WO2019170100A1 - 车载雷达标定设备 - Google Patents

车载雷达标定设备 Download PDF

Info

Publication number
WO2019170100A1
WO2019170100A1 PCT/CN2019/077147 CN2019077147W WO2019170100A1 WO 2019170100 A1 WO2019170100 A1 WO 2019170100A1 CN 2019077147 W CN2019077147 W CN 2019077147W WO 2019170100 A1 WO2019170100 A1 WO 2019170100A1
Authority
WO
WIPO (PCT)
Prior art keywords
bracket
radar
radar calibration
laser
calibration device
Prior art date
Application number
PCT/CN2019/077147
Other languages
English (en)
French (fr)
Inventor
唐新光
王小龙
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Publication of WO2019170100A1 publication Critical patent/WO2019170100A1/zh
Priority to US17/012,903 priority Critical patent/US10921426B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4017Means for monitoring or calibrating of parts of a radar system of HF systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
    • G01S7/4086Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder in a calibrating environment, e.g. anechoic chamber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane

Definitions

  • the present application relates to the field of vehicle maintenance and equipment calibration technology, and in particular, to a vehicle radar calibration device.
  • Adaptive Cruise Control is a commonly used auxiliary function.
  • the specific working principle is that the vehicle in front is measured by the on-board radar, and the speed of the vehicle is compared with the speed of the front vehicle.
  • the throttle system and the braking system of the vehicle are controlled, so that the vehicle is always kept constant with the preceding vehicle. safe distance. Therefore, the role of the vehicle-mounted radar is crucial in the realization of the ACC function.
  • the installation position and installation angle determine the correctness and accuracy of the final measurement data. The above installation position and installation angle will change due to uncontrollable factors such as vibration and collision caused by the use of the vehicle.
  • the calibration of the vehicle radar is the core content.
  • the calibration of the on-board radar is mostly post-installation calibration, that is, after the vehicle is delivered to the user for a period of time, the vehicle radar needs to be calibrated for objective reasons.
  • Calibration of on-board radars usually requires radar calibration aids, and radar calibration aids need to be located according to the different positions of the vehicle radar on the vehicle.
  • the vehicle radar is generally installed at different positions of the front bumper of the car, which results in different positions of the vehicle radar and the upper and lower heights of different models, which increases the difficulty of positioning radar calibration auxiliary equipment and increases the complexity of the radar calibration operation.
  • an embodiment of the present invention provides an on-board radar calibration device with convenient calibration operation.
  • a vehicle radar calibration device includes:
  • a beam assembly mounted to the bracket assembly, the beam assembly being movable relative to the bracket assembly in a vertical direction;
  • a slider mounted to the beam assembly, the slider being movable relative to the beam assembly in a horizontal direction, the slider comprising oppositely disposed first and second surfaces, the slider being mounted a through hole, the mounting through hole penetrating the first surface and the second surface;
  • the calibration laser is housed in the mounting through hole, and the calibration laser is used to emit a laser beam toward the vehicle to be calibrated.
  • the onboard radar calibration device includes a radar calibration auxiliary device mounted on the sliding member, and the radar calibration auxiliary device is movable with the sliding member in a horizontal direction relative to the beam assembly.
  • the radar calibration auxiliary device includes a through hole;
  • the calibration laser is configured to emit the laser beam through the through hole after the vertical calibration of the radar calibration auxiliary device is completed to locate the radar calibration auxiliary device.
  • the onboard radar calibration device comprises:
  • a diaphragm for controlling a laser beam emitted by the laser to pass through itself, the radar calibration aid for reflecting a laser beam passing through the aperture to return it to the laser along the original path,
  • the vertical plane of the radar calibration aid is calibrated such that the radar calibration aid is perpendicular to the central axis of the vehicle to be calibrated.
  • the aperture is provided with a strip-shaped aperture groove for controlling a laser beam emitted by the laser to pass through the strip-shaped aperture groove.
  • the diaphragm comprises a fixing seat and a sliding aperture
  • the sliding aperture is provided with the strip aperture groove
  • the sliding aperture is mounted on the fixing seat
  • the sliding aperture is adjustable The position of the mount.
  • the fixing base comprises a base, a fixing bracket and a locking handle
  • One end of the fixing bracket is mounted on the base, the fixing bracket is in a strip shape, and the locking handle is mounted on the fixing bracket;
  • the sliding diaphragm includes a diaphragm portion and a sliding groove portion
  • the diaphragm portion is formed in a flat shape, and the strip-shaped diaphragm groove is disposed.
  • the sliding groove portion is mounted on the aperture portion, and the sliding groove portion is strip-shaped, and is sleeved on the fixing bracket.
  • the sliding groove portion is provided with a strip-shaped slot, and the locking handle passes through the strip-shaped slot for fixing the sliding diaphragm to the fixing seat.
  • the laser includes a transmitting portion, a mounting shaft, and an observation target;
  • the mounting shaft is mounted on the transmitting portion for mounting the laser to a hub of an automobile
  • the observation target is mounted to the emitting portion, and the observation target includes an observation target surface for displaying a position of a laser beam reflected by the radar calibration auxiliary device, and an emission hole is provided at a middle portion of the observation target surface.
  • the beam assembly includes a rail, the rail is mounted to the bracket assembly, and the rail is horizontally disposed, the rail being movable relative to the bracket assembly in a vertical direction;
  • the slider is movably mounted to the rail and horizontally slidable along the rail.
  • the sliding member comprises a plate body and a holding member
  • the plate body includes the first surface and the second surface
  • the holding member is fixedly mounted to the plate body, and the holding member is movably mounted on the guide rail such that the sliding member can slide horizontally along the guide rail.
  • the beam assembly includes two the guide rails, and the two guide rails are respectively mounted on the bracket assembly, and the two guide rails are disposed in parallel with each other at a predetermined distance in a horizontal direction;
  • the sliding member includes four holding members, each of the holding members is provided with a receiving passage, and the receiving passage is horizontally disposed;
  • Two of the receiving passages of the two holding members are arranged side by side along a first horizontal line, and two of the receiving passages of the other two holding members are arranged side by side along a second horizontal line, and two sides along the first horizontal line are arranged side by side.
  • One of the guide rails is disposed on the receiving passage, and the other two of the receiving passages are arranged along the second horizontal line.
  • the bracket assembly comprises a bracket body and a height adjustment member
  • At least three of the height adjustment members are mounted on a bottom surface of the bracket body for adjusting a horizontal angle of the bracket body as a whole and a pitch angle of the bracket body.
  • the number of the height adjusting members is three, and the three height adjusting members are arranged in an isosceles triangle shape, and the three height adjusting members are used for adjusting a horizontal angle of the whole body of the bracket body, and the like.
  • the height adjustment member at the vertex position of the apex angle of the waist triangle is used to adjust the pitch angle of the bracket body.
  • the bracket assembly includes a base bracket and a pole bracket, and one end of the pole bracket is connected to the base bracket, and the base bracket supports the pole bracket;
  • the beam assembly is mounted to the pole bracket;
  • the base bracket includes a roller, the bracket body and the height adjustment member
  • At least three of the rollers are mounted to a bottom surface of the bracket body to facilitate movement of the base bracket.
  • the pole bracket comprises a lifting screw
  • the lifting screw is disposed in a vertical direction
  • the beam assembly is sleeved on the lifting screw and threadedly engaged with the lifting screw.
  • the lifting screw rotates about its central axis, the lifting screw can drive the beam assembly along the The lifting screw moves in the vertical direction.
  • the pole bracket comprises a lifting rail
  • the lifting rail includes a vertical rod, and the vertical rod is disposed in a vertical direction;
  • the beam assembly is movably mounted to the vertical rod for guiding the beam assembly to move in a vertical direction.
  • the lifting rail comprises a crossbar, and the crossbar is mounted to the vertical rod in a horizontal direction;
  • One end of the lifting screw is mounted on the cross bar, and the other end of the lifting screw is mounted on the bracket body.
  • the lifting rail comprises a cross bar and a bottom bar
  • Two of the vertical rods are arranged in parallel in a vertical direction and spaced apart by a preset distance;
  • the crossbar is disposed in a horizontal direction, and two ends thereof are respectively mounted on the two vertical rods;
  • the bottom rod is fixedly mounted on the bracket body, and one end of each of the vertical rods away from the cross rod is fixedly mounted to the bottom rod;
  • One end of the lifting screw is fixedly mounted to the cross bar, and the other end of the lifting screw is fixedly mounted to the bottom bar.
  • the pole bracket includes a height gauge mounted to the vertical rod in a vertical direction for measuring a moving distance of the beam assembly in a vertical direction.
  • the beam assembly includes a support member and the guide rail;
  • the support member includes a support body and a movable block
  • the movable block is fixedly mounted on the support body, and is sleeved on the lifting screw, and the movable block is threadedly engaged with the lifting screw;
  • the guide rail is fixedly mounted to the support body in a horizontal direction.
  • the pole bracket comprises a vertical rod, and the vertical rod is arranged in a vertical direction;
  • the support member includes a slider fixedly mounted to the support body, the slider is movably mounted to the vertical rod and slidable along the vertical rod.
  • two opposite clamping portions are respectively extended on opposite sides of the supporting body, and the two clamping portions are elongated, disposed in a horizontal direction, and spaced apart by a preset distance;
  • the two guide rails are respectively mounted on the two clamping portions, and are disposed in a horizontal direction and spaced apart by a predetermined distance.
  • the beam assembly includes a level for detecting whether the rail is horizontally disposed.
  • the calibration laser is mounted on the second surface, and the calibration laser is partially received in the mounting through hole, so that the calibration laser can slide horizontally with the sliding member to facilitate positioning.
  • Radar calibration aids for different models can easily calibrate on-board radars of different models.
  • the vertical calibration of the radar calibration auxiliary device can be realized by using the radar calibration auxiliary device, the diaphragm and the laser, and the radar calibration auxiliary device can be used for the vertical surface calibration and the positioning radar. Calibrating the auxiliary device reduces the number of components of the on-board radar calibration device, reduces the cost, and simplifies the calibration operation.
  • FIG. 1 is a perspective view of a vehicle radar calibration device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the bracket device of the calibration apparatus shown in Figure 1;
  • Figure 3 is a perspective view of another angle of the stent device shown in Figure 2;
  • Figure 4 is a front elevational view of the stent device of Figure 2;
  • Figure 5 is a perspective view of the slider of the bracket device shown in Figure 2;
  • Figure 6 is a perspective view of another angle of the slider shown in Figure 5;
  • Figure 7 is a perspective view of the radar calibration aid of the calibration apparatus shown in Figure 1;
  • Figure 8 is a perspective view of the aperture of the calibration apparatus shown in Figure 1;
  • Figure 9 is a perspective view of another angle of the aperture shown in Figure 8.
  • Figure 10 is a perspective view of the laser of the calibration apparatus shown in Figure 1;
  • Figure 11 is a perspective view of another angle of the laser shown in Figure 10;
  • Figure 12 is a schematic illustration of one of the steps in the calibration of the on-board radar by the calibration apparatus of Figure 1.
  • an onboard radar calibration device 600 includes a bracket device 100, a radar calibration aid 200, and a calibration laser 500 (see FIG. 5).
  • the radar calibration auxiliary device 200 may include a radar calibration plate, a pattern plate, a corner reflector, and the like for calibrating the radar.
  • the radar calibration auxiliary device 200 can be mounted on the bracket device 100, and the positioning of the radar calibration auxiliary device 200 can be realized by the bracket device 100, so that it can be aligned with different types or specifications of the vehicle radar, and the auxiliary calibration of the vehicle radar can be performed.
  • the calibration laser 500 is mounted to the support device 100, and the calibration laser 500 is used to emit a laser beam to locate a radar calibration aid.
  • the aperture 300, the onboard laser 400 may also be included.
  • the radar calibration aid 200 is mounted to the stand device 100 and is movable relative to the stand device 100 in a horizontal direction or in a vertical direction.
  • the stand device 100 is used to support the radar calibration aid 200.
  • the in-vehicle laser 400 is used to emit a laser beam
  • the diaphragm 300 is used to control whether the laser beam passes through itself
  • the radar calibration aid 200 is used to reflect the laser beam passing through the aperture 300 along the original path. Returning to the onboard laser 400 to achieve vertical plane calibration of the radar calibration aid 200.
  • the bracket device 100 includes a bracket assembly 10, a beam assembly 20, and a slider 30.
  • the beam assembly 20 is mounted to the bracket assembly 10 and is movable relative to the bracket assembly 10 in a vertical direction.
  • the slider 30 is mounted to the beam assembly 20 and is movable relative to the beam assembly 20 in a horizontal direction.
  • the radar calibration aid 200 is mounted to the slider 30 and is movable in a horizontal direction relative to the beam assembly 20 together with the slider 30.
  • the bracket assembly 10 includes a base bracket 11 and a pole bracket 12 , and one end of the pole bracket 12 is connected to the base bracket 11 , and the base bracket 11 supports the pole bracket 12 .
  • the base bracket 11 includes a bracket body 110, a roller 112 and a height adjusting member 114.
  • the bracket body 110 is a rectangular flat plate and can be made of a metal material. In order to reduce the weight, a plurality of hollowed out regions are formed.
  • the bracket body 110 includes an oppositely disposed bottom surface 1100 and an upper surface 1102.
  • the bracket body 110 has a central axis O1.
  • the roller 112 is mounted to the bottom surface 1100 for facilitating movement of the base bracket 11.
  • the roller 112 is a universal moving roller, so that the base bracket 11 can be arbitrarily moved back and forth, left and right, and the number of the rollers 112 is four, which are respectively mounted on the four corners of the bracket body 110.
  • the shape of the bracket body 110 may be changed according to actual needs, and is not limited to being rectangular.
  • the bracket body 110 may be circular; the number of the rollers 112 may be determined according to The actual demand increases or decreases, as long as it is at least three.
  • the height adjustment member 114 is mounted to the bottom surface 1100 for adjusting the height of the bracket body 110.
  • the height adjusting member 114 is an adjusting hand wheel, and the number is three.
  • the three adjustment hand wheels 114 are in an isosceles triangle distribution, and the two adjustment hand wheels 114 on the bottom side of the isosceles triangle are disposed on one side of the bracket body 110 and along the central axis of the bracket body 110.
  • the O1 is symmetrically disposed, and the other adjustment hand wheel 114 is disposed on the other side of the bracket body 110 and disposed on the central axis O1 of the bracket body 110 (that is, disposed at an apex position of the apex angle of the isosceles triangle) ).
  • the adjustment of the handle wheel 114 can adjust the horizontal angle of the bracket body 110 as a whole, and adjust the adjustment hand wheel 114 on the central axis O1 of the bracket body 110 to adjust the pitch angle of the bracket body 110. .
  • the height adjusting member 114 can be other height adjustable devices; the number of the height adjusting members 114 can be increased according to actual needs, as long as at least three, at least three of the height adjusting members Three of the 114s are arranged in the manner described above.
  • the pole bracket 12 includes a lifting rail 120, a lifting screw 122, a lifting handle 124, and a height gauge 126.
  • the lifting rail 120 is mounted on the bracket body 110, and the lifting rail 120 includes a vertical pole 1200, a crossbar 1202 and a bottom pole 1204. Two of the vertical bars 1200 are disposed in parallel in a vertical direction and spaced apart by a predetermined distance for guiding the beam assembly 20 to move in a vertical direction.
  • the cross bar 1202 is disposed in a horizontal direction, and two ends thereof are respectively mounted to the two vertical bars 1200.
  • the bottom rods 1204 are fixedly mounted on the bracket body 110, and one end of each of the vertical rods 1200 away from the cross bar 1202 is fixedly mounted to the bottom rod 1204.
  • the number of the vertical bars 1200 may be increased or decreased according to actual conditions.
  • the number of the vertical bars 1200 may be one or three.
  • the lifting screw 122 is fixedly mounted on the lifting rail 120 in a vertical direction, one end of the lifting screw 122 is fixedly mounted on the cross bar 1202, and the other end of the lifting screw 122 is fixedly mounted on the Bottom rod 1204.
  • the bottom bar 1204 can be omitted, and one end of each of the vertical bars 1200 away from the cross bar 1202 is fixedly mounted to the bracket body 110.
  • the lifting screw 122 is disposed in a vertical direction, and one end of the lifting screw 122 is fixedly mounted on the cross bar 1202 , and the other end of the lifting screw 122 is fixedly mounted on the bracket body 110 .
  • the lifting handle 124 is mounted to the cross bar 1202 and coupled to the lifting screw 122 for rotation to drive the lifting screw 122 to rotate about its central axis.
  • the connecting rod of the lifting handle 124 is perpendicular to the lifting screw 122 and is connected to the lifting screw 122 through a gear structure. It can be understood that, in some other embodiments, the connecting rod of the lifting handle 124 can be coaxial with the lifting screw 122, and the connecting rod of the lifting handle 124 is directly connected to the lifting screw 122. Alternatively, the lifting handle 124 may be replaced with other means for driving the rotation of the lifting screw 122, for example, using a motor or the like.
  • the height gauge 126 is mounted to the vertical rod 1200 in a vertical direction, the height gauge 126 having a scale for measuring the distance of movement of the beam assembly 20 in the vertical direction.
  • the beam assembly 20 includes a support member 210, a guide rail 212 and a level 214.
  • the support member 210 is mounted to the lifting rail 120, and the support member 210 is movable relative to the lifting rail 120 in a vertical direction under the guidance of the lifting rail 120.
  • the guide rail 212 is fixedly mounted to the support member 210 and movable relative to the lift rail 120 in the vertical direction together with the support member 210.
  • the slider 30 is mounted on the guide rail 212 and is movable relative to the guide rail 212 in a horizontal direction.
  • the support member 210 includes a support body 2102, a movable block 2104, and a slider 2106.
  • the support body 2102 is substantially plate-shaped, and two clamping portions 2108 are respectively extended on opposite sides thereof.
  • the two clamping portions 2108 are elongated and disposed parallel to each other in the horizontal direction and spaced apart by a predetermined distance.
  • the movable block 2104 is fixedly mounted on the support body 2102 and sleeved on the lifting screw 122.
  • the movable block 2104 is threadedly engaged with the lifting screw 122, and when the lifting screw 122 rotates about its central axis, the movable block 2104 can be driven to move in the vertical direction along the lifting screw 122, thereby The beam assembly 20 is moved in a vertical direction.
  • the movable block 2104 and the clamping portion 2108 are respectively located on opposite sides of the support body 2102.
  • the slider 2106 is fixedly mounted on the support body 2102 and is located on the same side of the support body 2102 as the movable block 2104.
  • Each of the vertical rods 1200 corresponds to at least one of the sliders 2106, and each of the sliders 2106 is movably mounted to the vertical rod 1200 corresponding thereto and is slidable along the corresponding vertical rod 1200.
  • each of the vertical bars 1200 is correspondingly mounted with two of the sliders 2106. It can be understood that in some other embodiments, the number of the sliders 2106 corresponding to each of the vertical bars 1200 can be increased or decreased according to actual needs, for example, reduced to one, or increased to three.
  • the two guide rails 212 are respectively mounted on the two clamping portions 2108, and are disposed in parallel with each other at a predetermined distance in the horizontal direction.
  • On both sides of the guide rail 212 there are horizontal scales 2120 extending to the sides with their centers being zero points, that is, the scale values of the horizontal scales 2120 are zero points with the center of the guide rail 212, respectively, to the guide rails.
  • the two sides of the 212 are gradually enlarged to facilitate the positional positioning of the slider 30.
  • the central axis O2 of the guide rail 212 is located in the same vertical plane as the central axis O1 of the bracket body 110.
  • the number of the guide rails 212 may be increased or decreased according to actual needs, for example, reduced to one or increased to three; the guide rails 212 may also be in any other suitable manner.
  • the support member 210 is fixedly mounted.
  • the clamping portion 2108 is omitted, and the guide rail 212 is directly welded to the support body 2102.
  • the level 214 is mounted on an upper side of the clamping portion 2108 for detecting whether the clamping portion 2108 is horizontally disposed to determine whether the guide rail 212 is horizontally disposed. It can be understood that in some other embodiments, the level 214 can also be mounted to the rail 212 or to other portions of the beam assembly 20 as long as it is sufficient for detecting whether the rail 212 is horizontally disposed. Just fine.
  • the slider 30 is movably mounted to the rail 212 and is movable in a horizontal direction along the rail 212.
  • the sliding member 30 includes a plate body 302 and a holding member 304 .
  • the holding member 304 is fixedly mounted on the plate body 302
  • the holding member 304 is configured to be movably mounted on the plate body 302 .
  • Guide rail 212 is provided.
  • the plate body 302 has a rectangular plate shape including a first surface 3022 and a second surface 3024 disposed opposite to each other.
  • the first surface 3022 is for facing an onboard radar of a vehicle to be calibrated, and the first surface 3022 is provided with a plurality of mounting points 3025 for mounting the radar calibration aid 200 or other calibration aids.
  • the plate body 302 defines a mounting through hole 3026.
  • the mounting through hole 3026 is located at a middle portion of the plate body 302, and the mounting through hole 3026 extends through the first surface 3022 and the second surface 3024.
  • the mounting through hole 3026 is for mounting the calibration laser 500.
  • the holding member 304 is fixedly mounted on the second surface 3024, and the number of the holding members 304 is four.
  • Each of the holding members 304 is provided with a receiving passage 3040, and the receiving passage 3040 is horizontally disposed for receiving the guide rail 212.
  • the two receiving passages 3040 of the two holding members 304 are arranged side by side along the first horizontal line, and the two receiving passages 3040 of the other two holding members 304 are arranged side by side along the second horizontal line.
  • One of the two guide rails 3040 disposed along the first horizontal line is sleeved with one of the guide rails 212, and the other two of the receiving passages 3040 are arranged along the second horizontal line.
  • the slider 30 is smoothly slid horizontally along the guide rail 212.
  • the number of the holding members 304 may be increased or decreased according to actual needs, as long as at least equal to the number of the guide rails 212, for example, the number of the guide rails 212 is two.
  • the number of the holding members 304 is two, one of the holding members 304 is sleeved on one of the guide rails 212, and the other of the holding members 304 is sleeved on the other of the guide rails 212; for example, the The number of the guide rails 212 is one, and the number of the holding members 304 is also one.
  • the holding member 304 is sleeved on the guide rails.
  • the slider 30 can also be movably mounted to the guide rail 212 by other means, as long as the slider 30 can slide horizontally along the guide rail 212, for example,
  • the guide rail 212 is provided with a horizontally disposed guiding groove
  • the sliding member 30 is provided with a sliding block, and the sliding block is received in the guiding groove and slidable along the guiding groove.
  • the bracket may include other structures that may effect a change in position of the radar calibration aid 200.
  • the slider 30 can move only in the vertical direction, and in some brackets, the slider 30 is highly fixed and can be moved only in the horizontal direction.
  • the embodiment of the present application does not specifically define the base or other structure of the bracket, which can realize supporting the radar calibration assisting device 200. Further, it can achieve adjustment of the position of the radar calibration aid 200.
  • the calibration laser 500 is fixedly mounted to the second surface 3024, and the calibration laser 500 can be wholly or partially received in the mounting through hole based on the mounting through hole 3026 and the size of the calibration laser 500 itself. 3026.
  • the calibration laser 500 includes a laser exit aperture 502 that is exposed from the mounting aperture 3026 for emitting a laser beam toward an onboard radar of the vehicle to be calibrated.
  • the laser exit aperture 502 can be located at a center point of the slider 30 such that the laser beam it emits can pass through the center point of the slider 30.
  • the position of the calibration laser 500 can be movably mounted in the slider 30, which can adjust the position of the calibration laser 500 on the slider 30 based on the specified firing position.
  • FIG. 7 illustrates a case where the radar calibration aid is a radar calibration board.
  • the radar calibration aid 200 has a rectangular flat shape and includes a light reflecting surface for reflecting a laser beam passing through the aperture 300 to the on-vehicle laser 400.
  • the radar calibration auxiliary device 200 has a through hole 202 in the middle thereof. The laser light emitted by the laser exit aperture 502 passes through the through hole 202 to the onboard radar to be calibrated.
  • the radar calibration aid 200 includes a substrate having a surface coated with a light reflective material for reflecting a laser beam passing through the aperture 300 to the onboard laser 400, for example, a surface of the substrate Silver coated material.
  • the substrate may be made of a lightweight material such as a lightweight material such as a plastic material, an aluminum alloy or a magnesium alloy. It will be appreciated that in some other embodiments, the substrate may be made of a material that reflects light without the need to apply a light reflective material.
  • the radar calibration aid only needs to be able to reflect the radar wave to achieve calibration of the onboard radar.
  • the embodiment of the present application is not limited.
  • the radar calibration aid 200 can be mounted on the slider 30, which can move with the slider 30.
  • the radar calibration assisting device 200 can be mounted on the slider 30 after the positioning of the slider 30 is completed by the calibration laser 500.
  • the radar calibration assisting device 200 can eliminate the need to provide a through hole.
  • the radar calibration aid can be mounted on the slider 30 before the bracket adjusts position relative to the onboard radar, in which case the radar calibration aid 200 can be provided with a through hole to allow the calibration laser 500 to emit a laser beam.
  • the connection manner of the radar calibration auxiliary device 200 on the sliding member 30 only needs to be satisfied.
  • the radar calibration auxiliary device 200 can move with the sliding member 30, and the specific implementation structure thereof is not limited.
  • Positioning the radar calibration aid 200 or the slider 30 can be accomplished in two ways.
  • the calibration laser 500 emits a laser beam onto the onboard radar of the vehicle to be calibrated to achieve positioning of the radar calibration aid 200.
  • the calibration laser 500 emits a laser beam onto the onboard radar that can be sent to a predetermined location on one side of the onboard radar facing the stent device 100. Alternatively, it is transmitted to other locations that can be aligned with the on-board radar, and is not limited herein.
  • the calibration laser 500 is located at the center of the slider 30, and the emitted laser beam passes through the center point of the slider 30, and the emitted laser beam is dropped by adjusting the height of the beam assembly and the horizontal position of the slider relative to the beam assembly.
  • the positioning of the radar calibration aid 200 is achieved to be aligned with the onboard radar to further utilize the radar calibration aid 200 to implement an algorithm or software calibration of the onboard radar.
  • the positioning of the radar calibration aid 200 can be made more accurate by using the auxiliary positioning device.
  • the auxiliary positioning device can direct the position of the laser beam on the vehicle radar so that it can accurately reach a preset position on the vehicle radar, such as the above center point.
  • the auxiliary positioning device may be part of an onboard radar that does not affect the onboard radar to transmit radar waves and is capable of indicating the preset position of the onboard radar during calibration.
  • the auxiliary positioning device is detachably mounted on the vehicle radar.
  • the auxiliary positioning device covers the surface of the vehicle-mounted radar facing the bracket device, and the pre-positioning device may be provided with a pre-set
  • the identification of the position such as the scale, the marker point, the through hole, etc., enables the laser beam to accurately fall onto the marker of the preset position.
  • the calibration laser 500 transmits a laser beam to the on-board radar, and the on-board radar can reflect the laser beam by itself or another configured mirror, so that the laser beam is reflected back to the preset position of the slider 30, and then the radar is calibrated.
  • the auxiliary device 200 performs positioning. For example, the position of the radar calibration aid 200 can be adjusted using the beam assembly and the slider to cause the reflected laser beam to fall back to the launch point of the calibration laser 500, ie, to position the radar calibration aid 200.
  • the drop of the position where the laser beam falls and the preset position may be determined, and the operator is prompted based on the drop.
  • the position of the bracket device 100 may be squared first, for example, the distance of the bracket device 100 relative to the vehicle is adjusted, so that the bracket device 100 is visited in parallel with the front of the vehicle, and the bracket device is adjusted.
  • the manner of adjusting the bracket described in the embodiments of the present application is merely exemplary, and any manner of adjusting the bracket falls within the scope of the embodiments of the present application.
  • the radar calibration assisting device 200 is a device that limits the pitch angle of the radar calibration plate or the like
  • the position of the radar calibration assisting device 200 may be adjusted after adjusting the pitch angle of the radar calibration assisting device 200.
  • the position of the radar calibration aid 200 is adjusted first, and then the pitch angle of the radar calibration aid 200 is adjusted. This is not limited here.
  • the diaphragm 300 includes a fixing base 310 and a sliding aperture 320.
  • the fixing base 310 includes a base 312, a fixing bracket 314 and a locking handle 316.
  • the base 312 is a rectangular flat plate, and one end of the fixing bracket 314 is installed at a middle portion of the base 312 , and the fixing bracket 314 is perpendicular to the base 312 .
  • the fixing bracket 314 is strip-shaped.
  • the locking handle 316 is mounted to the fixing bracket 314.
  • the sliding aperture 320 includes a diaphragm portion 322 and a sliding slot portion 324.
  • the aperture portion 322 is substantially flat and is provided with a strip-shaped aperture groove 3222 for allowing a laser beam to pass therethrough.
  • the width of the pupil groove 3222 is slightly smaller than the diameter of the laser spot emitted by the on-board laser 400 to facilitate detecting whether the laser beam passes through the pupil groove 3222.
  • the sliding groove portion 324 is mounted on the aperture portion 322 and has a strip shape and is sleeved on the fixing bracket 314 .
  • the sliding groove portion 324 is slidable relative to the fixing bracket 314.
  • the sliding groove portion 324 is provided with a strip-shaped opening 3240.
  • the locking handle 316 passes through the slot 3240 for stably fixing the sliding aperture 320 to the fixing base 310.
  • the in-vehicle laser 400 is a hub laser including a transmitting portion 410, a mounting shaft 420, and an observation target 430.
  • the transmitting portion 410 is for emitting a laser beam, and the transmitting portion 410 includes a switch 4102 for turning on or off the transmitting portion 410.
  • the mounting shaft 420 is mounted to the transmitting portion 410 for mounting the hub-mounted laser 400 to a hub of an automobile.
  • the observation target 430 is mounted to the emission portion 410.
  • the viewing target 430 is a rectangular flat panel that includes a viewing target surface 4300 for displaying the position of the laser light reflected back through the radar calibration aid 200.
  • An emission hole 4302 is provided in the middle of the observation target surface 4300 for allowing the laser beam to be emitted.
  • the car 800 in a first step of calibrating an onboard radar of a vehicle to be calibrated, the car 800 is horizontally disposed (ie, the car 800 is parked in a horizontal plane), and the bracket device 100 is passed through the roller 112. Moving to the front of the vehicle 800 to be calibrated, the distance is about 1 meter, so that the guide rail 212 is substantially parallel to the axle of the automobile 800. The level 214 is observed to adjust the height adjustment member 114 such that the guide rails 212 are horizontally disposed.
  • the radar calibration aid 200 is mounted to the slider 30, at which time the radar calibration aid 200 is parallel to the plate 302, and the laser exit aperture 502 is aligned with the through hole 202.
  • the radar calibration aid 200 and the slider 30 are moved along the guide rail 212 to one side of the vehicle 800 to be calibrated.
  • a wheel clamp is mounted on a rear wheel of the vehicle 800 to be calibrated, and the vehicle laser 400 is installed to open the vehicle laser 400, so that the laser beam emitted by the vehicle laser 400 illuminates the light of the radar calibration auxiliary device 200. Reflective surface.
  • the aperture 300 is taken and placed in the middle of the in-vehicle laser 400 and the radar calibration aid 200, and the aperture portion 322 is perpendicular to the laser beam.
  • the pupil groove 3222 is adjusted to be in height with the emission hole 4302 of the in-vehicle laser 400.
  • the position enables the laser beam to pass through the center of the aperture groove 3222.
  • the position of the radar calibration auxiliary device 200 is adjusted by sliding the slider 30 and/or adjusting the height of the guide rail 212, so that the laser beam at this time can be irradiated to the radar calibration auxiliary device 200. on.
  • the vertical surface calibration of the radar calibration auxiliary device 200 is completed, the guide rail 212 is perpendicular to the central axis surface of the automobile 800, and the radar calibration auxiliary device 200 and the plate body 302 are vertically disposed. It is also perpendicular to the central axis of the car 800.
  • the center axis surface of the automobile 800 is vertically disposed, and the automobile 800 is symmetrical with respect to the central axis surface.
  • the calibration laser 500 is turned on, and a laser beam emitted from the laser exit aperture 502 passes through the through hole 202 of the radar calibration aid 200. Adjusting the height of the guide rail 212 and horizontally sliding the slider 30, so that the laser beam emitted from the laser exit hole 502 is irradiated in the middle of the surface of the vehicle radar, and the calibration laser 500 is turned off, thereby completing the radar calibration.
  • the positioning of the auxiliary device is performed by the height of the guide rail 212 and horizontally sliding the slider 30, so that the laser beam emitted from the laser exit hole 502 is irradiated in the middle of the surface of the vehicle radar, and the calibration laser 500 is turned off, thereby completing the radar calibration. The positioning of the auxiliary device.
  • different radar calibration aids can be mounted on the slider 30 to calibrate the onboard radar of the vehicle 800 to be calibrated according to different radar calibration requirements.
  • the radar calibration aid 200 and the plate 302 may be vertically calibrated using prior art vertical surface calibration devices such that the radar calibration aid The apparatus 200 and the plate 302 are perpendicular to a central axis of the vehicle, and move the radar calibration aid 200 and the calibration laser 500 to the front of the vehicle radar, and use the calibration laser 500 to emit a laser beam through the radar.
  • the through hole 202 of the auxiliary device 200 is calibrated to position the radar calibration aid. It should be understood by those skilled in the art that if the radar calibration auxiliary device 200 and the plate body 302 are vertically calibrated by the vertical surface calibration device in the prior art, the radar calibration auxiliary device 200 is not required to be reflected.
  • the radar calibration auxiliary device 200 does not need a light reflecting surface.
  • the radar calibration auxiliary device 200 only needs to be in the shape of a plate, and has the through hole 202.
  • the radar calibration auxiliary device 200 can be a plastic plate. Or aluminum plate, etc.
  • the calibration laser 500 is mounted on the second surface 3024, and the calibration laser 500 is wholly or partially received in the mounting through hole 3026, so that the calibration laser 500 can be coupled to the sliding member.
  • Synchronous horizontal sliding convenient to locate the radar calibration auxiliary equipment of different models, can easily realize the calibration of the vehicle radar of different models.
  • vertical calibration of the radar calibration auxiliary device 200 and the plate body 302 can be implemented by using the radar calibration auxiliary device 200, the aperture 300, and the vehicle laser 400, and the radar calibration auxiliary device 200 can be used for
  • the vertical surface calibration can be used to locate the radar calibration auxiliary device, which reduces the number of components of the on-board radar calibration device 600, reduces the cost, and simplifies the calibration operation.
  • the sliding member 30 for mounting the radar calibration auxiliary device can slide horizontally along the guide rail 212.
  • the sliding member can be slid. 30 to the front of another on-board radar to perform calibration operation on another on-board radar, and it is not necessary to perform horizontal calibration on the guide rail 212, so that it is convenient to calibrate a plurality of on-board radars of one vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种车载雷达标定设备,包括支架组件,横梁组件,滑动件和标定激光器,横梁组件安装于支架组件,横梁组件可沿竖直方向相对于支架组件移动,滑动件安装于横梁组件,滑动件可沿水平方向相对于横梁组件移动,滑动件包括相对设置的第一表面和第二表面,滑动件设有安装通孔,安装通孔贯穿第一表面和第二表面,标定激光器收容于安装通孔,标定激光器用于朝待标定汽车发出激光束。标定激光器可与滑动件同步水平滑动,可方便定位不同车型的雷达标定辅助设备,以实现对不同车型的车载雷达进行标定。

Description

车载雷达标定设备
本申请要求于2018年03月07日提交中国专利局、申请号为201810187748.5、申请名称为“一种车载雷达标定设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车维修及设备标定技术领域,尤其涉及一种车载雷达标定设备。
背景技术
在汽车高级驾驶辅助系统(Advanced Driver Assistant Systems,ADAS)领域,自适应巡航系统(Adaptive Cruise Control,ACC)是一项普遍使用的辅助功能。其具体工作原理是,通过车载雷达实时对前方车辆进行测距,将自身车速与前方车速进行比对,同时控制本车的油门、制动等动力系统,使本车始终与前车保持恒定的安全距离。因此车载雷达的作用在ACC功能的实现中至关重要,除去雷达本身的测定性能外,其安装位置、安装角度都决定其最终的测量数据的正确性和精准性。而上述安装位置及安装角度,会因车辆使用产生的震动、碰撞等不可控因素产生变化,故在汽车维修及和设备标定领域,尤其是ACC功能标定中,车载雷达的标定是核心内容。目前车载雷达的标定,多为后装标定,即在车辆出厂交付用户使用一段时间后,因客观原因,需要对车载雷达进行标定。
车载雷达的标定通常需要雷达标定辅助设备,需要根据车载雷达在车上的不同位置来定位雷达标定辅助设备。而车载雷达一般安装在车前杠的不同位置,导致不同车型的车载雷达左右位置、上下高度不一,以致增加了定位雷达标定辅助设备的难度,也增加了雷达标定操作的复杂度。
发明内容
为了解决上述技术问题,本发明实施例提供一种标定操作方便的车载雷达标定设备。
本发明实施例解决其技术问题采用以下技术方案:
一种车载雷达标定设备,包括:
支架组件;
横梁组件,其安装于所述支架组件,所述横梁组件可沿竖直方向相对于所述支架组件移动;
滑动件,其安装于所述横梁组件,所述滑动件可沿水平方向相对于所述横梁组件移动,所述滑动件包括相对设置的第一表面和第二表面,所述滑动件设 有安装通孔,所述安装通孔贯穿所述第一表面和所述第二表面;
标定激光器,所述标定激光器收容于所述安装通孔,所述标定激光器用于朝待标定汽车发出激光束。
可选地,所述车载雷达标定设备包括雷达标定辅助设备,其挂载于所述滑动件,所述雷达标定辅助设备可与所述滑动件一同沿水平方向相对于所述横梁组件移动,所述雷达标定辅助设备包括通孔;
所述标定激光器,用于在所述雷达标定辅助设备的竖直面标定完成后发出所述激光束穿过所述通孔,以对雷达标定辅助设备进行定位。
可选地,所述车载雷达标定设备包括:
激光器,用于发射激光束至所述雷达标定辅助设备;
光阑,用于控制所述激光器发出的激光束穿过其自身,所述雷达标定辅助设备用于反射穿过所述光阑的激光束使其沿原路返回至所述激光器,以对所述雷达标定辅助设备的竖直面进行标定,使得所述雷达标定辅助设备垂直于待标定汽车的中轴面。
可选地,所述光阑设有条状光阑槽,用于控制所述激光器发出的激光束穿过所述条状光阑槽。
可选地,所述光阑包括固定座和滑动光阑,所述滑动光阑设有所述条状光阑槽,所述滑动光阑安装于所述固定座,并可调节其与所述固定座的位置。
可选地,所述固定座包括底座,固定支架和锁紧把手;
所述固定支架的一端安装于所述底座,所述固定支架为条状,所述锁紧把手安装于所述固定支架;
所述滑动光阑包括光阑部和滑动槽部;
所述光阑部为平板状,设有所述条状光阑槽,所述滑动槽部安装于所述光阑部,所述滑动槽部为条状,活动套设于所述固定支架,所述滑动槽部设有条状开槽,所述锁紧把手穿过所述条状开槽,用于将所述滑动光阑固定在所述固定座。
可选地,所述激光器包括发射部,安装轴以及观察靶;
所述安装轴安装于所述发射部,用于将所述激光器安装于汽车的轮毂;
所述观察靶安装于所述发射部,所述观察靶包括观察靶面,用于显示经由所述雷达标定辅助设备反射回来的激光束位置,在所述观察靶面的中部设有发射孔。
可选地,所述横梁组件包括导轨,所述导轨安装于所述支架组件,且所述导轨水平设置,所述导轨可沿竖直方向相对于所述支架组件移动;
所述滑动件活动安装于所述导轨,并可沿所述导轨水平滑动。
可选地,所述滑动件包括板体和固持件;
所述板体包括所述第一表面和所述第二表面;
所述固持件固定安装于所述板体,所述固持件活动安装于所述导轨,使得所述滑动件可沿所述导轨水平滑动。
可选地,所述横梁组件包括两个所述导轨,两个所述导轨分别安装于所述支架组件,且两个所述导轨沿水平方向间隔预设距离相互平行设置;
所述滑动件包括四个所述固持件,每个所述固持件设有收容通道,所述收容通道水平设置;
两个所述固持件的两个所述收容通道沿第一水平线并排,另两个所述固持件的两个所述收容通道沿第二水平线并排,沿所述第一水平线并排的两个所述收容通道套设其中一个所述导轨,沿所述第二水平线并排的另两个所述收容通道套设另一个所述导轨。
可选地,所述支架组件包括支架本体和高度调节件;
至少三个所述高度调节件安装于所述支架本体的底表面,其用于调节所述支架本体整体的水平角度和所述支架本体的俯仰角度。
可选地,所述高度调节件的数量为三个,三个所述高度调节件呈等腰三角形分布,三个所述高度调节件用于配合调节所述支架本体整体的水平角度,位于等腰三角形顶角的顶点位置的所述高度调节件用于调节所述支架本体的俯仰角度。
可选地,所述支架组件包括底座支架和立杆支架,所述立杆支架的一端连接所述底座支架,所述底座支架支撑所述立杆支架;
所述横梁组件安装于所述立杆支架;
所述底座支架包括滚轮、所述支架本体和所述高度调节件;
至少三个所述滚轮安装于所述支架本体的底表面,以便于移动所述底座支架。
可选地,所述立杆支架包括升降丝杆;
所述升降丝杆沿竖直方向设置;
所述横梁组件套设于所述升降丝杆,并与所述升降丝杆螺纹配合,在所述升降丝杆绕其中心轴线转动时,所述升降丝杆可驱动所述横梁组件沿所述升降 丝杆在竖直方向移动。
可选地,所述立杆支架包括升降导轨;
所述升降导轨包括竖杆,所述竖杆沿竖直方向设置;
所述横梁组件活动安装于所述竖杆,所述竖杆用于引导所述横梁组件在竖直方向移动。
可选地,所述升降导轨包括横杆,所述横杆沿水平方向安装于所述竖杆;
所述升降丝杆的一端安装于所述横杆,所述升降丝杆的另一端安装于所述支架本体。
可选地,所述升降导轨包括横杆和底杆;
两个所述竖杆沿竖直方向平行设置,并间隔预设距离;
所述横杆沿水平方向设置,其两端分别安装于两个所述竖杆;
所述底杆固定安装于所述支架本体,每个所述竖杆远离所述横杆的一端固定安装于所述底杆;
所述升降丝杆的一端固定安装于所述横杆,所述升降丝杆的另一端固定安装于所述底杆。
可选地,所述立杆支架包括高度尺,所述高度尺沿竖直方向安装于所述竖杆,用于测量所述横梁组件沿竖直方向的移动距离。
可选地,所述横梁组件包括支撑件和所述导轨;
所述支撑件包括支撑本体和活动块;
所述活动块固定安装于所述支撑本体,并套设于所述升降丝杆,所述活动块与所述升降丝杆螺纹配合;
所述导轨沿水平方向固定安装于所述支撑本体。
可选地,所述立杆支架包括竖杆,所述竖杆沿竖直方向设置;
所述支撑件包括滑块,所述滑块固定安装于所述支撑本体,所述滑块活动安装于所述竖杆,并可沿所述竖杆滑动。
可选地,所述支撑本体的相对两侧分别延伸出两个夹持部,两个所述夹持部为长条形,沿水平方向设置,且间隔预设距离;
两个所述导轨分别对应安装于两个所述夹持部,并沿水平方向设置,且间隔预设距离。
可选地,所述横梁组件包括水平仪,用于检测所述导轨是否水平设置。
与现有技术相比较,所述标定激光器安装于所述第二表面,且所述标定激光器部分收容于所述安装通孔,使得所述标定激光器可与所述滑动件同步水平滑动,方便定位不同车型的雷达标定辅助设备,可方便实现对不同车型的车载雷达进行标定。
另外,利用所述雷达标定辅助设备、光阑以及激光器可实现所述雷达标定辅助设备的竖直面标定,所述雷达标定辅助设备即可以用于其竖直面标定,又可以用于定位雷达标定辅助设备,减少了所述车载雷达标定设备的元件数量,降低了成本,也简化标定操作。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明其中一实施例提供的一种车载雷达标定设备的立体图;
图2为图1所示的标定设备的支架装置的立体图;
图3为图2所示的支架装置的另一角度的立体图;
图4为图2所示的支架装置的主视图;
图5为图2所示的支架装置的滑动件的立体图;
图6为图5所示的滑动件的另一角度的立体图;
图7为图1所示的标定设备的雷达标定辅助设备的立体图;
图8为图1所示的标定设备的光阑的立体图;
图9为图8所示的光阑的另一角度的立体图;
图10为图1所示的标定设备的激光器的立体图;
图11为图10所示的激光器的另一角度的立体图;
图12为图1所示的标定设备对车载雷达进行标定的其中一个步骤的示意图。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语 只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参阅图1,本发明其中一实施例提供的车载雷达标定设备600包括支架装置100,雷达标定辅助设备200及标定激光器500(见图5)。
其中,雷达标定辅助设备200可以包括雷达标定板,图案板,角反射器等用于标定雷达的设备。该雷达标定辅助设备200可以挂载在支架装置100上,利用支架装置100实现对雷达标定辅助设备200的定位,使其能够对准不同种类或不用规格的车载雷达,并对车载雷达进行辅助标定。所述标定激光器500安装于所述支架装置100,所述标定激光器500用于发出激光束,以定位雷达标定辅助设备。
可选的,还可以包括光阑300,车载激光器400。所述雷达标定辅助设备200安装于所述支架装置100,并可沿水平方向或者沿竖直方向相对于所述支架装置100移动。所述支架装置100用于支承所述雷达标定辅助设备200。所述车载激光器400用于发射激光束,所述光阑300用于控制激光束是否穿过其自身,所述雷达标定辅助设备200用于反射穿过所述光阑300的激光束沿原路返回至所述车载激光器400,以实现对所述雷达标定辅助设备200的竖直面标定。
请参阅图2,所述支架装置100包括支架组件10,横梁组件20以及滑动件30。所述横梁组件20安装于所述支架组件10,可沿竖直方向相对于所述支架组件10移动。所述滑动件30安装于所述横梁组件20,可沿水平方向相对于所述横梁组件20移动。所述雷达标定辅助设备200安装于所述滑动件30,可与所述滑动件30一同沿水平方向相对于所述横梁组件20移动。
所述支架组件10包括底座支架11和立杆支架12,所述立杆支架12的一端连接底座支架11,所述底座支架11支撑所述立杆支架12。
请一并参阅图3和图4,所述底座支架11包括支架本体110,滚轮112和高度调节件114。所述支架本体110为矩形平板,可由金属材料制得,为了减轻重量,形成了多个镂空区域。所述支架本体110包括相对设置的底表面1100和上表面1102。所述支架本体110具有中轴线O1。
所述滚轮112安装于所述底表面1100,用于方便移动所述底座支架11。在本实施例中,所述滚轮112为万向移动滚轮,使得所述底座支架11可前后左右任意移动,所述滚轮112的数量为四个,分别安装于所述支架本体110的四个角。可以理解的是,在一些其它实施例中,所述支架本体110的形状可以根据实际需求变化,而不限于为矩形,例如所述支架本体110可为圆形;所述滚轮112的数量可以根据实际需求增加或减少,只要为至少三个即可。
所述高度调节件114安装于所述底表面1100,用于调节所述支架本体110的高度。在本实施例中,所述高度调节件114为调节手轮,数量为三个。三个所述调节手轮114呈等腰三角形分布,位于等腰三角形底边的两个所述调节手轮114设置于所述支架本体110的一侧,并沿所述支架本体110的中轴线O1对称设置,另一个所述调节手轮114设置于所述支架本体110的另一侧,并设置于所述支架本体110的中轴线O1上(也即设置于等腰三角形顶角的顶点位置)。三个所述调节手轮114配合可以调节所述支架本体110整体的水平角度,单独调节位于所述支架本体110的中轴线O1上的调节手轮114,可以调节所述支架本体110的俯仰角度。
可以理解的是,所述高度调节件114可为其它可调整高度的装置;所述高度调节件114的数量可根据实际需求增加,只要为至少三个即可,至少三个所述高度调节件114中的三个呈以上所述的分布方式设置。
所述立杆支架12包括升降导轨120、升降丝杆122、升降摇柄124以及高度尺126。
所述升降导轨120安装于所述支架本体110,所述升降导轨120包括竖杆1200,横杆1202和底杆1204。两个所述竖杆1200沿竖直方向平行设置,并间隔预设距离,用于引导所述横梁组件20沿竖直方向运动。所述横杆1202沿水平方向设置,其两端分别安装于两个所述竖杆1200。所述底杆1204固定安装于所述支架本体110,每个所述竖杆1200远离所述横杆1202的一端固定安装于所述底杆1204。
可以理解的是,在一些其它实施例中,所述竖杆1200的数量可以根据实际情况增加或减少,例如,所述竖杆1200的数量可为1个或3个。
所述升降丝杆122沿竖直方向固定安装于所述升降导轨120,所述升降丝杆122的一端固定安装于所述横杆1202,所述升降丝杆122的另一端固定安装于所述底杆1204。
可以理解的是,在一些其它实施例中,所述底杆1204可以省略,每个所述竖杆1200远离所述横杆1202的一端固定安装于所述支架本体110。所述升降丝杆122沿竖直方向设置,所述升降丝杆122的一端固定安装于所述横杆1202,所述升降丝杆122的另一端固定安装于所述支架本体110。
所述升降摇柄124安装于所述横杆1202,并与所述升降丝杆122连接,用于转动,从而驱动所述升降丝杆122绕其中心轴线转动。在本实施例中,所述升降摇柄124的连接杆与所述升降丝杆122垂直,并通过齿轮结构与所述升降丝杆122连接。可以理解的是,在一些其它实施例中,所述升降摇柄124的连接杆可与所述升降丝杆122同轴,所述升降摇柄124的连接杆与所述升降丝杆122直接连接;或者,所述升降摇柄124可被替换成其它用于驱动所述升降丝杆122转动的装置,例如,采用马达等。
所述高度尺126沿竖直方向安装于所述竖杆1200,所述高度尺126具有 刻度,用于测量所述横梁组件20沿竖直方向的移动距离。
请复参阅图2和图3,所述横梁组件20包括支撑件210,导轨212和水平仪214。所述支撑件210安装于所述升降导轨120,在所述升降导轨120的引导下,所述支撑件210可沿竖直方向相对于所述升降导轨120移动。所述导轨212固定安装于所述支撑件210,可与所述支撑件210一同沿竖直方向相对于所述升降导轨120移动。所述滑动件30安装于所述导轨212,可沿水平方向相对于所述导轨212移动。
所述支撑件210包括支撑本体2102,活动块2104以及滑块2106。
所述支撑本体2102大致为板状,其相对两侧分别延伸出两个夹持部2108,两个所述夹持部2108为长条形,沿水平方向相互平行设置且间隔预设距离。
所述活动块2104固定安装于所述支撑本体2102,并套设于所述升降丝杆122。所述活动块2104与所述升降丝杆122螺纹配合,在所述升降丝杆122绕其中心轴线转动时,可驱动所述活动块2104沿所述升降丝杆122在竖直方向移动,从而带动所述横梁组件20沿竖直方向移动。所述活动块2104和所述夹持部2108分别位于所述支撑本体2102的相对两侧。
所述滑块2106固定安装于所述支撑本体2102,并与所述活动块2104位于所述支撑本体2102的同一侧。每个所述竖杆1200对应安装至少一个所述滑块2106,每个所述滑块2106活动安装于与其对应的所述竖杆1200,并可沿与其对应的所述竖杆1200滑动。在本实施例中,每个所述竖杆1200对应安装两个所述滑块2106。可以理解的是,在一些其它实施例中,每个所述竖杆1200对应安装的所述滑块2106的数量可根据实际需求增加或减少,例如减少至1个,或者增加至3个。
两个所述导轨212分别对应安装于两个所述夹持部2108,并沿水平方向间隔预设距离相互平行设置。在所述导轨212的两边具有以其中心为零点,分别向两边延展的水平刻度尺2120,也即所述水平刻度尺2120的刻度值以所述导轨212的中心为零点,分别向所述导轨212两边逐渐增大,用于方便所述滑动件30的位置定位。所述导轨212的中轴线O2与所述支架本体110的中轴线O1位于同一竖直平面。可以理解的是,在一些其它实施例中,所述导轨212的数量可以根据实际需求增加或减少,例如,减少至1个或增加至3个;所述导轨212也可以通过其他任何合适的方式固定安装于所述支撑件210,例如,所述夹持部2108省略,所述导轨212直接焊接于所述支撑本体2102。
所述水平仪214安装于一个所述夹持部2108的上侧,用于检测所述夹持部2108是否位于水平设置,从而判断所述导轨212是否水平设置。可以理解的是,在一些其它实施例中,所述水平仪214也可安装于所述导轨212,或者安装于所述横梁组件20的其它部分,只要能满足用于检测所述导轨212是否水平设置即可。
所述滑动件30活动安装于所述导轨212,其可沿所述导轨212在水平方 向移动。
请一并参阅图5和图6,所述滑动件30包括板体302和固持件304,所述固持件304固定安装于所述板体302,所述固持件304用于活动安装于所述导轨212。
所述板体302为矩形板状,其包括相对设置的第一表面3022和第二表面3024。所述第一表面3022用于朝向待标定汽车的车载雷达,所述第一表面3022设有若干挂载点3025,用于安装所述雷达标定辅助设备200或其它标定辅助设备。所述板体302开设有安装通孔3026,所述安装通孔3026位于所述板体302的中部,且所述安装通孔3026贯穿所述第一表面3022和所述第二表面3024。所述安装通孔3026用于安装所述标定激光器500。
所述固持件304固定安装于所述第二表面3024,所述固持件304的数量为四个。每个所述固持件304设有收容通道3040,所述收容通道3040水平设置,用于收容所述导轨212。其中,两个所述固持件304的两个所述收容通道3040沿第一水平线并排,另两个所述固持件304的两个所述收容通道3040沿第二水平线并排。沿所述第一水平线并排的两个所述收容通道3040套设其中一个所述导轨212,沿所述第二水平线并排的另两个所述收容通道3040套设另一个所述导轨212,可使得所述滑动件30平稳地沿所述导轨212水平滑动。
可以理解的是,在一些其它实施例中,所述固持件304的数量可根据实际需求增加或减少,只要至少等于所述导轨212的数量即可,例如,所述导轨212的数量为两个,所述固持件304的数量为两个,其中一个所述固持件304套设于一个所述导轨212,另一个所述固持件304套设于另一个所述导轨212;又例如,所述导轨212的数量为一个,所述固持件304的数量也为一个,所述固持件304套设于所述导轨。
可以理解的是,在一些其它实施例中,所述滑动件30也可通过其它方式活动安装于所述导轨212,只要所述滑动件30可沿所述导轨212水平滑动即可,例如,所述导轨212设有水平设置的导向槽,而所述滑动件30设有滑动块,所述滑动块收容于所述导向槽,且可沿所述导向槽滑动。
可以理解地,在一些实施例中,支架可以包括其他结构,其可以实现雷达标定辅助设备200的位置变化即可。在一些支架中,滑动件30可以仅沿竖直方向移动,在一些支架中,滑动件30高度固定,可以仅沿水平方向移动。
本申请中的实施例不对支架的底座或其他结构进行具体限定,其可实现支撑雷达标定辅助设备200即可。进一步地,其可以实现对雷达标定辅助设备200的位置进行调节。
一些实施例中,所述标定激光器500固定安装于所述第二表面3024,且所述标定激光器500可以基于安装通孔3026以及标定激光器500自身的大小,全部或部分收容于所述安装通孔3026。所述标定激光器500包括激光出射孔502,所述激光出射孔502从所述安装通孔3026露出,用于朝向待标定汽车的车载雷达发射激光束。在一些实施例中,该激光出射孔502可以位于滑动件 30的中心点,从而其发射的激光束可以经过滑动件30的中心点。
在一些实施例中,标定激光器500的位置可以活动安装在滑动件30中,其可以根据指定的发射位置调节标定激光器500在滑动件30上的位置。请参阅图7,其示出一种雷达标定辅助设备为雷达标定板的情况。所述雷达标定辅助设备200呈矩形平板状,包括光反射面,用于反射穿过所述光阑300的激光束至所述车载激光器400。所述雷达标定辅助设备200的中部具有通孔202。由所述激光出射孔502发出的激光穿过所述通孔202以至待标定的车载雷达。所述雷达标定辅助设备200包括基板,所述基板的一表面涂覆光反射材料,用于反射穿过所述光阑300的激光束至所述车载激光器400,例如,所述基板的表面涂覆银材料。所述基板可由重量轻的材料制得,例如,塑胶材料,铝合金或镁合金等轻质金属材料。可以理解的是,在一些其它实施例中,所述基板可由能反射光的材料制得,而不需要涂覆光反射材料。
可以理解地,上述情况仅为一种雷达标定辅助设备的特定应用场景。雷达标定辅助设备仅需实现能够反射雷达波,以实现对车载雷达进行标定即可。对于雷达标定辅助设备的其他附加功能,本申请实施例不予限定。
雷达标定辅助设备200可以挂载在滑动件30上,其可以随滑动件30一起运动。雷达标定辅助设备200可以在利用标定激光器500完成对滑动件30的定位后,挂载在滑动件30上,在此情况下,雷达标定辅助设备200可以无需设置通孔。或者,雷达标定辅助设备可以在支架相对于车载雷达调节位置之前,挂载在滑动件30上,在此情况下,雷达标定辅助设备200可以设置通孔,以允许标定激光器500能够发出激光束。
雷达标定辅助设备200于滑动件30的连接方式仅需满足雷达标定辅助设备200可以随滑动件30运动即可,对其具体的实现结构不予限定。
对于对雷达标定辅助设备200或滑动件30进行定位,可以通过两种方式实现。
第一种,标定激光器500将激光束发射至待标定汽车的车载雷达上,以实现对雷达标定辅助设备200的定位。例如,标定激光器500将激光束发射至车载雷达上,其可发送至车载雷达面向支架装置100的一面的预设位置上。或者,发送至其他能够对准车载雷达的位置上,在此不予限定。例如,标定激光器500位于滑动件30的中心部,其发射的激光束经过滑动件30的中心点,通过调节横梁组件的高度和滑动件相对于横梁组件的水平位置,使发射的激光束落在车载雷达的上述面的中心点上,即实现对雷达标定辅助设备200的定位,使其对准车载雷达,以进一步利用雷达标定辅助设备200对车载雷达实现算法或软件校准。
进一步地,还可以利用辅助定位装置,使雷达标定辅助设备200的定位更加准确。辅助定位装置能够指导激光束落在车载雷达上的位置,使其能够准确到达车载雷达上的预设位置,如上述中心点上。一些实施例中,辅助定位装置可以为车载雷达的一部分,其不影响车载雷达发射雷达波,并能够指示车载雷 达在标定过程中的预设位置。另一些实施例中,辅助定位装置可拆卸地安装于车载雷达上,当需要对雷达标定辅助设备200进行定位时,辅助定位装置覆盖于车载雷达面向支架装置的面上,其上可以设置有预设位置的标识,如刻度尺,标识点,通孔等,能够使激光束准确落到预设位置的标识上。当对雷达标定辅助设备200的定位完成后,可以移除雷达标定辅助设备200,进而可以利用定位后的雷达标定辅助设备200对车载雷达进行标定。
第二种,标定激光器500向车载雷达发送激光束,车载雷达可以利用自身或另外配置的反射镜,反射该激光束,使该激光束反射回滑动件30的预设位置上,进而对雷达标定辅助设备200进行定位。例如,可以利用横梁组件和滑动件调节雷达标定辅助设备200的位置,使反射后的激光束回落至标定激光器500的发射点,即实现对雷达标定辅助设备200的定位。
上述两种方式中,还可以在雷达标定辅助设备200调节位置的过程中,确定激光束落在的位置与预设位置的落差,并基于该落差提示操作者。
进一步地,在对雷达标定辅助设备200进行位置调节之前,可以先摆正支架装置100的位置,例如,调节支架装置100相对于车辆的距离,使支架装置100平行拜访于车前,调节支架装置100的俯仰角等。本申请实施例中描述的调节支架的方式仅为示例性地,对于任何一种支架调节方式,均落入本申请实施例的范围中。例如,当雷达标定辅助设备200为雷达标定板等对其俯仰角有限制的装置时,可以在调节雷达标定辅助设备200的俯仰角后,再调节雷达标定辅助设备200的位置。或者,先调节雷达标定辅助设备200的位置,再调节雷达标定辅助设备200的俯仰角。在此不予限定。请一并参阅图8和图9,所述光阑300包括固定座310和滑动光阑320。
所述固定座310包括底座312,固定支架314以及锁紧把手316。所述底座312为矩形平板,所述固定支架314的一端安装于所述底座312的中部,所述固定支架314垂直于所述底座312。所述固定支架314为条状。所述锁紧把手316安装于所述固定支架314。
所述滑动光阑320包括光阑部322和滑动槽部324。所述光阑部322大致为平板状,设有条状光阑槽3222,用于允许激光束穿过。所述光阑槽3222的宽度比所述车载激光器400发射的激光点直径略小,以便于检测激光束是否正好通过光阑槽3222。所述滑动槽部324安装于光阑部322,其为条状,套设于所述固定支架314。所述滑动槽部324可相对于所述固定支架314滑动。所述滑动槽部324设有条状开槽3240,所述锁紧把手316穿过所述开槽3240,用于将所述滑动光阑320稳定的固定在所述固定座310。
请一并参阅图10和图11,所述车载激光器400为轮毂激光器,其包括发射部410,安装轴420以及观察靶430。所述发射部410用于发射激光束,所述发射部410包括开关4102,用于开启或关闭所述发射部410。所述安装轴420安装于所述发射部410,用于将所述轮毂车载激光器400安装于汽车的轮 毂。所述观察靶430安装于所述发射部410。所述观察靶430为矩形平板,包括观察靶面4300,用于显示经由所述雷达标定辅助设备200反射回来的激光位置。在所述观察靶面4300的中部设有发射孔4302,用于允许激光束发射出去。
请参阅图12,在对待标定汽车的车载雷达进行标定的第一步骤中,所述汽车800水平设置(也即所述汽车800停放在一水平面),通过所述滚轮112将所述支架装置100移动到待标定汽车800前部,距离在1米左右,使所述导轨212与汽车800车轴大致相平行。观察所述水平仪214,调节所述高度调节件114,使所述导轨212水平设置。将所述雷达标定辅助设备200安装于所述滑动件30,此时所述雷达标定辅助设备200平行于所述板体302,所述激光出射孔502与所述通孔202对齐。将所述雷达标定辅助设备200和所述滑动件30沿所述导轨212移动至待标定汽车800的一侧。在待标定汽车800的一个后轮安装好轮毂夹,并安装所述车载激光器400,打开所述车载激光器400,使所述车载激光器400发出的激光束照射在所述雷达标定辅助设备200的光反射面上。取所述光阑300,并将所述光阑300放置在所述车载激光器400与所述雷达标定辅助设备200的中间,并使所述光阑部322与激光束垂直。将所述光阑槽3222调节与所述车载激光器400的发射孔4302高度一致。调节所述车载激光器400的出射角度,使所述车载激光器400沿水平方向发出激光束,并且所述车载激光器400发出的激光束平行于待标定汽车800的中轴面,适当移动光阑300的位置,使激光束能够从所述光阑槽3222正中通过。根据实际情况,通过滑动所述滑动件30和/或调节所述导轨212的高度,从而调节所述雷达标定辅助设备200的位置,使此时的激光束能够照射到所述雷达标定辅助设备200上。观察反射回的激光点位置,移动所述支架装置100和调节所述高度调节件114,使所述雷达标定辅助设备200反射的激光束正好能沿原路返回,投射到所述车载激光器400的发射孔4302。此时,完成对所述雷达标定辅助设备200的竖直面标定,所述导轨212垂直于所述汽车800的中轴面,所述雷达标定辅助设备200和所述板体302竖直设置,并且也垂直于所述汽车800的中轴面。
在本实施例中,所述汽车800水平设置时,所述汽车800的中轴面竖直设置,并且所述汽车800相对于所述中轴面对称。
在对车载雷达进行标定的第二步骤中,打开所述标定激光器500,从所述激光出射孔502发射出的激光束通过所述雷达标定辅助设备200的通孔202。调节所述导轨212的高度和水平滑动所述滑动件30,使从所述激光出射孔502出射的激光束照射在车载雷达表面的正中间,关闭所述标定激光器500,至此,完成了雷达标定辅助设备的定位。
在对车载雷达进行标定的第三步骤中,根据不同的雷达标定需求,可以挂载不同雷达标定辅助设备于所述滑动件30,以对所述待标定汽车800的车载雷达进行标定。
可以理解的是,在一些其它实施例中,可以使用现有技术中的竖直面标定装置对所述雷达标定辅助设备200和所述板体302进行竖直面标定,使得所述雷达标定辅助设备200和所述板体302垂直于汽车的中轴面,将所述雷达标定辅助设备200和所述标定激光器500移动至车载雷达前方,利用所述标定激光器500发出激光束穿过所述雷达标定辅助设备200的通孔202,可对雷达标定辅助设备进行定位。本领域所属技术人员应明白,若利用现有技术中的竖直面标定装置对所述雷达标定辅助设备200和所述板体302进行竖直面标定,不需要所述雷达标定辅助设备200反射光束,则所述雷达标定辅助设备200不需要光反射面,所述雷达标定辅助设备200仅需为板状,并具有所述通孔202即可,所述雷达标定辅助设备200可为塑料板或铝板等。
在本实施例中,所述标定激光器500安装于所述第二表面3024,且所述标定激光器500全部或部分收容于所述安装通孔3026,使得所述标定激光器500可与所述滑动件30同步水平滑动,方便定位不同车型的雷达标定辅助设备,可方便实现对不同车型的车载雷达进行标定。
另外,利用所述雷达标定辅助设备200、光阑300以及车载激光器400可实现所述雷达标定辅助设备200和所述板体302的竖直面标定,所述雷达标定辅助设备200即可以用于其竖直面标定,又可以用于定位雷达标定辅助设备,减少了所述车载雷达标定设备600的元件数量,降低了成本,也简化标定操作。
而且,用于挂载雷达标定辅助设备的所述滑动件30可沿所述导轨212水平滑动,在一辆汽车存在多个车载雷达时,完成一个车载雷达的标定后,可滑动所述滑动件30至另一车载雷达的前方,以对另一车载雷达进行标定操作,不需要再对所述导轨212进行水平标定,可方便对一辆汽车的多个车载雷达进行标定。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (24)

  1. 一种车载雷达标定设备(600),其特征在于,包括:
    支架组件(10);
    横梁组件(20),其安装于所述支架组件(10),所述横梁组件(20)可沿竖直方向相对于所述支架组件(10)移动;
    滑动件(30),其安装于所述横梁组件(20),所述滑动件(30)可沿水平方向相对于所述横梁组件(20)移动,所述滑动件(30)包括相对设置的第一表面(3022)和第二表面(3024),所述滑动件(30)设有安装通孔(3026),所述安装通孔(3026)贯穿所述第一表面(3022)和所述第二表面(3024);
    标定激光器(500),所述标定激光器(500)收容于所述安装通孔(3026),所述标定激光器(500)用于朝待标定汽车发出激光束。
  2. 根据权利要求1所述的车载雷达标定设备(600),其特征在于,包括雷达标定辅助设备(200),其挂载于所述滑动件(30),所述雷达标定辅助设备(200)可与所述滑动件(30)一同沿水平方向相对于所述横梁组件(20)移动,所述雷达标定辅助设备(200)包括通孔(202);
    所述标定激光器(500),用于发出所述激光束穿过所述通孔(202),以对所述雷达标定辅助设备(200)进行定位。
  3. 根据权利要求2所述的车载雷达标定设备(600),其特征在于,所述标定激光器(500)用于通过调节所述滑动件(30)相对于所述支架组件(10)的位置,将所述激光束发射至所述待标定汽车的车载雷达上,以对所述雷达标定辅助设备(200)进行定位,使所述雷达标定辅助设备(200)定位至相对于所述车载雷达的预设位置上。
  4. 根据权利要求3所述的车载雷达标定设备(600),其特征在于,所述标定激光器(500)用于将所述激光束发射至所述车载雷达朝向所述车载雷达标定设备(600)的一面的预设位置上。
  5. 根据权利要求4所述的车载雷达标定设备(600),其特征在于,还包括:
    辅助定位装置,用于辅助所述标定激光器(500)将所述激光束发射至所述车载雷达朝向所述车载雷达标定设备(600)的一面的预设位置上。
  6. 根据权利要求5所述的车载雷达标定设备(600),其特征在于,所述辅助定位装置可拆卸的覆盖于所述车载雷达的所述面上。
  7. 根据权利要求6所述的车载雷达标定设备(600),其特征在于,所述辅助定位装置上设置有所述预设位置的标识。
  8. 根据权利要求3所述的车载雷达标定设备(600),其特征在于,所述标定激光器(500)用于将所述激光束发射至所述待标定汽车的车载雷达上,以使所述激光束被所述车载雷达反射至所述雷达标定辅助设备的预设位置上。
  9. 根据权利要求1-8任一项所述的车载雷达标定设备(600),其特征在于,所述标定激光器(500)位于所述滑动件(30)的中心部,以使所述标定激光器(500)发出的激光束经过所述滑动件(30)的中心点。
  10. 根据权利要求1至9任一项所述的车载雷达标定设备(600),其特征在于,所述横梁组件(20)包括导轨(212),所述导轨(212)安装于所述支架组件(10),且所述导轨(212)水平设置,所述导轨(212)可沿竖直方向相对于所述支架组件(10)移动;
    所述滑动件(30)活动安装于所述导轨(212),并可沿所述导轨(212)水平滑动。
  11. 根据权利要求10所述的车载雷达标定设备(600),其特征在于,所述滑动件(30)包括板体(302)和固持件(304);
    所述板体(302)包括所述第一表面(3022)和所述第二表面(3024);
    所述固持件(304)固定安装于所述板体(302),所述固持件(304)活动 安装于所述导轨(212),使得所述滑动件(30)可沿所述导轨(212)水平滑动。
  12. 根据权利要求11所述的车载雷达标定设备(600),其特征在于,所述横梁组件(20)包括两个所述导轨(212),两个所述导轨(212)分别安装于所述支架组件(10),且两个所述导轨(212)沿水平方向间隔预设距离相互平行设置;
    所述滑动件(30)包括四个所述固持件(304),每个所述固持件(304)设有收容通道(3040),所述收容通道(3040)水平设置;
    两个所述固持件(304)的两个所述收容通道(3040)沿第一水平线并排,另两个所述固持件(304)的两个所述收容通道(3040)沿第二水平线并排,沿所述第一水平线并排的两个所述收容通道(3040)套设其中一个所述导轨(212),沿所述第二水平线并排的另两个所述收容通道(3040)套设另一个所述导轨(212)。
  13. 根据权利要求10至12任一项所述的车载雷达标定设备(600),其特征在于,所述支架组件(10)包括支架本体(110)和高度调节件(114);
    至少三个所述高度调节件(114)安装于所述支架本体(110)的底表面(1100),其用于调节所述支架本体(110)整体的水平角度和所述支架本体(110)的俯仰角度。
  14. 根据权利要求13所述的车载雷达标定设备(600),其特征在于,所述高度调节件(114)的数量为三个,三个所述高度调节件(114)呈等腰三角形分布,三个所述高度调节件(114)用于配合调节所述支架本体(110)整体的水平角度,位于等腰三角形顶角的顶点位置的所述高度调节件(114)用于调节所述支架本体(110)的俯仰角度。
  15. 根据权利要求13或14所述的车载雷达标定设备(600),其特征在于,所述支架组件(10)包括底座支架(11)和立杆支架(12),所述立杆支架(12)的一端连接所述底座支架(11),所述底座支架(11)支撑所述立杆支架(12);
    所述横梁组件(20)安装于所述立杆支架(12);
    所述底座支架(11)包括滚轮(112)、所述支架本体(110)和所述高度调节件(114);
    至少三个所述滚轮(112)安装于所述支架本体(110)的底表面,以便于移动所述底座支架(11)。
  16. 根据权利要求15所述的车载雷达标定设备(600),其特征在于,所述立杆支架(12)包括升降丝杆(122);
    所述升降丝杆(122)沿竖直方向设置;
    所述横梁组件(20)套设于所述升降丝杆(122),并与所述升降丝杆(122)螺纹配合,在所述升降丝杆(122)绕其中心轴线转动时,所述升降丝杆(122)可驱动所述横梁组件(20)沿所述升降丝杆(122)在竖直方向移动。
  17. 根据权利要求16所述的车载雷达标定设备(600),其特征在于,所述立杆支架(12)包括升降导轨(120);
    所述升降导轨(120)包括竖杆(1200),所述竖杆(1200)沿竖直方向设置;
    所述横梁组件(20)活动安装于所述竖杆(1200),所述竖杆(1200)用于引导所述横梁组件(20)在竖直方向移动。
  18. 根据权利要求17所述的车载雷达标定设备(600),其特征在于,所述升降导轨(120)包括横杆(1202),所述横杆(1202)沿水平方向安装于所述竖杆(1200);
    所述升降丝杆(122)的一端安装于所述横杆(1202),所述升降丝杆(122)的另一端安装于所述支架本体(110)。
  19. 根据权利要求17所述的车载雷达标定设备(600),其特征在于,所述升降导轨(120)包括横杆(1202)和底杆(1204);
    两个所述竖杆(1200)沿竖直方向平行设置,并间隔预设距离;
    所述横杆(1202)沿水平方向设置,其两端分别安装于两个所述竖杆 (1200);
    所述底杆(1204)固定安装于所述支架本体(110),每个所述竖杆(1200)远离所述横杆(1202)的一端固定安装于所述底杆(1204);
    所述升降丝杆(122)的一端固定安装于所述横杆(1202),所述升降丝杆(122)的另一端固定安装于所述底杆(1204)。
  20. 根据权利要求17至19任一项所述的车载雷达标定设备(600),其特征在于,所述立杆支架(12)包括高度尺(126),所述高度尺(126)沿竖直方向安装于所述竖杆(1200),用于测量所述横梁组件(20)沿竖直方向的移动距离。
  21. 根据权利要求16所述的车载雷达标定设备(600),其特征在于,所述横梁组件(20)包括支撑件(210)和所述导轨(212);
    所述支撑件(210)包括支撑本体(2102)和活动块(2104);
    所述活动块(2104)固定安装于所述支撑本体(2102),并套设于所述升降丝杆(122),所述活动块(2104)与所述升降丝杆(122)螺纹配合;
    所述导轨(212)沿水平方向固定安装于所述支撑本体(2102)。
  22. 根据权利要求21所述的车载雷达标定设备(600),其特征在于,所述立杆支架(12)包括竖杆(1200),所述竖杆(1200)沿竖直方向设置;
    所述支撑件(210)包括滑块(2106),所述滑块(2106)固定安装于所述支撑本体(2102),所述滑块(2106)活动安装于所述竖杆(1200),并可沿所述竖杆(1200)滑动。
  23. 根据权利要求21或22所述的车载雷达标定设备(600),其特征在于,
    所述支撑本体(2102)的相对两侧分别延伸出两个夹持部(2108),两个所述夹持部(2108)为长条形,沿水平方向设置,且间隔预设距离;
    两个所述导轨(212)分别对应安装于两个所述夹持部(2108),并沿水平方向设置,且间隔预设距离。
  24. 根据权利要求1至23任一项所述的车载雷达标定设备(600),其特征在于,
    所述横梁组件(20)包括水平仪(216),用于检测所述导轨(212)是否水平设置。
PCT/CN2019/077147 2018-03-07 2019-03-06 车载雷达标定设备 WO2019170100A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/012,903 US10921426B2 (en) 2018-03-07 2020-09-04 Calibration device of on-board radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810187748.5A CN108318870B (zh) 2018-03-07 2018-03-07 一种车载雷达标定设备
CN201810187748.5 2018-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/012,903 Continuation US10921426B2 (en) 2018-03-07 2020-09-04 Calibration device of on-board radar

Publications (1)

Publication Number Publication Date
WO2019170100A1 true WO2019170100A1 (zh) 2019-09-12

Family

ID=62902061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077147 WO2019170100A1 (zh) 2018-03-07 2019-03-06 车载雷达标定设备

Country Status (3)

Country Link
US (1) US10921426B2 (zh)
CN (1) CN108318870B (zh)
WO (1) WO2019170100A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112433204A (zh) * 2020-11-10 2021-03-02 山东鼎目机器人科技有限公司 一种带有独立止停机构的道路检测雷达车
US20220003578A1 (en) * 2019-03-20 2022-01-06 Autel Intelligent Technology Corp., Ltd. Calibration bracket

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318870B (zh) * 2018-03-07 2024-01-30 深圳市道通科技股份有限公司 一种车载雷达标定设备
CN108581982A (zh) * 2018-04-20 2018-09-28 深圳市道通科技股份有限公司 一种滑动装置及汽车标定设备
CN108345321A (zh) * 2018-04-20 2018-07-31 深圳市道通科技股份有限公司 位置调节装置及汽车标定设备
DE102018215321A1 (de) * 2018-09-10 2020-03-12 Robert Bosch Gmbh Sensorkalibrierungsvorrichtung zum Einstellen von Fahrzeugsensoren eines Fahrerassistenzsystems
EP3629053B1 (en) * 2018-09-28 2020-10-21 NEXION S.p.A. System for calibrating a vehicle camera
US11313946B2 (en) * 2018-11-12 2022-04-26 Hunter Engineering Company Method and apparatus for identification of calibration targets during vehicle radar system service procedures
IT201900001167A1 (it) * 2019-01-25 2020-07-25 Nexion Spa Apparato per calibrare un sensore di un sistema di assistenza avanzata alla guida di un veicolo
WO2020156461A1 (zh) * 2019-02-01 2020-08-06 深圳市道通科技股份有限公司 一种标定系统及其标定支架
CN210038154U (zh) * 2019-02-01 2020-02-07 深圳市道通合创软件开发有限公司 一种标定系统及其标定支架
WO2020156462A1 (zh) * 2019-02-01 2020-08-06 深圳市道通科技股份有限公司 一种确定标定支架相对于待测车辆的放置点的方法
EP3800484A4 (en) 2019-02-01 2021-09-22 Autel Intelligent Technology Corp. Ltd. CALIBRATION SYSTEM AND ASSOCIATED CALIBRATION RACK
CN305366161S (zh) * 2019-03-08 2019-09-27
CN111721271B (zh) * 2019-03-20 2022-11-08 深圳市道通科技股份有限公司 一种将校准设备对准车辆的方法及辅助标靶
WO2020187318A1 (zh) * 2019-03-20 2020-09-24 深圳市道通科技股份有限公司 一种将校准设备对准车辆的方法及辅助标靶
USD968248S1 (en) * 2019-04-26 2022-11-01 Autel Intelligent Technology Corp., Ltd. Calibration support for a vehicle
USD931745S1 (en) * 2019-04-26 2021-09-28 Autel Intelligent Technology Corp., Ltd. Target board used with a laser instrument
USD934090S1 (en) * 2019-04-28 2021-10-26 Autel Intelligent Technology Corp., Ltd. Calibrator for lane departure warning system of a vehicle
USD934091S1 (en) * 2019-04-28 2021-10-26 Autel Intelligent Technology Corp., Ltd. Laser instrument
US11538188B1 (en) * 2019-06-05 2022-12-27 Hunter Engineering Company Methods for spatial calibration of vehicle ADAS service system
CN110542376B (zh) * 2019-06-12 2024-03-08 烟台大学 一种用于定位adas标定目标板放置位置的装置和定位方法
CN112180333A (zh) * 2019-07-05 2021-01-05 深圳市道通科技股份有限公司 一种标定设备
USD956586S1 (en) * 2019-08-26 2022-07-05 Autel Intelligent Technology Corp., Ltd. Line laser
USD937107S1 (en) * 2019-08-26 2021-11-30 Autel Intelligent Technology Corp., Ltd. Target board
USD954479S1 (en) * 2019-08-26 2022-06-14 Autel Intelligent Technology Corp., Ltd. Calibration support
USD981883S1 (en) * 2019-08-27 2023-03-28 Autel Intelligent Technology Corp., Ltd. Calibration support
USD935926S1 (en) * 2019-10-28 2021-11-16 Autel Intelligent Technology Corp., Ltd. Calibration support for a vehicle
USD942880S1 (en) * 2019-10-30 2022-02-08 Autel Intelligent Technology Corp., Ltd. Calibration apparatus
CN111239711A (zh) * 2019-12-10 2020-06-05 西南技术物理研究所 一种激光三维成像雷达自动化标定系统
CN110987156A (zh) * 2019-12-18 2020-04-10 南京拓控信息科技股份有限公司 一种高速车辆外形尺寸测量系统标定装置
CN111239701B (zh) * 2020-01-23 2023-12-22 铁将军汽车电子股份有限公司 车载距离探测装置的角度校准方法
CN111457226B (zh) * 2020-04-01 2024-07-02 深圳市道通科技股份有限公司 一种标定支架及应用于该标定支架的标定元件的定位方法
CN111830474B (zh) * 2020-07-23 2023-04-21 烟台开发区海德科技有限公司 汽车后雷达标定装置的定位装置及方法
USD977351S1 (en) * 2020-09-11 2023-02-07 Autel Intelligent Technology Corp., Ltd. Vehicle calibrating and aligning apparatus
USD981884S1 (en) * 2020-09-11 2023-03-28 Autel Intelligent Technology Corp., Ltd. Vehicle calibrating and aligning apparatus
CN112407106B (zh) * 2020-11-20 2022-05-17 苏州智加科技有限公司 分体式双目摄像头的安装方法及装置
CN112987115B (zh) * 2021-02-04 2022-07-19 山东省国土测绘院 一种用于三维探地雷达的数据展示设备
USD1032381S1 (en) * 2021-02-08 2024-06-25 Autel Intelligent Technology Corp., Ltd. Calibration board for head up display of vehicle
USD1008830S1 (en) * 2021-02-08 2023-12-26 Autel Intelligent Technology Corp., Ltd. Radar calibration apparatus
CN115144824A (zh) * 2021-03-30 2022-10-04 华为技术有限公司 一种雷达角度标定方法及相关装置
TWI761203B (zh) * 2021-05-06 2022-04-11 同致電子企業股份有限公司 車用雷達輔助治具、車用雷達安裝方法及車用雷達測試方法
USD1000969S1 (en) * 2021-06-10 2023-10-10 Autel Intelligent Technology Corp., Ltd. Calibration device
USD1000988S1 (en) * 2021-06-10 2023-10-10 Autel Intelligent Technology Corp., Ltd. Calibration device
US11933911B2 (en) * 2021-08-19 2024-03-19 Aptiv Technologies AG Radar system calibration with bistatic sidelobe compensation
USD1026695S1 (en) * 2021-11-12 2024-05-14 Autel Intelligent Technology Corp., Ltd. Accessory for calibrator
USD1000970S1 (en) * 2022-01-24 2023-10-10 Autel Intelligent Technology Corp., Ltd. Calibration device
USD1000971S1 (en) * 2022-03-10 2023-10-10 Autel Intelligent Technology Corp., Ltd. Calibration device
USD1000972S1 (en) * 2022-03-10 2023-10-10 Autel Intelligent Technology Corp., Ltd. Calibration device
CN118151129A (zh) * 2022-11-30 2024-06-07 安徽蔚来智驾科技有限公司 标定靶标装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091667A (zh) * 2013-01-10 2013-05-08 清华大学 一种车载雷达标定装置及标定方法
WO2017016541A1 (de) * 2015-07-29 2017-02-02 Hella Gutmann Solutions GmbH Verfahren und vorrichtung zur kalibrierung von assistenzsystemen von fahrzeugen
CN106405526A (zh) * 2016-09-14 2017-02-15 深圳科澳汽车科技有限公司 一种acc标定架
CN107449461A (zh) * 2017-09-29 2017-12-08 深圳市道通科技股份有限公司 辅助标定设备
CN107678004A (zh) * 2017-10-20 2018-02-09 深圳市道通科技股份有限公司 汽车盲区雷达标定设备
CN108318870A (zh) * 2018-03-07 2018-07-24 深圳市道通科技股份有限公司 一种车载雷达标定设备

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951551A (en) * 1974-10-07 1976-04-20 American Tatra, Inc. Apparatus for testing the front wheel alignment of automotive vehicles
US4095902A (en) * 1976-03-01 1978-06-20 Applied Power Inc. Automobile wheel alignment device and method
US4134680A (en) * 1977-02-07 1979-01-16 Hunter Engineering Company Vehicle headlight testing apparatus
US4249824A (en) * 1978-06-08 1981-02-10 Fmc Corporation Apparatus for measuring wheel alignment of motor vehicles
US4630379A (en) * 1983-09-02 1986-12-23 Chart Industries Limited Laser gauging system and component parts therefor
US4615618A (en) * 1984-06-21 1986-10-07 Jvi Laser Systems Inc. Apparatus for determining the relationship of vehicle thrust line, and body center line for use in wheel alignment
US5154386A (en) * 1991-09-16 1992-10-13 Gordon Heck Pivotal mount for a radome
US5505000A (en) * 1994-08-30 1996-04-09 Hein-Werner Corporation Battery powered laser and mount system
IT1275249B (it) * 1995-02-22 1997-07-31 Micro Italiana Spa Dispositivo proiettore di uno o piu' fasci piani di raggi laser divergenti autolivellante a gravita' per la proiezione di una o piu' rette orizzontali e/o verticali su corpi del tipo parete o simili
JP3047856B2 (ja) * 1997-05-12 2000-06-05 日本電気株式会社 アンテナ方向調整装置
US7065462B2 (en) * 1998-07-24 2006-06-20 Merilab, Inc. Vehicle wheel alignment by rotating vision sensor
US6480172B1 (en) * 1999-12-20 2002-11-12 Bellsouth Intellectual Property Corporation Adjustable antenna mounting apparatus
US6498959B1 (en) * 2000-01-19 2002-12-24 Hunter Engineering Company Apparatus and method for controlling a mechanism for positioning video cameras for use in measuring vehicle wheel alignment
DE10023328B4 (de) * 2000-05-12 2014-06-12 Robert Bosch Gmbh Justiereinrichtung für ein einen Reflektor aufweisendes optisches Einstellgerät
US6484987B2 (en) * 2000-12-29 2002-11-26 Bellsouth Intellectual Property Corporation Mounting bracket
US7062861B2 (en) * 2001-06-28 2006-06-20 Snap-On Incorporated Self-calibrating position determination system and user interface
JP3632013B2 (ja) * 2002-06-04 2005-03-23 本田技研工業株式会社 対象物検知装置の検知軸調整方法
US7121011B2 (en) * 2003-05-09 2006-10-17 Snap-On Incorporated Camera technique for adaptive cruise control (ACC) sensor adjustment
US6809806B1 (en) * 2003-05-27 2004-10-26 International Truck Intellectual Property Company, Llc Apparatus and method for verifying the beam axis of front-looking land vehicle transceiver antenna
US7376492B2 (en) * 2003-12-04 2008-05-20 Matrix Electronic Measuring, L.P. System for measuring points on a vehicle during damage repair
US7337650B1 (en) * 2004-11-09 2008-03-04 Medius Inc. System and method for aligning sensors on a vehicle
US7424387B1 (en) * 2007-04-18 2008-09-09 Snap-On Incorporated Method for use with an optical aligner system for positioning a fixture relative to a vehicle
ITRE20070116A1 (it) * 2007-10-29 2009-04-30 Corghi Spa '' dispositivo e metodo per la verifica dell'assetto di un veicolo ''
US7685725B2 (en) * 2007-11-02 2010-03-30 Raytheon Company Apparatus and method for theodolite support
US8345953B2 (en) * 2008-05-22 2013-01-01 Matrix Electronic Measuring Properties, Llc Stereoscopic measurement system and method
US8998155B2 (en) * 2008-10-30 2015-04-07 Erico International Corporation Quick threaded rod locking devices and method
IT1395807B1 (it) * 2009-09-25 2012-10-26 Corghi Spa Apparato e procedimento per la verifica dell'assetto di un veicolo.
JP2011226810A (ja) * 2010-04-15 2011-11-10 Bosch Corp 車載レーダ装置の取り付け角度調整のための支援装置及び車載レーダ装置の取り付け角度調整方法
DE102010062696A1 (de) * 2010-12-09 2012-06-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Kalibrieren und Justieren eines Fahrzeug-Umfeldsensors.
TWI449260B (zh) * 2011-02-23 2014-08-11 Wistron Neweb Corp 用來調整轉動角度之調整機構及其天線系統
US9170101B2 (en) * 2011-10-28 2015-10-27 Hunter Engineering Company Method and apparatus for positioning a vehicle service device relative to a vehicle thrust line
US8866695B2 (en) * 2012-02-23 2014-10-21 Andrew Llc Alignment stable adjustable antenna mount
EP2767846B1 (en) * 2013-02-18 2017-01-11 Volvo Car Corporation Method for calibrating a sensor cluster in a motor vehicle
US9065172B2 (en) * 2013-05-23 2015-06-23 Commscope Technologies Llc Mounting hub for antenna
KR101510336B1 (ko) * 2013-11-14 2015-04-07 현대자동차 주식회사 차량용 운전자 지원 시스템의 검사 장치
KR101601486B1 (ko) * 2014-09-17 2016-03-08 현대자동차주식회사 차량용 부품 자동 검사 장치 및 방법
EP3259556B1 (en) * 2015-02-17 2022-04-06 Hunter Engineering Company Method and apparatus for alignment of vehicle blind spot monitoring sensor
US9553350B2 (en) * 2015-05-14 2017-01-24 Micro Wireless Solutions, Corp. Antenna mount assembly
JP6184445B2 (ja) * 2015-07-02 2017-08-23 株式会社東芝 平面アンテナ装置
US10418683B2 (en) * 2015-11-06 2019-09-17 Broadband Antenna Tracking Systems, Inc. Method and apparatus for point-N-go antenna aiming and tracking system
CN109791045B (zh) * 2016-10-04 2021-01-19 美国亨特工程公司 车辆车轮对准测量系统相机和adas校准支撑结构
CN206321785U (zh) * 2016-11-15 2017-07-11 北京润科通用技术有限公司 一种雷达角反射器及雷达标定系统
US10323936B2 (en) * 2016-12-30 2019-06-18 Bosch Automotive Service Solutions Inc. Calibration system for sensors and cameras on vehicles
US10370072B1 (en) * 2017-07-17 2019-08-06 The United States Of America As Represented By The Secretary Of The Navy Laser mounting fixture
CN107678013B (zh) * 2017-09-14 2021-08-20 同济大学 远程激光雷达标定系统与方法
CN107672594A (zh) * 2017-10-20 2018-02-09 深圳市道通科技股份有限公司 一种车道保持系统的标定设备
US11092667B2 (en) * 2017-12-20 2021-08-17 Bosch Automotive Service Solutions Inc. Portable apparatus for vehicle sensor calibration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091667A (zh) * 2013-01-10 2013-05-08 清华大学 一种车载雷达标定装置及标定方法
WO2017016541A1 (de) * 2015-07-29 2017-02-02 Hella Gutmann Solutions GmbH Verfahren und vorrichtung zur kalibrierung von assistenzsystemen von fahrzeugen
CN106405526A (zh) * 2016-09-14 2017-02-15 深圳科澳汽车科技有限公司 一种acc标定架
CN107449461A (zh) * 2017-09-29 2017-12-08 深圳市道通科技股份有限公司 辅助标定设备
CN107678004A (zh) * 2017-10-20 2018-02-09 深圳市道通科技股份有限公司 汽车盲区雷达标定设备
CN108318870A (zh) * 2018-03-07 2018-07-24 深圳市道通科技股份有限公司 一种车载雷达标定设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220003578A1 (en) * 2019-03-20 2022-01-06 Autel Intelligent Technology Corp., Ltd. Calibration bracket
US11835365B2 (en) * 2019-03-20 2023-12-05 Autel Intelligent Technology Corp., Ltd. Calibration bracket
CN112433204A (zh) * 2020-11-10 2021-03-02 山东鼎目机器人科技有限公司 一种带有独立止停机构的道路检测雷达车
CN112433204B (zh) * 2020-11-10 2022-05-31 山东鼎目机器人科技有限公司 一种带有独立止停机构的道路检测雷达车

Also Published As

Publication number Publication date
US20200400782A1 (en) 2020-12-24
US10921426B2 (en) 2021-02-16
CN108318870B (zh) 2024-01-30
CN108318870A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
WO2019170100A1 (zh) 车载雷达标定设备
WO2019128842A1 (zh) 车载雷达标定设备及方法
WO2019128812A1 (zh) 车载雷达标定设备及方法
EP3699042B1 (en) Car body center line calibration device and method
CN108594187B (zh) 一种车载雷达标定设备及方法
CN107843883B (zh) 一种雷达标定件及车载雷达标定设备
CN109791045B (zh) 车辆车轮对准测量系统相机和adas校准支撑结构
US11175383B2 (en) Calibration device of automobile assistance system
CN207557464U (zh) 一种车载雷达标定设备
US20200361459A1 (en) Calibration device for lane keeping assist system
US6813015B2 (en) Adjusting device with an optical regulating device having a reflector
CN207631229U (zh) 一种车道保持系统的标定设备
CN111721271B (zh) 一种将校准设备对准车辆的方法及辅助标靶
CN207636760U (zh) 一种车载雷达标定设备
US11982528B2 (en) Method and auxiliary target for aligning calibration device to vehicle
CN207924131U (zh) 一种车载雷达标定设备
KR20120094998A (ko) 차량용 레이더 정렬장치 및 정렬방법
CN207636759U (zh) 一种雷达标定件及车载雷达标定设备
CN211955815U (zh) 一种车载雷达标定装置及车载雷达标定系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764535

Country of ref document: EP

Kind code of ref document: A1