WO2019129223A1 - 电极层叠组件的制造方法以及电极层叠组件 - Google Patents

电极层叠组件的制造方法以及电极层叠组件 Download PDF

Info

Publication number
WO2019129223A1
WO2019129223A1 PCT/CN2018/124989 CN2018124989W WO2019129223A1 WO 2019129223 A1 WO2019129223 A1 WO 2019129223A1 CN 2018124989 W CN2018124989 W CN 2018124989W WO 2019129223 A1 WO2019129223 A1 WO 2019129223A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
pole piece
basic unit
manufacturing
order
Prior art date
Application number
PCT/CN2018/124989
Other languages
English (en)
French (fr)
Inventor
刘小安
金省周
杨树涛
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2019129223A1 publication Critical patent/WO2019129223A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of battery technology, and in particular to a method of manufacturing an electrode stack assembly and an electrode stack assembly of the electrochemical device manufactured by the method.
  • Lithium-ion batteries have the advantages of high specific energy, long life, safety, and environmental protection. They have been widely used in notebook computers, mobile phones, digital cameras, electric vehicles, and energy storage. With the continuous development of demand for computers, mobile phones, electric vehicles, etc., batteries are required to have higher energy density.
  • the preparation method of the battery core of the lithium ion battery mainly has two types of winding and stacking. Winding is commonly used in cylindrical and square lithium-ion batteries, and the stacking method is mainly used in the production of soft-pack batteries and on some square batteries. In terms of space utilization, stacked cells have higher utilization than wound cells, so higher energy density can be obtained.
  • the winding is performed by aligning the positive electrode sheet, the separator, and the negative electrode sheet, and winding them together.
  • the number of pole pieces is small, the efficiency is high, and the winding speed can reach several tens of ppm (Pages per minute).
  • ppm Pages per minute.
  • the wound core has uneven force, and the battery core is prone to deformation, resulting in deterioration of battery performance and even safety hazards.
  • the length of the electrode piece of the wound type cell is long, and the number of the lead pieces is small, so that the internal resistance of the wound type cell is high.
  • Stacking is to stack a plurality of positive electrode sheets, separator films and negative electrode sheets alternately. At present, most of the lamination process adopts a “Z” lamination process. After lamination, the battery is directly packaged into the shell, and the battery is directly packaged after the conventional lamination. The battery will be misaligned between the internal layers during use, which will affect the safety of the battery.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • a method of manufacturing an electrode stack assembly includes the steps of: fabricating a first basic unit step of repeatedly arranging the first pole piece in a first first sheet and a first pole piece in a first surface of the separator And repeatedly arranging the second pole piece in the order of the vacancy zone and the second pole piece or the order of the second pole piece and the vacancy zone on the second surface of the isolation film, every second of the first pole pieces Cutting the separator, folding the separator to form a first pole piece, a separator, a second pole piece, a separator, and a first basic unit in which the first pole piece is laminated; and manufacturing the second basic unit: The first surface of the separator repeatedly aligns the second pole piece in the order of the second pole piece and the second pole piece, and the second surface of the separator film is in the order of the vacancy zone and the first pole piece or the first The first pole piece is repeatedly arranged in the order of the pole piece and the vacancy zone, the separator is cut every two second pole pieces, and the separator is folded to form
  • the laminated structure formed according to the above steps has high manufacturing efficiency and is less prone to error, and the positional fixation of the first pole piece and the second pole piece is good.
  • the method of manufacturing the electrode stack assembly according to the above embodiment of the present invention may further have the following additional technical features:
  • the laminating step includes folding the separator in a zigzag shape and repeatedly configuring the first base unit and the second base unit.
  • the laminating step includes: repeatedly arranging the first base unit in a first surface of the separator in the order of the first base unit and the vacancy area, on the second surface of the separator
  • the second basic unit is repeatedly arranged in the order of the second basic unit and the vacant area, and the separator is folded in a zigzag shape.
  • the laminating step includes: repeatedly arranging the first base unit in a first surface of the separator in the order of the first base unit and the vacancy area, on the second surface of the separator
  • the second basic unit is repeatedly arranged in the order of the vacancy zone and the second basic unit, and the separator is folded in a zigzag shape.
  • the step of manufacturing the first basic unit and the step of manufacturing the first basic unit each include: aligning the tab of the first pole piece and the tab of the second pole piece to the same side or Arranged on the opposite side.
  • the laminating step further includes: after the separator is folded, the laminated structure is wound once and the trailing end is fixed.
  • the steps of manufacturing the first basic unit and the step of manufacturing the first basic unit each include: a bonding step: the separator is provided with a hot melt adhesive, the separator is hot pressed, the The first pole piece and the second pole piece until the hot melt adhesive melts and bonds the first pole piece and the second pole piece.
  • the steps of manufacturing the first basic unit and the step of manufacturing the first basic unit each include: using the negative electrode as the first pole piece.
  • the separator is provided with a hot melt adhesive, and the separator, the separator after the lamination The first basic unit and the second basic unit are heated until the hot melt melts.
  • the electrode stack assembly of the electrochemical device according to the present invention is produced by the above-described method of manufacturing an electrode stack assembly.
  • FIG. 1 is a schematic view showing the steps of manufacturing a first basic unit in a method of manufacturing an electrode stack assembly according to an embodiment of the invention
  • FIG. 2 is a schematic view showing the steps of manufacturing a second basic unit in the method of manufacturing an electrode stack assembly according to an embodiment of the invention
  • Figure 3 is a schematic view of the first basic unit
  • Figure 4 is a schematic view of a second basic unit
  • FIG. 5 is a schematic view showing a lamination step in a method of manufacturing an electrode stack assembly according to an embodiment of the present invention
  • FIG. 6 is a schematic view showing a hot pressing step in a method of manufacturing an electrode stack assembly according to an embodiment of the invention.
  • FIG. 7 and 8 are schematic views of different types of electrode stack assemblies, respectively.
  • FIG. 9 is a schematic diagram showing the steps of a method of manufacturing an electrode stack assembly according to an embodiment of the invention.
  • a method of manufacturing an electrode stack assembly may include the steps of: manufacturing a first basic unit step, manufacturing a second basic unit step, a lamination step, and a hot pressing step.
  • the steps of manufacturing the first basic unit and the step of manufacturing the second basic unit may be performed simultaneously, for example, the steps of manufacturing the first basic unit and the step of manufacturing the second basic unit may be performed simultaneously on different manufacturing apparatuses.
  • the steps of manufacturing the first basic unit and the step of manufacturing the second basic unit may also be sequentially performed in sequence, for example, on the same device, the first basic unit 4 is first manufactured, and after completion, the second basic unit 5 is remanufactured. .
  • the first basic unit is manufactured by repeatedly arranging the first pole piece 1 in the order of the first pole piece 1 and the first pole piece 1 on the first surface 31 of the separator 3, or
  • the first pole piece 1 is continuously and repeatedly arranged on the first surface 31 of the separator 3.
  • the first pole piece 1 is a positive electrode piece
  • the second pole piece 1 is a positive electrode piece
  • the second pole piece 2 is a negative electrode piece.
  • the second pole piece 2 is repeatedly arranged in the order of the vacancy zone and the second pole piece 2 or the order of the second pole piece 2 and the vacancy zone on the second surface 32 of the separator 3, that is, in the first layer of the separator 3 On the two surfaces 32, only one second pole piece 2 is placed between the two positions, the other position is vacant, and then it is repeatedly arranged in this manner.
  • the second pole piece 2 and the vacant area can be selected by themselves.
  • the separator 3 is cut every two first pole pieces 1, such that the first surface 31 of the separator 3 after cutting has two first pole pieces 1, and the second surface 32 has a second pole piece 2.
  • the separator 3 is refolded to form a first pole piece 1, a separator 3, a second pole piece 2, a separator 3, and a first base unit 4 in which the first pole pieces 1 are stacked.
  • the folding manner can make the vacancy zone correspond to the second pole piece 2, so that the two first pole pieces 1 can also be located just on both sides of the second pole piece 2.
  • the second basic unit is manufactured by repeatedly arranging the second pole pieces 2 in the order of the second pole piece 2 and the second pole piece 2 on the first surface 31 of the separator 3, or The second pole piece 2 is continuously and repeatedly arranged on the first surface 31 of the separator 3.
  • the first pole piece 1 is repeatedly arranged in the order of the vacancy zone and the first pole piece 1 or the order of the first pole piece 1 and the vacancy zone on the second surface 32 of the separator 3, that is, in the first layer of the separator 3 On the two surfaces 32, only one first pole piece 1 is placed between the two positions, the other position is vacant, and then it is repeatedly arranged in this manner.
  • the first pole piece 1 and the vacancy zone can be selected by themselves.
  • the separator 3 is cut every two second pole pieces 2 such that the first surface 31 of the separator 3 after cutting has two second pole pieces 2, and the second surface 32 has a first pole piece 1.
  • the separator 3 is refolded to form a second pole unit 2, a separator 3, a first pole piece 1, a separator 3, and a second pole unit 2 stacked in a second base unit 5.
  • the folding manner can make the vacancy zone correspond to the first pole piece 1, so that the two second pole pieces 2 can also be located just on both sides of the first pole piece 1.
  • first basic unit 4 and the second basic unit 5 are arranged in the opposite order to the first pole piece 1 and the second pole piece 2, and the first basic unit 4 is in accordance with the first pole piece 1, the second pole piece 2, and The first pole piece 1 is arranged in a manner, and the second basic unit 5 is arranged in the order of the second pole piece 2, the first pole piece 1, and the second pole piece 2.
  • the direction of the tabs is not limited, as shown in FIG. 7, the tabs of the first pole piece 1 and the tabs of the second pole piece 2 are Same side layout. Alternatively, as shown in FIG. 8, the tabs of the first pole piece 1 and the tabs of the second pole piece 2 are arranged differently.
  • the step of manufacturing the first basic unit and the step of manufacturing the first basic unit each include: a bonding step: the separator 3 is provided with a hot melt adhesive, the thermocompression insulating film 3, the first pole piece 1 and the second pole piece 2, until The hot melt adhesive melts and bonds the first pole piece 1 and the second pole piece 2.
  • the bonding and fixing manner of the hot melt adhesive can make the bonding and fixing of the first pole piece 1 and the second pole piece 2 simple and reliable, and does not affect the charge and discharge performance of the battery.
  • the lamination step is to repeatedly arrange the first base unit 4 and the second base unit 5 via the separator 3. Since the isolation film 3 is not disposed correspondingly to the end pole pieces of the first basic unit 4 and the second basic unit 5, the basic unit of the first basic unit 4 and the basic unit can be better separated by the separation membrane 3, thereby ensuring Battery safety performance.
  • the arrangement of the separator 3 is not limited to one, and is exemplified below.
  • the separator 3 is folded in a zigzag shape and the first base unit 4 and the second base unit 5 are repeatedly arranged.
  • the zigzag folding manner can be simple and mature, and the separator 3 can effectively isolate the end pole pieces of the first basic unit 4 and the second basic unit 5, thereby preventing direct contact between the two, thereby ensuring battery safety. performance.
  • the first base unit 4 is repeatedly arranged in the order of the first base unit 4 and the vacancy area on the first surface 31 of the separator 3, and the second base unit 5 and the vacancy area are arranged on the second surface 32 of the separator 3.
  • the second basic unit 5 is repeatedly arranged in the order, and the separator 3 is folded in a zigzag shape.
  • the zigzag fold is different from the above-mentioned separator 3, and the folding manner can make the first base unit 4 and the second base unit 5 securely fixed on the separator 3, thereby avoiding the occurrence of pole piece misalignment or error. Layer problems can improve the safety of the battery.
  • the first base unit 4 is repeatedly arranged in the order of the first base unit 4 and the vacant area on the first surface 31 of the separator 3, and the vacancy area and the second base unit 5 are formed on the second surface 32 of the separator 3.
  • the second basic unit 5 is repeatedly arranged in the order, and the separator 3 is folded in a zigzag shape. Such a folding manner can make the first base unit 4 and the second base unit 5 securely fixed on the separator 3, thereby avoiding the problem of pole piece misalignment or staggering, and improving the safety performance of the battery.
  • the separator 3 is folded and wound around the laminated structure, and the trailing end of the separator 3 is fixed. That is, after the first base unit 4 and the second base unit 5 are folded along with the separator 3, the separator 3 remains at a predetermined length, so that the separator 3 can also be wound around the stacking mechanism.
  • the structure of the lamination mechanism is more stable, and the position of the first pole piece 1 and the second pole piece 2 is more fixed.
  • the closing end of the separator 3 can be bonded and fixed to the separator 3 which is not corresponding to the pole piece.
  • the separator 3 is provided with a hot melt adhesive, and the laminated separator 3, the first base unit 4 and the second base unit 5 are heated to heat.
  • the melt melts.
  • the preheating step allows the hot melt to melt, which can facilitate a secure bond between the layers of the laminate structure.
  • the laminated separator 3, the first base unit 4, and the second base unit 5 are heated by a preheating oven.
  • the preheating oven has a better effect and can effectively accommodate the laminated structure.
  • a hot pressing step pressurizing the laminated separator 3, the first base unit 4, and the second base unit 5 to form an electrode stack assembly.
  • the heating can make the first pole piece 1 and the second pole piece 2 firmly adhere to the separator 3 through the hot melt adhesive, so that the electrode stack assembly can be formed into one body, in other words, each of the electrode stack assemblies
  • the layers are bonded and fixed by hot melt adhesive, which can improve the anti-vibration and impact resistance of the electrode stack assembly, thereby improving the safety performance of the electrode stack assembly.
  • the gap between the separator 3 and the pole piece can be reduced, the efficiency of ion conduction can be increased, and the performance of the electrochemical device can be improved.
  • the plurality of sets of the preheated first basic unit 4, the second basic unit 5, and the separator 3 may be simultaneously pressurized.
  • a plurality of sets of electrode stacked assemblies can be simultaneously formed, so that the manufacturing efficiency of the manufacturing method can be effectively improved.
  • the hot pressing step may employ a hot press 20, and the hot press 20 may include at least two hot pressing plates, for example, two, and the two hot pressing plates may be pressed against each other to form an electrode lamination assembly.
  • the hot press 20 can pressurize the plurality of stacked structures while obtaining a plurality of sets of electrode stacking assemblies.
  • an electrode stack assembly of an electrochemical device is manufactured by the method of manufacturing an electrode stack assembly of the above embodiment.
  • the electrochemical device may be a battery or a capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种电极层叠组件(10)的制造方法以及电极层叠组件(10),制造方法包括以下步骤:制造第一基本单元(4)步骤:在隔离膜(3)的第一表面(31)按照第一极片(1)和第一极片(1)的顺序排布第一极片(1),在隔离膜(3)的第二表面(32)按照空位区和第二极片(2)的顺序排布第二极片(2);制造第二基本单元(5)步骤:形成第二极片(2)、隔离膜(3)、第一极片(1)、隔离膜(3)和第二极片(2)层叠设置的第二基本单元(5);叠片步骤:隔着隔离膜(3)反复配置第一基本单元(4)和第二基本单元(5);热压步骤。

Description

电极层叠组件的制造方法以及电极层叠组件
相关申请的交叉引用
本申请要求长城汽车股份有限公司于2017年12月29日提交的、发明名称为“电极层叠组件的制造方法以及电极层叠组件”的、中国专利申请号“201711481751.X”的优先权。
技术领域
本发明涉及电池技术领域,特别是涉及一种电极层叠组件的制造方法以及采用该制造方法制造的电化学装置的电极层叠组件。
背景技术
锂离子电池具有比能量高,寿命长,安全,环保等优点,已经广泛应用在笔记本电脑、手机、数码相机、电动汽车、储能等领域。随着电脑、手机、电动汽车等需求的不断发展,要求电池具有更高的能量密度。
目前,锂离子电池的电芯制备方法主要有卷绕和堆叠两种。在圆柱形和方形锂离子电池普遍采用卷绕方式,而堆叠方式主要在软包电池生产中使用及在部分方形电池上使用。在空间利用率上,堆叠式电芯比卷绕式电芯具有更高的利用率,因此可以获得更高的能量密度。
卷绕是将正极片、隔离膜、负极片对齐后,共同卷绕在一起。其极片数量少,效率高,卷绕速度可达到几十ppm(Pages per minute-生产数量)。但卷绕式电芯在充放电过程中存在受力不均,电芯易发生变形,导致电池性能恶化,甚至出现安全隐患。另外,卷绕式电芯的电极片长度较长,极耳引出的数量少,因此卷绕式电芯的内阻较高。
堆叠是将多片正极片、隔离膜、负极片交替堆叠在一起,目前叠片工艺大多采用“Z”叠片工艺,叠片后电池直接进行封装入壳,传统叠片后电池直接封装,这样电池在使用过程中内部各层之间会发生错位,对电池安全造成影响。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种电极层叠组件的制造方法,以解决电池生产效率的问题。
根据本发明的电极层叠组件的制造方法,包括以下步骤:制造第一基本单元步骤:在隔离膜的第一表面按照第一极片和第一极片的顺序反复排布所述第一极片,在所述隔离膜的第二表面按照空位区和第二极片的顺序或第二极片和空位区的顺序反复排布所述第二极 片,每隔两个所述第一极片切割所述隔离膜,再折叠所述隔离膜以形成第一极片、隔离膜、第二极片、隔离膜和第一极片层叠设置的第一基本单元;制造第二基本单元步骤:在隔离膜的第一表面按照第二极片和第二极片的顺序反复排布所述第二极片,在所述隔离膜的第二表面按照空位区和第一极片的顺序或第一极片和空位区的顺序反复排布所述第一极片,每隔两个所述第二极片切割所述隔离膜,再折叠所述隔离膜以形成第二极片、隔离膜、第一极片、隔离膜和第二极片层叠设置的第二基本单元;叠片步骤:隔着隔离膜反复配置所述第一基本单元和所述第二基本单元;热压步骤:对叠片后的所述隔离膜、所述第一基本单元和所述第二基本单元加压,形成电极层叠组件。
由此,按照上述步骤所形成的层叠结构制造效率高,而且不易出错,第一极片和第二极片的位置固定性较好。
另外,根据本发明上述实施例的电极层叠组件的制造方法还可以具有如下附加的技术特征:
根据本发明的一个示例,所述叠片步骤包括:隔离膜按照Z字形折叠并反复配置所述第一基本单元和所述第二基本单元。
根据本发明的一个示例,所述叠片步骤包括:在隔离膜的第一表面按照第一基本单元和空位区的顺序反复排布所述第一基本单元,在所述隔离膜的第二表面按照第二基本单元和空位区的顺序反复排布所述第二基本单元,所述隔离膜按照Z字形折叠。
根据本发明的一个示例,所述叠片步骤包括:在隔离膜的第一表面按照第一基本单元和空位区的顺序反复排布所述第一基本单元,在所述隔离膜的第二表面按照空位区和第二基本单元的顺序反复排布所述第二基本单元,所述隔离膜按照Z字形折叠。
根据本发明的一个示例,所述制造第一基本单元步骤和所述制造第一基本单元步骤均包括:将所述第一极片的极耳和所述第二极片的极耳同侧或异侧布置。
根据本发明的一个示例,所述叠片步骤还包括:隔离膜折叠后绕设层叠后的结构一圈且收尾端被固定。
根据本发明的一个示例,所述制造第一基本单元步骤和所述制造第一基本单元步骤均包括:粘接步骤:所述隔离膜带有热熔胶,热压所述隔离膜、所述第一极片和所述第二极片,直至所述热熔胶熔化并粘接所述第一极片和所述第二极片。
根据本发明的一个示例,所述制造第一基本单元步骤和所述制造第一基本单元步骤均包括:采用负极作为第一极片。
根据本发明的一个示例,在所述叠片步骤之后且在所述热压步骤之前还包括:预热步骤:所述隔离膜带有热熔胶,对叠片后的所述隔离膜、所述第一基本单元和所述第二基本单元加热至所述热熔胶熔化。
根据本发明的电化学装置的电极层叠组件,采用上述的电极层叠组件的制造方法制造。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为本发明实施例所述的电极层叠组件的制造方法中的制造第一基本单元步骤示意图;
图2为本发明实施例所述的电极层叠组件的制造方法中的制造第二基本单元步骤示意图;
图3为第一基本单元的示意图;
图4为第二基本单元的示意图;
图5为本发明实施例所述的电极层叠组件的制造方法中的叠片步骤的示意图;
图6为本发明实施例所述的电极层叠组件的制造方法中的热压步骤的示意图;
图7和图8分别为不同类型的电极层叠组件的示意图;
图9为本发明实施例所述的电极层叠组件的制造方法的步骤示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明实施例的电极层叠组件的制造方法。
如图9所示,根据本发明实施例的电极层叠组件的制造方法可以包括以下步骤:制造第一基本单元步骤、制造第二基本单元步骤、叠片步骤和热压步骤。
如图1和图2所示,制造第一基本单元步骤和制造第二基本单元步骤可以同时进行,例如,制造第一基本单元步骤和制造第二基本单元步骤可以在不同的制造设备上同步进行,当然,制造第一基本单元步骤和制造第二基本单元步骤也可以按照先后顺序依次进行,例如,在同一设备上,先制造第一基本单元4,在完成之后,再制造第二基本单元5。
如图1和图3所示,制造第一基本单元步骤为在隔离膜3的第一表面31按照第一极片1和第一极片1的顺序反复排布第一极片1,或者说,在隔离膜3的第一表面31不断且反复排布第一极片1。其中,第一极片1为负极片,第二极片2为正极片,或者,第一极片1为正极片,第二极片2为负极片。
在隔离膜3的第二表面32按照空位区和第二极片2的顺序或第二极片2和空位区的顺序反复排布第二极片2,也就是说,在隔离膜3的第二表面32上,两个位置之间仅放置一个第二极片2,另外一个位置空置,然后按照此方式反复排布。当然,第二极片2和空位区 可以自行选择。
每隔两个第一极片1切割隔离膜3,这样,在切割后的隔离膜3的第一表面31有两个第一极片1,在第二表面32有一个第二极片2。如图3所示,再折叠隔离膜3以形成第一极片1、隔离膜3、第二极片2、隔离膜3和第一极片1层叠设置的第一基本单元4。折叠方式可以使得空位区和第二极片2相对应,这样也可以使得两个第一极片1正好位于第二极片2的两侧。
如图2和图4所示,制造第二基本单元步骤为在隔离膜3的第一表面31按照第二极片2和第二极片2的顺序反复排布第二极片2,或者说,在隔离膜3的第一表面31不断且反复排布第二极片2。
在隔离膜3的第二表面32按照空位区和第一极片1的顺序或第一极片1和空位区的顺序反复排布第一极片1,也就是说,在隔离膜3的第二表面32上,两个位置之间仅放置一个第一极片1,另外一个位置空置,然后按照此方式反复排布。当然,第一极片1和空位区可以自行选择。
每隔两个第二极片2切割隔离膜3,这样,在切割后的隔离膜3的第一表面31有两个第二极片2,在第二表面32有一个第一极片1。如图3所示,再折叠隔离膜3以形成第二极片2、隔离膜3、第一极片1、隔离膜3和第二极片2层叠设置的第二基本单元5。折叠方式可以使得空位区和第一极片1相对应,这样也可以使得两个第二极片2正好位于第一极片1的两侧。
由此,第一基本单元4和第二基本单元5对于第一极片1和第二极片2的排布顺序相反,第一基本单元4按照第一极片1、第二极片2和第一极片1的方式排布,第二基本单元5按照第二极片2、第一极片1和第二极片2的顺序排布。
对于在第一基本单元4和第二基本单元5的制造过程中,极耳的方向不做限定,如图7所示,将第一极片1的极耳和第二极片2的极耳同侧布置。或者,如图8所示,将第一极片1的极耳和第二极片2的极耳异侧布置。
其中,制造第一基本单元步骤和制造第一基本单元步骤均包括:粘接步骤:隔离膜3带有热熔胶,热压隔离膜3、第一极片1和第二极片2,直至热熔胶熔化并粘接第一极片1和第二极片2。采用热熔胶的粘接固定方式可以使得第一极片1和第二极片2的粘接固定简单且可靠,而且不会影响电池的充放电性能。
如图5所示,叠片步骤为隔着隔离膜3反复配置第一基本单元4和第二基本单元5。由于第一基本单元4和第二基本单元5的端部极片均未对应设置隔离膜3,所以隔着隔离膜3,可以较好地隔离第一基本单元4和的基本单元,从而可以保证电池的安全性能。
其中,隔离膜3的布置方式不限于一种,下面举例描述。
例如,隔离膜3按照Z字形折叠并反复配置第一基本单元4和第二基本单元5。Z字形的折叠方式可以简单且成熟,并且该隔离膜3可以有效隔离开第一基本单元4和第二基本单元5的端部极片,防止两者之间直接接触,从而可以保证电池的安全性能。
又如,在隔离膜3的第一表面31按照第一基本单元4和空位区的顺序反复排布第一基本单元4,在隔离膜3的第二表面32按照第二基本单元5和空位区的顺序反复排布第二基本单元5,隔离膜3按照Z字形折叠。采用此种方式区别于上述的隔离膜3直接Z字形折叠,此种折叠方式可以使得第一基本单元4和第二基本单元5在隔离膜3上固定可靠,从而可以避免出现极片错位或错层的问题,可以提升电池的安全性能。
再如,在隔离膜3的第一表面31按照第一基本单元4和空位区的顺序反复排布第一基本单元4,在隔离膜3的第二表面32按照空位区和第二基本单元5的顺序反复排布第二基本单元5,隔离膜3按照Z字形折叠。此种折叠方式可以使得第一基本单元4和第二基本单元5在隔离膜3上固定可靠,从而可以避免出现极片错位或错层的问题,可以提升电池的安全性能。
还有,如图5所示,隔离膜3折叠后绕设层叠后的结构一圈,而且隔离膜3的收尾端被固定。也就是说,在第一基本单元4和第二基本单元5随着隔离膜3折叠完成后,隔离膜3仍留有预定长度,这样隔离膜3还可以围绕层叠机构绕设一圈,如此设置的层叠机构结构更加稳定,第一极片1和第二极片2的位置固定性更好。其中,隔离膜3的收尾端可以粘接固定在未对应设置极片的隔离膜3上。
在叠片步骤之后且在热压步骤之前还包括:预热步骤:隔离膜3带有热熔胶,对叠片后的隔离膜3、第一基本单元4和第二基本单元5加热至热熔胶熔化。预热步骤可以使得热熔胶熔化,这样可以有利于层叠结构的各层之间牢靠粘接。
在该步骤中,采用预热烘箱对叠片后的隔离膜3、第一基本单元4和第二基本单元5加热。预热烘箱的效果较好,而且能够有效容纳层叠结构。
如图6所示,热压步骤:对叠片后的隔离膜3、第一基本单元4和第二基本单元5加压,形成电极层叠组件。可以理解的是,加热可以使得第一极片1和第二极片2通过热熔胶牢靠粘接在隔离膜3上,从而可以使得电极层叠组件形成一个整体,换言之,电极层叠组件中的每层之间均通过热熔胶进行了粘接固定,这样可以提高电极层叠组件的抗震动和抗冲击能力,进而可以提高电极层叠组件的安全性能。还有,采用此种方式固定极片和隔离膜3之间的相对位置,可以使隔离膜3和极片之间的缝隙减小,可以增加离子传导的效率,可以提升电化学装置的性能。
其中,在热压步骤,还可以同时对多组预热后的第一基本单元4、第二基本单元5和隔离膜3加压。由此,在同一时间,可以同时形成多组电极层叠组件,从而可以有效提升该 制造方法的制造效率。
热压步骤可以采用热压机20,热压机20可以包括至少两个热压板,例如,两个,两个热压板可以相互加压,从而形成电极层叠组件。当然,热压板超过两个时,这样热压机20可以对多组层叠结构进行加压,同时得到多组电极层叠组件。
如图7和图8所示,根据本发明实施例的电化学装置的电极层叠组件,采用上述实施例的电极层叠组件的制造方法制造。其中,电化学装置可以为电池,也可以为电容器等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种电极层叠组件的制造方法,其特征在于,包括以下步骤:
    制造第一基本单元步骤:在隔离膜的第一表面按照第一极片和第一极片的顺序反复排布所述第一极片,在所述隔离膜的第二表面按照空位区和第二极片的顺序或第二极片和空位区的顺序反复排布所述第二极片,每隔两个所述第一极片切割所述隔离膜,再折叠所述隔离膜以形成第一极片、隔离膜、第二极片、隔离膜和第一极片层叠设置的第一基本单元;
    制造第二基本单元步骤:在隔离膜的第一表面按照第二极片和第二极片的顺序反复排布所述第二极片,在所述隔离膜的第二表面按照空位区和第一极片的顺序或第一极片和空位区的顺序反复排布所述第一极片,每隔两个所述第二极片切割所述隔离膜,再折叠所述隔离膜以形成第二极片、隔离膜、第一极片、隔离膜和第二极片层叠设置的第二基本单元;
    叠片步骤:隔着隔离膜反复配置所述第一基本单元和所述第二基本单元;
    热压步骤:对叠片后的所述隔离膜、所述第一基本单元和所述第二基本单元加压,形成电极层叠组件。
  2. 根据权利要求1所述的电极层叠组件的制造方法,其特征在于,所述叠片步骤包括:隔离膜按照Z字形折叠并反复配置所述第一基本单元和所述第二基本单元。
  3. 根据权利要求1-2所述的电极层叠组件的制造方法,其特征在于,所述叠片步骤包括:在隔离膜的第一表面按照第一基本单元和空位区的顺序反复排布所述第一基本单元,在所述隔离膜的第二表面按照第二基本单元和空位区的顺序反复排布所述第二基本单元,所述隔离膜按照Z字形折叠。
  4. 根据权利要求1-3所述的电极层叠组件的制造方法,其特征在于,所述叠片步骤包括:在隔离膜的第一表面按照第一基本单元和空位区的顺序反复排布所述第一基本单元,在所述隔离膜的第二表面按照空位区和第二基本单元的顺序反复排布所述第二基本单元,所述隔离膜按照Z字形折叠。
  5. 根据权利要求1-4所述的电极层叠组件的制造方法,其特征在于,所述制造第一基本单元步骤和所述制造第一基本单元步骤均包括:将所述第一极片的极耳和所述第二极片的极耳同侧或异侧布置。
  6. 根据权利要求1-5所述的电极层叠组件的制造方法,其特征在于,所述叠片步骤还包括:隔离膜折叠后绕设层叠后的结构一圈且收尾端被固定。
  7. 根据权利要求1-6所述的电极层叠组件的制造方法,其特征在于,所述制造第一基本单元步骤和所述制造第一基本单元步骤均包括:粘接步骤:所述隔离膜带有热熔胶,热压所述隔离膜、所述第一极片和所述第二极片,直至所述热熔胶熔化并粘接所述第一极片 和所述第二极片。
  8. 根据权利要求1-7所述的电极层叠组件的制造方法,其特征在于,所述制造第一基本单元步骤和所述制造第一基本单元步骤均包括:采用负极作为第一极片。
  9. 根据权利要求1-8所述的电极层叠组件的制造方法,其特征在于,在所述叠片步骤之后且在所述热压步骤之前还包括:预热步骤:所述隔离膜带有热熔胶,对叠片后的所述隔离膜、所述第一基本单元和所述第二基本单元加热至所述热熔胶熔化。
  10. 一种电化学装置的电极层叠组件,其特征在于,采用根据权利要求1-9中任一项所述的电极层叠组件的制造方法制造。
PCT/CN2018/124989 2017-12-29 2018-12-28 电极层叠组件的制造方法以及电极层叠组件 WO2019129223A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711481751.XA CN109560322A (zh) 2017-12-29 2017-12-29 电极层叠组件的制造方法以及电极层叠组件
CN201711481751.X 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019129223A1 true WO2019129223A1 (zh) 2019-07-04

Family

ID=65863475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124989 WO2019129223A1 (zh) 2017-12-29 2018-12-28 电极层叠组件的制造方法以及电极层叠组件

Country Status (2)

Country Link
CN (1) CN109560322A (zh)
WO (1) WO2019129223A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552024A (zh) * 2022-01-28 2022-05-27 上海兰钧新能源科技有限公司 锂离子电池叠片结构及其制备、电芯及其制备与应用
CN115352939A (zh) * 2022-10-19 2022-11-18 常州盛沅新材料科技有限公司 一种包装膜卷放装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783420A (zh) * 2009-05-05 2010-07-21 深圳市雄韬电源科技有限公司 锂离子电池叠片的制作方法
US20150024245A1 (en) * 2012-05-07 2015-01-22 Lg Chem, Ltd. Electrode assembly and lithium secondary battery comprising the same
CN104966851A (zh) * 2015-07-24 2015-10-07 江苏华东锂电技术研究院有限公司 锂离子电池叠片装置
US20160006079A1 (en) * 2014-07-03 2016-01-07 Ningde Amperex Technology Limited Preparation method of laminated cell
CN106252732A (zh) * 2016-08-17 2016-12-21 吉安市优特利科技有限公司 锂离子动力电池的制造方法
CN107181005A (zh) * 2017-07-11 2017-09-19 力信(江苏)能源科技有限责任公司 一种卷绕‑卷叠式电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100987300B1 (ko) * 2007-07-04 2010-10-12 주식회사 엘지화학 스택-폴딩형 전극조립체 및 그것의 제조방법
KR101349205B1 (ko) * 2011-04-15 2014-01-08 에스케이이노베이션 주식회사 이차 전지 다중 삽입 적층 장치 및 방법
CN102683752B (zh) * 2012-04-09 2014-08-27 久兆新能源科技有限公司 一种叠片式锂离子动力电池及其制作方法
CN202888312U (zh) * 2012-08-10 2013-04-17 东莞新能源科技有限公司 一种锂离子电池电芯及其锂离子电池
TWI520402B (zh) * 2013-02-15 2016-02-01 Lg化學股份有限公司 電極組及其製造方法
CN203481326U (zh) * 2013-08-16 2014-03-12 中航锂电(洛阳)有限公司 一种大容量锂离子电池的电芯结构
CN105762419B (zh) * 2016-05-04 2018-06-05 合肥国轩高科动力能源有限公司 一种卷绕式叠片电池单体电极组件的制造装置
CN105895860B (zh) * 2016-05-07 2019-03-29 合肥国轩高科动力能源有限公司 一种卷绕式叠片电池电极组件制作方法
CN106025374A (zh) * 2016-05-29 2016-10-12 合肥国轩高科动力能源有限公司 一种叠片电池的制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783420A (zh) * 2009-05-05 2010-07-21 深圳市雄韬电源科技有限公司 锂离子电池叠片的制作方法
US20150024245A1 (en) * 2012-05-07 2015-01-22 Lg Chem, Ltd. Electrode assembly and lithium secondary battery comprising the same
US20160006079A1 (en) * 2014-07-03 2016-01-07 Ningde Amperex Technology Limited Preparation method of laminated cell
CN104966851A (zh) * 2015-07-24 2015-10-07 江苏华东锂电技术研究院有限公司 锂离子电池叠片装置
CN106252732A (zh) * 2016-08-17 2016-12-21 吉安市优特利科技有限公司 锂离子动力电池的制造方法
CN107181005A (zh) * 2017-07-11 2017-09-19 力信(江苏)能源科技有限责任公司 一种卷绕‑卷叠式电池

Also Published As

Publication number Publication date
CN109560322A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
KR101595644B1 (ko) 안전성이 향상된 전극 조립체 및 그 제조방법
TWI521765B (zh) 製造電極總成的方法
EP2892101B1 (en) Method for manufacturing electrode assembly
JP6266539B2 (ja) 階段構造の電極組立体及び複合電極組立体
EP2560224B1 (en) Electrode assembly
KR101553542B1 (ko) 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택
US20110162198A1 (en) Method of producing solid electrolyte-electrode assembly
KR101789066B1 (ko) 복합 구조의 전극 조립체 및 상기 전극 조립체를 갖는 리튬이온 이차전지
JP2019091682A (ja) 積層式二次電池の製造方法
US20190237797A1 (en) Stacking device for secondary battery, stacking method using same, and secondary battery obtained thereby
CN109361011B (zh) 一种卷绕式锂离子电芯及其制备方法
JP7221122B2 (ja) 電池セルの電極アセンブリの製造方法及び電池セル
CN109560328A (zh) 电极层叠组件的制造方法以及电极层叠组件
WO2019129223A1 (zh) 电极层叠组件的制造方法以及电极层叠组件
KR101387137B1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
CN115332611A (zh) 电池和电池的制备方法
CN109560252B (zh) 电极层叠组件的制造方法以及电极层叠组件
US11424474B2 (en) Secondary battery, and apparatus and method for manufacturing the same
KR101590991B1 (ko) 분리막들이 상호 접합된 전극조립체 및 이를 포함하는 이차전지
CN109546230B (zh) 电极层叠组件的制造方法以及电极层叠组件
KR101785759B1 (ko) 전극조립체의 및 이를 제조하는 방법
JP2019135699A (ja) 電池の製造方法
JP6224124B2 (ja) 階段構造の電極群積層体
CN110504492B (zh) 一种防止跌落失效的锂电池及其制备方法
JP7038957B2 (ja) 電池セルおよび電極リードの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896274

Country of ref document: EP

Kind code of ref document: A1