WO2019128754A1 - 铜熔炼渣综合回收方法及装置 - Google Patents

铜熔炼渣综合回收方法及装置 Download PDF

Info

Publication number
WO2019128754A1
WO2019128754A1 PCT/CN2018/121457 CN2018121457W WO2019128754A1 WO 2019128754 A1 WO2019128754 A1 WO 2019128754A1 CN 2018121457 W CN2018121457 W CN 2018121457W WO 2019128754 A1 WO2019128754 A1 WO 2019128754A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper smelting
smelting slag
cavity
copper
slag
Prior art date
Application number
PCT/CN2018/121457
Other languages
English (en)
French (fr)
Inventor
李东波
陆志方
尉克俭
蒋继穆
梁帅表
茹洪顺
郭亚光
黎敏
陆金忠
张海鑫
邬传谷
李兵
曹珂菲
刘恺
孙晓峰
Original Assignee
中国恩菲工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711442805.1A external-priority patent/CN108034832A/zh
Priority claimed from CN201711433274.XA external-priority patent/CN108165755B/zh
Application filed by 中国恩菲工程技术有限公司 filed Critical 中国恩菲工程技术有限公司
Publication of WO2019128754A1 publication Critical patent/WO2019128754A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/04Heavy metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the field of copper smelting, in particular to a method and a device for comprehensively recovering copper smelting slag.
  • the yield of copper smelting process slag (also known as copper smelting slag) is generally 60-80%, and the slag contains copper generally 1-4%.
  • copper smelting process slag also known as copper smelting slag
  • the traditional electric furnace depletion process is limited by the technical and equipment conditions.
  • the copper content of the treated slag is generally 0.6-0.8%, the recovery rate of copper is low, and it is difficult to recover valuable metals such as lead and zinc in the slag.
  • the slag beneficiation process can reduce the copper content of the tailings to about 0.3%, the process has the disadvantages of long process, large floor space, large investment, etc., and it is difficult to recover valuable metals such as zinc and lead, resulting in waste of resources.
  • fine grinding and adding chemicals are required, and the tailings produced have secondary pollution hazards.
  • the main object of the present invention is to provide a copper smelting slag comprehensive recovery device and device, which solves the problems of low recovery rate, waste of valuable metal resources, secondary pollution or complicated process in the prior art when processing copper smelting slag. problem.
  • a copper smelting slag comprehensive recovery method which comprises a device comprising a CR furnace and a reducing agent supply device, and a reducing agent supply device for supplying a reducing agent to the CR furnace, CR
  • the furnace comprises a casing and an electrode, the casing has a cavity inside, the casing is provided with a first inlet, the electrode extends through the casing into the cavity for heating, and the volume of the electrode extending into the cavity is occupied by the cavity
  • the total volume of the body is 1.5 to 5.5%;
  • the comprehensive recovery method comprises the steps of: passing the copper smelting slag into the cavity through the first inlet; and recovering the copper smelting slag in the presence of the heating state of the electrode and the reducing agent Price metal.
  • the temperature in the cavity is 1250 to 1450 ° C, and the power density in the cavity is 100 kW/m 2 to 250 kW/m 2 .
  • the temperature in the cavity is 1350 to 1380 ° C, and the power density in the cavity is 150 kW/m 2 to 200 kW/m 2 .
  • a vulcanizing agent is simultaneously added to the cavity.
  • the reducing agent is a carbonaceous reducing agent, and preferably the reducing agent is one or more of pulverized coal, natural gas, liquefied petroleum gas and crushed coal; preferably, the reducing agent is added in an amount of 3 to 3 by weight of the copper smelting slag. 20%.
  • the vulcanizing agent is one or more of SO 2 gas, pyrite and sulfur; preferably, the vulcanizing agent is added in an amount of 0.01 to 20% by weight based on the weight of the copper smelting slag.
  • copper smelting dust is added to the cavity to carry out the reaction; preferably, the copper smelting dust is added in an amount of 0.01 to 10% by weight of the copper smelting slag.
  • the comprehensive recovery method further comprises the step of recovering the waste heat of the flue gas.
  • the comprehensive recovery method further comprises the step of collecting the flue gas after the waste heat recovery to recover the soot containing the volatile valuable metal.
  • the above comprehensive recovery method further includes the step of recovering iron from the matte.
  • the spraying device is used to spray oxygen, air, oxygen-enriched air, natural gas, liquefied petroleum gas, SO 2 gas, nitrogen gas and powder into the melt of the cavity.
  • One or more of the coal is used to spray oxygen, air, oxygen-enriched air, natural gas, liquefied petroleum gas, SO 2 gas, nitrogen gas and powder.
  • a copper smelting slag comprehensive recovery apparatus comprising a CR furnace and a reducing agent supply device for supplying a reducing agent to a CR furnace, and a CR furnace for recovering copper smelting
  • the CR furnace comprises: a casing having a cavity inside, the casing is provided with a first inlet, the first inlet is for introducing copper smelting slag into the cavity; the electrode and the electrode are extended through the casing
  • the chamber is heated for heating, and the volume of the electrode extending into the cavity accounts for 1.5 to 5.5% of the total volume of the cavity.
  • the CR furnace further includes an electrification control system, and the electrification control system is electrically connected to the electrodes.
  • the integrated recovery device further includes a vulcanizing agent supply device for supplying a vulcanizing agent to the CR furnace.
  • the housing is further provided with a second inlet for introducing copper smelting dust into the cavity.
  • a first inlet is disposed at a top of the housing; a second inlet is disposed at a top of the housing; a reductant supply device is coupled to the second inlet to supply a reducing agent through the second inlet, and the vulcanizing agent supply device and the second inlet Connected to supply the vulcanizing agent through the second inlet; or, the vulcanizing agent supply device is connected to the second inlet to supply the vulcanizing agent through the second inlet, and the side of the casing is further provided with a reducing agent inlet, a reducing agent supply device and a reducing agent The inlets are connected to supply a reducing agent through a reducing agent inlet.
  • the shell is further provided with a matte copper outlet, a tail slag outlet and a flue gas outlet, the ice copper outlet is used for discharging the matte produced in the cavity, and the tail slag outlet is for discharging the tailings produced in the cavity.
  • the flue gas outlet is used to discharge the volatile metal-containing flue gas produced in the cavity.
  • the integrated recovery device further includes a heat recovery device connected to the flue gas outlet for recovering heat carried by the flue gas.
  • the heat recovery device is a waste heat boiler or a heat exchanger.
  • the integrated recovery device further includes a dust collector disposed downstream of the heat recovery device for separating the volatile metal-containing soot in the flue gas.
  • the flue gas outlet and the first inlet are disposed at the same position of the casing.
  • the top or side of the casing is further provided with a spray inlet
  • the CR furnace further comprises an injection device extending through the injection inlet to the cavity for injecting oxygen, air, and rich into the melt in the cavity.
  • oxygen air oxygen air, natural gas, liquefied petroleum gas, SO 2 gas, nitrogen, and pulverized coal.
  • the invention provides a copper smelting slag comprehensive recovery method, which comprises a device comprising a CR furnace and a reducing agent supply device, the reducing agent supply device is for supplying a reducing agent to the CR furnace, the CR furnace comprises a casing and an electrode, and the casing interior Having a cavity, the housing is provided with a first inlet, the electrode extends through the housing into the cavity for heating, and the volume of the electrode extending into the cavity accounts for 1.5 to 5.5% of the total volume of the cavity;
  • the recovery method comprises the steps of: passing copper smelting slag into the cavity through the first inlet; and recovering the valuable metal in the copper smelting slag in the heating state of the electrode and the presence of the reducing agent.
  • the volume of the portion of the electrode extending into the cavity accounts for 1.5 to 5.5% of the total volume of the cavity.
  • the copper smelting slag When the copper smelting slag is treated in the presence of a reducing agent and at a relatively high temperature, on the one hand, the copper recovery rate in the slag can be effectively improved, and the copper content in the tailing slag can be reduced, and on the other hand, the copper smelting slag can also be The volatile metal such as zinc is converted into a gas into the flue gas and separated in the form of soot, and the valuable metal in the slag is comprehensively recovered. It should be noted that there are some valuable metal elements such as gold and silver in the copper smelting slag. During the processing of the above CR furnace, these metals can be enriched and recovered by entering the matte.
  • the copper smelting slag comprehensive recovery process provided by the invention is used to treat the copper smelting slag, the process is simple, and the secondary pollution hazard of the slag-selected tailings is eliminated, which is very suitable for industrial large-scale application.
  • the copper content in the tailings can be reduced to less than 0.4%, the recovery rate of gold and silver is over 90%, and valuable metals such as zinc and lead are volatilized into the flue gas, and the volatilization rate exceeds 85. More than %, the obtained copper grade of matte is 20-60%, which not only achieves efficient and comprehensive recovery of metal, but also solves the problem of hidden danger of slag beneficiation tailing stock.
  • Figure 1 shows a schematic view of a CR furnace in accordance with an embodiment of the present invention
  • FIG. 2 is a schematic view showing a copper smelting slag comprehensive recovery apparatus according to an embodiment of the present invention.
  • the present application proposes a comprehensive recovery method of copper smelting slag
  • the apparatus used in the comprehensive recovery method comprises a CR furnace and a reducing agent supply device
  • the reducing agent supply device is used for supplying a reducing agent to the CR furnace
  • the CR furnace includes a shell.
  • the housing has a cavity inside, the housing is provided with a first inlet, the electrode extends through the housing into the cavity for heating, and the volume of the portion of the electrode extending into the cavity accounts for the total volume of the cavity 1.5 to 5.5%;
  • the comprehensive recovery method comprises the steps of: passing the copper smelting slag A into the cavity through the first inlet; recovering the valuable metal in the copper smelting slag in the presence of the heating state of the electrode and the reducing agent .
  • the volume of the portion of the electrode extending into the cavity accounts for 1.5 to 5.5% of the total volume of the cavity.
  • the power density in the cavity of the CR furnace can be significantly improved, thereby increasing the temperature of the copper smelting process.
  • the copper smelting slag is treated in the presence of a reducing agent and at a relatively high temperature.
  • the copper recovery rate in the slag can be effectively improved, and the copper content in the tailing slag can be reduced.
  • the copper smelting slag can also be Volatile valuable metals such as zinc are converted into gases into the flue gas and separated in the form of soot, and the valuable metals in the slag are comprehensively recovered. It should be noted that there are some valuable metal elements such as gold and silver in the copper smelting slag. During the processing of the above CR furnace, these metals can be enriched and recovered by entering the matte. Therefore, by treating the copper smelting slag with the apparatus provided by the present invention, it is possible to recover the valuable metal therein more comprehensively.
  • the copper smelting slag comprehensive recovery method provided by the invention is used for treating the copper smelting slag, the process is simple, and the secondary pollution hazard of the slag-selected tailings is eliminated, which is very suitable for industrial large-scale application.
  • the copper content in the tail slag can be reduced to 0.4% or less, the recovery rate of gold and silver is more than 90%, zinc is volatilized into the soot, and the volatilization rate is more than 85%, and the obtained matte
  • the copper grade is 20-60%, which not only realizes the efficient and comprehensive recovery of metal, but also solves the problem of hidden danger of slag beneficiation tailings storage.
  • the high-temperature liquid copper smelting slag produced in the pre-order copper smelting process can be directly transported to the integrated recovery device of the present invention through the chute or slag package for treatment, and the heat carried by the high-temperature liquid copper smelting slag itself can be utilized. Then, the electrode is used for heat treatment.
  • the chamber has a power density of from 100 kW/m 2 to 250 kW/m 2 and a temperature during the reaction of from 1250 to 1450 ° C. At this power density and operating temperature, the valuable metals in the copper smelting slag can be more fully reduced and recovered. More preferably, the power density of the cavity is from 150 kW/m 2 to 200 kW/m 2 , and the temperature during the reaction is from 1350 to 1380 °C.
  • the vulcanizing agent in the step of recovering the valuable metal in the copper smelting slag, is simultaneously added to the cavity, thereby further realizing the stratification of the matte and the tailings, which is advantageous for further increasing the price. Metal recovery rate.
  • the reducing agent is a carbonaceous reducing agent, preferably the reducing agent is one or more of pulverized coal, natural gas, liquefied petroleum gas and crushed coal; preferably, the reducing agent is added in a copper amount.
  • the weight of the smelting slag is 3 to 20%.
  • the vulcanizing agent is one or more of SO 2 gas, pyrite and sulfur; preferably, the vulcanizing agent is added in an amount of 0.01 to 20% by weight based on the weight of the copper smelting slag.
  • copper smelting dust B is simultaneously introduced into the cavity for reaction; preferably, the copper smelting dust B is added in an amount of 0.01 to 10% by weight of the copper smelting slag.
  • the copper smelting dust here includes copper smelting soot and/or copper blowing soot.
  • the comprehensive recovery method further includes the waste heat recovery of the flue gas. step.
  • the temperature of the flue gas generated during the reaction process is relatively high, and this part of the heat can be recovered for recovery by waste heat recovery, and the waste heat recovery process is preferably performed by a waste heat boiler.
  • the comprehensive recovery method further comprises the step of collecting the waste gas after the waste heat recovery to recover the soot containing the volatile valuable metal such as lead and zinc. .
  • the above integrated recovery method further comprises the step of recovering iron from matte.
  • the injection device is simultaneously injected into the reaction melt by oxygen, air, oxygen-enriched air, natural gas, liquefied petroleum gas, SO 2 gas, nitrogen gas and pulverized coal.
  • oxygen air, oxygen-enriched air, natural gas, liquefied petroleum gas, SO 2 gas, nitrogen gas and pulverized coal.
  • This allows the melt to be agitated, thereby enhancing the mixing and processing speed of the soot and slag and allowing the flue gas to be discharged more quickly.
  • a reducing gas, a pulverized coal or an SO 2 gas is injected, these gases can simultaneously participate in the reduction reaction.
  • the metal content in the tailings discharged from the CR furnace is very low, and can be treated as a general solid waste.
  • the resulting matte can be returned to the copper smelting step.
  • the treated flue gas C obtained after the dust collection treatment can be directly discharged after being treated.
  • a copper smelting slag comprehensive recovery apparatus as shown in FIG. 1, which comprises a CR furnace 10 and a reducing agent supply device 20 for supplying the CR furnace 10
  • the reducing agent, the CR furnace 10 is used for recovering valuable metals in the copper smelting slag; as shown in FIG.
  • the CR furnace 10 includes a casing 11 and an electrode 12, the casing 11 has a cavity inside, and the casing 11 is provided with a first An inlet, a first inlet for introducing copper smelting slag A into the cavity; an electrode 12 extending through the housing 11 into the cavity for heating, and a portion of the electrode 12 extending into the cavity occupies a cavity
  • the total volume is 1.5 to 5.5%.
  • the volume of the portion of the electrode 12 extending into the cavity accounts for 1.5 to 5.5% of the total volume of the cavity.
  • the power density in the cavity of the CR furnace 10 can be significantly improved, thereby increasing the temperature of the copper smelting slag treatment process.
  • the copper smelting slag is treated in the presence of a reducing agent and at a relatively high temperature.
  • the copper recovery rate in the slag can be effectively improved, and the copper content in the tailing slag can be reduced.
  • the copper smelting slag can also be Volatile valuable metals such as zinc are converted into gases into the flue gas and separated in the form of soot, and the valuable metals in the slag are comprehensively recovered. It should be noted that there are some valuable metal elements such as gold and silver in the copper smelting slag. During the processing of the above-mentioned CR furnace 10, these metals can be enriched and recovered by entering the matte. Therefore, by treating the copper smelting slag with the apparatus provided by the present invention, it is possible to recover the valuable metal therein more comprehensively.
  • the copper smelting slag comprehensive recovery device processes the copper smelting slag, the process is simple, and the secondary pollution hazard of the slag-selected tailings is eliminated, which is very suitable for industrial large-scale application.
  • the full name of the CR furnace is called a comprehensive recovery furnace.
  • the electrode 12 described above is capable of providing electrical heat to the cavity.
  • the CR furnace 10 further includes an electrification control system 13 that is electrically coupled to the electrodes 12.
  • the heating state of the electrode can be further controlled by setting the operating parameters of the electrification control system 13, thereby increasing the power density in the cavity and the temperature in the molten pool.
  • the integrated recovery device further includes a vulcanizing agent supply device 30 for supplying a vulcanizing agent to the CR furnace 10.
  • a vulcanizing agent facilitates further capture and recovery of copper in the tailings, thereby further increasing the recovery rate of copper.
  • the housing 11 is also provided with a second inlet for introducing copper smelting fumes B into the chamber.
  • copper smelting fumes B including copper smelting soot and/or copper blowing soot
  • copper smelting fumes B with higher lead content can be treated together with copper smelting slag in the CR furnace, and the lead, zinc and copper smelting slag in the soot can be Lead and zinc are enriched.
  • the lead and zinc in the lead, zinc and copper smelting slag in the copper smelting dust B can be sufficiently volatilized into the flue gas. , enriched in the form of smoke.
  • the first inlet is disposed at the top of the housing 11
  • the second inlet is disposed at the top of the housing 11
  • the reductant supply device 20 supplies the reducing agent through the second inlet
  • the vulcanizing agent supply device 30 The vulcanizing agent is supplied through the second inlet.
  • the reducing agent D, the vulcanizing agent E, and the copper smelting dust B together enter the cavity through the second inlet.
  • the vulcanizing agent supply device 30 is connected to the second inlet to supply the vulcanizing agent through the second inlet, and the side of the casing 11 is further provided with a reducing agent inlet, and the reducing agent supply device 20 is connected to the reducing agent inlet to pass through the reducing agent inlet Supply reducing agent.
  • the housing 11 is further provided with a matte outlet 101, a tail slag outlet 102 and a flue gas outlet 103 for discharging the matte produced in the cavity, and the tail slag outlet 102.
  • the exhaust gas outlet 103 is used to discharge the tailings produced in the cavity, and the flue gas outlet 103 is used to discharge the volatile metal-containing flue gas produced in the cavity.
  • the ice copper outlet 101 is disposed near the bottom of the casing 11
  • the tail slag outlet 102 is disposed on the other side of the casing 11 with respect to the ice copper outlet 101, and the height of the tailings outlet 102 is high.
  • the Bronze Outlet 101 is disposed at the Bronze Outlet 101.
  • a matte layer and a slag layer above the matte layer are stably formed in the cavity, and the tail slag in the slag layer can be discharged through the tail slag outlet 102, and the matte is It can be discharged through the matte outlet 101.
  • the integrated recovery unit further includes a heat recovery unit 40 coupled to the flue gas outlet 103 for recovering heat carried by the flue gas.
  • the temperature of the flue gas generated during the reaction process is relatively high, and this portion of the heat can be recovered by the heat recovery device 40 for other purposes.
  • the heat recovery device 40 is a waste heat boiler.
  • the flue gas generated in the cavity is enriched with volatile valuable metals such as lead and zinc recovered from copper smelting slag and volatile metals such as lead and zinc recovered from copper smelting dust.
  • the integrated recovery device further includes a dust collector 50 connected to the heat recovery device 40 for separating the flue gas. Soot containing volatile metals.
  • the flue gas outlet 103 and the first inlet are disposed at the same location of the housing 11. In this way, the same opening can simultaneously serve as the flue gas outlet 103 and the first inlet, and as the first inlet, the copper smelting slag can be introduced into the cavity, and the flue gas generated in the cavity as the flue gas outlet 103 is also The mouth is discharged.
  • the top or side of the housing 11 is further provided with a spray inlet
  • the CR furnace 10 further includes a spraying device that extends through the injection inlet to the cavity for melting in the cavity.
  • the body is sprayed with one or more of oxygen, air, oxygen-enriched air, natural gas, liquefied petroleum gas, SO 2 gas, nitrogen, and pulverized coal. This allows the gas to be used to agitate the melt, enhance the mixing and processing speed of the soot and slag, and discharge the flue gas.
  • a reducing gas, a pulverized coal, or an SO 2 gas is injected, these gases can simultaneously participate in the reaction.
  • oxygen-enriched air refers to a gas having a concentration of oxygen greater than the concentration of oxygen in the air, such as may be obtained by incorporating oxygen into the air.
  • the copper smelting slag comprehensive recovery device shown in Figure 2 is used for comprehensive recovery of copper smelting slag.
  • the CR furnace is shown in Figure 1.
  • the volume of the portion of the CR furnace electrode extending into the cavity accounts for 2% of the total volume of the cavity.
  • the power density is 150kW/m 2 and the process conditions are as follows:
  • the copper smelting slag flows into the CR furnace from the melting furnace through the chute, and raises the temperature of the slag in the furnace to 1300 ° C; the reducing agent pulverized coal is added in an amount of 3% of the total weight of the smelting slag; the obtained matte is returned to the melting furnace.
  • the obtained zinc-containing soot is sold outside.
  • Treatment results annual processing of smelting slag 650,000 tons, containing 3% copper, containing 2.77% zinc; smelting slag after copper smelting slag comprehensive recovery unit treatment, tail slag containing 0.35% copper, tail slag containing zinc 0.1%, matte
  • the copper grade is at 20%.
  • the overall system copper recovery rate is about 98.5%, and the zinc recovery rate is about 90%.
  • the copper smelting slag comprehensive recovery device shown in Figure 2 is used for comprehensive recovery of copper smelting slag.
  • the CR furnace is shown in Figure 1.
  • the volume of the portion of the CR furnace electrode extending into the cavity accounts for 2% of the total volume of the cavity.
  • the power density is 100kW/m 2 and the process conditions are as follows:
  • the copper smelting slag flows into the CR furnace from the melting furnace through the chute, and raises the temperature of the slag in the furnace to 1300 ° C; the reducing agent pulverized coal is added in an amount of 3% of the total weight of the smelting slag; and the vulcanizing agent is further added to further collect the slag.
  • the copper metal is added in an amount of 3% of the total weight of the molten slag; the obtained matte is returned to the melting furnace, and the obtained zinc-containing soot is sold.
  • Treatment results 1 million tons of smelting slag is treated annually, smelting slag contains 2% copper and 2.03% zinc; after smelting slag treatment, tail slag contains 0.30% copper, slag contains zinc 0.08%, and matte copper has a copper grade of 25%.
  • the copper recovery rate of the whole system is about 98.8%, and the zinc recovery rate is about 93%.
  • the copper smelting slag comprehensive recovery device shown in Figure 2 is used for comprehensive recovery of copper smelting slag.
  • the CR furnace is shown in Figure 1.
  • the volume of the portion of the CR furnace electrode extending into the cavity accounts for 3% of the total volume of the cavity.
  • the power density is 150kW/m 2 and the process conditions are as follows:
  • the copper smelting slag flows into the CR furnace from the melting furnace through the chute, and raises the temperature of the slag in the furnace to 1350 ° C; the reducing agent pulverized coal is added in an amount of 3% of the total weight of the smelting slag; and the vulcanizing agent is further added to further collect the slag.
  • the copper metal is added in an amount of 3% of the total weight of the smelting slag; the copper smelting dust is added in an amount of 5% of the total weight of the smelting slag; the obtained matte is returned to the smelting furnace, and the lead-containing zinc soot is obtained for sale.
  • four small spray guns are arranged on the upper part of the CR furnace body, and an appropriate amount of natural gas is sprayed.
  • Treatment results annual processing of smelting slag 670,000 tons, smelting slag containing 2% copper, containing 2.05% zinc; copper smelting soot 15,000 tons; slag slag treatment containing copper 0.25%, zinc containing 0.08%, copper copper The taste is at 32%.
  • the copper recovery rate of the whole system is about 99%, the zinc recovery rate is about 95%, and the lead recovery rate is 85%.
  • the copper smelting slag comprehensive recovery device shown in Figure 2 is used for comprehensive recovery of copper smelting slag.
  • the CR furnace is shown in Figure 1.
  • the volume of the portion of the CR furnace electrode extending into the cavity accounts for 4% of the total volume of the cavity.
  • the power density is 200kW/m 2 and the process conditions are as follows:
  • the copper smelting slag flows into the CR furnace from the melting furnace through the chute, and raises the temperature of the slag in the furnace to 1380 ° C; the reducing agent pulverized coal is added in an amount of 3% of the total weight of the smelting slag; and the vulcanizing agent is further added to further collect the slag.
  • the copper metal is added in an amount of 3% of the total weight of the smelting slag; the copper smelting dust is added in an amount of 5% of the total weight of the smelting slag; the obtained matte is returned to the smelting furnace, and the lead-containing zinc soot is obtained for sale.
  • four small spray guns are arranged on the upper part of the CR furnace body, and an appropriate amount of natural gas is sprayed.
  • Treatment results annual processing of smelting slag 680,000 tons, smelting slag containing 2% copper, containing zinc 2.04%; copper smelting dust 16,000 tons; slag slag treatment containing 0.22% copper, 0.07% zinc, copper copper The taste is at 40%.
  • the copper recovery rate of the whole system is about 99.3%, the zinc recovery rate is about 95%, and the lead recovery rate is 89%.
  • the copper smelting slag comprehensive recovery device shown in Figure 2 is used for comprehensive recovery of copper smelting slag.
  • the CR furnace is shown in Figure 1.
  • the volume of the portion of the CR furnace electrode extending into the cavity accounts for 5% of the total volume of the cavity.
  • the power density is 250kW/m 2 and the process conditions are as follows:
  • the copper smelting slag flows into the CR furnace from the melting furnace through the chute, and raises the temperature of the slag in the furnace to 1400 ° C; the reducing agent pulverized coal is added in an amount of 3% of the total weight of the smelting slag; and the vulcanizing agent is further added to further collect the slag.
  • the copper metal is added in an amount of 3% of the total weight of the smelting slag; the copper smelting dust is added in an amount of 5% of the total weight of the smelting slag; the obtained matte is returned to the smelting furnace, and the lead-containing zinc soot is obtained for sale.
  • four small spray guns are arranged on the upper part of the CR furnace body, and an appropriate amount of natural gas is sprayed.
  • Treatment results annual processing of smelting slag 660,000 tons, smelting slag containing 2% copper, containing 2.06% zinc; copper smelting soot 16,000 tons; slag slag treatment containing 0.20% copper, 0.06% zinc, copper copper
  • the grade is 43%.
  • the copper recovery rate of the whole system is about 99.4%, the zinc recovery rate is about 92.5%, and the lead recovery rate is 89.8%.
  • the copper smelting slag comprehensive recovery device shown in Figure 2 is used for comprehensive recovery of copper smelting slag.
  • the CR furnace is shown in Figure 1.
  • the volume of the portion of the CR furnace electrode extending into the cavity accounts for 1.8% of the total volume of the cavity.
  • the power density is 90kW/m 2 and the process conditions are as follows:
  • the copper smelting slag flows into the CR furnace from the melting furnace through the chute, and raises the temperature of the slag in the furnace to 1280 ° C; the reducing agent pulverized coal is added in an amount of 3% of the total weight of the smelting slag; the obtained matte is returned to the melting furnace.
  • the obtained zinc-containing soot is sold outside.
  • Treatment results annual processing of smelting slag 650,000 tons, containing 3% copper, containing 2.77% zinc; smelting slag after copper smelting slag comprehensive recovery unit treatment, tail slag containing 0.39% copper, tail slag containing zinc 0.4%, matte
  • the copper grade is at 20%.
  • the copper recovery rate of the entire system is about 92%, and the zinc recovery rate is about 85%.
  • the copper smelting slag comprehensive recovery device shown in Figure 2 is used for comprehensive recovery of copper smelting slag.
  • the CR furnace is shown in Figure 1.
  • the volume of the portion of the CR furnace electrode extending into the cavity accounts for 5% of the total volume of the cavity.
  • the power density is 250kW/m 2 and the process conditions are as follows:
  • the copper smelting slag flows into the CR furnace from the melting furnace through the chute, and raises the temperature of the slag in the furnace to 1400 ° C; the reducing agent lump coal is added in an amount of 10% of the total weight of the smelting slag; and the quartz flux is added, which accounts for copper 10% of the weight of the smelting slag.
  • four small spray guns are arranged on the upper part of the CR furnace body, and an appropriate amount of natural gas is sprayed.
  • Treatment results annual processing of smelting slag 950,000 tons, smelting slag containing 2% copper, containing 1.71% zinc; blowing slag 150,000 tons, slag containing copper 4.5%; slag treatment after tailings containing copper 0.35%, slag containing zinc 0.09%, the copper grade of matte is 30%.
  • the overall system copper recovery rate is about 98.5%, and the zinc recovery rate is about 95%.
  • the invention solves the problem that the current tailings of the conventional electric furnace depletion process has high copper content and cannot comprehensively recover valuable metals such as lead and zinc; the processing of copper smelting slag in the beneficiation process cannot recover the lead and zinc in the slag, the secondary pollution of the tailings, and the long process, There are many problems such as large equipment, large floor space and large investment.
  • the core device of the process only uses CR furnace, which has small investment, small floor space and eliminate hidden danger of tailings pollution;
  • the process of treating copper smelting slag can be used together with the treatment of lead-rich soot, which not only comprehensively recovers metals such as lead and zinc, but also avoids the problem that copper is high in lead caused by the return of soot to the copper smelting system;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种铜熔炼渣综合回收方法及装置,该方法包括以下步骤:将铜熔炼渣通过第一进口通入腔体中;在电极的供热状态和还原剂的存在下,回收铜熔炼渣中的有价金属。该方法采用的装置包括CR炉和还原剂供应装置,还原剂供应装置用于向CR炉供应还原剂,CR炉包括壳体和电极,壳体内部具有腔体,壳体设置有第一进口,电极穿过壳体延伸至腔体中以进行供热,且电极延伸至腔体中的部分的体积占腔体总容积的1.5~5.5%;该工艺能够更为全面地回收铜熔炼渣中的有价金属,且工艺简单,消除了渣选尾矿的二次污染隐患,非常适合工业化大规模应用。

Description

铜熔炼渣综合回收方法及装置 技术领域
本发明涉及炼铜领域,具体而言,涉及一种铜熔炼渣综合回收方法及装置。
背景技术
铜熔炼过程炉渣(又称铜熔炼渣)的产出率一般为60~80%,渣含铜一般为1~4%。目前对于铜熔炼渣中铜的回收主要有两种工艺:传统电炉贫化或渣选矿。
传统电炉贫化工艺由于其技术及装置条件的局限,处理后的渣含铜一般为0.6~0.8%,铜的回收率较低,且难以回收渣中的铅锌等有价金属。
渣选矿工艺尽管能将尾渣含铜降至0.3%左右,但该工艺存在流程长、占地面积大、投资大等缺点,且难以回收锌、铅等有价金属,造成资源浪费,同时,渣选矿工艺中需要细磨并加入药剂,产出的尾渣存在二次污染隐患。
基于以上原因,有必要提供一种综合回收铜、铅、锌等有价金属、无二次污染且流程简单、投资省的铜熔炼渣综合回收工艺
发明内容
本发明的主要目的在于提供一种铜熔炼渣综合回收装置及装置,以解决现有技术中在处理铜熔炼渣时存在的回收率低、有价金属资源浪费、二次污染或处理流程繁琐的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种铜熔炼渣综合回收方法,其采用的装置包括CR炉和还原剂供应装置,还原剂供应装置用于向CR炉供应还原剂,CR炉包括壳体和电极,壳体内部具有腔体,壳体设置有第一进口,电极穿过壳体延伸至腔体中以进行供热,且电极延伸至腔体中的部分的体积占腔体总容积的1.5~5.5%;综合回收方法包括以下步骤:将铜熔炼渣通过第一进口通入腔体中;在电极的供热状态和还原剂的存在下,回收铜熔炼渣中的有价金属。
进一步地,回收铜熔炼渣中的有价金属的步骤中,腔体中的温度为1250~1450℃,腔体中的功率密度为100kW/m 2~250kW/m 2
进一步地,回收铜熔炼渣中的有价金属的步骤中,腔体中的温度为1350~1380℃,腔体中的功率密度为150kW/m 2~200kW/m 2
进一步地,回收铜熔炼渣中的有价金属的步骤中,同时向腔体中加入硫化剂。
进一步地,还原剂为碳质还原剂,优选还原剂为粉煤、天然气、液化石油气及碎煤中的一种或多种;优选地,还原剂的加入量为铜熔炼渣重量的3~20%。
进一步地,硫化剂为SO 2气体、黄铁矿及硫磺中的一种或多种;优选地,硫化剂的加入量为铜熔炼渣重量的0.01~20%。
进一步地,回收铜熔炼渣中的有价金属的步骤中,同时向腔体中加入铜冶炼烟尘进行反应;优选地,铜冶炼烟尘的加入量为铜熔炼渣重量的0.01~10%。
进一步地,回收铜熔炼渣中的有价金属的步骤中,腔体中产出冰铜、尾渣及含有挥发性有价金属的烟气,综合回收方法还包括对烟气进行余热回收的步骤。
进一步地,将烟气进行余热回收的步骤之后,综合回收方法还包括对余热回收后的烟气进行收尘处理以回收含有挥发性有价金属的烟尘的步骤。
进一步地,上述综合回收方法还包括从冰铜中回收铁的步骤。
进一步地,回收铜熔炼渣中的有价金属的步骤中,同时利用喷射装置向腔体的熔体中喷入氧气、空气、富氧空气、天然气、液化石油气、SO 2气体、氮气及粉煤中的一种或多种。
根据本发明的另一方面,还提供了一种铜熔炼渣综合回收装置,其包括CR炉和还原剂供应装置,还原剂供应装置用于向CR炉供应还原剂,CR炉用于回收铜熔炼渣中的有价金属,CR炉包括:壳体,内部具有腔体,壳体设置有第一进口,第一进口用于向腔体中通入铜熔炼渣;电极,电极穿过壳体延伸至腔体中以进行供热,且电极延伸至腔体中的体积占腔体总容积的1.5~5.5%。
进一步地,CR炉还包括电气化控制系统,电气化控制系统与电极电连接。
进一步地,综合回收装置还包括硫化剂供应装置,硫化剂供应装置用于向CR炉供应硫化剂。
进一步地,壳体还设置有第二进口,第二进口用于向腔体中通入铜冶炼烟尘。
进一步地,第一进口设置在壳体的顶部;第二进口设置在壳体的顶部;还原剂供应装置与第二进口相连以通过第二进口供应还原剂,且硫化剂供应装置与第二进口相连以通过第二进口供应硫化剂;或者,硫化剂供应装置与第二进口相连以通过第二进口供应硫化剂,且壳体的侧部还设置有还原剂入口,还原剂供应装置与还原剂入口相连以通过还原剂入口供应还原剂。
进一步地,壳体还设置有冰铜出口、尾渣出口和烟气出口,冰铜出口用以排出腔体中产出的冰铜,尾渣出口用以排出腔体中产出的尾渣,烟气出口用以排出腔体中产出的含有挥发性金属的烟气。
进一步地,综合回收装置还包括热回收装置,热回收装置与烟气出口相连,用于回收烟气携带的热量。
进一步地,热回收装置为余热锅炉或换热器。
进一步地,综合回收装置还包括收尘器,收尘器设置在热回收装置的下游,用于分离烟气中的含有挥发性金属的烟尘。
进一步地,烟气出口和第一进口设置在壳体的同一位置。
进一步地,壳体的顶部或侧部还设置有喷入口,CR炉还包括喷射装置,喷射装置穿过喷入口延伸至腔体,用于向腔体中的熔体喷入氧气、空气、富氧空气、天然气、液化石油气、SO 2气体、氮气及粉煤中的一种或多种。
本发明提供了一种铜熔炼渣综合回收方法,其采用的装置包括CR炉和还原剂供应装置,还原剂供应装置用于向CR炉供应还原剂,CR炉包括壳体和电极,壳体内部具有腔体,壳体设置有第一进口,电极穿过壳体延伸至腔体中以进行供热,且电极延伸至腔体中的部分的体积占腔体总容积的1.5~5.5%;综合回收方法包括以下步骤:将铜熔炼渣通过第一进口通入腔体中;在电极的供热状态和还原剂的存在下,回收铜熔炼渣中的有价金属。
本发明提供的上述方法,采用的CR炉中,电极延伸至腔体中的部分的体积占腔体总容积的1.5~5.5%。这样,在实际生产过程中,可以明显提高CR炉腔体中的功率密度,从而可以提高铜熔炼渣处理过程的温度。铜熔炼渣在还原剂的存在下并在较高的温度下进行处理时,一方面可以有效提高渣中铜的回收率,降低尾渣中的铜含量,另一方面还可以将铜熔炼渣中的锌等挥发性有价金属转化为气体进入烟气中并以烟尘的形式分离出来,综合回收渣中有价金属。需说明的是,铜熔炼渣中还有部分金、银等有价金属元素,在上述CR炉的处理过程中,这些金属能能够进入冰铜中被富集回收。因此,利用本发明提供的工艺处理铜熔炼渣,能够更为全面地回收其中的有价金属。与此同时,利用本发明提供的铜熔炼渣综合回收工艺处理铜熔炼渣,工艺简单,且消除了渣选尾矿的二次污染隐患,非常适合工业化大规模应用。
利用本发明提供的工艺处理铜熔炼渣,可以将尾渣中的含铜量降至0.4%以下,金银回收率超过90%,锌、铅等有价金属挥发进入烟气,挥发率超过85%以上,获得的冰铜的铜品位在20~60%,既实现金属的高效综合回收,又解决了渣选矿尾渣堆存污染隐患的问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的一种实施例的CR炉示意图;以及
图2示出了根据本发明的一种实施例的铜熔炼渣综合回收装置示意图。
其中,上述附图包括以下附图标记:
10、CR炉;11、壳体;12、电极;13、电气化控制系统;20、还原剂供应装置;30、硫化剂供应装置;101、冰铜出口;102、尾渣出口;103、烟气出口;40、热回收装置;50、收尘器;A、铜熔炼渣;B、铜冶炼烟尘;C、处理烟气;D、还原剂;E、硫化剂。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中在处理铜熔炼渣时存在回收率低或二次污染、处理流程繁琐的问题。
为了解决如上问题,本申请提出了一种铜熔炼渣综合回收方法,综合回收方法采用的装置包括CR炉和还原剂供应装置,还原剂供应装置用于向CR炉供应还原剂,CR炉包括壳体和电极,壳体内部具有腔体,壳体设置有第一进口,电极穿过壳体延伸至腔体中以进行供热,且电极延伸至腔体中的部分的体积占腔体总容积的1.5~5.5%;综合回收方法包括以下步骤:将铜熔炼渣A通过第一进口通入腔体中;在电极的供热状态和还原剂的存在下,回收铜熔炼渣中的有价金属。
上述方法中采用的CR炉,电极延伸至腔体中的部分的体积占腔体总容积的1.5~5.5%。这样,在实际生产过程中,可以明显提高CR炉腔体中的功率密度,从而可以提高铜熔炼渣处理过程的温度。铜熔炼渣在还原剂的存在下并在较高的温度下进行处理,一方面可以有效提高渣中铜的回收率,降低尾渣中的铜含量,另一方面还可以将铜熔炼渣中的锌等挥发性有价金属转化为气体进入烟气中并以烟尘的形式分离出来,综合回收渣中有价金属。需说明的是,铜熔炼渣中还有部分金、银等有价金属元素,在上述CR炉的处理过程中,这些金属能能够进入冰铜中被富集回收。因此,利用本发明提供的装置处理铜熔炼渣,能够更为全面地回收其中的有价金属。与此同时,利用本发明提供的铜熔炼渣综合回收方法处理铜熔炼渣,工艺简单,且消除了渣选尾矿的二次污染隐患,非常适合工业化大规模应用。
利用本发明提供的方法处理铜熔炼渣,可以将尾渣中的含铜量降至0.4%以下,金银回收率超过90%,锌挥发进入烟尘,挥发率超过85%以上,获得的冰铜的铜品位在20~60%,既实现金属的高效综合回收,又解决了渣选矿尾渣堆存污染隐患的问题。
在实际生产过程中,前序的铜熔炼过程中产生的高温液态铜熔炼渣可以直接经溜槽或渣包转运至本发明的综合回收装置中进行处理,可以利用高温液态铜熔炼渣本身携带的热量,再利用电极补热进行处理。
在一种优选的实施方式中,腔体的功率密度为100kW/m 2~250kW/m 2,反应过程中的温度为1250~1450℃。该功率密度和操作温度下,铜熔炼渣中的有价金属能够得到更充分地还原回收。更优选地,腔体的功率密度为150kW/m 2~200kW/m 2,反应过程中的温度为1350~1380℃。
在一种优选的实施方式中,回收铜熔炼渣中的有价金属的步骤中,同时向腔体中加入硫化剂,从而进一步实现冰铜与尾渣的分层,这有利于进一步提高有价金属的回收率。
上述还原剂和硫化剂可以采用本领域常用的类型。在一种优选的实施方式中,还原剂为碳质还原剂,优选还原剂为粉煤、天然气、液化石油气及碎煤中的一种或多种;优选地,还原剂的加入量为铜熔炼渣重量的3~20%。优选地,硫化剂为SO 2气体、黄铁矿及硫磺中的一种或多种;优选地,硫化剂的加入量为铜熔炼渣重量的0.01~20%。
在具体的操作过程中,还可以向腔体中加入熔剂一并进行反应。
工业实践中,随着铜熔炼强度的增大,熔炼氧势的提高,当熔炼产出冰铜品位70%左右时,原料中的70%以上的铅会进入熔炼烟尘。通常铜熔炼过程中产出的铜冶炼烟尘会直接返回铜熔炼步骤,这样会给后续铜的精炼作业带来不利影响。同样地,铜吹炼烟尘也存在上述情况。在一种优选的实施方式中,反应的过程中,同时向腔体中通入铜冶炼烟尘B进行反应;优选地,铜冶炼烟尘B的加入量为铜熔炼渣重量的0.01~10%。
需说明的是,此处的铜冶炼烟尘包括铜熔炼烟尘和/或铜吹炼烟尘。
在一种优选的实施方式中,回收铜熔炼渣中的有价金属的步骤中,腔体中能够产出冰铜、尾渣及烟气,上述综合回收方法还包括对烟气进行余热回收的步骤。反应过程产生的烟气温度较高,通过余热回收可以将这部分热量进行回收以作他用,优选利用余热锅炉进行该余热回收处理。
在一种优选的实施方式中,将烟气进行余热回收的步骤之后,综合回收方法还包括对余热回收后的烟气进行收尘处理以回收含有铅锌等挥发性有价金属的烟尘的步骤。
优选地,上述综合回收方法还包括从冰铜中回收铁的步骤。
在一种优选的实施方式中,在反应过程中,同时利用喷射装置向反应的熔体中喷入氧气、空气、富氧空气、天然气、液化石油气、SO 2气体、氮气及粉煤中的一种或多种。这样可以搅动熔体,从而可以加强烟尘和渣的混合及处理速度,并将烟气更快速排出。当然,如果喷入的是还原性气体、粉煤或SO 2气体,这些气体可以同时参与还原反应。
经上述综合回收,CR炉中排出的尾渣中的金属含量很低,可以作为一般固废处理。得到的冰铜可以返回至铜冶炼步骤。经收尘处理后得到的处理烟气C经处理后可以直接排放。
根据本发明的另一方面,还提供了一种铜熔炼渣综合回收装置,如图1所示,其包括CR炉10和还原剂供应装置20,还原剂供应装置20用于向CR炉10供应还原剂,CR炉10用于回收铜熔炼渣中的有价金属;如图1所示,CR炉10包括壳体11和电极12,壳体11内部具有腔体,壳体11设置有第一进口,第一进口用于向腔体中通入铜熔炼渣A;电极12穿过壳体11延伸至腔体中以进行供热,且电极12延伸至腔体中的部分的体积占腔体总容积的1.5~5.5%。
本发明提供的上述装置,电极12延伸至腔体中的部分的体积占腔体总容积的1.5~5.5%。这样,在实际生产过程中,可以明显提高CR炉10腔体中的功率密度,从而可以提高铜熔炼渣处理过程的温度。铜熔炼渣在还原剂的存在下并在较高的温度下进行处理,一方面可以有效提高渣中铜的回收率,降低尾渣中的铜含量,另一方面还可以将铜熔炼渣中的锌等挥发性有价金属转化为气体进入烟气中并以烟尘的形式分离出来,综合回收渣中有价金属。需说明的是,铜熔炼渣中还有部分金、银等有价金属元素,在上述CR炉10的处理过程中,这些金属能够进入冰铜中被富集回收。因此,利用本发明提供的装置处理铜熔炼渣,能够更为综合地回收其中的有价金属。与此同时,利用本发明提供的铜熔炼渣综合回收装置处理铜熔炼渣,工艺简单,且消除了渣选尾矿的二次污染隐患,非常适合工业化大规模应用。
此处CR炉的全称为全面回收(Comprehensive recovery)炉。
上述电极12能够向腔体中提供电热。在一种优选的实施方式中,CR炉10还包括电气化控制系统13,电气化控制系统13与电极12电连接。在实际生产过程中,可以通过设置电气化控制系统13的操作参数进一步控制电极的供热状态,从而提高腔体中的功率密度和熔池中的温度。
在一种优选的实施方式中,如图2所示,综合回收装置还包括硫化剂供应装置30,硫化剂供应装置30用于向CR炉10供应硫化剂。加入硫化剂,有利于进一步捕集回收尾渣中的铜,从而进一步提高铜的回收率。
工业实践中,随着铜熔炼强度的增大,熔炼氧势的提高,当熔炼产出冰铜品位70%左右时,原料中的70%以上的铅会进入熔炼烟尘(烟尘中含铅5%~25%、锌0.5%~10%、铜2%~30%)。通常铜熔炼过程中产出的铜熔炼烟尘会直接返回铜熔炼步骤,这样会给后续铜的精炼作业带来不利影响。相思地,铜吹炼过程中的铜吹炼烟尘也有上述情况。在一种优选的实施方式中,如图1和2所示,壳体11还设置有第二进口,第二进口用于向腔体中通入铜冶炼烟尘B。这样,可以将铅含量较高的铜冶炼烟尘B(包括铜熔炼烟尘和/或铜吹炼烟尘)在CR炉中和铜熔炼渣一起进行处理,将烟尘中的铅、锌和铜熔炼渣中的铅、锌进行富集。需说明的是,正是由于前文所述的CR炉腔体中较高的功率密度和温度,使得铜冶炼烟尘B中的铅、锌和铜熔炼渣中的铅、锌能够充分挥发进入烟气,以烟尘的形式富集。
在一种优选的实施方式中,第一进口设置在壳体11的顶部,第二进口设置在壳体11的顶部,还原剂供应装置20通过第二进口供应还原剂,且硫化剂供应装置30通过第二进口供应硫化剂。此时,如图1和2所示,还原剂D、硫化剂E和铜冶炼烟尘B一起通过第二进口进入腔体中。或者,硫化剂供应装置30与第二进口相连以通过第二进口供应硫化剂,且壳体11的侧部还设置有还原剂入口,还原剂供应装置20与还原剂入口相连以通过还原剂入口供应还原剂。
在一种优选的实施方式中,壳体11还设置有冰铜出口101、尾渣出口102和烟气出口103,冰铜出口101用以排出腔体中产出的冰铜,尾渣出口102用以排出腔体中产出的尾渣,烟气出口103用以排出腔体中产出的含有挥发性金属的烟气。具体地,如图1所示,冰铜出口101 靠近壳体11的底部设置,尾渣出口102设置在壳体11的相对于冰铜出口101的另一侧,且尾渣出口102的高度高于冰铜出口101。在实际生产过程中,随着处理过程的稳定进行,腔体中会稳定形成冰铜层和位于冰铜层上方的渣层,渣层中的尾渣可以通过尾渣出口102排出,冰铜则可以通过冰铜出口101排出。
在一种优选的实施方式中,综合回收装置还包括热回收装置40,热回收装置40与烟气出口103相连,用于回收烟气携带的热量。反应过程产生的烟气温度较高,通过热回收装置40可以将这部分热量进行回收以作他用,优选热回收装置40为余热锅炉。
如前文所述,腔体中产生的烟气中富集了从铜熔炼渣中回收的铅、锌等挥发性有价金属和从铜冶炼烟尘中回收的铅、锌等挥发性有价金属,为了回收里面含有上述挥发性有价金属的烟尘,在一种优选的实施方式中,综合回收装置还包括收尘器50,收尘器50与热回收装置40相连,用于分离烟气中的含有挥发性有价金属的烟尘。
在一种优选的实施方式中,烟气出口103和第一进口设置在壳体11的同一位置。这样,同一个开口可以同时作为烟气出口103和第一进口,作为第一进口时可以向腔体中通入铜熔炼渣,作为烟气出口103时腔体中产出的烟气也由该口排出。
在一种优选的实施方式中,壳体11的顶部或侧部还设置有喷入口,CR炉10还包括喷射装置,喷射装置穿过喷入口延伸至腔体,用与向腔体中的熔体喷入氧气、空气、富氧空气、天然气、液化石油气、SO 2气体、氮气及粉煤中的一种或多种。这样可以利用这些气体搅动熔体,加强烟尘和渣的混合及处理速度,并将烟气排出。当然,如果喷入的是还原性气体、粉煤、SO 2气体,这些气体可以同时参与反应。
此处所述“富氧空气”是指氧气浓度大于空气中氧气浓度的气体,比如可以通过在空气中掺入氧气获得。
以下通过实施例进一步说明本发明的有益效果:
除特殊说明,以下含量均为重量含量。
实施例1
利用图2所示铜熔炼渣综合回收装置进行铜熔炼渣的综合回收,其中CR炉如图1所示,CR炉电极延伸至腔体中的部分的体积占腔体总容积的2%,电极的功率密度为150kW/m 2,工艺条件如下:
将铜熔炼渣通过溜槽从熔炼炉内流入CR炉内,提升炉内渣的温度至1300℃;加入还原剂粉煤,其加入量为熔炼渣总重量的3%;所得冰铜返回熔炼炉,所得含锌烟尘外售。
处理结果:年处理熔炼渣65万吨,含铜3%,含锌2.77%;熔炼渣经铜熔炼渣综合回收装置处理后,尾渣含铜0.35%,尾渣含锌0.1%,冰铜的铜品位在20%。整个系统铜回收率约98.5%,锌回收率约为90%。
实施例2
利用图2所示铜熔炼渣综合回收装置进行铜熔炼渣的综合回收,其中CR炉如图1所示,CR炉电极延伸至腔体中的部分的体积占腔体总容积的2%,电极的功率密度为100kW/m 2,工艺条件如下:
将铜熔炼渣通过溜槽从熔炼炉内流入CR炉内,提升炉内渣的温度至1300℃;加入还原剂粉煤,其加入量为熔炼渣总重量的3%;加入硫化剂进一步捕集渣中的铜金属,加入量为熔炼渣总重量的3%;所得冰铜返回熔炼炉,所得含锌烟尘外售。
处理结果:年处理熔炼渣100万吨,熔炼渣含铜2%,含锌2.03%;熔炼渣处理后尾渣含铜0.30%,渣含锌0.08%,冰铜的铜品位在25%。整个系统铜回收率约98.8%,锌回收率约为93%。
实施例3
利用图2所示铜熔炼渣综合回收装置进行铜熔炼渣的综合回收,其中CR炉如图1所示,CR炉电极延伸至腔体中的部分的体积占腔体总容积的3%,电极的功率密度为150kW/m 2,工艺条件如下:
将铜熔炼渣通过溜槽从熔炼炉内流入CR炉内,提升炉内渣的温度至1350℃;加入还原剂粉煤,其加入量为熔炼渣总重量的3%;加入硫化剂进一步捕集渣中的铜金属,加入量为熔炼渣总重量的3%;加入铜熔炼烟尘,加入量为熔炼渣总重量的5%;所得冰铜返回熔炼炉,所得含铅锌烟尘外售。为加强烟尘和渣的混合及反应速度,在CR炉炉体上部设4个小喷枪,喷入适量的天然气。
处理结果:年处理熔炼渣67万吨,熔炼渣含铜2%,含锌2.05%;铜熔炼烟尘1.5万吨;熔炼渣处理后尾渣含铜0.25%,含锌0.08%,冰铜的铜品位在32%。整个系统铜回收率约99%,锌回收率约为95%,铅回收率85%。
实施例4
利用图2所示铜熔炼渣综合回收装置进行铜熔炼渣的综合回收,其中CR炉如图1所示,CR炉电极延伸至腔体中的部分的体积占腔体总容积的4%,电极的功率密度为200kW/m 2,工艺条件如下:
将铜熔炼渣通过溜槽从熔炼炉内流入CR炉内,提升炉内渣的温度至1380℃;加入还原剂粉煤,其加入量为熔炼渣总重量的3%;加入硫化剂进一步捕集渣中的铜金属,加入量为熔炼渣总重量的3%;加入铜熔炼烟尘,加入量为熔炼渣总重量的5%;所得冰铜返回熔炼炉,所得含铅锌烟尘外售。为加强烟尘和渣的混合及反应速度,在CR炉炉体上部设4个小喷枪,喷入适量的天然气。
处理结果:年处理熔炼渣68万吨,熔炼渣含铜2%,含锌2.04%;铜熔炼烟尘1.6万吨;熔炼渣处理后尾渣含铜0.22%,含锌0.07%,冰铜的铜品位在40%。整个系统铜回收率约99.3%,锌回收率约为95%,铅回收率89%。
实施例5
利用图2所示铜熔炼渣综合回收装置进行铜熔炼渣的综合回收,其中CR炉如图1所示,CR炉电极延伸至腔体中的部分的体积占腔体总容积的5%,电极的功率密度为250kW/m 2,工艺条件如下:
将铜熔炼渣通过溜槽从熔炼炉内流入CR炉内,提升炉内渣的温度至1400℃;加入还原剂粉煤,其加入量为熔炼渣总重量的3%;加入硫化剂进一步捕集渣中的铜金属,加入量为熔炼渣总重量的3%;加入铜熔炼烟尘,加入量为熔炼渣总重量的5%;所得冰铜返回熔炼炉,所得含铅锌烟尘外售。为加强烟尘和渣的混合及反应速度,在CR炉炉体上部设4个小喷枪,喷入适量的天然气。
处理结果:年处理熔炼渣66万吨,熔炼渣含铜2%,含锌2.06%;铜熔炼烟尘1.6万吨;熔炼渣处理后尾渣含铜0.20%,含锌0.06%,冰铜的铜品位在43%。整个系统铜回收率约99.4%,锌回收率约为92.5%,铅回收率89.8%。
实施例6
利用图2所示铜熔炼渣综合回收装置进行铜熔炼渣的综合回收,其中CR炉如图1所示,CR炉电极延伸至腔体中的部分的体积占腔体总容积的1.8%,电极的功率密度为90kW/m 2,工艺条件如下:
将铜熔炼渣通过溜槽从熔炼炉内流入CR炉内,提升炉内渣的温度至1280℃;加入还原剂粉煤,其加入量为熔炼渣总重量的3%;所得冰铜返回熔炼炉,所得含锌烟尘外售。
处理结果:年处理熔炼渣65万吨,含铜3%,含锌2.77%;熔炼渣经铜熔炼渣综合回收装置处理后,尾渣含铜0.39%,尾渣含锌0.4%,冰铜的铜品位在20%。整个系统铜回收率约92%,锌回收率约为85%。
实施例7
利用图2所示铜熔炼渣综合回收装置进行铜熔炼渣的综合回收,其中CR炉如图1所示,CR炉电极延伸至腔体中的部分的体积占腔体总容积的5%,电极的功率密度为250kW/m 2,工艺条件如下:
将铜熔炼渣通过溜槽从熔炼炉内流入CR炉内,提升炉内渣的温度至1400℃;加入还原剂块煤,其加入量为熔炼渣总重量的10%;加入石英熔剂,其占铜熔炼渣重量的10%。为加强烟尘和渣的混合及反应速度,在CR炉炉体上部设4个小喷枪,喷入适量的天然气。
处理结果:年处理熔炼渣95万吨,熔炼渣含铜2%,含锌1.71%;吹炼渣15万吨,渣含铜4.5%;熔炼渣处理后尾渣含铜0.35%,渣含锌0.09%,冰铜的铜品位在30%。整个系统铜回收率约98.5%,锌回收率约为95%。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
本发明突出解决了当前传统电炉贫化工艺尾渣含铜高、不能综合回收铅锌等有价金属;选矿工艺处理铜熔炼渣不能回收渣中铅锌、尾渣二次污染隐患、流程长、设备多、占地面积大、投资大等问题。
1)本工艺核心装置仅采用CR炉,投资小、占地面积小、消除尾渣污染隐患;
2)本工艺处理铜熔炼渣,可搭配处理富铅烟尘,既综合回收铅、锌等金属,又避免烟尘返回铜冶炼系统导致铜含铅高的问题;
3)可以直接处理液态铜熔炼渣,充分利用液态铜熔炼渣热资源,节约能源、降低能耗;
4)产出高品位铅锌粉尘,用于铅锌冶炼,避免资源浪费并为企业带来巨大经济效益。
5)采用CR炉处理铜熔炼渣可产出含铜低于0.4%的尾渣。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种铜熔炼渣综合回收方法,其特征在于,所述综合回收方法采用的装置包括CR炉和还原剂供应装置,所述还原剂供应装置用于向所述CR炉供应还原剂,所述CR炉包括壳体和电极,所述壳体内部具有腔体,所述壳体设置有第一进口,所述电极穿过所述壳体延伸至所述腔体中以进行供热,且所述电极延伸至所述腔体中的部分的体积占所述腔体总容积的1.5~5.5%;
    所述综合回收方法包括以下步骤:
    将所述铜熔炼渣通过所述第一进口通入所述腔体中;
    在所述电极的供热状态和所述还原剂的存在下,回收所述铜熔炼渣中的有价金属。
  2. 根据权利要求1所述的铜熔炼渣综合回收方法,其特征在于,回收所述铜熔炼渣中的有价金属的步骤中,所述腔体中的温度为1250~1450℃,所述腔体中的功率密度为100kW/m 2~250kW/m 2
  3. 根据权利要求2所述的铜熔炼渣综合回收方法,其特征在于,回收所述铜熔炼渣中的有价金属的步骤中,所述腔体中的温度为1350~1380℃,所述腔体中的功率密度为150kW/m 2~200kW/m 2
  4. 根据权利要求1至3中任一项所述的铜熔炼渣综合回收方法,其特征在于,回收所述铜熔炼渣中的有价金属的步骤中,同时向所述腔体中加入硫化剂。
  5. 根据权利要求4所述的铜熔炼渣综合回收方法,其特征在于,所述还原剂为碳质还原剂,优选所述还原剂为粉煤、天然气、液化石油气及碎煤中的一种或多种;优选地,所述还原剂的加入量为所述铜熔炼渣重量的3~20%。
  6. 根据权利要求4所述的铜熔炼渣综合回收方法,其特征在于,所述硫化剂为SO 2气体、黄铁矿及硫磺中的一种或多种;优选地,所述硫化剂的加入量为所述铜熔炼渣重量的0.01~20%。
  7. 根据权利要求1至6中任一项所述的铜熔炼渣综合回收方法,其特征在于,回收所述铜熔炼渣中的有价金属的步骤中,同时向所述腔体中加入铜冶炼烟尘进行反应;优选地,所述铜冶炼烟尘的加入量为所述铜熔炼渣重量的0.01~10%。
  8. 根据权利要求1至6中任一项所述的铜熔炼渣综合回收方法,其特征在于,回收所述铜熔炼渣中的有价金属的步骤中,所述腔体中产出冰铜、尾渣及含有挥发性有价金属的烟气,所述综合回收方法还包括对所述烟气进行余热回收的步骤。
  9. 根据权利要求8所述的铜熔炼渣综合回收方法,其特征在于,将所述烟气进行余热回收的步骤之后,所述综合回收方法还包括对余热回收后的烟气进行收尘处理以回收含有所述挥发性有价金属的烟尘的步骤。
  10. 根据权利要求8所述的铜熔炼渣综合回收方法,其特征在于,所述综合回收方法还包括从所述冰铜中回收铁的步骤。
  11. 根据权利要求1至6中任一项所述的铜熔炼渣综合回收方法,其特征在于,回收所述铜熔炼渣中的有价金属的步骤中,同时利用喷射装置向所述腔体的熔体中喷入氧气、空气、富氧空气、天然气、液化石油气、SO 2气体、氮气及粉煤中的一种或多种。
  12. 一种铜熔炼渣综合回收装置,其特征在于,所述综合回收装置包括CR炉(10)和还原剂供应装置(20),所述还原剂供应装置(20)用于向所述CR炉(10)供应还原剂,所述CR炉(10)用于回收所述铜熔炼渣中的有价金属,所述CR炉(10)包括:
    壳体(11),内部具有腔体,所述壳体(11)设置有第一进口,所述第一进口用于向所述腔体中通入铜熔炼渣;
    电极(12),所述电极(12)穿过所述壳体(11)延伸至所述腔体中以进行供热,且所述电极(12)延伸至所述腔体中的体积占所述腔体总容积的1.5~5.5%。
  13. 根据权利要求12所述的铜熔炼渣综合回收装置,其特征在于,所述CR炉(10)还包括电气化控制系统(13),所述电气化控制系统(13)与所述电极(12)电连接。
  14. 根据权利要求12所述的铜熔炼渣综合回收装置,其特征在于,所述综合回收装置还包括硫化剂供应装置(30),所述硫化剂供应装置(30)用于向所述CR炉(10)供应硫化剂。
  15. 根据权利要求14所述的铜熔炼渣综合回收装置,其特征在于,所述壳体(11)还设置有第二进口,所述第二进口用于向所述腔体中通入铜冶炼烟尘。
  16. 根据权利要求15所述的铜熔炼渣综合回收装置,其特征在于,所述第一进口设置在所述壳体(11)的顶部;所述第二进口设置在所述壳体(11)的顶部;
    所述还原剂供应装置(20)与所述第二进口相连以通过所述第二进口供应所述还原剂,且所述硫化剂供应装置(30)与所述第二进口相连以通过所述第二进口供应所述硫化剂;或者,所述硫化剂供应装置(30)与所述第二进口相连以通过所述第二进口供应所述硫化剂,且所述壳体(11)的侧部还设置有还原剂入口,所述还原剂供应装置(20)与所述还原剂入口相连以通过所述还原剂入口供应所述还原剂。
  17. 根据权利要求12至16中任一项所述的铜熔炼渣综合回收装置,其特征在于,所述壳体(11)还设置有冰铜出口(101)、尾渣出口(102)和烟气出口(103),所述冰铜出口(101)用以排出所述腔体中产出的冰铜,所述尾渣出口(102)用以排出所述腔体中产出的尾渣,所述烟气出口(103)用以排出所述腔体中产出的含有挥发性金属的烟气。
  18. 根据权利要求17所述的铜熔炼渣综合回收装置,其特征在于,所述综合回收装置还包括热回收装置(40),所述热回收装置(40)与所述烟气出口(103)相连,用于回收所述烟气携带的热量。
  19. 根据权利要求18所述的铜熔炼渣综合回收装置,其特征在于,所述热回收装置(40)为余热锅炉或换热器。
  20. 根据权利要求18所述的铜熔炼渣综合回收装置,其特征在于,所述综合回收装置还包括收尘器(50),所述收尘器(50)设置在所述热回收装置(40)的下游,用于分离所述烟气中的含有所述挥发性金属的烟尘。
  21. 根据权利要求17所述的铜熔炼渣综合回收装置,其特征在于,所述烟气出口(103)和所述第一进口设置在所述壳体(11)的同一位置。
  22. 根据权利要求12至21中任一项所述的铜熔炼渣综合回收装置,其特征在于,所述壳体(11)的顶部或侧部还设置有喷入口,所述CR炉(10)还包括喷射装置,所述喷射装置穿过所述喷入口延伸至所述腔体,用于向所述腔体中的熔体喷入氧气、空气、富氧空气、天然气、液化石油气、SO 2气体、氮气及粉煤中的一种或多种。
PCT/CN2018/121457 2017-12-26 2018-12-17 铜熔炼渣综合回收方法及装置 WO2019128754A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711433274.X 2017-12-26
CN201711442805.1A CN108034832A (zh) 2017-12-26 2017-12-26 铜熔炼渣综合回收装置
CN201711442805.1 2017-12-26
CN201711433274.XA CN108165755B (zh) 2017-12-26 2017-12-26 铜熔炼渣综合回收方法

Publications (1)

Publication Number Publication Date
WO2019128754A1 true WO2019128754A1 (zh) 2019-07-04

Family

ID=67066558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121457 WO2019128754A1 (zh) 2017-12-26 2018-12-17 铜熔炼渣综合回收方法及装置

Country Status (1)

Country Link
WO (1) WO2019128754A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603127A (zh) * 2009-06-05 2009-12-16 黄贤盛 一种贫化炼铜炼镍炉渣的方法
CN101838739A (zh) * 2009-07-21 2010-09-22 中国恩菲工程技术有限公司 铜熔炼渣电热贫化工艺
CN101845554A (zh) * 2010-06-13 2010-09-29 云南铜业(集团)有限公司 以废杂铜和硫化铜精矿为原料熔炼铜的方法
JP5074332B2 (ja) * 2008-09-22 2012-11-14 Dowaメタルマイン株式会社 白金族元素の回収装置
CN108034832A (zh) * 2017-12-26 2018-05-15 中国恩菲工程技术有限公司 铜熔炼渣综合回收装置
CN108165755A (zh) * 2017-12-26 2018-06-15 中国恩菲工程技术有限公司 铜熔炼渣综合回收方法
CN208008863U (zh) * 2017-12-26 2018-10-26 中国恩菲工程技术有限公司 铜熔炼渣综合回收装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074332B2 (ja) * 2008-09-22 2012-11-14 Dowaメタルマイン株式会社 白金族元素の回収装置
CN101603127A (zh) * 2009-06-05 2009-12-16 黄贤盛 一种贫化炼铜炼镍炉渣的方法
CN101838739A (zh) * 2009-07-21 2010-09-22 中国恩菲工程技术有限公司 铜熔炼渣电热贫化工艺
CN101845554A (zh) * 2010-06-13 2010-09-29 云南铜业(集团)有限公司 以废杂铜和硫化铜精矿为原料熔炼铜的方法
CN108034832A (zh) * 2017-12-26 2018-05-15 中国恩菲工程技术有限公司 铜熔炼渣综合回收装置
CN108165755A (zh) * 2017-12-26 2018-06-15 中国恩菲工程技术有限公司 铜熔炼渣综合回收方法
CN208008863U (zh) * 2017-12-26 2018-10-26 中国恩菲工程技术有限公司 铜熔炼渣综合回收装置

Similar Documents

Publication Publication Date Title
WO2020211689A1 (zh) 短流程处理铁基多金属矿料的熔炼方法及熔炼装置
US8771396B2 (en) Method for producing blister copper directly from copper concentrate
CN208250387U (zh) 铜熔炼渣综合回收装置
CN108504875A (zh) 短流程炼铜方法
CN108728660A (zh) 铜渣贫化方法
CN108165755B (zh) 铜熔炼渣综合回收方法
CN111411234A (zh) 射流熔炼电热还原炉和冶炼含锌物料的方法
RU2741038C1 (ru) Способ и устройство для выплавки меди с комплексной переработкой шлака
CN206956120U (zh) 短流程炼铜系统
CN108411124A (zh) 一种新型短流程连续铜冶炼装置及工艺
CN108034832A (zh) 铜熔炼渣综合回收装置
WO2019128754A1 (zh) 铜熔炼渣综合回收方法及装置
CN111394588A (zh) 处理提钒尾渣直接产出铁钒铬合金的方法及装置
CN108531744A (zh) 铜渣贫化装置
BR112020018387B1 (pt) Método para a recuperação de zinco
CN208008863U (zh) 铜熔炼渣综合回收装置
CN211897062U (zh) 铜吹炼渣的处理装置
CN105695765B (zh) 一种高杂质铜精矿的冶炼方法
CN105671322A (zh) 一种铜冶炼渣的资源化回收方法
CN106086463B (zh) 铅锌矿的冶炼设备
CN209989443U (zh) 处理含钴铜熔炼渣的还原炉
CN105695749A (zh) 一种从高杂质铜冶炼渣中回收铅、锌、砷、锑、铋以及锡的方法
CN111020207A (zh) 铜吹炼渣的处理装置及处理方法
CN106086456B (zh) 铅锌矿的冶炼设备
CN107002172A (zh) 等离子体和含氧气体燃烧炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896060

Country of ref document: EP

Kind code of ref document: A1