
JP2013177889A (ja) 2012-02-10 2013-09-09 Kuraray Chemical Co Ltd 蒸散燃料エミッションの低減方法、キャニスタ並びにその吸着剤
JP2017075068A (ja) * 2015-10-14 2017-04-20 大阪ガスケミカル株式会社 活性炭
US20180207611A1 (en) * 2017-01-25 2018-07-26 Ingevity South Carolina, Llc Particulate adsorbent material and methods of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3733599A4

Also Published As

Publication number Publication date
CA3086016A1 (en) 2019-07-04
EP3733599A4 (en) 2021-10-27
KR20200102428A (ko) 2020-08-31
MX2020006838A (es) 2020-09-03
EP3733599A1 (en) 2020-11-04
JPWO2019131207A1 (ja) 2021-01-21
JP7203761B2 (ja) 2023-01-13
US20210070617A1 (en) 2021-03-11
CN111511681A (zh) 2020-08-07
BR112020012954A2 (pt) 2020-12-01
KR102663974B1 (ko) 2024-05-14

Similar Documents

Publication Publication Date Title
US5538932A (en) Preparation of high activity, high density activated carbon with activatable binder
JP5941852B2 (ja) 蒸散燃料エミッションの低減方法、キャニスタ並びにその吸着剤
JP5867800B2 (ja) キャニスタ用吸着材およびキャニスタ
JP4855251B2 (ja) 球状活性炭およびその製造方法
JP5728516B2 (ja) 吸着材及びその製造方法、並びにキャニスタ及びその使用方法
JP6545693B2 (ja) 活性炭を含む吸着剤の製造方法
JP5815017B2 (ja) 複合添加剤
US5863858A (en) Shaped lignocellulosic-based activated carbon
US5691270A (en) Shaped lignocellulosic-based activated carbon
WO2019131207A1 (ja) 活性炭成形体
KR102386566B1 (ko) 저배출, 고작용 용량의 흡착제 및 캐니스터 시스템
JP5087550B2 (ja) 活性炭、これを用いたキャニスター及び吸気系フィルター、並びに前記活性炭の製造方法
CN113167197A (zh) 吸附材料、滤罐及吸附材料的制造方法
WO2018181659A1 (ja) 重金属吸着剤
JPH0576754A (ja) 成形複合吸着剤及びその製法
JP2022155011A (ja) 造粒炭及びその製造方法、空気清浄機用フィルター、並びに空気清浄機
JPH07251067A (ja) 複合吸着体及びその製造方法
JP6488142B2 (ja) 高性能アルデヒド除去用吸着材及びその製造方法
KR20210133223A (ko) 활성탄 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562994

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3086016

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018894382

Country of ref document: EP

Effective date: 20200727

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020012954

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020012954

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200625