WO2019131114A1 - テトラフルオロメタンの製造方法 - Google Patents
テトラフルオロメタンの製造方法 Download PDFInfo
- Publication number
- WO2019131114A1 WO2019131114A1 PCT/JP2018/045497 JP2018045497W WO2019131114A1 WO 2019131114 A1 WO2019131114 A1 WO 2019131114A1 JP 2018045497 W JP2018045497 W JP 2018045497W WO 2019131114 A1 WO2019131114 A1 WO 2019131114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- fluorine gas
- tetrafluoromethane
- integer
- fluorinated hydrocarbon
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/202—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
- C07C17/204—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being a halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/361—Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/361—Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms
- C07C17/367—Preparation of halogenated hydrocarbons by reactions involving a decrease in the number of carbon atoms by depolymerisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/08—Acyclic saturated compounds containing halogen atoms containing fluorine
Definitions
- the present invention relates to a process for the production of tetrafluoromethane.
- a method of reacting fluorine gas with solid carbon As a production method of tetrafluoromethane, a method of reacting fluorine gas with solid carbon, a method of reacting fluorine gas with gaseous hydrocarbon, and a mixture of a carbon material with a metal, metal fluoride or molten alumina and fluorine Methods of reacting with gas (see Patent Documents 1 and 2), and the like are known.
- the method of reacting fluorine gas with solid carbon is a combustion reaction accompanied by a flame, and a very large reaction heat is generated, so the material itself of the fluorine gas injection port or the reaction vessel reacts with the fluorine gas to cause erosion. There was a risk of If the reaction is performed so as not to generate a flame, the reaction heat may be insufficient and the yield of tetrafluoromethane may be low.
- the method of reacting fluorine gas with gaseous hydrocarbon is also a combustion reaction involving a flame, and a very large reaction heat is generated, so the material itself of the fluorine gas injection port or the reaction vessel reacts with the fluorine gas And there was a risk of erosion.
- a means is taken to dilute the fluorine gas with an inert gas such as nitrogen gas to reduce the heat of reaction, but separate and refine the obtained tetrafluoroethane and the inert gas. Since the process is required, there is a problem that the manufacturing cost is increased.
- a method of mixing a metal, metal fluoride, or molten alumina with a carbon material and then reacting it with fluorine gas is a method of moderating the reaction between the carbon material and the fluorine gas so as to break the carbon-carbon bond. It was not suitable for the synthesis of tetrafluoromethane because it was not suitable reaction conditions.
- An object of the present invention is to provide a method for producing tetrafluoromethane which is less likely to damage a reactor and can stably produce tetrafluoromethane safely and inexpensively.
- one aspect of the present invention is as follows [1] to [3].
- Chemical formula C p H q Cl r F s (wherein p is an integer of 3 to 18; q is an integer of 0 to 3; r is an integer of 0 to 9; s is 5 to 30)
- Fluorine gas is introduced into the raw material liquid containing a fluorinated hydrocarbon which is represented by the following integer and has no carbon-carbon unsaturated bond, and a reaction inducer
- the reaction inducer is a halogen-containing carbon compound which is liquid at normal temperature and pressure, and induces a reaction of forming tetrafluoromethane from the fluorinated hydrocarbon and the fluorine gas by reacting with the fluorine gas.
- the content of the reaction inducer is more than 0% by mass and 10% by mass or less when the total of the fluorinated hydrocarbon contained in the raw material liquid and the reaction inducer is 100% by mass.
- the reaction-inducing agent has the formula C v H w Cl x F y O z (v in Formula 3 to 18 integer, w is 4 to 30 integer, x is from 0 to 9 An integer, y is an integer of 0 to 30, and z is an integer of 0 to 5, provided that the halogen-containing carbon compound represented by x and y does not simultaneously become 0.) described in [1] Of tetrafluoromethane.
- the fluorinated hydrocarbon is at least one fluorine-containing substance selected from perfluorocarbons, fluorohydrocarbons, chlorofluorocarbons, chlorofluorohydrocarbons, chlorotrifluoroethylene polymers, and perfluoropolyethers [3] The manufacturing method of the tetrafluoromethane as described in 1] or [2].
- the reactor is not easily damaged, and tetrafluoromethane can be produced safely and inexpensively and stably.
- the present embodiment shows an example of the present invention, and the present invention is not limited to the present embodiment.
- various changes or improvements can be added to this embodiment, and a form added with such changes or improvements can be included in the present invention.
- the reaction heat is removed from the reaction site as a path through the gas in the atmosphere heated by the reaction heat
- a path through which heat is discharged to the outside There is a path through which heat is discharged to the outside, and a path through which heat is discharged to the outside through a reaction apparatus (for example, a fluorine gas blowing port or a reaction vessel) heated by the reaction heat.
- a reaction apparatus for example, a fluorine gas blowing port or a reaction vessel
- the reaction site temperature is lowered by carrying out a reaction of producing tetrafluoromethane from fluorinated hydrocarbon and fluorine gas in the liquid phase, and further, from fluorinated hydrocarbon and fluorine gas, tetra
- a reaction inducer to induce a reaction to form fluoromethane
- occurrence of carbon-carbon bond cleavage reaction of fluorinated hydrocarbon occurs only in a low temperature liquid phase, which does not occur unless the temperature is very high. I found that I could do it.
- the mechanism can be considered as follows.
- fluorine gas is blown into the liquid fluorinated hydrocarbon from the blowing port, bubbles of fluorine gas are formed around the blowing port, and the bubbles and the surrounding liquid phase are formed before the bubbles are separated from the blowing port.
- a reaction between the fluorine gas and the reaction inducer takes place.
- the reaction heat of this reaction vaporizes the surrounding fluorinated hydrocarbon and reacts with the fluorine gas in the bubble.
- a region having a temperature that is approximately 20 ° C. or more higher than the temperature of the liquid phase is formed around the blow port (hereinafter referred to as “high temperature reaction region”).
- the method for producing tetrafluoromethane according to the present embodiment is a fluorinated hydrocarbon represented by the chemical formula C p H q Cl r F s and having no carbon-carbon unsaturated bond (herein, simply referred to as “fluorinated hydrocarbon”. It includes introducing a fluorine gas to a raw material liquid containing “hydrocarbon” and “a reaction inducer which is a halogen-containing carbon compound which is liquid at normal temperature and normal pressure”. The content of the reaction inducer is more than 0% by mass and 10% by mass or less when the total of the fluorinated hydrocarbon and the reaction inducer contained in the raw material liquid is 100% by mass.
- the reaction inducer induces a reaction of producing tetrafluoromethane from fluorinated hydrocarbon and fluorine gas by reacting with fluorine gas.
- p in the chemical formula is an integer of 3 to 18
- q is an integer of 0 to 3
- r is an integer of 0 to 9
- s is an integer of 5 to 30.
- a reactor using an expensive material (for example, nickel alloy, Hastelloy (registered trademark), Monel (registered trademark)) having corrosion resistance to fluorine gas, and reaction is performed with a general steel such as stainless steel.
- the reactor is inexpensive because the device can be manufactured.
- the obtained tetrafluoromethane is useful, for example, as an etchant for a substrate and a cleaning agent for a chamber in a semiconductor manufacturing process.
- Fluorinated Hydrocarbon is a saturated hydrocarbon represented by a chemical formula C p H q Cl r F s and having no carbon-carbon unsaturated bond.
- the fluorinated hydrocarbon may be any of linear hydrocarbons, branched hydrocarbons and cyclic hydrocarbons, and may be a compound containing no hydrogen atom or chlorine atom.
- fluorinated hydrocarbon examples include at least one fluorine-containing substance selected from perfluorocarbons, fluorohydrocarbons, chlorofluorocarbons, chlorofluorohydrocarbons, chlorotrifluoroethylene polymers, and perfluoropolyethers.
- chlorotrifluoroethylene polymers include Diflon oil (registered trademark), and specific examples of perfluoropolyethers include fomblin oil (registered trademark).
- Diflon oil is polychlorotrifluoroethylene having a molecular weight of about 1000 or less and having fluidity (pouring point: 5 to 15 ° C.) at normal temperature.
- the fluorinated hydrocarbon may be any of gas, liquid and solid at normal temperature and pressure, but is preferably liquid. In the present invention, normal temperature means 25 ° C., and normal pressure means 101.325 kPa (1 atm).
- the fluorinated hydrocarbon When the fluorinated hydrocarbon is a liquid, it can be mixed with a liquid reaction inducer at normal temperature and pressure to form a raw material liquid. In addition, when the fluorinated hydrocarbon is a gas or a solid, it can be dissolved in a liquid reaction inducer at normal temperature and pressure to make a raw material liquid. Furthermore, even if the fluorinated hydrocarbon is any of gas, liquid and solid, a solvent can be used for the reaction, and this solvent can be mixed with the fluorinated hydrocarbon and the reaction inducer to make a raw material liquid . That is, in the method for producing tetrafluoromethane according to the present embodiment, the synthesis reaction of tetrafluoromethane may be performed without a solvent or may be performed in a solvent.
- the above-mentioned fluorinated hydrocarbon is an organic compound which hardly reacts with fluorine gas even when 100% by volume of fluorine gas is blown at 40 ° C. and 101.325 kPa.
- the reaction equation between fluorinated hydrocarbon and fluorine gas is described as follows.
- q and r in the chemical formula C p H q Cl r F s have small values in order to effectively utilize the supplied fluorine gas for the formation of tetrafluoromethane. .
- p is an integer of 3 or more and 18 or less, preferably an integer of 3 or more and 10 or less, more preferably an integer of 3 or more and 5 or less, and the smaller one is necessary to obtain 1 mole of tetrafluoromethane. It is economical because the amount of fluorine gas can be small.
- q in the chemical formula C p H q Cl r F s is 3 or less, the hydrogen atom reacts with fluorine gas to reduce the ratio of by-production of hydrogen fluoride, thereby obtaining 1 mole of tetrafluoromethane. It is economical because only a small amount of fluorine gas is required.
- q is an integer of 0 or more and 3 or less, preferably an integer of 0 or more and 2 or less, more preferably 0 or 1.
- the fluorinated hydrocarbon be a perfluorocarbon or chlorofluorocarbon in which q is 0.
- r in the chemical formula C p H q Cl r F s is 0 or more and 9 or less, the fluorinated hydrocarbon often does not become solid at normal temperature and pressure (in many cases, it becomes gas or liquid), solid There is no need to heat in order to make it a liquid, which is economical.
- the reaction rate of chlorine atoms and fluorine gas reduces the rate of by-production of fluorine chloride, the amount of fluorine gas required to obtain one mole of tetrafluoromethane can be reduced, which is economical.
- r is an integer of 0 to 9, but is preferably an integer of 0 to 4. More preferably, the fluorinated hydrocarbon is a perfluorocarbon in which q and r are both 0.
- reaction inducer is an organic compound that easily reacts with fluorine gas.
- the reaction inducer is a halogen-containing carbon compound which is a liquid at normal temperature and pressure and which induces a reaction to generate tetrafluoromethane from fluorinated hydrocarbon and fluorine gas by reacting with fluorine gas. .
- tetrafluoromethane may be produced
- Reaction-inducing agent is preferably be a compound represented by the formula C v H w Cl x F y O z, an integer of chemical v in equation 3 to 18 (preferably 4 to 10), w is 4 or more and 30 or less (preferably 10 or more and 20 or less), x is an integer of 0 or more and 9 or less, y is an integer of 0 or more and 30 or less, z is an integer of 0 or more and 5 or less, and x and y are 0 simultaneously It does not become.
- reaction inducer examples include tetrachlorobutane, tetrafluorobutane, trichlorobutane, chlorobutane, dichlorobutene, chlorobutene, chlorofluorobutene and the like.
- halogen-containing carbon compounds ethers, alcohols, ketones, esters, aldehydes and acids can also be used as reaction inducers.
- the use amount of the reaction inducer is not particularly limited as long as it can induce a reaction to generate tetrafluoromethane from fluorinated hydrocarbon and fluorine gas, but the fluorinated hydrocarbon in the raw material liquid may be used.
- the content of the reaction inducer is more than 0% by mass and 10% by mass or less, more preferably 2% by mass or more and 7% by mass or less, when the total of the and the reaction inducer is 100% by mass. If the amount of the reaction inducer is more than 10% by mass, although the function as a reaction inducer can be obtained, it is not economical because the amount of by-products of hydrogen fluoride and fluorine chloride may increase.
- the reaction apparatus shown in FIG. 1 includes a metal reaction vessel 11 in which a reaction for producing tetrafluoromethane is performed, and a fluorinated carbon represented by the chemical formula C p H q Cl r F s and having no carbon-carbon unsaturated bond.
- Fluorine gas is supplied to the raw material liquid feed pipe 21 for introducing the raw material liquid 1 containing hydrogen and a reaction inducer which is a liquid halogen-containing carbon compound at normal temperature and normal pressure into the reaction container 11 and the raw material liquid 1 in the reaction container 11
- a fluorine gas pipe 23 having a blowing port 23a to be introduced at its tip, and an exhaust pipe 25 for discharging the gas phase portion in the reaction vessel 11 to the outside are provided.
- stainless steel is mention
- the reaction apparatus shown in FIG. 1 is provided with a circulation facility for extracting a part of the raw material liquid 1 in the reaction vessel 11 during reaction to the outside of the reaction vessel 11 and returning it into the reaction vessel 11. More specifically, both ends of the annular circulation pipe 28 are connected to the reaction vessel 11, and the raw material liquid 1 is fed by the liquid circulation pump 15 installed on the circulation pipe 28 and removed from the reaction vessel 11. The raw material liquid 1 can be returned to the inside of the reaction vessel 11 via the circulation pipe 28.
- a heat exchanger 19 is installed in the middle of the circulation pipe 28 and on the downstream side of the liquid circulation pump 15 so that the extracted raw material liquid 1 can be cooled.
- the raw material liquid 1 cooled by the heat exchanger 19 is returned into the reaction vessel 11. That is, the reaction apparatus shown in FIG. 1 can perform a reaction while performing an operation of extracting and cooling a part of the raw material liquid 1 in the reaction vessel 11 and returning the cooled raw material liquid 1 to the reaction vessel 11 It has become.
- the product gas containing tetrafluoromethane generated by the reaction can be taken out of the reaction vessel 11 through the exhaust pipe 25.
- a heat exchanger 17 is installed downstream of the exhaust pipe 25 so that the generated gas discharged from the reaction container 11 can be cooled. Even if the raw material fluorinated hydrocarbon is vaporized and contained in the product gas by cooling the product gas with the heat exchanger 17, the fluorinated hydrocarbon is liquefied and returned to the reaction vessel 11. It can be done. Therefore, it can prevent that an unreacted fluorinated hydrocarbon leaves the reaction container 11 outside, and is lost.
- the shape of the blowing port 23a of the fluorine gas pipe 23 is not particularly limited, but the circular through hole formed in the fluorine gas pipe 23 can be used as the blowing port 23a, and the diameter of the through hole For example, it can be 0.5 mm or more and 5 mm or less.
- the number of the blowing ports 23a provided in the fluorine gas pipe 23 may be one or plural.
- a temperature measurement device such as a thermocouple may be attached near the blowout port 23a to measure the temperature near the blowout port 23a.
- the above-mentioned high temperature reaction area is formed in the vicinity of the fluorine gas blowing port 23a, and this high temperature reaction area is a member of the reaction apparatus, for example, a tank wall of the reaction vessel 11, a thermocouple, a stirring blade, a baffle plate, etc. It is preferable to avoid contact. Since the temperature of the portion where the high temperature reaction region contacts is high, corrosion of the member may proceed.
- the diameter of the blowout port 23a is D (mm)
- the temperature and pressure are converted to 0 ° C, 0 MPaG
- the blow linear velocity of fluorine gas is LV (m / s)
- the length of the high temperature reaction zone to be generated fluorine gas
- ln in the formula is a natural logarithm
- a is a constant, and a value of 1.2 or more and 1.4 or less can be used. Since the length of the high temperature reaction zone assumed can be calculated from this equation, the high temperature reaction zone can be designed so as not to contact the member.
- the direction in which the long axis of the high temperature reaction zone (axis along the ejection direction of the fluorine gas) is directed is not particularly limited, but 0 ° vertically downward so that the high temperature reaction zone is maintained as stably as possible. Assuming that the upper side in the vertical direction is 180 °, it is preferable to eject the fluorine gas from the blowing port 23a at an angle of 90 ° (horizontal direction) to 180 °.
- the reaction apparatus is provided with a temperature measuring device (not shown) for measuring the temperature of the raw material liquid 1 and a circulation facility having the heat exchanger 19. Therefore, the reaction is performed while controlling the temperature of the raw material liquid 1 by cooling the raw material liquid 1 It can be performed. Therefore, it is possible to suppress abnormal temperature rise of the reaction site and damage to the reactor.
- the temperature of the raw material liquid 1 is, for example, 0 to 200 ° C.
- the reaction pressure is, for example, 0.01 to 1.0 MPaA (absolute pressure), preferably normal pressure to 0.9 MPaG. It can be carried out.
- the reactor may be equipped with a device for measuring the liquid level of the raw material liquid 1.
- a device for measuring the liquid level of the raw material liquid 1 For example, an apparatus for measuring the liquid level from the pressure difference between the liquid phase and the gas phase in the reaction vessel 11 or an apparatus for measuring the liquid level by float can be used.
- the liquid level of the raw material liquid 1 decreases with the progress of the synthesis reaction of tetrafluoromethane, if the liquid level can be measured, the supply of the raw material liquid 1 into the reaction vessel 11 is continuously or intermittently performed. As it can be performed while monitoring the liquid level, continuous synthesis of tetrafluoromethane is possible.
- the concentration of fluorine gas used in the reaction is not particularly limited, and may be 100% fluorine gas, but may be fluorine gas diluted with an inert gas such as nitrogen gas or argon.
- a stirrer equipped with a stirring blade for stirring the raw material liquid 1 may be installed in the reaction container 11.
- Example 1 The tetrafluoromethane was synthesized using a reactor substantially similar to the reactor of FIG. 1 except that the heat exchanger 19, the circulation pipe 28 and the liquid circulation pump 15 were not provided. 600 mL (1030 g) of perfluoro-n-octane having a boiling point of 103 ° C. at normal pressure is placed in a 1 L SUS reaction vessel, and dichlorobutene (melting point at normal pressure is ⁇ 61 ° C.) as a reaction inducer The boiling point at normal pressure is 122 ° C.). The addition amount of dichlorobutene is 3% by mass, assuming that the total amount of perfluoro-n-octane and dichlorobutene is 100% by mass.
- Fluorine gas was introduced into a raw material liquid which was a mixed liquid of perfluoro-n-octane and dichlorobutene from a 1 mm-diameter injection port provided at one end of a fluorine gas pipe.
- the flow rate of the fluorine gas was 400 mL / min at a temperature and pressure converted as 0 ° C. and 0 MPaG, and the injection linear velocity was 2.1 m / s.
- the produced gas was collected and analyzed. As a result, 95% by volume of the produced gas was tetrafluoromethane and 5% by volume was hexafluoroethane and a trace amount of chlorine compound. Since 95 mole% of the reacted perfluoro-n-octane was converted to tetrafluoromethane, the yield of tetrafluoromethane was 95%. Unreacted fluorine gas was not detected from the product gas. After completion of the reaction, the blowout port of the fluorine gas pipe was confirmed. As a result, no corrosion or the like occurred at all, and the same shape as the shape before the reaction was maintained. In addition, no corrosion or the like occurred in the reaction container and the thermocouple for measuring the temperature of the raw material liquid and the blowing port.
- Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that the reaction inducer (dichlorobutene) was not used and perfluoro-n-octane was used as the raw material liquid.
- the introduction of fluorine gas was continued for 5 hours, but the temperature of the injection port did not change, and the entire amount of fluorine gas introduced was unreacted from the exhaust pipe for discharging the gas phase portion in the reaction vessel to the outside It was discharged. Then, tetrafluoromethane was not detected in the discharged fluorine gas, and the yield of tetrafluoromethane was 0%.
- Example 2 The tetrafluoromethane was synthesized using a reactor substantially similar to the reactor shown in FIG. In a 4 m 3 reaction container made of SUS, 4700 kg (2.8 m 3 ) of a raw material liquid composed of 93 mass% hexafluorotetrachlorobutane and 7 mass% tetrachlorobutane was placed. Tetrachlorobutane is a reaction inducer.
- Fluorine gas was introduced into the raw material liquid from the blowing port of the fluorine gas pipe, and the reaction was carried out while controlling the temperature of the raw material liquid to 60 ° C. and the reaction pressure to 0.2 MPaG.
- a fluorine gas pipe As a fluorine gas pipe, a ring sparger provided with seven blow holes having a diameter of 5 mm was used. The linear velocity of the fluorine gas injected from one injection port was 45 m / s.
- thermocouple was placed in the vicinity of one of the seven outlets, and the reaction was performed while measuring the temperature of the inlet. Further, assuming that the value of a in the above equation (1) is 1.27, it can be expected that a high temperature reaction area of 100 mm in length will be formed in each of the blow ports, so a range in which the high temperature reaction area is formed No reactor components other than one thermocouple were placed.
- the temperature of the blowing port rose to 190 ° C.
- the reaction was carried out while circulating the raw material liquid and cooling with a heat exchanger, and the reaction was carried out while maintaining the reaction pressure at 60 ° C. and the reaction pressure at normal pressure. As a result, the reaction was carried out while maintaining the temperature of the blow port at 190 ° C.
- Comparative Example 2 The reaction was carried out in the same manner as in Example 2 except that the reaction inducer (tetrachlorobutane) was not used but hexafluorotetrachlorobutane was used as the raw material solution. As a result, the temperature of the blowing port did not change, and the entire amount of introduced fluorine gas was unreactedly discharged from the exhaust pipe for discharging the gas phase portion in the reaction container to the outside. Then, tetrafluoromethane was not detected in the discharged fluorine gas, and the yield of tetrafluoromethane was 0%.
- the reaction inducer tetrachlorobutane
- Example 3 The tetrafluoromethane was synthesized using a reactor substantially similar to the reactor shown in FIG. 1 except that the heat exchanger 19, the circulation pipe 28 and the liquid circulation pump 15 were not provided. 600 mL (1000 g) of a raw material solution consisting of 93 mass% hexafluorotetrachlorobutane and 7 mass% tetrachlorobutane was placed in a 1 L clear, colorless, pressure-resistant glass reaction vessel. Tetrachlorobutane is a reaction inducer.
- Fluorine gas was introduced into the raw material solution from a 1 mm-diameter injection port provided at the end of the fluorine gas pipe.
- the flow rate of the fluorine gas was 400 mL / min at a temperature and pressure converted as 0 ° C. and 0 MPaG, and the injection linear velocity was 2.1 m / s.
- the reaction was carried out while cooling the reaction vessel from the outside, and the reaction was carried out while maintaining the reaction pressure at 25 ° C. and the reaction pressure at normal pressure.
- the raw material liquid which was transparent, turned black due to soot generated by the reaction, but 81 mol% of the introduced fluorine gas was consumed for the reaction to generate gas, and 85% by volume of the generated gas was tetrafluoromethane .
- the yield of tetrafluoromethane based on hexafluorotetrachlorobutane was 75%. Unreacted fluorine gas was not detected.
- Example 4 A reaction apparatus substantially similar to that shown in FIG. 1 is used except that the heat exchanger 19, the circulation pipe 28, and the liquid circulation pump 15 are not provided and that a stirrer having six flat turbine blades is provided.
- the fluoromethane was synthesized.
- fluorine gas diluted with nitrogen gas can be introduced into the raw material solution from below the stirrer, and the diameter of the fluorine gas injection port provided at the tip of the fluorine gas pipe can be made variable. There is.
- the temperature of the fluorine gas injection port can be measured by a thermocouple, and if a combustion reaction due to the fluorine gas occurs near the injection port, the temperature of the injection port is the temperature of the raw material liquid Since the temperature is higher than that, the presence or absence of the combustion reaction by the fluorine gas can be detected.
- a pressure control valve is installed in the exhaust pipe of the reaction vessel, so that the reaction pressure in the reaction vessel can be changed.
- a 1 L volume reaction container made of SUS 600 mL (1020 g) of a raw material solution consisting of 95 mass% of hexafluorotetrachlorobutane and 5 mass% of tetrachlorobutane was placed. Tetrachlorobutane is a reaction inducer.
- the diameter of the fluorine gas injection port was 2.2 mm, and fluorine gas diluted to a concentration of 40% by volume with nitrogen gas was introduced into the raw material solution from this injection port.
- the flow rate of the fluorine gas diluted with nitrogen gas was 400 mL / min at a temperature and pressure converted as 0 ° C. and 0 MPaG, and the injection linear velocity was 0.4 m / s.
- the temperature of the blowing port rose to 150 ° C.
- the raw material liquid is stirred at a rotational speed of 360 min -1 using a stirrer, and the reaction is performed while cooling or heating the reaction vessel from the outside, and the temperature of the raw material liquid is maintained at 70 ° C., and the reaction pressure is maintained at 0.35 MPaG. While doing the reaction.
- Comparative Example 3 A reaction was performed in the same manner as in Example 4 except that 600 mL of a raw material solution consisting of 80% by mass of hexafluorotetrachlorobutane and 20% by mass of tetrachlorobutane was used. As a result, since the concentration of the reaction inducer tetrachlorobutane is high, the reaction between the fluorine gas and the reaction inducer causes by-production of hydrogen fluoride, and 70 mol% of the supplied fluorine gas forms tetrafluoromethane. Was consumed. The yield of tetrafluoromethane based on hexafluorotetrachlorobutane and tetrachlorobutane was 65%.
- Example 5 The raw material solution temperature is 50 ° C, the reaction pressure is 0.4 MPaG, and the fluorine gas diluted to a concentration of 60 vol% with nitrogen gas is introduced, and the flow rate of the fluorine gas diluted with nitrogen gas is 600 mL / min.
- the reaction was carried out in the same manner as in Example 4 except that the injection linear velocity was 0.13 m / s, and the reaction was performed at 0 ° C. (0 MPa G conversion).
- Comparative Example 4 In a 500 mL reaction container made of SUS, 500 mL of activated carbon as a solid reaction raw material (carbon source) was placed, and the lower part of the reaction container was heated to 450 ° C. The top of the reaction vessel was left open to the atmosphere. A fluorine gas pipe made of SUS with an outer diameter of 3 mm and an inner diameter of 1 mm is disposed so that the distance between the fluorine gas injection port and the activated carbon is 5 mm, and the 100% by volume fluorine gas is injected through the injection port. Sprayed on The flow rate of the fluorine gas was 400 mL / min at a temperature and pressure converted as 0 ° C. and 0 MPaG, and the injection linear velocity was 2.1 m / s.
- the fluorine gas and the activated carbon react with each other to start the combustion with a flame, and at the same time, the fluorine gas and the SUS react and a spark is generated from the blow port of the fluorine gas pipe. did. Then, due to the reaction between the fluorine gas and the SUS, the pipe for fluorine gas gradually shortens, and the pipe for fluorine gas continues to burn out until the introduction of the fluorine gas is stopped.
- Comparative Example 5 100 mL of activated carbon is filled as a solid reaction raw material (carbon source) in a tubular reaction container made of SUS, the outer surface of the tubular reaction container is heated to 450 ° C. by an electric heater, and fluorine gas and nitrogen gas are tubular It was introduced into the reaction vessel.
- the injection flow rate of fluorine gas and nitrogen gas is a value obtained by converting the temperature and pressure as 0 ° C. and 0 MPaG so that the concentration of fluorine gas in the mixed gas of fluorine gas and nitrogen gas introduced becomes 10% by volume, nitrogen
- the gas was 90 mL / min
- the fluorine gas was 10 mL / min
- the blowing linear velocity was 0.0008 m / s.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
固体の炭素にフッ素ガスを反応させる方法は、火炎を伴う燃焼反応であり、非常に大きな反応熱が発生するため、フッ素ガスの吹込み口や反応容器の材質自体がフッ素ガスと反応して浸食されるおそれがあった。火炎が発生しないように反応させると、反応熱が不十分となりテトラフルオロメタンの収率が低くなる場合があった。
炭素材料に金属、金属フッ化物、又は溶融アルミナを混合した上でフッ素ガスと反応させる方法は、炭素材料とフッ素ガスとの反応を穏やかにする方法であり、炭素-炭素間結合を切断するような反応条件ではないため、テトラフルオロメタンの合成には適していなかった。
本発明は、反応装置が損傷しにくく、テトラフルオロメタンを安全且つ安価に安定して製造することができるテトラフルオロメタンの製造方法を提供することを課題とする。
[1] 化学式CpHqClrFs(前記化学式中のpは3以上18以下の整数、qは0以上3以下の整数、rは0以上9以下の整数、sは5以上30以下の整数である)で表され、且つ炭素-炭素不飽和結合を有しないフッ素化炭化水素と、反応誘発剤と、を含有する原料液に、フッ素ガスを導入することを含み、
前記反応誘発剤は、常温常圧で液体である含ハロゲン炭素化合物であり、且つ、前記フッ素ガスと反応することにより、前記フッ素化炭化水素と前記フッ素ガスからテトラフルオロメタンを生成する反応を誘発するものであり、
前記原料液が含有する前記フッ素化炭化水素と前記反応誘発剤との合計を100質量%としたとき、前記反応誘発剤の含有量は0質量%超過10質量%以下であるテトラフルオロメタンの製造方法。
[3] 前記フッ素化炭化水素が、パーフルオロカーボン、フルオロハイドロカーボン、クロロフルオロカーボン、クロロフルオロハイドロカーボン、クロロトリフルオロエチレン重合物、及びパーフルオロポリエーテルから選ばれる少なくとも1種のフッ素含有物質である[1]又は[2]に記載のテトラフルオロメタンの製造方法。
得られたテトラフルオロメタンは、例えば、半導体製造工程において基板のエッチング剤、チャンバーのクリーニング剤として有用である。
(1)フッ素化炭化水素
フッ素化炭化水素は、化学式CpHqClrFsで表され且つ炭素-炭素不飽和結合を有しない飽和炭化水素である。このフッ素化炭化水素は、直鎖状炭化水素、分岐鎖状炭化水素、環状炭化水素のいずれでもよく、また水素原子や塩素原子を含まない化合物でもよい。フッ素化炭化水素の例としては、パーフルオロカーボン、フルオロハイドロカーボン、クロロフルオロカーボン、クロロフルオロハイドロカーボン、クロロトリフルオロエチレン重合物、及びパーフルオロポリエーテルから選ばれる少なくとも1種のフッ素含有物質があげられる。
フッ素化炭化水素は、常温常圧で気体、液体、固体のいずれであってもよいが、液体であることが好ましい。なお、本発明においては、常温とは25℃を意味し、常圧とは101.325kPa(1気圧)を意味する。
CpHqClrFs+(4p+q+r-s)/2F2 → pCF4+rClF+qHF
この反応式から考えて、供給するフッ素ガスをテトラフルオロメタンの生成に有効に活用するためには、化学式CpHqClrFs中のq及びrが小さな値であることが好ましいと言える。
反応誘発剤は、フッ素ガスと反応しやすい有機化合物である。そして、反応誘発剤は、フッ素ガスと反応することにより、フッ素化炭化水素とフッ素ガスからテトラフルオロメタンを生成する反応を誘発するものであり、常温常圧で液体である含ハロゲン炭素化合物である。なお、反応誘発剤とフッ素ガスとの反応によりテトラフルオロメタンが生成する場合もあり得る。
本実施形態に係るテトラフルオロメタンの製造方法を実施してテトラフルオロメタンを製造する反応装置の一例について、図1を参照しながら説明する。
図1の反応装置は、テトラフルオロメタンを生成する反応が行われる金属製の反応容器11と、化学式CpHqClrFsで表され且つ炭素-炭素不飽和結合を有しないフッ素化炭化水素及び常温常圧で液体の含ハロゲン炭素化合物である反応誘発剤を含有する原料液1を反応容器11に導入する原料液仕込み用配管21と、反応容器11内の原料液1にフッ素ガスを導入する吹込み口23aを先端に有するフッ素ガス用配管23と、反応容器11内の気相部分を外部に排出する排気用配管25と、を備えている。なお、反応容器11を形成する金属としては、例えばステンレス鋼があげられる。
テトラフルオロメタンの合成反応の進行に伴い原料液1の液面レベルが低下するが、液面レベルを測定することができれば、原料液1の反応容器11内への供給を連続的又は断続的に液面レベルを監視しながら行うことができるので、テトラフルオロメタンの連続した合成が可能となる。
また、吹き込んだフッ素ガスと原料液1を均一に反応させるために、原料液1を撹拌するための撹拌翼を備える攪拌機を反応容器11に設置してもよい。
〔実施例1〕
熱交換器19と循環用配管28と液循環ポンプ15を備えていない点以外は図1の反応装置とほぼ同様の反応装置を用いて、テトラフルオロメタンの合成を行った。容量1LのSUS製の反応容器に、常圧での沸点が103℃のパーフルオロ-n-オクタン600mL(1030g)を入れ、さらに反応誘発剤としてジクロロブテン(常圧での融点は-61℃、常圧での沸点は122℃である)を添加した。ジクロロブテンの添加量は、パーフルオロ-n-オクタンとジクロロブテンの総量を100質量%として、3質量%である。
反応終了後に、フッ素ガス用配管の吹込み口を確認したところ、腐食等は全く発生しておらず、反応前の形状と同じ形状を保っていた。また、原料液や吹込み口の温度を測定する熱電対と、反応容器にも、腐食等は発生していなかった。
反応誘発剤(ジクロロブテン)は用いずパーフルオロ-n-オクタンを原料液とした点を除いては、実施例1と同様にして反応を行った。フッ素ガスの導入を5時間続けたが、吹込み口の温度には変化は生じず、導入したフッ素ガスの全量が、反応容器内の気相部分を外部に排出する排気用配管から未反応で排出された。そして、排出されたフッ素ガス中にテトラフルオロメタンは検出されず、テトラフルオロメタンの収率は0%であった。
図1に示す反応装置とほぼ同様の反応装置を用いて、テトラフルオロメタンの合成を行った。容量4m3のSUS製の反応容器に、93質量%のヘキサフルオロテトラクロロブタンと7質量%のテトラクロロブタンからなる原料液4700kg(2.8m3)を入れた。テトラクロロブタンが反応誘発剤である。
反応終了後に、フッ素ガス用配管の吹込み口を確認したところ、腐食等は全く発生しておらず、反応前の形状と同じ形状を保っていた。また、反応容器の槽壁等にも、腐食等は全く発生していなかった。
反応誘発剤(テトラクロロブタン)は用いずヘキサフルオロテトラクロロブタンを原料液とした点を除いては、実施例2と同様にして反応を行った。その結果、吹込み口の温度には変化は生じず、導入したフッ素ガスの全量が、反応容器内の気相部分を外部に排出する排気用配管から未反応で排出された。そして、排出されたフッ素ガス中にテトラフルオロメタンは検出されず、テトラフルオロメタンの収率は0%であった。
熱交換器19と循環用配管28と液循環ポンプ15を備えていない点以外は図1に示す反応装置とほぼ同様の反応装置を用いて、テトラフルオロメタンの合成を行った。容量1Lの無色透明な耐圧ガラス製の反応容器に、93質量%のヘキサフルオロテトラクロロブタンと7質量%のテトラクロロブタンからなる原料液600mL(1000g)を入れた。テトラクロロブタンが反応誘発剤である。
フッ素ガスの導入を開始すると、吹込み口に高温反応領域が発生したことを目視で確認でき、吹込み口の温度が200℃まで上昇した。反応容器を外部から冷却しながら反応を行い、原料液の温度を25℃に、反応圧力を常圧に維持しながら反応を行った。
熱交換器19と循環用配管28と液循環ポンプ15を備えていない点及びフラットタービン翼を6枚有する撹拌器を備える点以外は図1の反応装置とほぼ同様の反応装置を用いて、テトラフルオロメタンの合成を行った。なお、窒素ガスで希釈したフッ素ガスを撹拌器の下方から原料液に導入できるようになっており、さらにフッ素ガス用配管の先端に設けられたフッ素ガスの吹込み口の直径は可変となっている。
フッ素ガスの吹込み口の直径を2.2mmとし、この吹込み口から原料液に、窒素ガスで濃度40体積%に希釈したフッ素ガスを導入した。窒素ガスで希釈したフッ素ガスの吹込み流量は、温度及び圧力を0℃、0MPaGとして換算した数値で、400mL/minとし、吹込み線速度は0.4m/sとした。
反応終了後に、フッ素ガス用配管の吹込み口を確認したところ、腐食等は全く発生しておらず、反応前の形状と同じ形状を保っていた。
80質量%のヘキサフルオロテトラクロロブタンと20質量%のテトラクロロブタンからなる原料液600mLを用いた点を除いては、実施例4と同様にして反応を行った。
その結果、反応誘発剤であるテトラクロロブタンの濃度が高いため、フッ素ガスと反応誘発剤との反応によってフッ化水素が副生して、供給したフッ素ガスの70モル%がテトラフルオロメタンの生成に消費された。ヘキサフルオロテトラクロロブタン及びテトラクロロブタン基準でのテトラフルオロメタンの収率は、65%であった。
原料液の温度を50℃、反応圧力を0.4MPaGとする点と、窒素ガスで濃度60体積%に希釈したフッ素ガスを導入し、窒素ガスで希釈したフッ素ガスの吹込み流量を600mL/min(0℃、0MPaG換算)とし、吹込み線速度を0.13m/sとする点以外は、実施例4と同様にして反応を行った。
反応終了後に、フッ素ガス用配管の吹込み口を確認したところ、腐食等は全く発生しておらず、反応前の形状と同じ形状を保っていた。
容量500mLのSUS製の反応容器に、固体の反応原料(炭素源)として活性炭500mLを入れ、反応容器の下部を450℃に加熱した。反応容器の上部は、大気に開放した状態にした。外径3mm、内径1mmのSUS製のフッ素ガス用配管を、フッ素ガスの吹込み口と活性炭との距離が5mmとなるように配置して、濃度100体積%のフッ素ガスを吹込み口から活性炭に吹き付けた。フッ素ガスの吹込み流量は、温度及び圧力を0℃、0MPaGとして換算した数値で、400mL/minとし、吹込み線速度は2.1m/sとした。
SUS製の筒型反応容器に、固体の反応原料(炭素源)として100mLの活性炭を充填し、筒型反応容器の外面を電気ヒータで450℃に加熱するとともに、フッ素ガスと窒素ガスを筒型反応容器に導入した。フッ素ガスと窒素ガスの吹込み流量は、導入したフッ素ガスと窒素ガスの混合ガスにおけるフッ素ガスの濃度が10体積%になるように、温度及び圧力を0℃、0MPaGとして換算した数値で、窒素ガスは90mL/min、フッ素ガスは10mL/minとし、吹込み線速度は0.0008m/sとした。
反応終了後に、筒型反応容器を切断して内部の表面の観察を行ったところ、部分的に孔食が見られた。
11 反応容器
23 フッ素ガス用配管
23a 吹込み口
Claims (3)
- 化学式CpHqClrFs(前記化学式中のpは3以上18以下の整数、qは0以上3以下の整数、rは0以上9以下の整数、sは5以上30以下の整数である)で表され、且つ炭素-炭素不飽和結合を有しないフッ素化炭化水素と、反応誘発剤と、を含有する原料液に、フッ素ガスを導入することを含み、
前記反応誘発剤は、常温常圧で液体である含ハロゲン炭素化合物であり、且つ、前記フッ素ガスと反応することにより、前記フッ素化炭化水素と前記フッ素ガスからテトラフルオロメタンを生成する反応を誘発するものであり、
前記原料液が含有する前記フッ素化炭化水素と前記反応誘発剤との合計を100質量%としたとき、前記反応誘発剤の含有量は0質量%超過10質量%以下であるテトラフルオロメタンの製造方法。 - 前記反応誘発剤は、化学式CvHwClxFyOz(前記化学式中のvは3以上18以下の整数、wは4以上30以下の整数、xは0以上9以下の整数、yは0以上30以下の整数、zは0以上5以下の整数である。ただし、xとyは同時に0にはならない。)で表される含ハロゲン炭素化合物である請求項1に記載のテトラフルオロメタンの製造方法。
- 前記フッ素化炭化水素が、パーフルオロカーボン、フルオロハイドロカーボン、クロロフルオロカーボン、クロロフルオロハイドロカーボン、クロロトリフルオロエチレン重合物、及びパーフルオロポリエーテルから選ばれる少なくとも1種のフッ素含有物質である請求項1又は請求項2に記載のテトラフルオロメタンの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18896674.1A EP3733634B1 (en) | 2017-12-28 | 2018-12-11 | Method for manufacturing tetrafluoromethane |
KR1020207017433A KR102469036B1 (ko) | 2017-12-28 | 2018-12-11 | 테트라플루오로메탄의 제조 방법 |
US16/958,272 US11040931B2 (en) | 2017-12-28 | 2018-12-11 | Method for producing tetrafluoromethane |
CN201880081493.2A CN111479794B (zh) | 2017-12-28 | 2018-12-11 | 四氟甲烷的制造方法 |
JP2019562942A JP7169723B2 (ja) | 2017-12-28 | 2018-12-11 | テトラフルオロメタンの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017253762 | 2017-12-28 | ||
JP2017-253762 | 2017-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019131114A1 true WO2019131114A1 (ja) | 2019-07-04 |
Family
ID=67067037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/045497 WO2019131114A1 (ja) | 2017-12-28 | 2018-12-11 | テトラフルオロメタンの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11040931B2 (ja) |
EP (1) | EP3733634B1 (ja) |
JP (1) | JP7169723B2 (ja) |
KR (1) | KR102469036B1 (ja) |
CN (1) | CN111479794B (ja) |
TW (1) | TWI700266B (ja) |
WO (1) | WO2019131114A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102709177B1 (ko) * | 2023-11-29 | 2024-09-25 | 주식회사 솔 머티리얼즈 | 1,2-디클로로-3,3,4,4,5,5-헥사플루오로사이클로펜텐의 제조 장치 및 그의 제조 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06298681A (ja) | 1993-04-20 | 1994-10-25 | Kanto Denka Kogyo Co Ltd | フッ化炭素の製造法 |
JPH11180706A (ja) | 1997-12-24 | 1999-07-06 | Kanto Denka Kogyo Co Ltd | フッ化炭素の製造法 |
JP2000086546A (ja) * | 1998-09-03 | 2000-03-28 | Daikin Ind Ltd | 1,1,1,2,3,3,3−ヘプタフルオロプロパンの製造方法 |
JP2002069014A (ja) * | 2000-08-30 | 2002-03-08 | Showa Denko Kk | オクタフルオロプロパンの製造方法及びその用途 |
WO2016193248A1 (en) * | 2015-06-04 | 2016-12-08 | Solvay Specialty Polymers Italy S.P.A. | Processes for the synthesis of 1,2,3,4-tetrachloro-hexafluoro-butane |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US180706A (en) | 1876-08-08 | Improvement in mechanisms for operating sliding doors | ||
DE2038464C3 (de) * | 1970-08-03 | 1974-09-26 | Farbwerke Hoechst Ag, Vormals Meister Lucius & Bruening, 6000 Frankfurt | Verfahren zur Herstellung von Halogenderivaten des Methans |
US4128589A (en) * | 1977-06-22 | 1978-12-05 | Hughes Aircraft Company | Generation of CF4 from Teflon for reactive atmosphere processing and growth of metal fluorides |
JPS58162536A (ja) * | 1982-03-23 | 1983-09-27 | Kanto Denka Kogyo Kk | 四フツ化炭素の製造方法 |
JPS5913739A (ja) * | 1982-07-13 | 1984-01-24 | Asahi Glass Co Ltd | テトラフルオロメタンの製造方法 |
DE19733470C1 (de) | 1997-08-02 | 1998-12-10 | Daimler Benz Ag | Vorzugsweise U-förmiger Profilträger, insbesondere Rahmenlängsträger, für einen Tragrahmen eines Nutzfahrzeuges und Verfahren zu seiner Herstellung |
US6720464B2 (en) | 2000-08-30 | 2004-04-13 | Showa Denko K.K. | Production and use of octafluoropropane |
CN102140054B (zh) * | 2010-01-28 | 2013-11-20 | 中国中化股份有限公司 | 一种四氟甲烷的制备方法 |
-
2018
- 2018-12-11 US US16/958,272 patent/US11040931B2/en active Active
- 2018-12-11 WO PCT/JP2018/045497 patent/WO2019131114A1/ja unknown
- 2018-12-11 CN CN201880081493.2A patent/CN111479794B/zh active Active
- 2018-12-11 JP JP2019562942A patent/JP7169723B2/ja active Active
- 2018-12-11 EP EP18896674.1A patent/EP3733634B1/en active Active
- 2018-12-11 KR KR1020207017433A patent/KR102469036B1/ko active IP Right Grant
- 2018-12-24 TW TW107146767A patent/TWI700266B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06298681A (ja) | 1993-04-20 | 1994-10-25 | Kanto Denka Kogyo Co Ltd | フッ化炭素の製造法 |
JPH11180706A (ja) | 1997-12-24 | 1999-07-06 | Kanto Denka Kogyo Co Ltd | フッ化炭素の製造法 |
JP2000086546A (ja) * | 1998-09-03 | 2000-03-28 | Daikin Ind Ltd | 1,1,1,2,3,3,3−ヘプタフルオロプロパンの製造方法 |
JP2002069014A (ja) * | 2000-08-30 | 2002-03-08 | Showa Denko Kk | オクタフルオロプロパンの製造方法及びその用途 |
WO2016193248A1 (en) * | 2015-06-04 | 2016-12-08 | Solvay Specialty Polymers Italy S.P.A. | Processes for the synthesis of 1,2,3,4-tetrachloro-hexafluoro-butane |
Non-Patent Citations (1)
Title |
---|
See also references of EP3733634A4 |
Also Published As
Publication number | Publication date |
---|---|
JP7169723B2 (ja) | 2022-11-11 |
US11040931B2 (en) | 2021-06-22 |
EP3733634A1 (en) | 2020-11-04 |
CN111479794A (zh) | 2020-07-31 |
EP3733634A4 (en) | 2021-02-24 |
JPWO2019131114A1 (ja) | 2020-12-24 |
TW201930238A (zh) | 2019-08-01 |
EP3733634B1 (en) | 2023-03-22 |
TWI700266B (zh) | 2020-08-01 |
KR102469036B1 (ko) | 2022-11-21 |
KR20200085876A (ko) | 2020-07-15 |
US20210061733A1 (en) | 2021-03-04 |
CN111479794B (zh) | 2023-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6364029B2 (ja) | 1,1,2,3−テトラクロロプロペンの製造方法 | |
WO2019131114A1 (ja) | テトラフルオロメタンの製造方法 | |
WO2019142627A1 (ja) | テトラフルオロメタンの製造方法 | |
WO2019142626A1 (ja) | テトラフルオロメタンの製造方法 | |
TWI744336B (zh) | 製程 | |
JPH11500132A (ja) | テトラフルオロエチレンの合成法 | |
JP4390306B2 (ja) | ペルフルオロアルカン類の製造方法 | |
JPH09241187A (ja) | テトラフルオロメタンの製造方法 | |
KR20200121332A (ko) | 1,2,3,4-테트라클로로부탄의 제조 방법 및 제조 장치 | |
JP2012144473A (ja) | gem−ジフルオロアルカンの製造方法 | |
JP2024055301A (ja) | ヘキサフルオロプロピレンオキシドの製造方法および製造装置 | |
CN102516019A (zh) | 一种采用抑爆剂的氟碳直接制备四氟甲烷的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18896674 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019562942 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207017433 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018896674 Country of ref document: EP Effective date: 20200728 |