WO2019128842A1 - 车载雷达标定设备及方法 - Google Patents
车载雷达标定设备及方法 Download PDFInfo
- Publication number
- WO2019128842A1 WO2019128842A1 PCT/CN2018/122382 CN2018122382W WO2019128842A1 WO 2019128842 A1 WO2019128842 A1 WO 2019128842A1 CN 2018122382 W CN2018122382 W CN 2018122382W WO 2019128842 A1 WO2019128842 A1 WO 2019128842A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radar calibration
- radar
- laser
- bracket
- calibration plate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4026—Antenna boresight
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4008—Means for monitoring or calibrating of parts of a radar system of transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/865—Combination of radar systems with lidar systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4021—Means for monitoring or calibrating of parts of a radar system of receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9327—Sensor installation details
- G01S2013/93271—Sensor installation details in the front of the vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4052—Means for monitoring or calibrating by simulation of echoes
- G01S7/4082—Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
- G01S7/4086—Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder in a calibrating environment, e.g. anechoic chamber
Definitions
- the present application relates to the field of vehicle maintenance and equipment calibration technology, and in particular, to a vehicle radar calibration device and method.
- Adaptive Cruise Control is a commonly used auxiliary function.
- the specific working principle is that the vehicle in front is measured by the on-board radar, and the speed of the vehicle is compared with the speed of the front vehicle.
- the throttle system and the braking system of the vehicle are controlled, so that the vehicle is always kept constant with the preceding vehicle. safe distance. Therefore, the role of the vehicle-mounted radar is crucial in the realization of the ACC function.
- the installation position and installation angle determine the correctness and accuracy of the final measurement data. The above installation position and installation angle will change due to uncontrollable factors such as vibration and collision caused by the use of the vehicle.
- the calibration of the vehicle radar is the core content.
- the calibration of the on-board radar is mostly post-installation calibration, that is, after the vehicle is delivered to the user for a period of time, the vehicle radar needs to be calibrated for objective reasons.
- the inventor found that the existing calibration is mostly a single vehicle calibration tool, that is, a calibration tool can only calibrate the vehicle radar of a single vehicle type, and the calibration method relies excessively on the software to calculate the offset angle, which needs to be repeated. Multiple calibrations can be completed, which is cumbersome and inconvenient to use.
- an embodiment of the present invention provides a vehicle radar calibration device and method with convenient calibration operation.
- a vehicle radar calibration device includes:
- a radar calibration plate comprising a through hole
- a radar calibration laser for emitting a laser beam through the through hole after the vertical calibration of the radar calibration plate is completed
- the radar calibration mirror is mounted on the vehicle radar of the vehicle to be calibrated to reflect the laser beam passing through the through hole to return to the through hole along the original path to achieve calibration of the onboard radar.
- the onboard radar calibration device comprises:
- the radar calibration plate for reflecting a laser beam passing through the aperture to return it to the laser along the original path to
- the vertical plane of the radar calibration plate is calibrated such that the radar calibration plate is perpendicular to the central axis of the vehicle to be calibrated.
- the aperture is provided with a strip-shaped aperture groove for controlling a laser beam emitted by the laser to pass through the strip-shaped aperture groove.
- the diaphragm comprises a fixing seat and a sliding aperture
- the sliding aperture is provided with the optical groove
- the sliding aperture is mounted on the fixing seat
- the fixing seat and the fixing seat are adjustable s position.
- the fixing base comprises a base, a fixing bracket and a locking handle
- One end of the fixing bracket is mounted on the base, the fixing bracket is in a strip shape, and the locking handle is mounted on the fixing bracket;
- the sliding diaphragm includes a diaphragm portion and a sliding groove portion
- the diaphragm portion is in the form of a flat plate, and the optical groove is provided.
- the sliding groove portion is attached to the aperture portion, and the sliding groove portion is strip-shaped and is sleeved on the fixing bracket.
- the sliding groove portion is provided with a strip-shaped slit, and the locking handle passes through the strip-shaped slit for fixing the sliding diaphragm to the fixing seat.
- the laser includes a transmitting portion, a mounting shaft, and an observation target;
- the mounting shaft is mounted on the transmitting portion for mounting the laser to a hub of an automobile
- the observation target is mounted on the emitting portion, and the observation target includes an observation target surface for displaying a position of a laser beam reflected back through the radar calibration plate, and an emission hole is provided in a middle portion of the observation target surface.
- the radar calibration mirror comprises a body portion and a bonding portion
- the adhesive portion is disposed on a surface of the body portion for attaching the body portion to the vehicle radar;
- the body portion includes a reflective surface for reflecting a laser beam passing through the through hole to the through hole.
- the pasting portion is a Velcro.
- the onboard radar calibration device comprises a bracket device, the bracket device comprising a guide rail and a sliding member;
- the sliding member is movably mounted on the guide rail and slidable along the guide rail;
- the radar calibration plate is for mounting to the slider, and the radar calibration plate is slidable along the guide rail together with the slider.
- the radar calibration laser is mounted to the radar calibration plate, and the radar calibration laser and the radar calibration plate are slidable along the guide rail together with the slider.
- the bracket device comprises:
- a beam assembly mounted to the bracket assembly for movement relative to the bracket assembly in a vertical direction, the beam assembly including the rails, the rails being horizontally disposed.
- the bracket assembly comprises a bracket body and a height adjustment member
- At least three of the height adjustment members are mounted on a bottom surface of the bracket body for adjusting a horizontal angle of the bracket body as a whole and a pitch angle of the bracket body.
- the number of the height adjusting members is three, and the three height adjusting members are arranged in an isosceles triangle shape, and the three height adjusting members are used for adjusting a horizontal angle of the whole body of the bracket body, and the like.
- the height adjustment member at the vertex position of the apex angle of the waist triangle is used to adjust the pitch angle of the bracket body.
- the bracket assembly includes a base bracket and a pole bracket, and one end of the pole bracket is connected to the base bracket, and the base bracket supports the pole bracket;
- the beam assembly is mounted to the pole bracket;
- the base bracket includes a roller, the bracket body and the height adjustment member
- At least three of the rollers are mounted to a bottom surface of the bracket body to facilitate movement of the base bracket.
- the pole bracket comprises a lifting screw
- the lifting screw is disposed in a vertical direction
- the beam assembly is sleeved on the lifting screw and threadedly engaged with the lifting screw.
- the lifting screw rotates about its central axis, the lifting screw can drive the beam assembly along the The lifting screw moves in the vertical direction.
- the pole bracket comprises a lifting rail
- the lifting rail includes a vertical rod, and the vertical rod is disposed in a vertical direction;
- the beam assembly is movably mounted to the vertical rod for guiding the beam assembly to move in a vertical direction.
- the lifting rail comprises a crossbar, and the crossbar is mounted to the vertical rod in a horizontal direction;
- One end of the lifting screw is mounted on the cross bar, and the other end of the lifting screw is mounted on the bracket body.
- the lifting rail comprises a cross bar and a bottom bar
- Two of the vertical rods are arranged in parallel in a vertical direction and spaced apart by a preset distance;
- the crossbar is disposed in a horizontal direction, and two ends thereof are respectively mounted on the two vertical rods;
- the bottom rod is fixedly mounted on the bracket body, and one end of each of the vertical rods away from the cross rod is fixedly mounted to the bottom rod;
- One end of the lifting screw is fixedly mounted to the cross bar, and the other end of the lifting screw is fixedly mounted to the bottom bar.
- the pole bracket includes a height gauge mounted to the vertical rod in a vertical direction for measuring a moving distance of the beam assembly in a vertical direction.
- the beam assembly includes a support member and the guide rail;
- the support member includes a support body and a movable block
- the movable block is fixedly mounted on the support body, and is sleeved on the lifting screw, and the movable block is threadedly engaged with the lifting screw;
- the guide rail is fixedly mounted to the support body in a horizontal direction;
- the slider is movably mounted to the rail and is movable in a horizontal direction along the rail.
- the pole bracket comprises a vertical rod, and the vertical rod is arranged in a vertical direction;
- the support member includes a slider fixedly mounted to the support body, the slider is movably mounted to the vertical rod and slidable along the vertical rod.
- two opposite clamping portions are respectively extended on opposite sides of the supporting body, and the two clamping portions are elongated, disposed in a horizontal direction, and spaced apart by a preset distance;
- Two of the guide rails are respectively mounted on the two clamping portions, and are disposed in a horizontal direction and spaced apart by a preset distance;
- the slider is movably mounted to the rail by a sliding bearing.
- the beam assembly includes a level for detecting whether the rail is horizontally disposed.
- a vehicle radar calibration method includes:
- the onboard radar is adjusted until the laser spot reflected by the radar calibration mirror falls to a predetermined position of the radar calibration plate.
- the vertical surface of the radar calibration plate is calibrated such that the radar calibration plate is perpendicular to a central axis of the vehicle to be calibrated, including:
- the laser comprising an emission aperture, the aperture being provided with an aperture groove, the aperture being placed between the laser and the radar calibration plate;
- the radar calibration plate is adjusted such that the laser beam returns along the original path and is projected onto the emission aperture.
- the radar calibration mirror can be installed on the vehicle radar of different models, and after the calibration of the vertical surface of the radar calibration plate, the laser calibration laser is used to calibrate the laser beam through the radar.
- the through hole of the plate, the radar calibration mirror reflects the laser beam passing through the through hole to the through hole, and can perform calibration operation on the vehicle radar of different models, which facilitates the calibration work of the vehicle radar.
- the vertical calibration of the radar calibration plate can be realized by using the radar calibration plate, the diaphragm and the laser, and the radar calibration plate can be used for vertical surface calibration, and can be used for vehicle radar calibration, thereby reducing the number of The number of components in the on-board radar calibration device reduces the cost and simplifies the calibration operation.
- FIG. 1 is a perspective view of a vehicle radar calibration device according to an embodiment of the present invention.
- FIG. 2 is a perspective view of the bracket device of the calibration apparatus shown in Figure 1;
- Figure 3 is a perspective view of another angle of the stent device shown in Figure 2;
- Figure 4 is a front elevational view of the stent device of Figure 2;
- FIG 5 is a perspective view of the radar calibration plate of the calibration apparatus shown in Figure 1;
- Figure 6 is a perspective view of the pupil of the calibration apparatus shown in Figure 1;
- Figure 7 is a perspective view of another angle of the aperture shown in Figure 6;
- Figure 8 is a perspective view of the laser of the calibration apparatus shown in Figure 1;
- Figure 9 is a perspective view of another angle of the laser shown in Figure 8.
- Figure 10 is a perspective view of the radar calibration mirror of the calibration apparatus shown in Figure 1;
- Figure 11 is a schematic view of the calibration device shown in Figure 1 for calibrating the vertical plane of the radar calibration plate;
- FIG. 12 is a schematic diagram of calibration of an on-board radar by the calibration device shown in FIG. 1;
- FIG. 13 is a flowchart of a method for calibrating a vehicle-mounted radar according to another embodiment of the present invention.
- FIG. 14 is a specific flowchart of one of the steps in the in-vehicle radar calibration method shown in FIG.
- an onboard radar calibration device 700 includes a bracket device 100 , a radar calibration plate 200 , a diaphragm 300 , a laser 400 , a radar calibration mirror 500 , and a radar calibration laser 600 .
- the radar calibration plate 200 is mounted to the bracket device 100 and is movable relative to the bracket device 100 in a horizontal direction or in a vertical direction.
- the bracket device 100 is used to support the radar calibration plate 200.
- the laser 400 is used to emit a laser beam
- the diaphragm 300 is used to control whether the laser beam passes through itself
- the radar calibration plate 200 is used to reflect the laser beam passing through the aperture 300 along the original path to The laser 400 is calibrated to the vertical plane of the radar calibration plate 200.
- the radar calibration laser 600 is configured to emit a laser beam after the vertical calibration of the radar calibration plate 200 is completed, and the radar calibration mirror 500 is configured to reflect the laser beam emitted by the radar calibration laser 600 to the radar
- the calibration board 200 is used to calibrate the installation position and installation angle of the vehicle radar.
- the bracket device 100 includes a bracket assembly 10, a beam assembly 20, and a slider 30.
- the beam assembly 20 is mounted to the bracket assembly 10 and is movable relative to the bracket assembly 10 in a vertical direction.
- the slider 30 is mounted to the beam assembly 20 and is movable relative to the beam assembly 20 in a horizontal direction.
- the radar calibration plate 200 is mounted to the slider 30 and is movable in a horizontal direction relative to the beam assembly 20 together with the slider 30.
- the bracket assembly 10 includes a base bracket 11 and a pole bracket 12 , and one end of the pole bracket 12 is connected to the base bracket 11 , and the base bracket 11 supports the pole bracket 12 .
- the base bracket 11 includes a bracket body 110, a roller 112 and a height adjusting member 114.
- the bracket body 110 is a rectangular flat plate and can be made of a metal material. In order to reduce the weight, a plurality of hollowed out regions are formed.
- the bracket body 110 includes an oppositely disposed bottom surface 1100 and an upper surface 1102.
- the bracket body 110 has a central axis O1.
- the roller 112 is mounted to the bottom surface 1100 for facilitating movement of the base bracket 11.
- the roller 112 is a universal moving roller, so that the base bracket 11 can be arbitrarily moved from front to back, left and right, and the number of the rollers 112 is four, which are respectively mounted on the four corners of the bracket body 110.
- the shape of the bracket body 110 may be changed according to actual needs, and is not limited to being rectangular.
- the bracket body 110 may be circular; the number of the rollers 112 may be determined according to The actual demand increases or decreases, as long as it is at least three.
- the height adjustment member 114 is mounted to the bottom surface 1100 for adjusting the height of the bracket body 110.
- the height adjusting member 114 is an adjusting hand wheel, and the number is three.
- the three adjustment hand wheels 114 are in an isosceles triangle distribution, and two adjustment hand wheels 114 on the bottom side of the isosceles triangle are disposed on one side of the bracket body 110 and are symmetric along the central axis O1 of the bracket body 110.
- the other adjustment hand wheel 114 is disposed on the other side of the bracket body 110 and disposed on the central axis O1 of the bracket body 110 (that is, disposed at an apex position of the apex angle of the isosceles triangle).
- the adjustment of the handle wheel 114 can adjust the horizontal angle of the bracket body 110 as a whole, and adjust the adjustment hand wheel 114 on the central axis O1 of the bracket body 110 to adjust the pitch angle of the bracket body 110. .
- the height adjusting member 114 can be other height adjustable devices; the number of the height adjusting members 114 can be increased according to actual needs, as long as at least three, at least three of the height adjusting members Three of the 114s may be arranged in the manner described above.
- the pole bracket 12 includes a lifting rail 120, a lifting screw 122, a lifting handle 124, and a height gauge 126.
- the lifting rail 120 is mounted on the bracket body 110, and the lifting rail 120 includes a vertical pole 1200, a crossbar 1202 and a bottom pole 1204. Two of the vertical bars 1200 are disposed in parallel in a vertical direction and spaced apart by a predetermined distance for guiding the beam assembly 20 to move in a vertical direction.
- the cross bar 1202 is disposed in a horizontal direction, and two ends thereof are respectively mounted to the two vertical bars 1200.
- the bottom rods 1204 are fixedly mounted on the bracket body 110, and one end of each of the vertical rods 1200 away from the cross bar 1202 is fixedly mounted to the bottom rod 1204.
- the number of the vertical bars 1200 may be increased or decreased according to actual conditions.
- the number of the vertical bars 1200 may be one or three.
- the lifting screw 122 is fixedly mounted on the lifting rail 120 in a vertical direction, one end of the lifting screw 122 is fixedly mounted on the cross bar 1202, and the other end of the lifting screw 122 is fixedly mounted on the Bottom rod 1204.
- the bottom bar 1204 can be omitted, and one end of each of the vertical bars 1200 away from the cross bar 1202 is fixedly mounted to the bracket body 110.
- the lifting screw 122 is disposed in a vertical direction, and one end of the lifting screw 122 is fixedly mounted on the cross bar 1202 , and the other end of the lifting screw 122 is fixedly mounted on the bracket body 110 .
- the lifting handle 124 is mounted to the cross bar 1202 and coupled to the lifting screw 122 for rotation to drive the lifting screw 122 to rotate about its central axis.
- the connecting rod of the lifting handle 124 is perpendicular to the lifting screw 122 and is connected to the lifting screw 122 through a gear structure.
- the connecting rod of the lifting handle 124 can be coaxial with the lifting screw 122, and the connecting rod of the lifting handle 124 is directly connected to the lifting screw 122.
- the lifting handle 124 may be replaced with other means for driving the rotation of the lifting screw 122, for example, using a motor or the like.
- the height gauge 126 is mounted to the vertical rod 1200 in a vertical direction, the height gauge 126 having a scale for measuring the distance of movement of the beam assembly 20 in the vertical direction.
- the beam assembly 20 includes a support member 210, a guide rail 212 and a level 214.
- the support member 210 is mounted to the lifting rail 120, and the support member 210 is movable relative to the lifting rail 120 in a vertical direction under the guidance of the lifting rail 120.
- the guide rail 212 is fixedly mounted to the support member 210 and movable relative to the lift rail 120 in the vertical direction together with the support member 210.
- the slider 30 is mounted on the guide rail 212 and is movable relative to the guide rail 212 in a horizontal direction.
- the support member 210 includes a support body 2102, a movable block 2104, and a slider 2106.
- the support body 2102 is substantially plate-shaped, and two clamping portions 2108 are respectively extended on opposite sides thereof.
- the two clamping portions 2108 are elongated and disposed parallel to each other in the horizontal direction and spaced apart by a predetermined distance.
- the movable block 2104 is fixedly mounted on the support body 2102 and sleeved on the lifting screw 122.
- the movable block 2104 is threadedly engaged with the lifting screw 122, and when the lifting screw 122 rotates about its central axis, the movable block 2104 can be driven to move in the vertical direction along the lifting screw 122, thereby The beam assembly 20 is moved in a vertical direction.
- the movable block 2104 and the clamping portion 2108 are respectively located on opposite sides of the support body 2102.
- the slider 2106 is fixedly mounted on the support body 2102 and is located on the same side of the support body 2102 as the movable block 2104.
- Each of the vertical rods 1200 corresponds to at least one of the sliders 2106, and each of the sliders 2106 is movably mounted to the vertical rod 1200 corresponding thereto and is slidable along the corresponding vertical rod 1200.
- each of the vertical bars 1200 is correspondingly mounted with two of the sliders 2106. It can be understood that in some other embodiments, the number of the sliders 2106 corresponding to each of the vertical bars 1200 can be increased or decreased according to actual needs, for example, reduced to one, or increased to three.
- the two guide rails 212 are respectively mounted on the two clamping portions 2108, and are disposed in parallel with each other at a predetermined distance in the horizontal direction.
- the two sides of the guide rail 212 have a horizontal scale 2120 extending to the two sides with their centers being zero points, that is, the scale value of the horizontal scale 2120 is zero at the center of the guide rail 212, respectively, to the guide rails.
- the two sides of the 212 are gradually enlarged to facilitate the positional positioning of the slider 30.
- the central axis O2 of the guide rail 212 is in the same plane as the central axis O1 of the bracket body 110.
- the number of the guide rails 212 may be increased or decreased according to actual needs, for example, reduced to one or increased to three; the guide rails 212 may also be in any other suitable manner.
- the support member 210 is fixedly mounted.
- the clamping portion 2108 is omitted, and the guide rail 212 is directly welded to the support body 2102.
- the level 214 is mounted on an upper side of the clamping portion 2108 for detecting whether the clamping portion 2108 is horizontally disposed to determine whether the guide rail 212 is horizontally disposed. It can be understood that in some other embodiments, the level 214 can also be mounted to the rail 212 or to other portions of the beam assembly 20 as long as it is sufficient for detecting whether the rail 212 is horizontally disposed. Just fine.
- the slider 30 is movably mounted to the guide rail 212, which is movable in the horizontal direction along the guide rail 212.
- the slider 30 is movably mounted to the guide rail 212 by a sliding bearing 302.
- the slider 30 includes a plurality of mounting points for mounting the radar calibration plate 200. It will be appreciated that in some other embodiments, the slider 30 can be movably mounted to the rail 212 by other suitable means, for example, the sliding bearing 302 is omitted, and the slider 30 can be directly movably mounted to The guide rail 212.
- the radar calibration plate 200 has a rectangular flat shape and includes a light reflecting surface for reflecting a laser beam passing through the aperture 300 to the laser 400.
- the middle of the radar calibration plate 200 has a through hole 202.
- the radar calibration plate 200 includes a substrate, a surface of the substrate coated with a light reflective material for reflecting a laser beam passing through the aperture 300 to the laser 400, for example, a surface of the substrate is coated with silver material.
- the substrate may be made of a lightweight material such as a lightweight material such as a plastic material, an aluminum alloy or a magnesium alloy. It will be appreciated that in some other embodiments, the substrate may be made of a material that reflects light without the need to apply a light reflective material.
- the diaphragm 300 includes a fixing base 310 and a sliding aperture 320.
- the fixing base 310 includes a base 312, a fixing bracket 314 and a locking handle 316.
- the base 312 is a rectangular flat plate, and one end of the fixing bracket 314 is installed at a middle portion of the base 312 , and the fixing bracket 314 is perpendicular to the base 312 .
- the fixing bracket 314 is strip-shaped.
- the locking handle 316 is mounted to the fixing bracket 314.
- the sliding aperture 320 includes a diaphragm portion 322 and a sliding slot portion 324.
- the aperture portion 322 is substantially flat and is provided with a strip-shaped aperture groove 3222 for allowing a laser beam to pass therethrough.
- the width of the pupil groove 3222 is slightly smaller than the diameter of the laser spot emitted by the laser 400 to facilitate detecting whether the laser beam passes through the pupil groove 3222.
- the sliding groove portion 324 is mounted on the aperture portion 322 and has a strip shape and is sleeved on the fixing bracket 314 .
- the sliding groove portion 324 is slidable relative to the fixing bracket 314.
- the sliding groove portion 324 is provided with a strip-shaped opening 3240.
- the locking handle 316 passes through the slot 3240 for stably fixing the sliding aperture 320 to the fixing base 310.
- the laser 400 is a hub laser including a transmitting portion 410, a mounting shaft 420, and an observation target 430.
- the transmitting portion 410 is for emitting a laser beam, and the transmitting portion 410 includes a switch 4102 for turning on or off the transmitting portion 410.
- the mounting shaft 420 is mounted to the transmitting portion 410 for mounting the hub laser 400 to a hub of an automobile.
- the observation target 430 is mounted to the emission portion 410.
- the viewing target 430 is a rectangular flat panel including an observation target surface 4300 for displaying the position of the laser light reflected back through the radar calibration plate 200.
- An emission hole 4302 is provided in the middle of the observation target surface 4300 for allowing the laser beam to be emitted.
- the radar calibration mirror 500 is a cube, and includes a body portion 502 and a bonding portion 504 .
- the bonding portion 504 is disposed on a surface of the body portion 502 for pasting the body portion 502 .
- the sticking portion 504 is a Velcro, which can be quickly and easily adhered to the surface on which the vehicle radar needs to be calibrated.
- the body portion 502 includes a reflecting surface for reflecting a laser beam having a size of 10*10 mm 2 , and the reflecting surface and the bonding portion 504 are respectively located on opposite sides of the body portion 502 .
- the radar calibration mirror 500 can be mounted to the surface of the onboard radar by other suitable means, such as by way of magnet adsorption.
- the radar calibration laser 600 is fixedly mounted on the radar calibration plate 200 , and the laser emission hole of the radar calibration laser 600 is aligned with the through hole 202 for emitting a laser beam through the through hole. Hole 202.
- the radar calibration laser 600 and the radar calibration plate 200 are horizontally slidable along the guide rail 212 together with the slider 30.
- the radar calibration laser 600 can be a prior art laser as long as it can emit a laser beam through the through hole 202.
- the radar calibration laser 600 can be detachably or fixedly mounted to the radar calibration plate 200; or the radar calibration laser 600 can be fixedly mounted to the slider 30 or detachably mounted to the slider 30; alternatively, the radar calibration laser 600 can be mounted to the rail 212 via a slider and can slide horizontally along the rail 212.
- the car 800 in a first step of calibrating the onboard radar, the car 800 is horizontally disposed (ie, the car 800 is parked in a horizontal plane), and the bracket device 100 is moved to the standby by the roller 112.
- the front portion of the automobile 800 is calibrated at a distance of about 1 meter so that the guide rail 212 is substantially parallel to the axle of the automobile 800.
- the level 214 is observed to adjust the height adjustment member 114 such that the guide rails 212 are horizontally disposed.
- the radar calibration plate 200 is mounted to the slider 30, and the radar calibration plate 200 and the slider 30 are moved along the guide rail 212 to one side of the car 800 to be calibrated.
- a wheel clamp is mounted on a rear wheel of the automobile 800, and the laser 400 is mounted, and the laser 400 is turned on to irradiate a laser beam emitted from the laser 400 onto a light reflecting surface of the radar calibration plate 200.
- the aperture 300 is taken and placed in the middle of the laser 400 and the radar calibration plate 200, and the aperture portion 322 is perpendicular to the laser beam.
- the pupil groove 3222 is adjusted to be in height with the emission aperture 4302 of the laser 400.
- Adjusting the exit angle of the laser 400 causing the laser 400 to emit a laser beam in a horizontal direction, and the laser beam emitted by the laser 400 is parallel to the central axis of the vehicle 800 to be calibrated, and appropriately moving the position of the diaphragm 300, so that A laser beam can pass through the center of the aperture groove 3222.
- the position of the radar calibration plate 200 is adjusted so that the laser beam at this time can be irradiated onto the radar calibration plate 200.
- the vertical plane calibration of the radar calibration plate 200 is completed, the guide rail 212 is perpendicular to the central axis surface of the automobile 800, and the radar calibration plate 200 is vertically disposed, and is also perpendicular to the automobile 800. Axial surface.
- the center axis surface of the automobile 800 is vertically disposed, and the automobile 800 is symmetrical with respect to the central axis surface.
- the radar calibration plate 200 and the radar calibration laser 600 are moved through the slider 30 to the front of the vehicle radar.
- the radar calibration mirror 500 is taken and pasted on the surface of the vehicle radar, and the surface of the vehicle radar to which the radar calibration mirror 500 is attached is a flat surface.
- the radar calibration laser 600 is turned on such that its laser beam passes through the through hole 202 of the radar calibration plate 200.
- the height of the guide rail 212 is adjusted such that a laser beam emitted by the radar calibration laser is reflected to the radar calibration mirror 500 and reflected to the radar calibration plate 200.
- the laser can be emitted by the radar calibration laser 600, and the position of the radar calibration plate 200 can be finely adjusted by the radar calibration mirror 500 to reflect the position of the radar calibration plate 200, so that the position of the radar calibration plate 200 is accurate. In the subsequent calibration of the on-board radar, the accuracy of the calibration of the on-board radar is improved.
- the laser emitted by the radar calibration laser 600 passes through the through hole 202 on the radar calibration plate 200 and is transmitted to the radar calibration mirror 500, wherein the vehicle radar remains stationary, and the radar calibration mirror 500 is used to reflect the laser.
- the height of the radar calibration plate 200 is adjusted by the vertical direction adjustment mechanism on the bracket device, and the horizontal position of the radar calibration plate 200 relative to the vehicle radar is adjusted by the guide rails on the bracket device, and the radar is adjusted.
- the position of the calibration plate 200 in the above two dimensions finally causes the laser spot reflected by the radar calibration mirror 500 to appear at a predetermined position of the radar calibration plate 200.
- the predetermined position may be the position of the through hole 202 or other position specified by the calibration requirement, which is not limited in the embodiment of the present application.
- the onboard radar is calibrated according to the calibration method corresponding to the onboard radar. For example, after the radar calibration plate is adjusted to a preset position, the angle of the radar calibration plate is further adjusted, so that the radar calibration plate reflects the radar wave emitted by the vehicle radar at multiple angles, and the computer uses the calibration software to calculate the vehicle radar. The phase difference between the transmitted radar wave and the radar wave reflected by the radar calibration plate determines the calibration scheme for the onboard radar.
- the radar calibration plate 200 may be vertically calibrated using prior art vertical surface calibration devices such that the radar calibration plate 200 is perpendicular to the central axis of the vehicle. Moving the radar calibration plate 200 and the radar calibration laser 600 to the front of the vehicle radar, installing the radar calibration mirror 500 on the vehicle radar, and using the radar calibration laser 600 to emit a laser beam through the radar calibration plate.
- the through hole 202 of the 200, the radar calibration mirror 500 reflects the laser beam passing through the through hole 202 to the through hole 202, thereby realizing calibration of the onboard radar.
- the radar calibration plate 200 is vertically calibrated by using the vertical surface calibration device of the prior art, the radar calibration plate 200 is not required to reflect the light beam, and the radar calibration plate 200 is not The light-receiving surface is required.
- the radar calibration plate 200 only needs to have a plate shape and has the through hole 202.
- the radar calibration plate 200 can be a plastic plate or an aluminum plate or the like.
- the radar calibration mirror 500 can be installed on the vehicle radar of different vehicle models. After the calibration of the vertical surface of the radar calibration plate 200 is completed, the radar calibration laser 600 is used to emit a laser beam through the radar beam.
- the radar calibration plate 200 has a through hole 202.
- the radar calibration mirror 500 reflects the laser beam passing through the through hole 202 to the through hole 202, and can perform calibration operations on the vehicle radar of different vehicle models.
- vertical calibration of the radar calibration plate 200 can be achieved by using the radar calibration plate 200, the aperture 300, and the laser 400.
- the radar calibration plate 200 can be used for vertical calibration and for vehicle radar. The calibration reduces the number of components of the on-board radar calibration device 700, reduces costs, and simplifies calibration operations.
- the radar calibration plate 200 can slide horizontally along the guide rail 212.
- the radar calibration plate 200 can be slid to another on-board radar. In front, in order to perform calibration operation on another on-board radar, it is not necessary to perform horizontal calibration on the guide rail 212, and it is convenient to calibrate a plurality of on-board radars of one automobile.
- Another embodiment of the present invention provides a vehicle radar calibration method, which is implemented by using the vehicle radar calibration device 700 provided in the above embodiment. Referring to FIG. 13, the method includes the following steps:
- the radar calibration plate 200 Upon completion of the vertical calibration of the radar calibration plate 200, the radar calibration plate 200 is vertically disposed and also perpendicular to the central axis of the automobile 800.
- the center axis surface of the automobile 800 is vertically disposed, and the automobile 800 is symmetrical with respect to the central axis surface.
- the radar calibration plate 200 on which the radar calibration laser 600 is mounted to the slider 30 opening the radar calibration laser 600, passing the emitted laser beam through the through hole 202, and adjusting the guide rail a height of 212 and a left and right position of the slider 30, thereby adjusting a position of the radar calibration plate 200 and a position of the radar calibration laser 600 such that a laser beam emitted from the through hole 202 is irradiated to the radar calibration Mirror 500.
- the predetermined position of the radar calibration plate 200 may be the through hole 202 in the middle of the radar calibration plate 200, or may be the vertical line position or the horizontal line position of the "ten” word mark line on the radar calibration plate 200. Adjust the fine adjustment screw of the corner of the vehicle radar, adjust the reflected laser point to the horizontal position of the "Ten” line on the radar calibration board 200, complete the vertical (pitch) adjustment, and adjust the reflected laser point.
- the horizontal (deflection) adjustment is completed to the vertical line position of the "ten” word on the radar calibration plate 200, and the laser spot reflected by the radar calibration mirror 500 falls to the through hole in the middle of the radar calibration plate 200.
- the horizontal (deflection) adjustment and the vertical (pitch) adjustment of the onboard radar are completed.
- Some on-board radars only have vertical (pitch) adjustment bolts, and the vertical (tilt) adjustment is completed by adjusting the reflected laser spot to the horizontal position of the "ten” word on the radar calibration plate 200.
- the radar calibration mirror 500 can be installed on the vehicle radar of different vehicle models. After the calibration of the vertical surface of the radar calibration plate 200 is completed, the radar calibration laser 600 is used to emit a laser beam through the radar beam.
- the radar calibration plate 200 has a through hole 202.
- the radar calibration mirror 500 reflects the laser beam passing through the through hole 202 to the through hole 202, and can perform calibration operations on the vehicle radar of different vehicle models.
- step 804: calibrating a vertical plane of the radar calibration plate such that the radar calibration plate is vertically disposed, and perpendicular to a central axis of the vehicle to be calibrated includes:
- the laser 8042 Providing a laser and an aperture, the laser comprising an emission aperture, the aperture being provided with an aperture groove, the aperture being placed between the laser and the radar calibration plate.
- the diaphragm 300 is placed at an intermediate position between the laser 400 and the radar calibration plate 200, and the diaphragm portion 322 is perpendicular to the laser beam.
- the pupil groove 3222 is adjusted to be in height with the emission aperture 4302 of the laser 400. Adjusting the emission angle of the laser 400, appropriately moving the position of the aperture 300, so that the laser beam emitted by the laser 400 is parallel to the central axis of the vehicle 800 to be calibrated, and is emitted in the horizontal direction from the center of the aperture 3222. by.
- 8048 Adjusting the position of the radar calibration plate such that the laser beam returns along the original path and is projected to the emission hole.
- the position of the radar calibration plate 200 is adjusted by sliding the slider 30 and/or adjusting the height of the guide rail 212, so that the laser beam at this time can be irradiated onto the light reflecting surface of the radar calibration plate 200. .
- the vertical plane calibration of the radar calibration plate 200 is completed, the radar calibration plate 200 being vertically disposed and perpendicular to the central axis of the automobile 800.
- the vertical calibration of the radar calibration plate 200 can be achieved by using the radar calibration plate 200, the aperture 300, and the laser 400.
- the radar calibration plate 200 can be used for vertical calibration of the radar calibration plate 200.
- For on-board radar calibration the number of components of the on-board radar calibration device 700 is reduced, the cost is reduced, and the calibration operation is simplified.
- the method is implemented by using the on-board radar calibration device 700 provided by the foregoing embodiment, and the technical details that are not described in detail in the method embodiment may be referred to the embodiment of the present invention. Description of the onboard radar calibration device 700.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种车载雷达标定设备(700)及方法,车载雷达标定设备(700)包括雷达标定板(200)、雷达标定激光器(400)及雷达标定反光镜(500)。雷达标定板(200)包括通孔(202)。雷达标定激光器(400)用于在雷达标定板(200)的垂直面标定完成后发出激光束穿过通孔(202)。雷达标定反光镜(500)用于安装于待标定汽车(800)的车载雷达,以反射从通孔(202)穿过的激光束使其沿原路返回至通孔(202),以实现车载雷达的标定。雷达标定反光镜(500)可安装于不同车型的车载雷达,在雷达标定板(200)的垂直面完成标定后,利用雷达标定激光器(400)发出激光束穿过通孔(202),雷达标定反光镜(500)反射从通孔(202)穿过的激光束至通孔(202),可对不同车型的车载雷达进行标定操作,方便了车载雷达的标定工作。
Description
本申请要求于2017年12月25日提交中国专利局、申请号为201711423290.0、申请名称为“一种车载雷达标定设备及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及汽车维修及设备标定技术领域,尤其涉及一种车载雷达标定设备及方法。
在汽车高级驾驶辅助系统(Advanced Driver Assistant Systems,ADAS)领域,自适应巡航系统(Adaptive Cruise Control,ACC)是一项普遍使用的辅助功能。其具体工作原理是,通过车载雷达实时对前方车辆进行测距,将自身车速与前方车速进行比对,同时控制本车的油门、制动等动力系统,使本车始终与前车保持恒定的安全距离。因此车载雷达的作用在ACC功能的实现中至关重要,除去雷达本身的测定性能外,其安装位置、安装角度都决定其最终的测量数据的正确性和精准性。而上述安装位置及安装角度,会因车辆使用产生的震动、碰撞等不可控因素产生变化,故在汽车维修及和设备标定领域,尤其是ACC功能标定中,车载雷达的标定是核心内容。目前车载雷达的标定,多为后装标定,即在车辆出厂交付用户使用一段时间后,因客观原因,需要对车载雷达进行标定。
在实现本发明的过程中,发明人发现现有的标定多为单一车型标定工具,也即一个标定工具只能标定单一车型的车载雷达,同时标定方法上过度依赖软件计算偏移角度,需要重复多次的标定才能完成,在使用上繁琐不便。
发明内容
为了解决上述技术问题,本发明实施例提供一种标定操作方便的车载雷达标定设备及方法。
本发明实施例解决其技术问题采用以下技术方案:
一种车载雷达标定设备,包括:
雷达标定板,其包括通孔;
雷达标定激光器,用于在所述雷达标定板的垂直面标定完成后发出激光束 穿过所述通孔;
雷达标定反光镜,用于安装于待标定汽车的车载雷达,以反射从所述通孔穿过的激光束使其沿原路返回至所述通孔,以实现所述车载雷达的标定。
可选地,所述车载雷达标定设备包括:
激光器,用于发射激光束至所述雷达标定板;
光阑,用于控制所述激光器发出的激光束穿过其自身,所述雷达标定板用于反射穿过所述光阑的激光束使其沿原路返回至所述激光器,以对所述雷达标定板的垂直面进行标定,使得所述雷达标定板垂直于所述待标定汽车的中轴面。
可选地,所述光阑设有条状光阑槽,用于控制所述激光器发出的激光束穿过所述条状光阑槽。
可选地,所述光阑包括固定座和滑动光阑,所述滑动光阑设有所述光阑槽,所述滑动光阑安装于所述固定座,并可调节其与所述固定座的位置。
可选地,所述固定座包括底座,固定支架和锁紧把手;
所述固定支架的一端安装于所述底座,所述固定支架为条状,所述锁紧把手安装于所述固定支架;
所述滑动光阑包括光阑部和滑动槽部;
所述光阑部为平板状,设有所述光阑槽,所述滑动槽部安装于所述光阑部,所述滑动槽部为条状,活动套设于所述固定支架,所述滑动槽部设有条状开槽,所述锁紧把手穿过所述条状开槽,用于将所述滑动光阑固定在所述固定座。
可选地,所述激光器包括发射部,安装轴以及观察靶;
所述安装轴安装于所述发射部,用于将所述激光器安装于汽车的轮毂;
所述观察靶安装于所述发射部,所述观察靶包括观察靶面,用于显示经由所述雷达标定板反射回来的激光束位置,在所述观察靶面的中部设有发射孔。
可选地,所述雷达标定反光镜包括本体部和粘贴部;
所述粘贴部设置于所述本体部的一表面,用于将所述本体部粘贴于所述车载雷达;
所述本体部包括反射面,用于反射从所述通孔穿过的激光束至所述通孔。
可选地,所述粘贴部为魔术贴。
可选地,所述车载雷达标定设备包括支架装置,所述支架装置包括导轨和滑动件;
所述滑动件活动安装于所述导轨,并可沿所述导轨滑动;
所述雷达标定板用于安装于所述滑动件,所述雷达标定板可与所述滑动件一同沿所述导轨滑动。
可选地,所述雷达标定激光器安装于所述雷达标定板,所述雷达标定激光器和所述雷达标定板可与所述滑动件一同沿所述导轨滑动。
可选地,所述支架装置包括:
支架组件;
横梁组件,其安装于所述支架组件,可沿竖直方向相对于所述支架组件移动,所述横梁组件包括所述导轨,所述导轨水平设置。
可选地,所述支架组件包括支架本体和高度调节件;
至少三个所述高度调节件安装于所述支架本体的底表面,其用于调节所述支架本体整体的水平角度和所述支架本体的俯仰角度。
可选地,所述高度调节件的数量为三个,三个所述高度调节件呈等腰三角形分布,三个所述高度调节件用于配合调节所述支架本体整体的水平角度,位于等腰三角形顶角的顶点位置的所述高度调节件用于调节所述支架本体的俯仰角度。
可选地,所述支架组件包括底座支架和立杆支架,所述立杆支架的一端连接所述底座支架,所述底座支架支撑所述立杆支架;
所述横梁组件安装于所述立杆支架;
所述底座支架包括滚轮、所述支架本体和所述高度调节件;
至少三个所述滚轮安装于所述支架本体的底表面,以便于移动所述底座支架。
可选地,所述立杆支架包括升降丝杆;
所述升降丝杆沿竖直方向设置;
所述横梁组件套设于所述升降丝杆,并与所述升降丝杆螺纹配合,在所述升降丝杆绕其中心轴线转动时,所述升降丝杆可驱动所述横梁组件沿所述升降丝杆在竖直方向移动。
可选地,所述立杆支架包括升降导轨;
所述升降导轨包括竖杆,所述竖杆沿竖直方向设置;
所述横梁组件活动安装于所述竖杆,所述竖杆用于引导所述横梁组件在竖直方向移动。
可选地,所述升降导轨包括横杆,所述横杆沿水平方向安装于所述竖杆;
所述升降丝杆的一端安装于所述横杆,所述升降丝杆的另一端安装于所述支架本体。
可选地,所述升降导轨包括横杆和底杆;
两个所述竖杆沿竖直方向平行设置,并间隔预设距离;
所述横杆沿水平方向设置,其两端分别安装于两个所述竖杆;
所述底杆固定安装于所述支架本体,每个所述竖杆远离所述横杆的一端固定安装于所述底杆;
所述升降丝杆的一端固定安装于所述横杆,所述升降丝杆的另一端固定安装于所述底杆。
可选地,所述立杆支架包括高度尺,所述高度尺沿竖直方向安装于所述竖杆,用于测量所述横梁组件沿竖直方向的移动距离。
可选地,所述横梁组件包括支撑件和所述导轨;
所述支撑件包括支撑本体和活动块;
所述活动块固定安装于所述支撑本体,并套设于所述升降丝杆,所述活动块与所述升降丝杆螺纹配合;
所述导轨沿水平方向固定安装于所述支撑本体;
所述滑动件活动安装于所述导轨,其可沿所述导轨在水平方向移动。
可选地,所述立杆支架包括竖杆,所述竖杆沿竖直方向设置;
所述支撑件包括滑块,所述滑块固定安装于所述支撑本体,所述滑块活动安装于所述竖杆,并可沿所述竖杆滑动。
可选地,所述支撑本体的相对两侧分别延伸出两个夹持部,两个所述夹持部为长条形,沿水平方向设置,且间隔预设距离;
两个所述导轨分别对应安装于两个所述夹持部,并沿水平方向设置,且间隔预设距离;
所述滑动件通过滑动轴承活动安装于所述导轨。
可选地,所述横梁组件包括水平仪,用于检测所述导轨是否水平设置。
本发明实施例解决其技术问题还采用以下技术方案:
一种车载雷达标定方法,包括:
提供雷达标定板,所述雷达标定板的中部具有通孔;
对所述雷达标定板的垂直面进行标定,使得所述雷达标定板垂直于待标定汽车的中轴面;
将雷达标定反光镜安装于车载雷达的表面处;
提供雷达标定激光器,使所述雷达标定激光器发出的激光束穿过所述通孔,调节所述雷达标定板的位置和所述雷达标定激光器的位置,使得从所述通 孔发出的激光束照射到所述雷达标定反光镜;
调节所述车载雷达,直至所述雷达标定反光镜反射的激光点落到所述雷达标定板的预定位置。
可选地,所述对所述雷达标定板的垂直面进行标定,使得所述雷达标定板垂直于待标定汽车的中轴面,包括:
提供激光器和光阑,所述激光器包括发射孔,所述光阑设有光阑槽,将所述光阑放置在所述激光器与所述雷达标定板之间;
开启所述激光器,使所述发射孔发出激光束;
调节所述光阑槽和所述激光器,使得所述激光器发出的激光束平行于待标定汽车的中轴面,沿水平方向发出后从所述光阑槽穿过;
调节所述雷达标定板位置,使得所述激光束沿原路返回,投射到所述发射孔。
与现有技术相比较,所述雷达标定反光镜可安装于不同车型的车载雷达,在所述雷达标定板的垂直面完成标定后,利用所述雷达标定激光器发出激光束穿过所述雷达标定板的通孔,所述雷达标定反光镜反射从所述通孔穿过的激光束至所述通孔,可对不同车型的车载雷达进行标定操作,方便了车载雷达的标定工作。
另外,利用所述雷达标定板、光阑以及激光器可实现所述雷达标定板的垂直面标定,所述雷达标定板即可以用于其垂直面标定,又可以用于车载雷达标定,减少了所述车载雷达标定设备的元件数量,降低了成本,也简化标定操作。
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明其中一实施例提供的一种车载雷达标定设备的立体图;
图2为图1所示的标定设备的支架装置的立体图;
图3为图2所示的支架装置的另一角度的立体图;
图4为图2所示的支架装置的主视图;
图5为图1所示的标定设备的雷达标定板的立体图;
图6为图1所示的标定设备的光阑的立体图;
图7为图6所示的光阑的另一角度的立体图;
图8为图1所示的标定设备的激光器的立体图;
图9为图8所示的激光器的另一角度的立体图;
图10为图1所示的标定设备的雷达标定反光镜的立体图;
图11为图1所示的标定设备对其雷达标定板的垂直面进行标定的示意图;
图12为图1所示的标定设备对车载雷达进行标定的示意图;
图13为本发明另一实施例提供的一种车载雷达标定方法的流程图;
图14为图13所示的车载雷达标定方法中其中一步骤的具体流程图。
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参阅图1,本发明其中一实施例提供的车载雷达标定设备700包括支架装置100,雷达标定板200,光阑300,激光器400,雷达标定反光镜500及雷达标定激光器600。所述雷达标定板200安装于所述支架装置100,并可沿水平方向或者沿竖直方向相对于所述支架装置100移动。所述支架装置100用于支承所述雷达标定板200。所述激光器400用于发射激光束,所述光阑300用 于控制激光束是否穿过其自身,所述雷达标定板200用于反射穿过所述光阑300的激光束沿原路返回至所述激光器400,以实现对所述雷达标定板200的垂直面标定。所述雷达标定激光器600,用于在所述雷达标定板200的垂直面标定完成后发出激光束,所述雷达标定反光镜500用于反射所述雷达标定激光器600发射的激光束至所述雷达标定板200,以标定车载雷达的安装位置及安装角度。
请参阅图2,所述支架装置100包括支架组件10,横梁组件20以及滑动件30。所述横梁组件20安装于所述支架组件10,可沿竖直方向相对于所述支架组件10移动。所述滑动件30安装于所述横梁组件20,可沿水平方向相对于所述横梁组件20移动。所述雷达标定板200安装于所述滑动件30,可与所述滑动件30一同沿水平方向相对于所述横梁组件20移动。
所述支架组件10包括底座支架11和立杆支架12,所述立杆支架12的一端连接底座支架11,所述底座支架11支撑所述立杆支架12。
请一并参阅图3和图4,所述底座支架11包括支架本体110,滚轮112和高度调节件114。所述支架本体110为矩形平板,可由金属材料制得,为了减轻重量,形成了多个镂空区域。所述支架本体110包括相对设置的底表面1100和上表面1102。所述支架本体110具有中轴线O1。
所述滚轮112安装于所述底表面1100,用于方便移动所述底座支架11。在本实施例中,所述滚轮112为万向移动滚轮,使得所述底座支架11可以前后左右任意移动,所述滚轮112的数量为四个,分别安装于所述支架本体110的四个角。可以理解的是,在一些其它实施例中,所述支架本体110的形状可以根据实际需求变化,而不限于为矩形,例如所述支架本体110可为圆形;所述滚轮112的数量可以根据实际需求增加或减少,只要为至少三个即可。
所述高度调节件114安装于所述底表面1100,用于调节所述支架本体110的高度。在本实施例中,所述高度调节件114为调节手轮,数量为三个。三个所述调节手轮114呈等腰三角形分布,位于等腰三角形底边的两个调节手轮114设置于所述支架本体110的一侧,并沿所述支架本体110的中轴线O1对称设置,另一个调节手轮114设置于所述支架本体110的另一侧,并设置于所 述支架本体110的中轴线O1上(也即设置于等腰三角形顶角的顶点位置)。三个所述调节手轮114配合可以调节所述支架本体110整体的水平角度,单独调节位于所述支架本体110的中轴线O1上的调节手轮114,可以调节所述支架本体110的俯仰角度。
可以理解的是,所述高度调节件114可为其它可调整高度的装置;所述高度调节件114的数量可根据实际需求增加,只要为至少三个即可,至少三个所述高度调节件114中的三个呈以上所述的分布方式设置即可。
所述立杆支架12包括升降导轨120、升降丝杆122、升降摇柄124以及高度尺126。
所述升降导轨120安装于所述支架本体110,所述升降导轨120包括竖杆1200,横杆1202和底杆1204。两个所述竖杆1200沿竖直方向平行设置,并间隔预设距离,用于引导所述横梁组件20沿竖直方向运动。所述横杆1202沿水平方向设置,其两端分别安装于两个所述竖杆1200。所述底杆1204固定安装于所述支架本体110,每个所述竖杆1200远离所述横杆1202的一端固定安装于所述底杆1204。
可以理解的是,在一些其它实施例中,所述竖杆1200的数量可以根据实际情况增加或减少,例如,所述竖杆1200的数量可为1个或3个。
所述升降丝杆122沿竖直方向固定安装于所述升降导轨120,所述升降丝杆122的一端固定安装于所述横杆1202,所述升降丝杆122的另一端固定安装于所述底杆1204。
可以理解的是,在一些其它实施例中,所述底杆1204可以省略,每个所述竖杆1200远离所述横杆1202的一端固定安装于所述支架本体110。所述升降丝杆122沿竖直方向设置,所述升降丝杆122的一端固定安装于所述横杆1202,所述升降丝杆122的另一端固定安装于所述支架本体110。
所述升降摇柄124安装于所述横杆1202,并与所述升降丝杆122连接,用于转动,从而驱动所述升降丝杆122绕其中心轴线转动。在本实施例中,所述升降摇柄124的连接杆与所述升降丝杆122垂直,并通过齿轮结构与所述升降丝杆122连接。可以理解的是,在一些其它实施例中,所述升降摇柄124的连接杆可与所述升降丝杆122同轴,所述升降摇柄124的连接杆与所述升降 丝杆122直接连接;或者,所述升降摇柄124可被替换成其它用于驱动所述升降丝杆122转动的装置,例如,采用马达等。
所述高度尺126沿竖直方向安装于所述竖杆1200,所述高度尺126具有刻度,用于测量所述横梁组件20沿竖直方向的移动距离。
请复参阅图2和图3,所述横梁组件20包括支撑件210,导轨212和水平仪214。所述支撑件210安装于所述升降导轨120,在所述升降导轨120的引导下,所述支撑件210可沿竖直方向相对于所述升降导轨120移动。所述导轨212固定安装于所述支撑件210,可与所述支撑件210一同沿竖直方向相对于所述升降导轨120移动。所述滑动件30安装于所述导轨212,可沿水平方向相对于所述导轨212移动。
所述支撑件210包括支撑本体2102,活动块2104以及滑块2106。
所述支撑本体2102大致为板状,其相对两侧分别延伸出两个夹持部2108,两个所述夹持部2108为长条形,沿水平方向相互平行设置且间隔预设距离。
所述活动块2104固定安装于所述支撑本体2102,并套设于所述升降丝杆122。所述活动块2104与所述升降丝杆122螺纹配合,在所述升降丝杆122绕其中心轴线转动时,可驱动所述活动块2104沿所述升降丝杆122在竖直方向移动,从而带动所述横梁组件20沿竖直方向移动。所述活动块2104和所述夹持部2108分别位于所述支撑本体2102的相对两侧。
所述滑块2106固定安装于所述支撑本体2102,并与所述活动块2104位于所述支撑本体2102的同一侧。每个所述竖杆1200对应安装至少一个所述滑块2106,每个所述滑块2106活动安装于与其对应的所述竖杆1200,并可沿与其对应的所述竖杆1200滑动。在本实施例中,每个所述竖杆1200对应安装两个所述滑块2106。可以理解的是,在一些其它实施例中,每个所述竖杆1200对应安装的所述滑块2106的数量可根据实际需求增加或减少,例如减少至1个,或者增加至3个。
两个所述导轨212分别对应安装于两个所述夹持部2108,并沿水平方向间隔预设距离相互平行设置。在所述导轨212的两边具有以其中心为零点,分别向两边延展的水平刻度尺2120,也即所述水平刻度尺2120的刻度值以所述导轨212的中心为零点,分别向所述导轨212两边逐渐增大,用于方便所述滑 动件30的位置定位。所述导轨212的中轴线O2与所述支架本体110的中轴线O1位于同一平面。可以理解的是,在一些其它实施例中,所述导轨212的数量可以根据实际需求增加或减少,例如,减少至1个或增加至3个;所述导轨212也可以通过其他任何合适的方式固定安装于所述支撑件210,例如,所述夹持部2108省略,所述导轨212直接焊接于所述支撑本体2102。
所述水平仪214安装于一个所述夹持部2108的上侧,用于检测所述夹持部2108是否位于水平设置,从而判断所述导轨212是否水平设置。可以理解的是,在一些其它实施例中,所述水平仪214也可安装于所述导轨212,或者安装于所述横梁组件20的其它部分,只要能满足用于检测所述导轨212是否水平设置即可。
所述滑动件30活动安装于所述导轨212,其可沿所述导轨212在水平方向移动。在本实施例中,所述滑动件30通过滑动轴承302活动安装于所述导轨212。所述滑动件30包括若干挂载点,用于安装所述雷达标定板200。可以理解的是,在一些其它实施例中,所述滑动件30可以通过其它合适的方式活动安装于所述导轨212,例如,所述滑动轴承302省略,所述滑动件30可直接活动安装于所述导轨212。
请参阅图5,所述雷达标定板200呈矩形平板状,包括光反射面,用于反射穿过所述光阑300的激光束至所述激光器400。所述雷达标定板200的中部具有通孔202。所述雷达标定板200包括基板,所述基板的一表面涂覆光反射材料,用于反射穿过所述光阑300的激光束至所述激光器400,例如,所述基板的表面涂覆银材料。所述基板可由重量轻的材料制得,例如,塑胶材料,铝合金或镁合金等轻质金属材料。可以理解的是,在一些其它实施例中,所述基板可由能反射光的材料制得,而不需要涂覆光反射材料。
请一并参阅图6和图7,所述光阑300包括固定座310和滑动光阑320。
所述固定座310包括底座312,固定支架314以及锁紧把手316。所述底座312为矩形平板,所述固定支架314的一端安装于所述底座312的中部,所述固定支架314垂直于所述底座312。所述固定支架314为条状。所述锁紧把手316安装于所述固定支架314。
所述滑动光阑320包括光阑部322和滑动槽部324。所述光阑部322大致为平板状,设有条状光阑槽3222,用于允许激光束穿过。所述光阑槽3222的宽度比所述激光器400发射的激光点直径略小,以便于检测激光束是否正好通过光阑槽3222。所述滑动槽部324安装于光阑部322,其为条状,套设于所述固定支架314。所述滑动槽部324可相对于所述固定支架314滑动。所述滑动槽部324设有条状开槽3240,所述锁紧把手316穿过所述开槽3240,用于将所述滑动光阑320稳定的固定在所述固定座310。
请一并参阅图8和图9,所述激光器400为轮毂激光器,其包括发射部410,安装轴420以及观察靶430。所述发射部410用于发射激光束,所述发射部410包括开关4102,用于开启或关闭所述发射部410。所述安装轴420安装于所述发射部410,用于将所述轮毂激光器400安装于汽车的轮毂。所述观察靶430安装于所述发射部410。所述观察靶430为矩形平板,包括观察靶面4300,用于显示经由所述雷达标定板200反射回来的激光位置。在所述观察靶面4300的中部设有发射孔4302,用于允许激光束发射出去。
请参阅图10,所述雷达标定反光镜500为立方体,包括本体部502和粘贴部504,所述粘贴部504设置于所述本体部502的一表面,用于将所述本体部502粘贴于车载雷达的表面,所述粘贴部504为魔术贴,可方便快捷的粘在需校准车载雷达的表面。所述本体部502包括反射面,用于反射激光束,所述反射面的尺寸为10*10mm
2,所述反射面与所述粘贴部504分别位于所述本体部502的相对两侧。
可以理解的是,在一些其它实施例中,所述雷达标定反光镜500可通过其它合适的方式安装于所述车载雷达的表面,例如,通过磁铁吸附的方式。
请复参阅图1,所述雷达标定激光器600固定安装于所述雷达标定板200,所述雷达标定激光器600的激光发射孔与所述通孔202对齐,用于发射激光束穿过所述通孔202。所述雷达标定激光器600和所述雷达标定板200可与所述滑动件30一同沿所述导轨212水平滑动。所述雷达标定激光器600可为现有技术中的激光器,只要能发射激光束穿过所述通孔202即可。
可以理解的是,在一些其它实施例中,所述雷达标定激光器600可以可拆卸地或固定地安装于所述雷达标定板200;或者,所述雷达标定激光器600可固定安装于所述滑动件30或者可拆卸地安装于所述滑动件30;或者,所述雷达标定激光器600可通过滑块安装于所述导轨212,可沿所述导轨212水平滑动。
请参阅图11,在对车载雷达进行标定的第一步骤中,所述汽车800水平设置(也即所述汽车800停放在一水平面),通过所述滚轮112将所述支架装置100移动到待标定汽车800前部,距离在1米左右,使所述导轨212与汽车800车轴大致相平行。观察所述水平仪214,调节所述高度调节件114,使所述导轨212水平设置。将所述雷达标定板200安装于所述滑动件30,并将所述雷达标定板200和所述滑动件30沿所述导轨212移动至待标定汽车800的一侧。在汽车800的一个后轮安装好轮毂夹,并安装所述激光器400,打开所述激光器400,使所述激光器400发出的激光束照射在所述雷达标定板200的光反射面上。取所述光阑300,并将所述光阑300放置在所述激光器400与所述雷达标定板200的中间,并使所述光阑部322与激光束垂直。将所述光阑槽3222调节与所述激光器400的发射孔4302高度一致。调节所述激光器400的出射角度,使所述激光器400沿水平方向发出激光束,并且所述激光器400发出的激光束平行于待标定汽车800的中轴面,适当移动光阑300的位置,使激光束能够从所述光阑槽3222正中通过。根据实际情况,通过滑动所述滑动件30和/或调节所述导轨212的高度,从而调节雷达标定板200的位置,使此时的激光束能够照射到雷达标定板200上。观察反射回的激光点位置,移动所述支架装置100和调节所述高度调节件114,使雷达标定板200反射的激光束正好能沿原路返回,投射到所述激光器400的发射孔4302。此时,完成对所述雷达标定板200的垂直面标定,所述导轨212垂直于所述汽车800的中轴面,所述雷达标定板200竖直设置,并且也垂直于所述汽车800的中轴面。
在本实施例中,所述汽车800水平设置时,所述汽车800的中轴面竖直设置,并且所述汽车800相对于所述中轴面对称。
请一并参阅图1和图12,在对车载雷达进行标定的第二步骤中,将所述 雷达标定板200和雷达标定激光器600通过所述滑动件30移动至车载雷达前方。取所述雷达标定反光镜500,粘贴在车载雷达的表面处,所述雷达标定反光镜500粘贴的车载雷达表面为平整表面。打开所述雷达标定激光器600,使其激光束穿过所述雷达标定板200的通孔202。调节所述导轨212的高度,使得所述雷达标定激光器发出的激光束照射到所述雷达标定反光镜500后反射至所述雷达标定板200。观察所述雷达标定反光镜500反射后的激光点在所述雷达标定板200上的位置,调节车载雷达边角的微调螺钉,将反射后的激光点调节到雷达标定板200上的“十”字对标线的横线位置就完成了垂直(俯仰)调节,将反射后的激光点调节到雷达标定板200上的“十”字对标线的竖线位置则完成水平(偏转)调节,所述雷达标定反光镜500反射的激光点落到位于所述雷达标定板200中心的通孔202,则完成了车载雷达的水平(偏转)调节和垂直(俯仰)调节,也即完成了车载雷达的标定工作。有些车载雷达只有垂直(俯仰)调节的螺栓,只要将反射后的激光点调节到雷达标定板200上的“十”字对标线的横线位置就完成了垂直(俯仰)调节,也即完成了车载雷达的标定工作。
另一种实现方式中,可以通过雷达标定激光器600发射激光,并且通过雷达标定反光镜500反射激光的方式,对雷达标定板200的位置进行精细调节,以使雷达标定板200的位置精准,用于后续对车载雷达的标定,进而提升对车载雷达标定的精准度。
具体的,雷达标定激光器600发射的激光穿过雷达标定板200上的通孔202,发射至雷达标定反光镜500上,其中车载雷达保持不动,雷达标定反光镜500用于将所述激光反射至雷达标定板200上,通过支架装置上的竖直方向调节机构,调节雷达标定板200的高度,并通过支架装置上的导轨,调节雷达标定板200相对于车载雷达的水平位置,通过调节雷达标定板200上述两个维度上的位置,最终使雷达标定反光镜500反射的激光点呈现在雷达标定板200的预定位置上。该预定位置可以是通孔202的位置,或者为标定需求所规定的其他位置,本申请实施例不予限定。在此之后,根据车载雷达对应的标定方法对车载雷达进行标定。例如,雷达标定板在被调节到预设的位置后,进一步地调节雷达标定板的角度,使雷达标定板对车载雷达发射的雷达波进行多个角度的反射,计算机利用标定软件,计算车载雷达发射的雷达波与雷达标定板反射 的雷达波之间的相位差等,来确定对车载雷达的标定方案。
可以理解的是,在一些其它实施例中,可以使用现有技术中的垂直面标定装置对所述雷达标定板200进行垂直面标定,使得所述雷达标定板200垂直于汽车的中轴面,将所述雷达标定板200和所述雷达标定激光器600移动至车载雷达前方,将所述雷达标定反光镜500安装于车载雷达,利用所述雷达标定激光器600发出激光束穿过所述雷达标定板200的通孔202,所述雷达标定反光镜500反射从所述通孔202穿过的激光束至所述通孔202,从而实现车载雷达的标定。本领域所属技术人员应明白,若利用现有技术中的垂直面标定装置对所述雷达标定板200进行垂直面标定,不需要所述雷达标定板200反射光束,则所述雷达标定板200不需要光反射面,所述雷达标定板200仅需为板状,并具有所述通孔202即可,所述雷达标定板200可为塑料板或铝板等。
在本实施例中,所述雷达标定反光镜500可安装于不同车型的车载雷达,在所述雷达标定板200的垂直面完成标定后,利用所述雷达标定激光器600发出激光束穿过所述雷达标定板200的通孔202,所述雷达标定反光镜500反射从所述通孔202穿过的激光束至所述通孔202,可对不同车型的车载雷达进行标定操作。
另外,利用所述雷达标定板200、光阑300以及激光器400可实现所述雷达标定板200的垂直面标定,所述雷达标定板200即可以用于其垂直面标定,又可以用于车载雷达标定,减少了所述车载雷达标定设备700的元件数量,降低了成本,也简化标定操作。
而且,所述雷达标定板200可沿所述导轨212水平滑动,在一辆汽车存在多个车载雷达时,完成一个车载雷达的标定后,可滑动所述雷达标定板200至另一车载雷达的前方,以对另一车载雷达进行标定操作,不需要再对所述导轨212进行水平标定,可方便对一辆汽车的多个车载雷达进行标定。
本发明另一实施例提供一种车载雷达标定方法,所述方法应用上述实施例提供的车载雷达标定设备700实现。请参阅图13,所述方法包括以下步骤:
802:提供雷达标定板,所述雷达标定板的中部具有通孔。
804:对所述雷达标定板的垂直面进行标定,使得所述雷达标定板垂直于待标定汽车的中轴面。
完成所述雷达标定板200的垂直面标定后,所述雷达标定板200竖直设置,并且也垂直于所述汽车800的中轴面。在本实施例中,所述汽车800水平设置时,所述汽车800的中轴面竖直设置,并且所述汽车800相对于所述中轴面对称。
806:将雷达标定反光镜安装于车载雷达的表面处。
808:提供雷达标定激光器,使所述雷达标定激光器发出的激光束穿过所述通孔,调节所述雷达标定板的位置和所述雷达标定激光器的位置,使得从所述通孔发出的激光束照射到所述雷达标定反光镜。
将安装有所述雷达标定激光器600的所述雷达标定板200安装于所述滑动件30,打开所述雷达标定激光器600,使其发射的激光束穿过所述通孔202,调节所述导轨212的高度和所述滑动件30的左右位置,从而调节所述雷达标定板200的位置和所述雷达标定激光器600的位置,使得从所述通孔202发出的激光束照射到所述雷达标定反光镜500。
809:调节所述车载雷达,直至所述雷达标定反光镜反射的激光点落到所述雷达标定板的预定位置。
所述雷达标定板200的预定位置可以为所述雷达标定板200中部的通孔202,也可以为所述雷达标定板200上的“十”字对标线的竖线位置或横线位置。调节车载雷达边角的微调螺钉,将反射后的激光点调节到雷达标定板200上的“十”字对标线的横线位置就完成了垂直(俯仰)调节,将反射后的激光点调节到雷达标定板200上的“十”字对标线的竖线位置则完成水平(偏转)调节,所述雷达标定反光镜500反射的激光点落到位于所述雷达标定板200中部的通孔202,则完成了车载雷达的水平(偏转)调节和垂直(俯仰)调节。有些车载雷达只有垂直(俯仰)调节的螺栓,只要将反射后的激光点调节到雷达标定板200上的“十”字对标线的横线位置就完成了垂直(俯仰)调节,也即完成了车载雷达的标定工作。
在本实施例中,所述雷达标定反光镜500可安装于不同车型的车载雷达,在所述雷达标定板200的垂直面完成标定后,利用所述雷达标定激光器600发出激光束穿过所述雷达标定板200的通孔202,所述雷达标定反光镜500反射从所述通孔202穿过的激光束至所述通孔202,可对不同车型的车载雷达进行标定操作。
请参阅图14,在一些实施例中,步骤804:对所述雷达标定板的垂直面进行标定,使得所述雷达标定板竖直设置,并且垂直于待标定汽车的中轴面包括:
8042:提供激光器和光阑,所述激光器包括发射孔,所述光阑设有光阑槽,将所述光阑放置在所述激光器与所述雷达标定板之间。
8044:开启所述激光器,使所述发射孔发出激光束。
8046:调节所述光阑槽和所述激光器,使得所述激光器发出的激光束平行于待标定汽车的中轴面,沿水平方向发出后从所述光阑槽穿过。
所述光阑300放置在所述激光器400与所述雷达标定板200的中间位置,并使所述光阑部322与激光束垂直。将所述光阑槽3222调节与所述激光器400的发射孔4302高度一致。调节所述激光器400的发射角度,适当移动光阑300的位置,使得所述激光器400发出的激光束平行于待标定汽车800的中轴面,沿水平方向发出后从所述光阑槽3222正中通过。
8048:调节所述雷达标定板位置,使得所述激光束沿原路返回,投射到所述发射孔。
根据实际情况,通过滑动所述滑动件30和/或调节所述导轨212的高度,从而调节雷达标定板200位置,使此时的激光束能够照射到所述雷达标定板200的光反射面上。观察反射回的激光点位置,移动所述支架装置100和调节所述高度调节件114,从而调节所述雷达标定板200位置,使雷达标定板200反射的激光束正好能沿原路返回,投射到所述激光器400的发射孔4302。此时,完成对所述雷达标定板200的垂直面标定,所述雷达标定板200竖直设置,并且垂直于所述汽车800的中轴面。
在本实施例中,利用所述雷达标定板200、光阑300以及激光器400可实现所述雷达标定板200的垂直面标定,所述雷达标定板200即可以用于其垂直面标定,又可以用于车载雷达标定,减少了所述车载雷达标定设备700的元件数量,降低了成本,也简化标定操作。
需要说明的是,在本发明实施例中,所述方法是应用上述实施例提供的车载雷达标定设备700来实现的,未在方法实施例中详尽描述的技术细节,可参见本发明实施例提供的车载雷达标定设备700的描述。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (27)
- 一种车载雷达标定设备(700),其特征在于,包括:雷达标定板(200),其包括通孔(202);雷达标定激光器(600),用于在所述雷达标定板(200)的垂直面标定完成后发出激光束穿过所述通孔(202);雷达标定反光镜(500),用于安装于待标定汽车的车载雷达,以反射从所述通孔(202)穿过的激光束,使反射的激光束返回至所述雷达标定板(200)的预定位置,以实现所述车载雷达的标定。
- 根据权利要求1所述的车载雷达标定设备(700),其特征在于,所述雷达标定反光镜(500)包括本体部(502)和粘贴部(504);所述粘贴部(504)设置于所述本体部(502)的一表面,用于将所述本体部(502)粘贴于所述车载雷达;所述本体部(502)包括反射面,用于反射从所述通孔(202)穿过的激光束至所述通孔(202)。
- 根据权利要求2所述的车载雷达标定设备(700),其特征在于,所述粘贴部(504)为魔术贴或磁性材料。
- 根据权利要求1-3任一项所述的车载雷达标定设备(700),其特征在于,所述雷达标定反光镜(500)的位置变化与所述车载雷达的位置变化一致,以在所述车载雷达的位置被调节后,实现所述雷达标定反光镜反射的激光束返回至所述雷达标定板的预定位置。
- 根据权利要求1所述的车载雷达标定设备(700),其特征在于,所述雷达标定板(200)的位置可被调节,以用于使所述雷达标定反光镜反射的激光束返回至所述雷达标定板(200)的预定位置。
- 根据权利要求1至5任一项所述的车载雷达标定设备(700),其特征 在于,包括:激光器(400),用于发射激光束至所述雷达标定板(200);光阑(300),用于控制所述激光器(400)发出的激光束穿过其自身,所述雷达标定板(200)用于反射穿过所述光阑(300)的激光束使其沿原路返回至所述激光器(400),以对所述雷达标定板(200)的垂直面进行标定,使得所述雷达标定板(200)垂直于所述待标定汽车的中轴面。
- 根据权利要求6所述的车载雷达标定设备(700),其特征在于,所述光阑(300)设有条状光阑槽(3222),用于控制所述激光器(400)发出的激光束穿过所述条状光阑槽(3222)。
- 根据权利要求7所述的车载雷达标定设备(700),其特征在于,所述光阑(300)包括固定座(310)和滑动光阑(320),所述滑动光阑(320)设有所述光阑槽(3222),所述滑动光阑(320)安装于所述固定座(310),并可调节其与所述固定座(310)的位置。
- 根据权利要求8所述的车载雷达标定设备(700),其特征在于,所述固定座(310)包括底座(312),固定支架(314)和锁紧把手(316);所述固定支架(314)的一端安装于所述底座(312),所述固定支架(314)为条状,所述锁紧把手(316)安装于所述固定支架(314);所述滑动光阑(320)包括光阑部(322)和滑动槽部(324);所述光阑部(322)为平板状,设有所述光阑槽(3222),所述滑动槽部(324)安装于所述光阑部(322),所述滑动槽部(324)为条状,活动套设于所述固定支架(314),所述滑动槽部(324)设有条状开槽(3240),所述锁紧把手(316)穿过所述条状开槽(3240),用于将所述滑动光阑(320)固定在所述固定座(310)。
- 根据权利要求6至9任一项所述的车载雷达标定设备(700),其特征在于,所述激光器(400)包括发射部(410),安装轴(420)以及观察靶(430);所述安装轴(420)安装于所述发射部(410),用于将所述激光器(400) 安装于汽车的轮毂;所述观察靶(430)安装于所述发射部(410),所述观察靶(430)包括观察靶面(4300),用于显示经由所述雷达标定板(200)反射回来的激光束位置,在所述观察靶面(4300)的中部设有发射孔(4302)。
- 根据权利要求1至10任一项所述的车载雷达标定设备(700),其特征在于,包括支架装置(100),所述支架装置(100)包括导轨(212)和滑动件(30);所述滑动件(30)活动安装于所述导轨(212),并可沿所述导轨(212)滑动;所述雷达标定板(200)用于安装于所述滑动件(30),所述雷达标定板(200)可与所述滑动件(30)一同沿所述导轨(212)滑动。
- 根据权利要求11所述的车载雷达标定设备(700),其特征在于,所述雷达标定激光器(600)安装于所述雷达标定板(200),所述雷达标定激光器(600)和所述雷达标定板(200)可与所述滑动件(30)一同沿所述导轨(212)滑动。
- 根据权利要求11或12所述的车载雷达标定设备(700),其特征在于,所述支架装置(100)包括:支架组件(10);横梁组件(20),其安装于所述支架组件(10),可沿竖直方向相对于所述支架组件(10)移动,所述横梁组件(20)包括所述导轨(212),所述导轨(212)水平设置。
- 根据权利要求13所述的车载雷达标定设备(700),其特征在于,所述支架组件(10)包括支架本体(110)和高度调节件(114);至少三个所述高度调节件(114)安装于所述支架本体(110)的底表面(1100),其用于调节所述支架本体(110)整体的水平角度和所述支架本体(110)的俯仰角度。
- 根据权利要求14所述的车载雷达标定设备(700),其特征在于,所述高度调节件(114)的数量为三个,三个所述高度调节件(114)呈等腰三角形分布,三个所述高度调节件(114)用于配合调节所述支架本体(110)整体的水平角度,位于等腰三角形顶角的顶点位置的所述高度调节件(114)用于调节所述支架本体(110)的俯仰角度。
- 根据权利要求14或15所述的车载雷达标定设备(700),其特征在于,所述支架组件(10)包括底座支架(11)和立杆支架(12),所述立杆支架(12)的一端连接所述底座支架(11),所述底座支架(11)支撑所述立杆支架(12);所述横梁组件(20)安装于所述立杆支架(12);所述底座支架(11)包括滚轮(112)、所述支架本体(110)和所述高度调节件(114);至少三个所述滚轮(112)安装于所述支架本体(110)的底表面,以便于移动所述底座支架(11)。
- 根据权利要求16所述的车载雷达标定设备(700),其特征在于,所述立杆支架(12)包括升降丝杆(122);所述升降丝杆(122)沿竖直方向设置;所述横梁组件(20)套设于所述升降丝杆(122),并与所述升降丝杆(122)螺纹配合,在所述升降丝杆(122)绕其中心轴线转动时,所述升降丝杆(122)可驱动所述横梁组件(20)沿所述升降丝杆(122)在竖直方向移动。
- 根据权利要求17所述的车载雷达标定设备(700),其特征在于,所述立杆支架(12)包括升降导轨(120);所述升降导轨(120)包括竖杆(1200),所述竖杆(1200)沿竖直方向设置;所述横梁组件(20)活动安装于所述竖杆(1200),所述竖杆(1200)用于引导所述横梁组件(20)在竖直方向移动。
- 根据权利要求18所述的车载雷达标定设备(700),其特征在于,所述升降导轨(120)包括横杆(1202),所述横杆(1202)沿水平方向安装于所述竖杆(1200);所述升降丝杆(122)的一端安装于所述横杆(1202),所述升降丝杆(122)的另一端安装于所述支架本体(110)。
- 根据权利要求18所述的车载雷达标定设备(700),其特征在于,所述升降导轨(120)包括横杆(1202)和底杆(1204);两个所述竖杆(1200)沿竖直方向平行设置,并间隔预设距离;所述横杆(1202)沿水平方向设置,其两端分别安装于两个所述竖杆(1200);所述底杆(1204)固定安装于所述支架本体(110),每个所述竖杆(1200)远离所述横杆(1202)的一端固定安装于所述底杆(1204);所述升降丝杆(122)的一端固定安装于所述横杆(1202),所述升降丝杆(122)的另一端固定安装于所述底杆(1204)。
- 根据权利要求18所述的车载雷达标定设备(700),其特征在于,所述立杆支架(12)包括高度尺(126),所述高度尺(126)沿竖直方向安装于所述竖杆(1200),用于测量所述横梁组件(20)沿竖直方向的移动距离。
- 根据权利要求17所述的车载雷达标定设备(700),其特征在于,所述横梁组件(20)包括支撑件(210)和所述导轨(212);所述支撑件(210)包括支撑本体(2102)和活动块(2104);所述活动块(2104)固定安装于所述支撑本体(2102),并套设于所述升降丝杆(122),所述活动块(2104)与所述升降丝杆(122)螺纹配合;所述导轨(212)沿水平方向固定安装于所述支撑本体(2102);所述滑动件(30)活动安装于所述导轨(212),其可沿所述导轨(212)在水平方向移动。
- 根据权利要求22所述的车载雷达标定设备(700),其特征在于,所 述立杆支架(12)包括竖杆(1200),所述竖杆(1200)沿竖直方向设置;所述支撑件(210)包括滑块(2106),所述滑块(2106)固定安装于所述支撑本体(2102),所述滑块(2106)活动安装于所述竖杆(1200),并可沿所述竖杆(1200)滑动。
- 根据权利要求22所述的车载雷达标定设备(700),其特征在于,所述支撑本体(2102)的相对两侧分别延伸出两个夹持部(2108),两个所述夹持部(2108)为长条形,沿水平方向设置,且间隔预设距离;两个所述导轨(212)分别对应安装于两个所述夹持部(2108),并沿水平方向设置,且间隔预设距离;所述滑动件(30)通过滑动轴承(302)活动安装于所述导轨(212)。
- 根据权利要求13所述的车载雷达标定设备(700),其特征在于,所述横梁组件(20)包括水平仪(216),用于检测所述导轨(212)是否水平设置。
- 一种车载雷达标定方法,其特征在于,包括:提供雷达标定板,所述雷达标定板的中部具有通孔;对所述雷达标定板的垂直面进行标定,使得所述雷达标定板垂直于待标定汽车的中轴面;将雷达标定反光镜安装于车载雷达的表面处;提供雷达标定激光器,使所述雷达标定激光器发出的激光束穿过所述通孔,调节所述雷达标定板的位置和所述雷达标定激光器的位置,使得从所述通孔发出的激光束照射到所述雷达标定反光镜;调节所述车载雷达或者调节所述雷达标定板的位置,直至所述雷达标定反光镜反射的激光点落到所述雷达标定板的预定位置。
- 根据权利要求26所述的车载雷达标定方法,其特征在于,所述对所述雷达标定板的垂直面进行标定,使得所述雷达标定板垂直于待标定汽车的中轴面,包括:提供激光器和光阑,所述激光器包括发射孔,所述光阑设有光阑槽,将所述光阑放置在所述激光器与所述雷达标定板之间;开启所述激光器,使所述发射孔发出激光束;调节所述光阑槽和所述激光器,使得所述激光器发出的激光束平行于待标定汽车的中轴面,沿水平方向发出后从所述光阑槽穿过;调节所述雷达标定板位置,使得所述激光束沿原路返回,投射到所述发射孔。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18896077.7A EP3734324A4 (en) | 2017-12-25 | 2018-12-20 | ON-BOARD RADAR CALIBRATION APPARATUS AND METHOD |
DE212018000383.1U DE212018000383U1 (de) | 2017-12-25 | 2018-12-20 | Vorrichtung zur On-Board-Radar-Kalibrierung |
US16/911,841 US20200355792A1 (en) | 2017-12-25 | 2020-06-25 | On-board radar calibration device and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711423290.0A CN108120966B (zh) | 2017-12-25 | 2017-12-25 | 一种车载雷达标定设备及方法 |
CN201711423290.0 | 2017-12-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/911,841 Continuation US20200355792A1 (en) | 2017-12-25 | 2020-06-25 | On-board radar calibration device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019128842A1 true WO2019128842A1 (zh) | 2019-07-04 |
Family
ID=62231464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/122382 WO2019128842A1 (zh) | 2017-12-25 | 2018-12-20 | 车载雷达标定设备及方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200355792A1 (zh) |
EP (1) | EP3734324A4 (zh) |
CN (1) | CN108120966B (zh) |
DE (1) | DE212018000383U1 (zh) |
WO (1) | WO2019128842A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111562554A (zh) * | 2020-05-26 | 2020-08-21 | 中国重汽集团济南动力有限公司 | 一种智能卡车雷达静态标定仪及标定方法 |
CN111830474A (zh) * | 2020-07-23 | 2020-10-27 | 烟台开发区海德科技有限公司 | 汽车后雷达标定装置的定位装置及方法 |
US20220003578A1 (en) * | 2019-03-20 | 2022-01-06 | Autel Intelligent Technology Corp., Ltd. | Calibration bracket |
CN117347986A (zh) * | 2023-12-06 | 2024-01-05 | 深圳光秒传感科技有限公司 | 一种激光雷达快速标定装置 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108120966B (zh) * | 2017-12-25 | 2024-02-02 | 深圳市道通科技股份有限公司 | 一种车载雷达标定设备及方法 |
WO2020000297A1 (zh) * | 2018-06-28 | 2020-01-02 | 深圳市元征科技股份有限公司 | 一种车辆高级辅助驾驶校准设备 |
WO2020000298A1 (zh) * | 2018-06-28 | 2020-01-02 | 深圳市元征科技股份有限公司 | 一种车辆高级辅助驾驶校准设备 |
CN108692680B (zh) * | 2018-08-13 | 2023-12-26 | 北京行易道科技有限公司 | 激光标定工装 |
CN109507652B (zh) * | 2018-11-29 | 2021-04-16 | 驭势(上海)汽车科技有限公司 | 一种车载雷达标定方法、装置、车载设备及存储介质 |
CN210106906U (zh) * | 2019-02-01 | 2020-02-21 | 深圳市道通合创软件开发有限公司 | 一种标定系统及其标定支架 |
CN111624577B (zh) * | 2019-02-28 | 2023-08-15 | 深圳市速腾聚创科技有限公司 | 反射强度标定方法、装置、系统和计算机设备 |
WO2020187318A1 (zh) | 2019-03-20 | 2020-09-24 | 深圳市道通科技股份有限公司 | 一种将校准设备对准车辆的方法及辅助标靶 |
CN112114292B (zh) * | 2019-06-21 | 2023-07-21 | 宇通客车股份有限公司 | 一种用于车载雷达的标定系统 |
CN110361698A (zh) * | 2019-07-26 | 2019-10-22 | 中国科学院电子学研究所 | 一种具有俯仰功能的地基雷达结构 |
CN110346770A (zh) * | 2019-08-13 | 2019-10-18 | 中国科学院电子学研究所 | 一种具有自动俯仰功能的雷达测试结构 |
USD981883S1 (en) * | 2019-08-27 | 2023-03-28 | Autel Intelligent Technology Corp., Ltd. | Calibration support |
CN110658523B (zh) * | 2019-10-30 | 2024-06-25 | 北京道锐达科技有限公司 | 一种车载雷达安装校准装置及校准方法 |
CN111239711A (zh) * | 2019-12-10 | 2020-06-05 | 西南技术物理研究所 | 一种激光三维成像雷达自动化标定系统 |
CN113359093B (zh) * | 2020-03-05 | 2023-07-18 | 华为技术有限公司 | 一种雷达测试方法及装置 |
CN111337911A (zh) * | 2020-04-10 | 2020-06-26 | 广东博智林机器人有限公司 | 一种激光雷达标定装置及激光雷达标定系统 |
CN111580076B (zh) * | 2020-06-29 | 2024-10-25 | 清智汽车科技(苏州)有限公司 | 一种汽车雷达安装标定装置 |
USD981884S1 (en) * | 2020-09-11 | 2023-03-28 | Autel Intelligent Technology Corp., Ltd. | Vehicle calibrating and aligning apparatus |
USD977351S1 (en) * | 2020-09-11 | 2023-02-07 | Autel Intelligent Technology Corp., Ltd. | Vehicle calibrating and aligning apparatus |
CN112363149B (zh) * | 2020-11-06 | 2024-05-03 | 深圳奥锐达科技有限公司 | 激光雷达的测距误差标定系统和标定方法 |
USD1008830S1 (en) * | 2021-02-08 | 2023-12-26 | Autel Intelligent Technology Corp., Ltd. | Radar calibration apparatus |
CN113030921B (zh) * | 2021-03-30 | 2022-07-29 | 森思泰克河北科技有限公司 | 多线激光雷达光机调校装置及转镜模组的检测方法 |
TWI761203B (zh) * | 2021-05-06 | 2022-04-11 | 同致電子企業股份有限公司 | 車用雷達輔助治具、車用雷達安裝方法及車用雷達測試方法 |
CN113324496A (zh) * | 2021-05-24 | 2021-08-31 | 深圳市东智科技发展有限公司 | 一种对中设备及对中方法 |
USD1000969S1 (en) * | 2021-06-10 | 2023-10-10 | Autel Intelligent Technology Corp., Ltd. | Calibration device |
USD1000988S1 (en) * | 2021-06-10 | 2023-10-10 | Autel Intelligent Technology Corp., Ltd. | Calibration device |
CN113719700B (zh) * | 2021-07-12 | 2022-12-09 | 奥比中光科技集团股份有限公司 | 一种测试云台及其校准方法 |
US11933911B2 (en) * | 2021-08-19 | 2024-03-19 | Aptiv Technologies AG | Radar system calibration with bistatic sidelobe compensation |
CN113916143A (zh) * | 2021-10-07 | 2022-01-11 | 河海大学 | 一种渡槽预应力张拉控制方法 |
USD1000970S1 (en) * | 2022-01-24 | 2023-10-10 | Autel Intelligent Technology Corp., Ltd. | Calibration device |
USD1000972S1 (en) * | 2022-03-10 | 2023-10-10 | Autel Intelligent Technology Corp., Ltd. | Calibration device |
USD1049879S1 (en) * | 2022-03-10 | 2024-11-05 | Autel Intelligent Technology Corp., Ltd. | Fixing device for calibration target |
USD1000971S1 (en) * | 2022-03-10 | 2023-10-10 | Autel Intelligent Technology Corp., Ltd. | Calibration device |
CN116719017B (zh) * | 2023-08-09 | 2023-11-10 | 深圳玩智商科技有限公司 | 一种激光雷达多反射率多距离标定工装 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4134680A (en) * | 1977-02-07 | 1979-01-16 | Hunter Engineering Company | Vehicle headlight testing apparatus |
CN106352898A (zh) * | 2016-08-29 | 2017-01-25 | 中国科学院西安光学精密机械研究所 | 一种运动目标模拟装置及标定方法 |
CN107449461A (zh) * | 2017-09-29 | 2017-12-08 | 深圳市道通科技股份有限公司 | 辅助标定设备 |
CN107856649A (zh) * | 2017-10-20 | 2018-03-30 | 深圳市道通科技股份有限公司 | 一种车体中心线标定设备及方法 |
CN108120966A (zh) * | 2017-12-25 | 2018-06-05 | 深圳市道通科技股份有限公司 | 一种车载雷达标定设备及方法 |
CN207557464U (zh) * | 2017-12-25 | 2018-06-29 | 深圳市道通科技股份有限公司 | 一种车载雷达标定设备 |
CN207924131U (zh) * | 2018-03-07 | 2018-09-28 | 深圳市道通科技股份有限公司 | 一种车载雷达标定设备 |
CN108594187A (zh) * | 2017-12-25 | 2018-09-28 | 深圳市道通科技股份有限公司 | 一种车载雷达标定设备及方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5742430A (en) * | 1996-07-29 | 1998-04-21 | Polaroid Corporation | Displaceable doubled-over sheet configuration, useful particularly for a variable light transmission device |
JPH11133150A (ja) * | 1997-10-24 | 1999-05-21 | Fujitsu Ten Ltd | 車載用レーダ装置の軸合わせ方法 |
DE19852101C2 (de) * | 1998-11-12 | 2001-05-23 | Mannesmann Vdo Ag | Verfahren und Vorrichtung zur Justierung eines Strahlenganges eines strahlaussendenden Sensors |
DE10023328B4 (de) * | 2000-05-12 | 2014-06-12 | Robert Bosch Gmbh | Justiereinrichtung für ein einen Reflektor aufweisendes optisches Einstellgerät |
DE10042105B4 (de) * | 2000-07-12 | 2010-09-02 | Volkswagen Ag | Verfahren zum Justieren einer Richtantenne eines Radarsystems |
JP3759447B2 (ja) * | 2001-12-04 | 2006-03-22 | 本田技研工業株式会社 | 車載用レーダー装置の軸調整装置 |
JP3511606B2 (ja) * | 2002-04-22 | 2004-03-29 | 三菱電機株式会社 | 車載レーダ装置の位置調整装置および位置調整方法 |
CN106405526A (zh) * | 2016-09-14 | 2017-02-15 | 深圳科澳汽车科技有限公司 | 一种acc标定架 |
CN207636760U (zh) * | 2017-12-25 | 2018-07-20 | 深圳市道通科技股份有限公司 | 一种车载雷达标定设备 |
-
2017
- 2017-12-25 CN CN201711423290.0A patent/CN108120966B/zh active Active
-
2018
- 2018-12-20 WO PCT/CN2018/122382 patent/WO2019128842A1/zh unknown
- 2018-12-20 EP EP18896077.7A patent/EP3734324A4/en active Pending
- 2018-12-20 DE DE212018000383.1U patent/DE212018000383U1/de active Active
-
2020
- 2020-06-25 US US16/911,841 patent/US20200355792A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4134680A (en) * | 1977-02-07 | 1979-01-16 | Hunter Engineering Company | Vehicle headlight testing apparatus |
CN106352898A (zh) * | 2016-08-29 | 2017-01-25 | 中国科学院西安光学精密机械研究所 | 一种运动目标模拟装置及标定方法 |
CN107449461A (zh) * | 2017-09-29 | 2017-12-08 | 深圳市道通科技股份有限公司 | 辅助标定设备 |
CN107856649A (zh) * | 2017-10-20 | 2018-03-30 | 深圳市道通科技股份有限公司 | 一种车体中心线标定设备及方法 |
CN108120966A (zh) * | 2017-12-25 | 2018-06-05 | 深圳市道通科技股份有限公司 | 一种车载雷达标定设备及方法 |
CN207557464U (zh) * | 2017-12-25 | 2018-06-29 | 深圳市道通科技股份有限公司 | 一种车载雷达标定设备 |
CN108594187A (zh) * | 2017-12-25 | 2018-09-28 | 深圳市道通科技股份有限公司 | 一种车载雷达标定设备及方法 |
CN207924131U (zh) * | 2018-03-07 | 2018-09-28 | 深圳市道通科技股份有限公司 | 一种车载雷达标定设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3734324A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220003578A1 (en) * | 2019-03-20 | 2022-01-06 | Autel Intelligent Technology Corp., Ltd. | Calibration bracket |
US11835365B2 (en) * | 2019-03-20 | 2023-12-05 | Autel Intelligent Technology Corp., Ltd. | Calibration bracket |
CN111562554A (zh) * | 2020-05-26 | 2020-08-21 | 中国重汽集团济南动力有限公司 | 一种智能卡车雷达静态标定仪及标定方法 |
CN111562554B (zh) * | 2020-05-26 | 2022-08-12 | 中国重汽集团济南动力有限公司 | 一种智能卡车雷达静态标定仪及标定方法 |
CN111830474A (zh) * | 2020-07-23 | 2020-10-27 | 烟台开发区海德科技有限公司 | 汽车后雷达标定装置的定位装置及方法 |
CN111830474B (zh) * | 2020-07-23 | 2023-04-21 | 烟台开发区海德科技有限公司 | 汽车后雷达标定装置的定位装置及方法 |
CN117347986A (zh) * | 2023-12-06 | 2024-01-05 | 深圳光秒传感科技有限公司 | 一种激光雷达快速标定装置 |
CN117347986B (zh) * | 2023-12-06 | 2024-02-09 | 深圳光秒传感科技有限公司 | 一种激光雷达快速标定装置 |
Also Published As
Publication number | Publication date |
---|---|
US20200355792A1 (en) | 2020-11-12 |
CN108120966B (zh) | 2024-02-02 |
EP3734324A4 (en) | 2022-01-05 |
EP3734324A1 (en) | 2020-11-04 |
CN108120966A (zh) | 2018-06-05 |
DE212018000383U1 (de) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019128842A1 (zh) | 车载雷达标定设备及方法 | |
WO2019170100A1 (zh) | 车载雷达标定设备 | |
WO2019128812A1 (zh) | 车载雷达标定设备及方法 | |
EP3699042B1 (en) | Car body center line calibration device and method | |
CN108594187B (zh) | 一种车载雷达标定设备及方法 | |
CN107843883B (zh) | 一种雷达标定件及车载雷达标定设备 | |
CN207557464U (zh) | 一种车载雷达标定设备 | |
EP3650817B1 (en) | Auxiliary calibration device | |
WO2019076249A1 (zh) | 汽车辅助系统的标定设备 | |
WO2019137352A1 (zh) | 车载雷达标定设备 | |
WO2019076247A1 (zh) | 车道保持系统的标定设备 | |
WO2019137351A1 (zh) | 支架装置 | |
US20200361459A1 (en) | Calibration device for lane keeping assist system | |
CN108535729B (zh) | 一种acc标定架的工作方法 | |
CN207636760U (zh) | 一种车载雷达标定设备 | |
KR20120094998A (ko) | 차량용 레이더 정렬장치 및 정렬방법 | |
CN207924131U (zh) | 一种车载雷达标定设备 | |
CN207636759U (zh) | 一种雷达标定件及车载雷达标定设备 | |
CN108621916B (zh) | 智能前照灯及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18896077 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018896077 Country of ref document: EP Effective date: 20200727 |