WO2019128914A1 - 一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用 - Google Patents
一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用 Download PDFInfo
- Publication number
- WO2019128914A1 WO2019128914A1 PCT/CN2018/123042 CN2018123042W WO2019128914A1 WO 2019128914 A1 WO2019128914 A1 WO 2019128914A1 CN 2018123042 W CN2018123042 W CN 2018123042W WO 2019128914 A1 WO2019128914 A1 WO 2019128914A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- based catalyst
- hydrogenation
- ester
- preparation
- Prior art date
Links
- 239000010949 copper Substances 0.000 title claims abstract description 166
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 135
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 124
- 239000003054 catalyst Substances 0.000 title claims abstract description 113
- 150000002148 esters Chemical class 0.000 title claims abstract description 42
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title abstract description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 118
- 238000006243 chemical reaction Methods 0.000 claims abstract description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 31
- 229910052710 silicon Inorganic materials 0.000 claims description 31
- 239000010703 silicon Substances 0.000 claims description 31
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 27
- 150000002009 diols Chemical class 0.000 claims description 23
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 19
- 230000009467 reduction Effects 0.000 claims description 18
- 230000032683 aging Effects 0.000 claims description 17
- 239000007864 aqueous solution Substances 0.000 claims description 17
- 239000012018 catalyst precursor Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- 239000001257 hydrogen Substances 0.000 claims description 15
- AHADSRNLHOHMQK-UHFFFAOYSA-N methylidenecopper Chemical compound [Cu].[C] AHADSRNLHOHMQK-UHFFFAOYSA-N 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 14
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 13
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 230000001376 precipitating effect Effects 0.000 claims description 10
- 238000001354 calcination Methods 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 7
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 4
- 239000005751 Copper oxide Substances 0.000 claims description 4
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- 229910000431 copper oxide Inorganic materials 0.000 claims description 4
- 150000007514 bases Chemical class 0.000 claims description 3
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 3
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 3
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000010668 complexation reaction Methods 0.000 claims description 2
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 2
- 150000004760 silicates Chemical class 0.000 claims description 2
- 230000003197 catalytic effect Effects 0.000 abstract description 34
- 230000000694 effects Effects 0.000 abstract description 12
- LOMVENUNSWAXEN-UHFFFAOYSA-N Methyl oxalate Chemical compound COC(=O)C(=O)OC LOMVENUNSWAXEN-UHFFFAOYSA-N 0.000 abstract description 11
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 30
- 229910003472 fullerene Inorganic materials 0.000 description 30
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 21
- 239000000047 product Substances 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 9
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 8
- 229910001431 copper ion Inorganic materials 0.000 description 8
- 238000011068 loading method Methods 0.000 description 8
- 238000004445 quantitative analysis Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 7
- 238000011056 performance test Methods 0.000 description 7
- -1 polyethylene terephthalate Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- LOMVENUNSWAXEN-NUQCWPJISA-N dimethyl oxalate Chemical group CO[14C](=O)[14C](=O)OC LOMVENUNSWAXEN-NUQCWPJISA-N 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- BEPAFCGSDWSTEL-UHFFFAOYSA-N dimethyl malonate Chemical compound COC(=O)CC(=O)OC BEPAFCGSDWSTEL-UHFFFAOYSA-N 0.000 description 3
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical group C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 3
- 150000002334 glycols Chemical class 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229940057867 methyl lactate Drugs 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 241000530268 Lycaena heteronea Species 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- WCCJDBZJUYKDBF-UHFFFAOYSA-N copper silicon Chemical compound [Si].[Cu] WCCJDBZJUYKDBF-UHFFFAOYSA-N 0.000 description 1
- ZURAKLKIKYCUJU-UHFFFAOYSA-N copper;azane Chemical compound N.[Cu+2] ZURAKLKIKYCUJU-UHFFFAOYSA-N 0.000 description 1
- SXTLQDJHRPXDSB-UHFFFAOYSA-N copper;dinitrate;trihydrate Chemical compound O.O.O.[Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O SXTLQDJHRPXDSB-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- YAGHEUQOAPDHKS-UHFFFAOYSA-N dimethyl oxalate;methanol Chemical compound OC.COC(=O)C(=O)OC YAGHEUQOAPDHKS-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/396—Distribution of the active metal ingredient
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/132—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
- C07C29/136—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
- C07C29/147—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
- C07C29/149—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the invention belongs to the technical field of copper-based catalysts, and in particular relates to a copper-based catalyst for ester hydrogenation to synthesize diol and a preparation method and application thereof.
- Glycols such as ethylene glycol and propylene glycol are important organic chemical raw materials and are a chemical that is in great demand for modern industrial and social development.
- ethylene glycol can react with terephthalic acid to form polyethylene terephthalate (PET), which is an important raw material in the polyester industry.
- PET polyethylene terephthalate
- Ethylene glycol is commonly used to make antifreeze, which is used for the transportation of antifreeze for vehicles and industrial cooling.
- propylene glycol has a similar structure to ethylene glycol, and poly(trimethylene terephthalate) (PTT) produced by propylene glycol can replace PET, which can be used as an important chemical raw material for buffering PET demand.
- PTT poly(trimethylene terephthalate)
- the copper source is selected from one or more of the group consisting of copper nitrate, copper sulfate, copper acetate, copper chloride and copper oxide.
- the precipitating agent in the step (1) is a basic compound.
- the reducing agent for reduction in the step (4) is hydrogen or a mixed gas containing hydrogen; the temperature of the reduction treatment is 250 to 550 ° C, and the time for the reduction treatment is 2 to 12 hours.
- the present invention provides a copper-based catalyst for hydrogenation of an ester to a diol comprising, by mass percent, 0.1 to 50% of C 60 , 0.5 to 60% of Cu and the balance of supported SiO 2 ; C 60 and Cu are supported on the surface of the carrier SiO 2 .
- fullerene (C 60 ) has a strong electron-acting ability, can effectively regulate electrons on the surface of the metal, and realize control of the surface charge distribution of the copper-based catalyst, so that the surface active copper component is increased.
- the copper-based catalyst comprises a carrier SiO 2 and C 60 and Cu supported on the surface of the carrier SiO 2 ; the C 60 and Cu are in physical contact with each other on the surface of the carrier SiO 2 and have a charge effect, Further, the charge effect between the fullerene and Cu is controlled, so that the surface copper maintains charge stability during the catalytic process, and is not easily affected by the reactants or products, so that the activity is lowered.
- the copper-based catalyst comprises 0.1 to 50% of C 60 , 0.5 to 60% of Cu and the balance of carrier SiO 2 by mass percentage; preferably 5 to 20% of C 60 , 20 to 40% of Cu and the balance of carrier SiO 2 .
- the mass percentage of the C 60 is from 0.1 to 50%, preferably from 1 to 45%, more preferably from 5 to 35%, more preferably based on the total mass of the copper-based catalyst. 10 to 25%; the mass percentage of Cu is 0.5 to 60%, preferably 1 to 50%, more preferably 5 to 45%, still more preferably 10 to 40%.
- the fullerene (C 60 ) has strong electron-acting ability, can effectively regulate electrons on the surface of the metal, and realize control of surface charge distribution of the copper-based catalyst.
- fullerene and Cu are supported on the carrier. On the surface of SiO 2 , fullerene and Cu are firmly contacted, and then the balance of the surface charge of the active copper is realized by fullerene, and the activity of copper on the surface of the carrier is further improved, so that the copper-based catalyst can still exert its effect under the low pressure condition of 0.1 to 1 MPa. High catalytic activity.
- the copper-based catalyst provided by the present invention has full catalytic activity in the process of hydrogenation of an ester to a diol by using a fullerene as a promoter and a copper as an active agent on the surface of the carrier SiO 2 .
- the present invention provides a method for preparing a copper-based catalyst according to the above technical solution, comprising the following steps:
- the silicon source is based on the mass of the silica containing the same amount of the silicon substance, and the C 60
- the mass ratio is (2 to 80): (0.1 to 50);
- the catalyst precursor obtained in the step (3) is subjected to a reduction treatment to obtain a copper-based catalyst for hydrogenation of an ester to a diol.
- the uniform mixing of the copper-ammonium complex with C 60 in the reaction solution will facilitate the interaction of C 60 with the copper-containing substance, especially C 60 as an electron donor or acceptor and copper ion or Strong interaction between copper ammine ions.
- the mixing of the copper source and the aqueous ammonia is preferably carried out by adding ammonia to the copper source.
- the molar concentration of the aqueous ammonia is preferably from 25 to 28%; and the amount of the aqueous ammonia is such that the copper source is dissolved in the aqueous ammonia.
- the relative amounts of the ammonia water and the copper source are clarified by the mixture to become cloudy, and then clarified.
- the invention provides a copper source in the form of an aqueous solution of a copper ammonia complex, which contributes to the formation of small-sized nano-copper particles, thereby improving the catalytic activity of the copper-based catalyst.
- the precipitating agent is preferably a basic compound, and further preferably one or more selected from the group consisting of ammonia, carbonate, urea, methylamine and ethylamine.
- the mass of the precipitating agent is preferably from 1 to 5 times, more preferably from 2 to 3 times, the mass of the copper based on the content of copper in the aqueous solution of the copper ammonia complex.
- the copper ions are more easily combined with C 60 , thereby contributing to an increase in catalyst activity and stability.
- the present invention has no particular requirement for the specific source of the precipitating agent, and may be a commercially available product well known to those skilled in the art.
- the aqueous solution of the copper ammine complex and the fullerene under the action of a precipitating agent, can simultaneously combine copper ions and fullerenes to promote the formation of a copper-carbon mixture.
- the copper-carbon mixture is aged with a silicon source to cause aging, and deposition of copper ions on the surface of the silicon source in the copper-carbon mixture is effected to obtain a deposit.
- the copper-carbon mixture includes a copper ammonia complex and a copper ammonia complex which simultaneously binds copper ions and fullerenes; and when the silicon source is silicon balls or white carbon black, the copper ammonia complex
- the silicon ball or white carbon black in the silicon source is decomposed to form a Si-OH basic group, which in turn promotes the chemical bonding of the silicon source with Cu 2+ and C 60 to form a highly active catalyst active phase, avoiding amorphous deposition.
- the problem that SiO 2 cannot directly bond with Cu or C 60 .
- the aging treatment is preferably carried out under agitation to promote sufficient contact of the copper-carbon mixture with the silicon source to uniformly deposit ionic copper on the surface of the silicon source.
- the present invention has no particular requirements for the specific embodiment of the agitation, and a stirring method well known to those skilled in the art may be employed.
- the temperature of the aging treatment is preferably 25 to 150 ° C, more preferably 30 to 120 ° C, still more preferably 50 to 100 ° C; and the time of the aging treatment is preferably 1 to 30 h, and more preferably 5 ⁇ 20h, more preferably 10-15h.
- the present invention sequentially freezes and calcines the deposit obtained by the aging treatment to obtain a catalyst precursor.
- the drying temperature is preferably 70 to 140 ° C, more preferably 100 to 120 ° C; and the drying time is preferably 6 to 12 h, and more preferably 8 to 10 h. In the present invention, the drying achieves removal of residual moisture in the deposit.
- the calcined product is preferably subjected to a refining treatment to obtain a refined catalyst precursor.
- the particle diameter of the refined catalyst precursor is preferably 40 to 60 mesh, and more preferably 50 to 55 mesh.
- the manner of the refining treatment is preferably tableting; the present invention has no special requirements for the specific embodiment of the tableting, as long as the catalyst precursor of the target particle size can be obtained.
- the catalyst precursor of the present invention is subjected to a reduction treatment to obtain a copper-based catalyst for hydrogenation of an ester to a diol.
- the reducing agent for reduction is preferably hydrogen or a mixed gas containing hydrogen.
- the present invention has no special requirement for the other components of the hydrogen-containing mixture gas, and any gas which can coexist with hydrogen can be used.
- the reduction treatment is preferably carried out under an argon atmosphere; when hydrogen is used as the reducing agent, the reduction treatment is preferably carried out under a mixed atmosphere of hydrogen and argon; the hydrogen and argon are mixed.
- hydrogen gas preferably accounts for 5% to 80% of the total volume of the gas, and more preferably 20 to 50%.
- the temperature of the reduction is preferably from 250 to 550 ° C, more preferably from 300 to 500 ° C, still more preferably from 350 to 400 ° C; the temperature of the reduction is preferably achieved by a temperature increase, the rate of temperature increase It is preferably 2 to 10 ° C / min, and the initial temperature of the temperature rise is preferably room temperature.
- the time for the reduction is preferably from 2 to 12 h, and more preferably from 5 to 10 h.
- the copper oxide particles are reduced to metallic copper nanoparticles.
- the silicon source contributes to the dispersion of copper, and the baking and baking functions to enhance the metal carrier, which provides protection for catalytic activity and catalytic stability.
- the invention also provides the use of the copper-based catalyst prepared by the above-mentioned technical scheme or the copper-based catalyst prepared by the preparation method of the above technical scheme in the reaction of ester hydrogenation to synthesize glycol.
- the application is preferably carried out by mixing the copper-based catalyst with an organic solution of an ester, and then introducing hydrogen gas to carry out a synthesis reaction to obtain a glycol.
- the synthesis reaction can be carried out under low pressure conditions or under high pressure conditions.
- the pressure of the low pressure is preferably 0.1 to 1 MPa, more preferably 0.15 to 0.8 MPa, and still more preferably 0.2 to 0.5 MPa; and when the synthesis reaction is carried out under a low pressure condition, the hydrogen gas is preferably introduced in an amount of
- the hydrogen ester molar ratio is preferably from 80 to 300, and more preferably from 250 to 280.
- the pressure of the high pressure is preferably 2 to 5 MPa; and when the synthesis reaction is carried out under high pressure, the molar ratio of the hydrogen ester is preferably 80 to 220, and more preferably 100 to 150.
- the solute in the organic solution of the ester is preferably dimethyl oxalate, dimethyl malonate or lactate.
- the solute is dimethyl oxalate
- the obtained diol is ethylene glycol
- the solute is dimethyl malonate or lactate
- the obtained diol is propylene glycol.
- the organic solvent in the organic solution of the ester is preferably methanol and/or ethanol.
- the mass concentration of the organic solution of the ester is preferably 0.1 to 1 g/mL, and more preferably 0.5 to 0.8 g/mL.
- the copper-based catalyst is preferably used in an amount of (0.2 to 1):1, most preferably in terms of the mass of the solute in the organic solution of the ester, the mass ratio of the copper-based catalyst to the solute. 0.5:1.
- the temperature of the synthesis reaction is preferably from 170 ° C to 240 ° C, more preferably from 180 to 220 ° C, and most preferably 200 ° C.
- the precipitate was filtered, washed to neutrality, dried at 110 ° C for 12 h, placed in a muffle furnace at a temperature increase rate of 4 ° C / min to 350 ° C, and calcined for 4 h to obtain a catalyst precursor.
- the obtained catalyst precursor is subjected to tableting to obtain 40 to 60 mesh particles, and the catalyst precursor is charged into the reactor, and the temperature is raised to 350 at 2 ° C/min under a normal pressure of 5% H 2 /Ar atmosphere. After full reduction for 4 h at ° C, a fullerene-promoted copper-based catalyst was obtained. Fullerene was 5 wt% of the copper-based catalyst, and Cu was 20% of the copper-based catalyst, which was recorded as 5% C 60 -20% Cu/SiO 2 .
- the fullerene-promoted copper-based catalyst obtained in Example 1 and the catalyst obtained in Comparative Example 1 were respectively used for hydrogenation of dimethyl oxalate to prepare ethylene glycol.
- the specific operation is to adopt a straight tube type high pressure micro-reverse device, the catalyst loading amount is 0.1g, the catalyst bed is heated to 190 ° C at 2 ° C / min, the reaction pressure is 0.1 MPa and pumped into the reactor with a high pressure constant current pump.
- the liquid product was collected by gas-liquid separator separation, and sampled at 1 h intervals for quantitative analysis on a gas chromatograph.
- the obtained fullerene-promoted copper-based catalyst was tested for the stability of the catalyst for 300 hours according to the catalytic performance test method for preparing ethylene glycol by ester hydrogenation in the first embodiment.
- the detection results are shown in FIG.
- the fullerene-promoted copper-based catalyst provided by the invention has high catalytic stability, and the activity remains stable after catalytic preparation of ethylene glycol for up to 300 hours.
- a fullerene-promoted copper-based catalyst was prepared in the same manner as in Example 1, except that the fullerene and silica sol were added in an amount of 0.9 g and 9.8 g, respectively, and the fullerene-promoted copper-based catalyst was obtained as a fullerene.
- the quantitative analysis by ICP-MS shows that the copper content is within the error range of the theoretical loading.
- a fullerene-promoted copper-based catalyst was prepared in the same manner as in Example 1, except that the fullerene and silica sol were added in an amount of 1.2 g and 9 g, respectively, and the fullerene-promoted copper-based catalyst was obtained as a copper-based fullerene. 20% by weight of the catalyst, Cu is 20% of the copper-based catalyst, and is recorded as 20% C 60 -20% Cu/SiO 2 catalyst. The quantitative analysis by ICP-MS shows that the copper content is within the error range of the theoretical loading.
- a fullerene-promoted copper-based catalyst was prepared in the same manner as in Example 1, except that the fullerene and silica sol were added in an amount of 1.5 g and 8.3 g, respectively, and the fullerene-promoted copper-based catalyst was obtained as a fullerene.
- the quantitative analysis by ICP-MS shows that the copper content is within the error range of the theoretical loading.
- a copper-based catalyst was prepared in the same manner as in Example 1, except that fullerene was not added and the amount of silica sol added was 12 g, and Cu was obtained as a copper-based catalyst in a copper-based catalyst of 20%, which was recorded as 20% Cu/SiO 2 .
- the results of quantitative analysis by ICP-MS showed that the copper content was within the error range of the theoretical loading.
- a fullerene-promoted copper-based catalyst was prepared in the same manner as in Example 1, except that the fullerene and silica sol were added in an amount of 0.6 g and 10.5 g, respectively, and the fullerene-promoted copper-based catalyst was obtained as a fullerene.
- the quantitative analysis by ICP-MS shows that the copper content is within the error range of the theoretical loading.
- Example 6 and Comparative Example 1 were tested according to the catalytic performance test method for preparing ethylene glycol by ester hydrogenation according to Example 1, except that the pressure of the catalytic reaction was 3 MPa, and the detection results were as follows. Table 2 shows.
- a fullerene-promoted copper-based catalyst was prepared in the same manner as in Example 1, except that the fullerene and silica sol were added in an amount of 0.6 g and 10.5 g, respectively, and the fullerene-promoted copper-based catalyst was obtained as a fullerene.
- the quantitative analysis by ICP-MS shows that the copper content is within the error range of the theoretical loading.
- Example 7 The copper-based catalysts obtained in Example 7 and Comparative Example 1 were tested according to the catalytic performance test method for preparing ethylene glycol by ester hydrogenation according to Example 1, except that the catalytic reaction pressure was 3 MPa, and the raw material space velocity was measured. It is 8.4h -1 and the test results are shown in Table 2.
- Example 2 The fullerene-promoted copper-based catalyst prepared in Example 2 was tested according to the catalytic performance test method for preparing ethylene glycol by ester hydrogenation in Example 1, except that dimethyl oxalate was replaced with methyl lactate.
- the temperature of the catalytic reaction was 180 ° C, and the activity data of the catalyst reached a steady state after 2 to 3 hours of reaction. At this time, the methyl lactate conversion rate was 100%, and the propylene glycol selectivity was 83.2%.
- the fullerene-promoted copper-based catalyst prepared in Example 2 was tested according to the catalytic performance test method for preparing ethylene glycol by ester hydrogenation in the first embodiment, except that dimethyl oxalate was replaced by malonic acid.
- the methyl ester has a reaction pressure of 3 MPa, and the catalyst activity data reaches a steady state after 2 to 3 hours of reaction. At this time, the methyl lactate conversion rate was 85.1%, and the propylene glycol selectivity was 74.2%.
- the fullerene-promoted copper-based catalyst of the present invention has high catalytic activity in the reaction of ester hydrogenation to prepare a glycol, and can be used not only under high pressure conditions. Catalytic activity also has catalytic activity during low pressure reaction, indicating that the catalyst has certain universality.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用,铜基催化剂以质量百分含量计,包括0.1~50%的C60、0.5~60%的Cu和余量的载体SiO2;所述C60和Cu负载于所述载体SiO2表面。C60和Cu稳固接触,通过C60实现对活性铜表面电荷的平衡,提高载体表面铜的活性使得铜基催化剂在低压条件下仍可以发挥较高的催化活性。铜基催化剂在催化酯加氢制备乙二醇的反应中,低压和高压条件下均具有较高的催化活性,使得草酸二甲酯的转化率高达100%,乙二醇的选择性均高于80%,乙二醇的质量时空产率均高于200mg/g。
Description
本发明属于铜基催化剂技术领域,尤其涉及一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用。
乙二醇和丙二醇等二元醇是重要的有机化工原料,是现代工业和社会发展大量需求的一种化学品。例如乙二醇可与对苯二甲酸反应生成聚对苯二甲酸乙二酯(PET),PET是聚酯工业领域的重要原料。乙二醇常用来制作防冻液,用于车用防冻剂和工业冷量的输送。另外,丙二醇与乙二醇具有类似的结构,通过丙二醇生产的聚对苯二甲酸-丙二醇酯(PTT)可替代PET,可作为缓冲市场对PET需求的重要化工原料。
乙二醇的工业生产方法主要有石油化工路线的环氧乙烷水合法,该技术基本已经被美国壳牌公司(Shell)、美国联合碳化公司(UCC)和美国科学设计公司(SD)三家公司所垄断;并且环氧乙烷水合法是一种加压直接水合的方式,生产装置需设置多个蒸发器,同时消耗大量能量用于产物分离,存在流程长、设备多、能耗高和产物乙二醇水溶液的浓度低的问题。同理,丙二醇的主要工业生产方法同样面对同样的问题。
近年来,酯加氢制备二元醇的生产路线,以其能耗低和流程短的优势,受到二元醇制备领域的广泛关注,例如,可通过草酸二甲酯加氢合成乙二醇;丙二酸二甲酯或乳酸酯加氢合成丙三醇。但是酯加氢生成二元醇的过程,需要在高活性催化剂的作用下进行。常用的催化剂有铜硅催化剂和铜铬催化剂,而传统催化剂活性低,需要较高的反应压力才能保证催化活性,限制二元醇的工业生产的发展。
发明内容
鉴于此,本发明的目的在于提供一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用,本发明提供的铜基催化剂,具有较高反应活性,使得在常压条件下即可催化酯加氢合成二元醇。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种酯加氢合成二元醇用铜基催化剂,以质量百分含量计,包括0.1~50% 的C
60、0.5~60%的Cu和余量的载体SiO
2;所述C
60和Cu负载于所述载体SiO
2表面。
优选的,所述铜基催化剂包括5~20%的C
60、20~40%的Cu和余量的载体SiO
2。
本发明还提供了上述技术方案所述的酯加氢合成二元醇用铜基催化剂的制备方法,包括以下步骤:
(1)将铜氨络合物水溶液、C
60和沉淀剂混合,进行沉积反应,得到铜-碳混合物;所述铜氨络合物水溶液以铜含量计,与C
60的质量比为(0.5~60):(0.1~50);
(2)将步骤(1)得到的铜-碳混合物与硅源混合,进行老化处理,得到老化物;所述硅源以所含硅物质的量相等的二氧化硅质量计,与C
60的质量比为(2~80):(0.1~50);
(3)将步骤(2)得到的老化物依次进行烘干和焙烧,得到催化剂前躯体;
(4)将步骤(3)得到的催化剂前躯体进行还原处理,得到酯加氢合成二元醇用铜基催化剂。
优选的,步骤(1)中铜氨络合物水溶液的制备方法包含:将铜源与氨水混合,得到铜氨络合物水溶液。
优选的,所述铜源选自硝酸铜、硫酸铜、乙酸铜、氯化铜和氧化铜中的一种或多种。
优选的,步骤(1)中沉淀剂为碱性化合物。
优选的,步骤(2)中硅源选自硅酸酯、硅溶胶、硅球和白炭黑中的一种或多种。
优选的,步骤(2)中老化处理在搅拌条件下进行;老化处理的温度为25~150℃;老化处理的时间为1~30h。
优选的,步骤(3)中烘干的温度为70~140℃,烘干的时间为6~12h。
优选地,步骤(3)中焙烧的温度为200~300℃,焙烧的时间为1~10h。
优选的,步骤(4)中还原用还原剂为氢气或含有氢气的混合气;所述还原处理的温度为250~550℃,还原处理的时间为2~12h。
本发明提供了上述技术方案所述铜基催化剂或上述技术方案所述制备方法制备得到的铜基催化剂在酯加氢合成二元醇反应中的应用。
本发明提供了一种酯加氢合成二元醇用铜基催化剂,以质量百分含量计,包括0.1~50%的C
60、0.5~60%的Cu和余量的载体SiO
2;所述C
60和Cu负载于所述载体SiO
2表面。在本发明中,富勒烯(C
60)具有较强的电子作用能力,对金属表面电子能够有效调控,实现铜基催化剂表面电荷分布的控制,使得表面活性铜组分增加,本发明中富勒烯和Cu负载于载体SiO
2表面,富勒烯和Cu稳固接触,进而通过富勒烯实现对活性铜表面电荷的平衡,进一步提高载体表面铜的活性,使得铜基催化剂在低压条件下仍可以发挥较高的催化活性。实施例的结果表明,本发明提供的不同组分的富勒烯促进型铜基催化剂,在催化酯加氢制 备乙二醇的反应中,无论在低压反应条件下还是在高压反应条件下,均具有较高的催化活性,使得草酸二甲酯的转化率高达100%,乙二醇的选择性均高于80%,乙二醇的质量时空产率均高于200mg/g。
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1本发明实施例2得到的铜基催化剂催化稳定性检测图。
本发明提供了一种酯加氢合成二元醇用铜基催化剂,以质量百分含量计,包括0.1~50%的C
60、0.5~60%的Cu和余量的载体SiO
2;所述C
60和Cu负载于所述载体SiO
2表面。
在本发明中,所述铜基催化剂包括载体SiO
2和负载于所述载体SiO
2表面的C
60和Cu;所述C
60和Cu在载体SiO
2表面以物理形式相互接触,具有电荷效应,进而调控富勒烯和Cu之间进行电荷效应,使得表面铜在催化过程中保持电荷稳定,不易被反应物或产物影响以致活性降低。
在本发明中,以质量百分含量计,所述铜基催化剂包括0.1~50%的C
60、0.5~60%的Cu和余量的载体SiO
2;优选包括5~20%的C
60、20~40%的Cu和余量的载体SiO
2。在本发明中,以所述铜基催化剂的总质量为基准,所述C
60的质量百分含量为0.1~50%,优选为1~45%,进一步优选为5~35%,更优选为10~25%;所述Cu的质量百分含量为0.5~60%,优选为1~50%,进一步优选为5~45%,更优选为10~40%。
在本发明中,所述富勒烯(C
60)具有较强的电子作用能力,对金属表面电子能够有效调控,实现铜基催化剂表面电荷分布的控制,本发明中富勒烯和Cu负载于载体SiO
2表面,富勒烯和Cu稳固接触,进而通过富勒烯实现对活性铜表面电荷的平衡,进一步提高载体表面铜的活性,使得铜基催化剂在0.1~1MPa的低压条件下仍可以发挥较高的催化活性。并且,本发明提供的铜基催化剂,在载体SiO
2表面,以富勒烯为促进剂,铜为活性剂,用于酯加氢合成二元醇的过程中,催化稳定性优异。
本发明提供了上述技术方案所述的铜基催化剂的制备方法,包括以下步骤:
(1)将铜氨络合物水溶液、C
60和沉淀剂混合,进行沉积反应,得到铜-碳混合物;所述铜氨络合物水溶液以铜含量计,与C
60的质量比为(0.5~60):(0.1~50);
(2)将步骤(1)得到的铜-碳混合物与硅源混合,进行老化处理,得到老化物;所述 硅源以所含硅物质的量相等的二氧化硅质量计,与C
60的质量比为(2~80):(0.1~50);
(3)将步骤(2)得到的老化物依次进行烘干和焙烧,得到催化剂前躯体;
(4)将步骤(3)得到的催化剂前躯体进行还原处理,得到酯加氢合成二元醇用铜基催化剂。
本发明将铜氨络合物水溶液、C
60和沉淀剂混合,进行沉积反应,得到铜-碳混合物。在本发明中,所述铜氨络合物水溶液以铜含量计,与C
60的质量比为(0.5~60):(0.1~50),优选为(1~50):(1~45),进一步优选为(5~45):(5~35),更优选为(10~40):(10~25)。本发明对所述C
60的具体来源没有特殊要求,采用本领域技术人员所熟知的市售商品即可。在本发明中,所述沉积反应在铜氨络合物作用下,确保了铜与C
60的均匀有序结合。在催化剂制备过程中,铜氨络合物在反应液中与C
60的均匀混合,将有利于C
60与含铜物质产生相互作用,特别是C
60作为电子供给体或接受体与铜离子或铜氨络离子之间的强相互作。
在本发明中,所述铜氨络合物水溶液的质量浓度优选为25~28%。在本发明中,所述铜氨络合物水溶液的制备方法优选包括:将铜源与氨水混合,进行络合反应,得到铜氨络合物水溶液;所述铜源优选选自硝酸铜、硫酸铜、乙酸铜和氯化铜中的一种或多种。在本发明中,所述铜源和氨水混合过程中,实现铜源在氨水中的溶解,形成铜离子与铵根离子络合,形成铜氨络合物。在本发明中,所述铜源和氨水的混合优选为将氨水滴加至铜源中。在本发明中,所述氨水的摩尔浓度优选为25~28%;所述氨水的用量以使所述铜源溶解于氨水中为准。在本发明中,所述氨水和铜源的相对用量以混合液澄清变浑浊,再变澄清为准。本发明采用铜氨络合物水溶液的形式提供铜源,有助于形成尺寸较小的纳米铜颗粒,进而提高铜基催化剂的催化活性。
在本发明中,所述沉淀剂优选为碱性化合物,进一步优选选自氨、碳酸盐、脲、甲胺和乙胺中的一种或多种。以所述铜氨络合物水溶液中铜的含量计,所述沉淀剂的质量优选为铜质量的1~5倍,进一步优选为2~3倍。在本发明中,所述沉淀剂与铜离子络合后,铜离子更易与C
60的结合,进而有助于催化剂活性和稳定性的提高。本发明对所述沉淀剂的具体来源没有特殊要求,采用本领域技术人员所熟知的市售商品即可。
在本发明中,所述铜氨络合物水溶液和富勒烯在沉淀剂的作用下,氨基能同时结合铜离子以及富勒烯,从而促进铜-碳混合物形成。
得到铜-碳混合物后,本发明将所述铜-碳混合物与硅源混合,进行老化处理,得到沉积物。在本发明中,所述硅源以所含硅物质的量相等的二氧化硅质量计,与富勒烯的质量比为(2~80):(0.1~50),优选为(5~50):(1~45),进一步优选为(20~30):(5~35)。在本发明中,所述硅源优选选自硅酸酯、硅溶胶、硅球和白炭黑中的一种或多种。本发明对所述硅源的具体 来源没有特殊要求,采用本领域技术人员所熟知的相应市售商品即可。
在本发明中,所述铜-碳混合物与硅源混合发生老化,实现铜-碳混合物中铜离子在硅源表面的沉积,得到沉积物。在本发明中,所述铜-碳混合物包括铜氨络合物以及同时结合铜离子和富勒烯的铜氨络合物;当硅源为硅球或白炭黑时,铜氨络合物对硅源中硅球或白炭黑进行分解,形成Si-OH基本基团,进而再次促进硅源与Cu
2+及C
60发生化学键合作用,形成高活性的催化剂活性相,避免无定型堆积的SiO
2不能直接和Cu或C
60发生键合的问题。在本发明中,所述老化处理优选在搅拌条件下进行,促进铜-碳混合物与硅源充分接触,使得离子态铜在硅源表面的均匀沉积。本发明对所述搅拌的具体实施方式没有特殊要求,采用本领域技术人员所熟知的搅拌方式即可。
在本发明中,所述老化处理的温度优选为25~150℃,进一步优选为30~120℃,更优选为50~100℃;所述老化处理的时间优选为1~30h,进一步优选为5~20h,更优选为10~15h。
所述老化处理后,本发明将所述老化处理得到的沉积物依次进行烘干和焙烧,得到催化剂前躯体。在本发明中,所述烘干的温度优选为70~140℃,进一步优选为100~120℃;所述烘干的时间优选为6~12h,进一步优选为8~10h。在本发明中,所述烘干实现对沉积物中残余水分的去除。
所述烘干后,本发明将烘干后的沉积物进行焙烧,得到催化剂前驱体。在本发明中,所述焙烧的温度优选为200~300℃,进一步优选为220~280℃,更优选为230~250℃;所述焙烧的时间优选为1~10h,进一步优选为2~7h,更优选为5~6h。本发明在所述焙烧过程中,沉积于硅源表面的铜离子转变为氧化铜纳米颗粒,含硅物质被分解为二氧化硅,富勒烯保持稳定。
所述焙烧处理后,本发明优选将所述焙烧产物进行细化处理,得到细化的催化剂前躯体。在本发明中,所述细化的催化剂前躯体的粒径优选为40~60目,进一步优选为50~55目。在本发明中,所述细化处理的方式优选为压片过筛;本发明对所述压片过筛的具体实施方式没有特殊要求,只要能得到目标粒径的催化剂前躯体即可。
得到催化剂前驱体后,本发明将所述催化剂前驱体进行还原处理,得到酯加氢合成二元醇用铜基催化剂。在本发明中,所述还原用还原剂优选为氢气或含有氢气的混合气。本发明对所述含有氢气的混合气的其他组分没有特殊要求,采用任意能和氢气共存的气体均可。在本发明中,所述还原处理优选在氩气保护气氛下进行;当以氢气作为还原剂时,所述还原处理优选在氢气和氩气的混合气氛下进行;所述氢气和氩气的混合气氛中,氢气优选占气体总体积的5%~80%,进一步优选为20~50%。
在本发明中,所述还原的温度优选为250~550℃,进一步优选为300~500℃,更优选为 350~400℃;所述还原的温度优选采用升温的方式达到,所述升温的速率优选为2~10℃/min,所述升温的初始温度优选为室温。在本发明中,所述还原的时间优选为2~12h,进一步优选为5~10h。在本发明中,所述还原过程中,氧化铜颗粒被还原为金属铜纳米颗粒。
在本发明中,所述硅源有助于铜的分散,烘干焙烧起到增强金属载体的作用,这些为催化活性和催化稳定性提供保障。
本发明还提供了上述技术方案所述铜基催化剂或上述技术方案所述制备方法制备得到的铜基催化剂在酯加氢合成二元醇反应中的应用。在本发明中,所述应用优选为将所述铜基催化剂与酯的有机溶液混合后,通入氢气,进行合成反应,得到二元醇。在本发明中,所述合成反应可以在低压条件下进行,也可以在高压条件下进行。在本发明中,所述低压的压力优选为0.1~1MPa,进一步优选为0.15~0.8MPa,更优选为0.2~0.5MPa;在低压条件下进行合成反应时,所述氢气的通入量优选以氢酯摩尔比计,所述氢酯摩尔比优选为80~300,进一步优选为250~280。在本发明中,所述高压的压力优选为2~5MPa;在高压条件下进行合成反应时,所述氢酯摩尔比优选为80~220,进一步优选为100~150。
在本发明中,所述酯的有机溶液中溶质优选为草酸二甲酯、丙二酸二甲酯或乳酸酯。当所述溶质为草酸二甲酯时,得到的二元醇为乙二醇;当所述溶质为丙二酸二甲酯或乳酸酯时,得到的二元醇为丙二醇。在本发明中,所述酯的有机溶液中有机溶剂优选为甲醇和/或乙醇。所述酯的有机溶液的质量浓度优选为0.1~1g/mL,进一步优选为0.5~0.8g/mL。在本发明中,所述铜基催化剂的使用量优选以酯的有机溶液中溶质的质量计,所述铜基催化剂与所述溶质的质量比优选为(0.2~1):1,最优选为0.5:1。在本发明中,所述合成反应的温度优选为170℃~240℃,进一步优选为180~220℃,最优选为200℃。
下面结合实施例对本发明提供的一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
称取4.5g三水合硝酸铜,溶解于50mL去离子水中,在搅拌状态下滴加28wt%氨水溶液得到澄清透明的蓝色铜氨溶液,得到透明蓝色铜氨溶液。将其转移入预装有0.30g富勒烯的圆底烧瓶中,在机械搅拌状态下,加入10mL 20wt%脲的水溶液,升温至80℃以500rpm的转速搅拌1h。然后加入11g的40wt%硅溶胶,继续以500rpm的转速进行搅拌老化8h。冷却后,将沉淀物过滤,洗涤至中性后,在110℃下烘干12h,置于马弗炉中以4℃/min的升温速率升至350℃,焙烧4h,得到催化剂前驱体。
将得到的催化剂前躯体进行压片筛分,得到40~60目颗粒,将催化剂前躯体装填入反应器中,在常压5%H
2/Ar气氛下,以2℃/min升温至350℃还原4h,制得富勒烯促进型铜基催化剂,富勒烯为铜基催化剂的5wt%,Cu为铜基催化剂的20%,记为5%C
60-20%Cu/SiO
2。
将实施例1得到的富勒烯促进型铜基催化剂和对比例1得到催化剂分别用于草酸二甲酯加氢反应制备乙二醇。具体操作是,采用直管式高压微反装置,催化剂装填量为0.1g,以2℃/min使催化剂床层升温至190℃,反应压力为0.1MPa并用高压恒流泵向反应器中泵入浓度为0.1g/mL的草酸二甲酯-甲醇溶液,液体流速为0.02mL/min,此时草酸二甲酯质量空速为0.6h
-1,控制氢气流速使氢酯摩尔比为200,反应物经气液分离器分离后收集液体产物,间隔1h取样在气相色谱上进行定量分析。
色谱分析条件:色谱柱为KB-Wax 30m×0.25mm×0.32μm,以20℃/min的升温速率,从50℃升温到200℃。根据产物中各组分的比例,采用校正因子归一化法计算出草酸二甲酯的转化率及各种产物的选择性,结果如表1所示。
由表1可知,在实施例1得到的富勒烯促进型催化剂的作用下,草酸二甲酯转化率为83.2%,乙二醇(EG)选择性为81.9%,乙二醇质量时空产率为215mg/g-cat/h。从表1中对比可知,所限定的产物选择性和时空产率在含富勒烯的催化剂上的收率都远远大于没有富勒烯的催化剂。
实施例2
按照实施例1的方式制备富勒烯促进型铜基催化剂,区别在于,富勒烯和硅溶胶添加量分别为0.6g和10.5g,制得富勒烯促进型铜基催化剂中富勒烯为铜基催化剂的10wt%,Cu为铜基催化剂的20%,记为10%C
60-20%Cu/SiO
2催化剂,经ICP-MS定量分析结果显示铜含量在理论负载量的误差范围内。
将得到的富勒烯促进型铜基催化剂按照实施例1中,催化剂采用酯加氢制备乙二醇的催化性能检测方式进行300h的催化剂稳定性的检测,检测结果如图1所示。
由图1可知,本发明提供的富勒烯促进型铜基催化剂,催化稳定性高,经长达300h的催化制备乙二醇之后,活性仍保持稳定。
实施例3
按照实施例1的方式制备富勒烯促进型铜基催化剂,区别在于,富勒烯和硅溶胶添加量分别为0.9g和9.8g,制得富勒烯促进型铜基催化剂中富勒烯为铜基催化剂的15wt%,Cu 为铜基催化剂的20%,记为15%C
60-20%Cu/SiO
2催化剂,经ICP-MS定量分析结果显示铜含量在理论负载量的误差范围内。
实施例4
按照实施例1的方式制备富勒烯促进型铜基催化剂,区别在于,富勒烯和硅溶胶添加量分别为1.2g和9g,制得富勒烯促进型铜基催化剂中富勒烯为铜基催化剂的20wt%,Cu为铜基催化剂的20%,记为20%C
60-20%Cu/SiO
2催化剂,经ICP-MS定量分析结果显示铜含量在理论负载量的误差范围内。
实施例5
按照实施例1的方式制备富勒烯促进型铜基催化剂,区别在于,富勒烯和硅溶胶添加量分别为1.5g和8.3g,制得富勒烯促进型铜基催化剂中富勒烯为铜基催化剂的25wt%,Cu为铜基催化剂的20%,记为25%C
60-20%Cu/SiO
2催化剂,经ICP-MS定量分析结果显示铜含量在理论负载量的误差范围内。
对比例1
按照实施例1的方式制备铜基催化剂,区别在于,不加入富勒烯并且硅溶胶添加量为12g,制得铜基催化剂中Cu为铜基催化剂的20%,记为20%Cu/SiO
2催化剂,经ICP-MS定量分析结果显示铜含量在理论负载量的误差范围内。
将实施例2~5和对比例1得到的铜基催化剂按照实施例1中,催化剂采用酯加氢制备乙二醇的催化性能检测方式进行性能检测,结果如表1所示。
表1实施例1~5和对比例1得到的催化剂在草酸二甲酯加氢制乙二醇的催化性能
由表1可知,不同组分的富勒烯促进型铜基催化剂,在催化酯加氢制备乙二醇的反应中,低压反应条件下,均具有较高的催化活性,使得草酸二甲酯的转化率高达100%,乙二醇的选择性均高于80%,乙二醇的质量时空产率均高于200mg/g。从表1的数据,证实了富勒烯的添加对于催化性能有大幅的提高,并以10~20%添加量最为显著。
实施例6
按照实施例1的方式制备富勒烯促进型铜基催化剂,区别在于,富勒烯和硅溶胶添加量分别为0.6g和10.5g,制得富勒烯促进型铜基催化剂中富勒烯为铜基催化剂的10wt%,Cu为铜基催化剂的20%,记为10%C
60-20%Cu/SiO
2催化剂,经ICP-MS定量分析结果显示铜含量在理论负载量的误差范围内。
将实施例6和对比例1得到的铜基催化剂按照实施例1中,催化剂采用酯加氢制备乙二醇的催化性能检测方式进行性能检测,区别在于,催化反应的压力为3MPa,检测结果如表2所示。
实施例7
按照实施例1的方式制备富勒烯促进型铜基催化剂,区别在于,富勒烯和硅溶胶添加量分别为0.6g和10.5g,制得富勒烯促进型铜基催化剂中富勒烯为铜基催化剂的10wt%,Cu为铜基催化剂的20%,记为10%C
60-20%Cu/SiO
2催化剂,经ICP-MS定量分析结果显示铜含量在理论负载量的误差范围内。
将实施例7和对比例1得到的铜基催化剂按照实施例1中,催化剂采用酯加氢制备乙二醇的催化性能检测方式进行性能检测,区别在于,催化反应的压力为3MPa,原料空速为8.4h
-1,检测结果如表2所示。
表2实施例6、7和对比例1得到的催化剂在草酸二甲酯加氢制乙二醇的催化性能
由表2可知,在不同的液时空速条件下,采用催化酯加氢制备乙二醇的反应中,本发 明提供的富勒烯促进型催化剂的催化活性高,使得草酸二甲酯的转化率高达100%,乙二醇的选择性均高于90%,乙二醇的质量时空产率甚至高达4158mg/g,表明该催化剂能够在及其苛刻的反应条件下,仍得到高效的催化结果。
实施例8
将实施例2制备富勒烯促进型铜基催化剂按照实施例1中,催化剂采用酯加氢制备乙二醇的催化性能检测方式进行性能检测,区别在于,草酸二甲酯替换为乳酸甲酯,催化反应的温度为180℃,反应2~3h后催化剂活性数据达到稳态。此时,乳酸甲酯转化率为100%,丙二醇选择性为83.2%。
实施例9
将实施例2制备富勒烯促进型铜基催化剂按照实施例1中,催化剂采用酯加氢制备乙二醇的催化性能检测方式进行性能检测,区别在于,草酸二甲酯替换为丙二酸二甲酯,反应压力为3MPa,反应2~3h后催化剂活性数据达到稳态。此时,乳酸甲酯转化率为85.1%,丙二醇选择性为74.2%。
由实施例2、8和9的结果可知,本发明得到富勒烯促进型铜基催化剂在酯加氢制备二元醇的反应过程中,具有较高的催化活性,不仅能够在高压条件下发挥催化活性,还具有低压反应过程中的催化活性,表明该催化剂具有一定的普适性。
以上实施例的结果表明,本发明提供的不同组分的富勒烯促进型铜基催化剂,在催化酯加氢制备乙二醇的反应中,无论在低压反应条件下还是在高压反应条件下,均具有较高的催化活性,使得草酸二甲酯的转化率高达100%,乙二醇的选择性均高于80%,乙二醇的质量时空产率均高于200mg/g。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
Claims (10)
- 一种酯加氢合成二元醇用铜基催化剂,以质量百分含量计,包括0.1~50%的C 60、0.5~60%的Cu和余量的载体SiO 2;所述C 60和Cu负载于所述载体SiO 2表面。
- 根据权利要求2所述的酯加氢合成二元醇用铜基催化剂,其特征在于,所述酯加氢合成二元醇用铜基催化剂包括5~20%的C 60、20~40%的Cu和余量的载体SiO 2。
- 权利要求1或2所述的酯加氢合成二元醇用铜基催化剂的制备方法,包括以下步骤:(1)将铜氨络合物水溶液、C 60和沉淀剂混合,进行沉积反应,得到铜-碳混合物;所述铜氨络合物水溶液以铜含量计,与C 60的质量比为(0.5~60):(0.1~50);(2)将步骤(1)得到的铜-碳混合物与硅源混合,进行老化处理,得到老化物;所述硅源以所含硅物质的量相等的二氧化硅质量计,与C 60的质量比为(2~80):(0.1~50);(3)将步骤(2)得到的老化物依次进行烘干和焙烧,得到催化剂前躯体;(4)将步骤(3)得到的催化剂前躯体进行还原处理,得到酯加氢合成二元醇用铜基催化剂。
- 根据权利要求3所述的制备方法,其特征在于,步骤(1)中铜氨络合物水溶液的制备方法包括:将铜源与氨水混合,进行络合反应,得到铜氨络合物水溶液;所述铜源选自硝酸铜、硫酸铜、乙酸铜、氯化铜和氧化铜中的一种或多种。
- 根据权利要求3或4所述的制备方法,其特征在于,步骤(1)中沉淀剂为碱性化合物。
- 根据权利要求3~5中任意一项所述的制备方法,其特征在于,步骤(2)中硅源选自硅酸酯、硅溶胶、硅球和白炭黑中的一种或多种。
- 根据权利要求3~6中任意一项所述的制备方法,其特征在于,步骤(2)中老化处理在搅拌条件下进行;老化处理的温度为25~150℃;老化处理的时间为1~30h。
- 根据权利要求3~7中任意一项所述的制备方法,其特征在于,步骤(3)中烘干的温度为70~140℃,烘干的时间为6~12h;步骤(3)中焙烧的温度为200~300℃,焙烧的时间为1~10h。
- 根据权利要求3~8中任意一项所述的制备方法,其特征在于,步骤(4)中还原用还原剂为氢气或含有氢气的混合气;所述还原处理的温度为250~550℃,还原处理的时间为2~12h。
- 权利要求1或2所述酯加氢合成二元醇用铜基催化剂或权利要求3~9任一项所述制备方法制备得到的酯加氢合成二元醇用铜基催化剂在酯加氢合成二元醇反应中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711465582.0A CN108187676B (zh) | 2017-12-28 | 2017-12-28 | 一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用 |
CN201711465582.0 | 2017-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019128914A1 true WO2019128914A1 (zh) | 2019-07-04 |
Family
ID=62585920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/123042 WO2019128914A1 (zh) | 2017-12-28 | 2018-12-24 | 一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108187676B (zh) |
WO (1) | WO2019128914A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114558602A (zh) * | 2022-01-26 | 2022-05-31 | 天津大学 | 负载铜的多孔氮化硼纳米棒催化剂及其制备方法与应用 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108187676B (zh) * | 2017-12-28 | 2019-09-13 | 厦门福纳新材料科技有限公司 | 一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用 |
CN113209976B (zh) * | 2021-05-21 | 2022-06-14 | 厦门大学 | 一种甲醇水蒸气重整制氢用催化剂及其制备方法与应用、甲醇水蒸气重整制氢反应 |
CN113842916A (zh) * | 2021-10-28 | 2021-12-28 | 厦门大学 | 一种富勒烯稳定的亚铜功能材料及其制备方法和应用 |
CN115532260B (zh) * | 2022-10-24 | 2024-07-12 | 厦门大学 | 一种环状碳酸酯低压加氢催化剂及其制备方法和应用 |
CN116116410B (zh) * | 2023-02-24 | 2024-08-02 | 湘潭大学 | 一种铜基催化剂及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06134284A (ja) * | 1992-10-30 | 1994-05-17 | Natl Inst For Res In Inorg Mater | ダイヤモンド粉末の合成法 |
CN101757915A (zh) * | 2010-01-08 | 2010-06-30 | 厦门大学 | 一种用于草酸酯加氢制乙二醇的催化剂及其制备方法 |
CN102658153A (zh) * | 2012-04-20 | 2012-09-12 | 天津工业大学 | 铜基体表面生长富勒烯掺杂多孔碳纳米纤维的制备方法 |
CN102923690A (zh) * | 2012-10-31 | 2013-02-13 | 青岛科技大学 | 负载过渡金属的富勒烯类纳微米材料的制备方法及其产品 |
CN108187676A (zh) * | 2017-12-28 | 2018-06-22 | 厦门大学 | 一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102451687B (zh) * | 2010-10-21 | 2013-06-05 | 中国石油化工股份有限公司 | 一种加氢催化剂及其制备方法和乙二醇的合成方法 |
-
2017
- 2017-12-28 CN CN201711465582.0A patent/CN108187676B/zh active Active
-
2018
- 2018-12-24 WO PCT/CN2018/123042 patent/WO2019128914A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06134284A (ja) * | 1992-10-30 | 1994-05-17 | Natl Inst For Res In Inorg Mater | ダイヤモンド粉末の合成法 |
CN101757915A (zh) * | 2010-01-08 | 2010-06-30 | 厦门大学 | 一种用于草酸酯加氢制乙二醇的催化剂及其制备方法 |
CN102658153A (zh) * | 2012-04-20 | 2012-09-12 | 天津工业大学 | 铜基体表面生长富勒烯掺杂多孔碳纳米纤维的制备方法 |
CN102923690A (zh) * | 2012-10-31 | 2013-02-13 | 青岛科技大学 | 负载过渡金属的富勒烯类纳微米材料的制备方法及其产品 |
CN108187676A (zh) * | 2017-12-28 | 2018-06-22 | 厦门大学 | 一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
HAN, XU ET AL.: "Advances in Catalytic Functio of Fullerene Materials", PROGRESS IN CHEMISTRY, vol. 18, no. 6, 30 June 2006 (2006-06-30), pages 715 - 719, XP055622361, ISSN: 1005-281X * |
LI, JIANHUI: "Advances in Catalysts for Selective Hydrogenation of Dimethyl Oxalate", PETROCHEMICAL TECHNOLOGY, vol. 43, no. 9, 30 September 2014 (2014-09-30), pages 985 - 992, ISSN: 1000-8144 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114558602A (zh) * | 2022-01-26 | 2022-05-31 | 天津大学 | 负载铜的多孔氮化硼纳米棒催化剂及其制备方法与应用 |
CN114558602B (zh) * | 2022-01-26 | 2023-08-01 | 天津大学 | 负载铜的多孔氮化硼纳米棒催化剂及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN108187676A (zh) | 2018-06-22 |
CN108187676B (zh) | 2019-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019128914A1 (zh) | 一种酯加氢合成二元醇用铜基催化剂及其制备方法和应用 | |
JP7019813B2 (ja) | アセトフェノンの水素化によってα-フェニルエタノールを製造するための触媒、その製造方法および応用 | |
JP6152381B2 (ja) | 導電性マイエナイト型化合物粉末の製造方法 | |
EP3498372A1 (en) | Method for manufacturing ammonia synthesis catalyst, and method for manufacturing ammonia | |
CN100409943C (zh) | 一种化学置换法制备纳米贵金属加氢催化剂的方法及应用 | |
JP6017777B2 (ja) | アンモニア製造用触媒組成物の製造方法及びアンモニア製造方法 | |
Lv et al. | Highly efficient conversion of biomass-derived levulinic acid into γ-valerolactone over Ni/MgO catalyst | |
CN102941093B (zh) | 萘加氢制备十氢萘的催化剂及制备方法和应用 | |
WO2018157815A1 (zh) | 选择性加氢催化剂、其制备方法及生成异丁醛的催化评价方法 | |
JP5715726B2 (ja) | 実質的に面心立方構造を有するルテニウム微粒子およびその製造方法 | |
JP6017386B2 (ja) | 水熱合成法により調製した金属添加SiO2−MgO触媒によるエタノールからのブタジエン合成法 | |
CN104998649A (zh) | 核壳结构镍基甲烷干重整催化剂的制备方法 | |
CN104525196A (zh) | 负载于双氧化物复合载体的铂镓催化剂及其制备方法和应用 | |
CN102658165A (zh) | 乙酸气相加氢制备乙醇的催化剂及其制备方法 | |
CN114405505B (zh) | 一种铂修饰铟基氧化物催化剂及其制备方法和应用 | |
CN113135825B (zh) | 一种硝基苯加氢制备苯胺的方法及其杂化纳米结构镍催化剂 | |
JP2019155227A (ja) | Co2メタン化触媒及びこれを用いた二酸化炭素の還元方法 | |
CN110368967B (zh) | 醋酸加氢催化剂及其制备方法和应用 | |
CN113398926A (zh) | 一种用于CO2催化加氢制甲醇的Pt/In2O3催化剂及其制备方法 | |
CN113769741A (zh) | 用于碳酸乙烯酯催化加氢的铜基催化剂及制备方法和应用 | |
KR101886964B1 (ko) | 금속/실리카 촉매의 제조 방법 | |
EP2952252B1 (en) | Selective hydrogenation catalyst, production method for selective hydrogenation catalyst, and selective hydrogenation method | |
CN106866415A (zh) | 一种脂环族羧酸酯的制造方法 | |
WO2020258412A1 (zh) | 5-羟甲基糠醛氧化酯化制备呋喃-2,5-二甲酸二甲酯的方法 | |
CN108137464B (zh) | 制备丙烯酸的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18896945 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/11/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18896945 Country of ref document: EP Kind code of ref document: A1 |