WO2019128037A1 - 光伏发电厂及其二次调频控制方法 - Google Patents

光伏发电厂及其二次调频控制方法 Download PDF

Info

Publication number
WO2019128037A1
WO2019128037A1 PCT/CN2018/086351 CN2018086351W WO2019128037A1 WO 2019128037 A1 WO2019128037 A1 WO 2019128037A1 CN 2018086351 W CN2018086351 W CN 2018086351W WO 2019128037 A1 WO2019128037 A1 WO 2019128037A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine
photovoltaic
command value
power
agc
Prior art date
Application number
PCT/CN2018/086351
Other languages
English (en)
French (fr)
Inventor
包献文
乔元
张毅
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to US16/616,959 priority Critical patent/US11682905B2/en
Priority to AU2018396280A priority patent/AU2018396280B2/en
Priority to EP18897136.0A priority patent/EP3618217B1/en
Priority to ES18897136T priority patent/ES2962987T3/es
Publication of WO2019128037A1 publication Critical patent/WO2019128037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present disclosure relates to the field of power system power control, and more particularly to a photovoltaic power plant and a secondary frequency modulation control method thereof.
  • the secondary frequency modulation refers to the frequency modulation method used when the frequency modulation cannot restore the frequency to the specified range when the power system load or the power generation output changes greatly.
  • the response lag time of the thermal power generating unit participating in the primary frequency modulation should be less than 3 s, and the frequency fluctuation duration is less than 1 minute;
  • the frequency fluctuation duration is a few minutes.
  • the photovoltaic power station is required to meet the real-time limited power demand, that is, the active power output from the photovoltaic power station is greater than the active power lower limit threshold, so that the new energy field station has standby power. Energy reserve.
  • the power control accuracy is low, and the power system stability is poor.
  • Embodiments of the present disclosure provide a photovoltaic power plant and a secondary frequency modulation control method thereof, which can improve power control accuracy and power system stability.
  • a photovoltaic power plant including: a photovoltaic power station and an active power control system; wherein, the photovoltaic power station includes a photovoltaic array and a photovoltaic inverter, and the photovoltaic inverter is used for the photovoltaic array
  • the generated DC power is converted into AC power
  • the active power control system is configured to allocate power to the PV inverter based on the power control AGC command value when the operating data of the PV power plant meets the preset secondary frequency modulation condition, And adjusting the active power outputted by the photovoltaic inverter based on the AGC command value of the photovoltaic inverter after power distribution.
  • a method for controlling a secondary frequency modulation includes: monitoring operation data of a photovoltaic power plant; determining that operation data of the photovoltaic power plant satisfies a preset secondary frequency modulation condition; and using an AGC instruction based on power control The value is used to allocate power to the photovoltaic inverter; and, according to the AGC command value of the photovoltaic inverter after the power distribution, the active power output by the photovoltaic inverter is adjusted.
  • the photovoltaic power plant and the secondary frequency modulation control method thereof in the embodiment of the present disclosure when the photovoltaic power plant meets the secondary frequency modulation condition, the average distribution of the AGC command value is performed for each non-standard rod machine according to the AGC command value issued by the power grid. And after the average distribution of the AGC command values, the output power of the non-standard machine is adjusted again, thereby achieving the benefits including but not limited to the following: optimization of the second frequency-limited power measurement based on the primary frequency modulation requirement, photovoltaic The whole station power control response speed is fast and the precision is high, which further improves the stability of the power system.
  • FIG. 1 is a schematic view showing a frame structure of a photovoltaic power plant according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing a topology of a photovoltaic power plant according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic structural view showing a field level controller according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural view showing a photovoltaic power plant according to another embodiment of the present disclosure.
  • FIG. 5 is a flowchart illustrating a secondary frequency modulation control method according to an embodiment of the present disclosure.
  • a photovoltaic power plant may include a photovoltaic power plant and an active power control system; wherein, the photovoltaic power plant includes a photovoltaic array 111 and a photovoltaic inverter 112, and the photovoltaic inverter 112 and photovoltaic
  • the corresponding photovoltaic generator set 10 in the array 111 is connected, the photovoltaic inverter 112 is used to convert the direct current electrical energy generated by the plurality of photovoltaic arrays 111 into alternating current electrical energy, and the boosting station can be used for voltage-raising processing of the converted alternating current electrical energy.
  • the high-voltage AC power obtained by the voltage boosting process is delivered to the power grid.
  • the active power control system is configured to determine the amount of active power change of the single unit according to the operating state of the photovoltaic inverter 112 when the frequency value of the grid-connected point of the photovoltaic power plant meets the preset primary frequency triggering condition, and control the photovoltaic power plant to perform one frequency modulation . Specifically, the active power output by each photovoltaic inverter is adjusted according to the operating state of each photovoltaic inverter 112.
  • the active power control system is also used for power distribution of the photovoltaic inverter based on the power control AGC command value when the operating data of the photovoltaic power plant meets the preset secondary frequency modulation condition, and based on the photovoltaic inverse after the power distribution
  • the AGC command value of the transformer adjusts the active power of the PV inverter output.
  • the active power control system adopts a centralized control scheme to adjust the active power outputted by the entire power grid.
  • the AGC command can be controlled according to the automatic power generation amount to control each photovoltaic.
  • the active power output from the inverter realizes secondary frequency modulation, and the whole field control speed of the photovoltaic power plant is fast and the precision is high, thereby increasing the stability of the system and improving the grid-connected friendliness of the wind power.
  • the photovoltaic power plant in the embodiment of the present disclosure does not include an energy storage device, and the active power control system is used to control the active output of the photovoltaic inverter.
  • the active power control system includes a field level controller 121 and a stand-alone frequency modulation module 122, wherein
  • the field level controller 121 is configured to perform power allocation on the photovoltaic inverter 112 based on the AGC command value if the operating data of the photovoltaic power plant satisfies the secondary frequency modulation condition, and meet the preset command value adjustment condition after the power distribution
  • the photovoltaic inverter 112 generates a corresponding power adjustment instruction
  • the single frequency modulation module 122 is connected to the corresponding photovoltaic inverter 112, and the single frequency modulation module 122 is configured to adjust the active power output by the photovoltaic inverter 112 according to the AGC command value and the power adjustment command.
  • the stand-alone frequency modulation module 122 includes:
  • the single-machine communication interface is connected to the field level controller 121, and is configured to receive the AGC command value and the power adjustment command sent by the field level controller 121, and send the received AGC command value and the power adjustment command to the corresponding to-be-modulated PV inverse.
  • the photovoltaic controller is configured to adjust the active power output of the PV inverter to be modulated according to the preset power adjustment step and the adjustment rate according to the AGC command value and the power adjustment command.
  • each photovoltaic inverter (not shown) is connected to a corresponding photovoltaic generator set in the photovoltaic array, and each photovoltaic inverter will be connected.
  • the DC power generated by the PV array is converted into AC power, and the converted AC power is transferred to the PV bus; the PV bus is connected to the low voltage bus through the cable connection with the low voltage bus, and the low voltage bus passes through the booster station and the high voltage bus.
  • the AC power on the low-voltage bus is boosted into AC power that meets the requirements of the grid, and is connected to the grid through a grid connection point with the high-voltage bus.
  • the field level controller 121 of the active power control system and each of the stand-alone frequency modulation modules 122 can be connected by fiber optics.
  • the field level controller 121 monitors the operating data of the photovoltaic power plant in real time, and judges whether the operating data of the photovoltaic power plant meets the preset secondary frequency modulation condition according to the monitored operational data, and satisfies the preset
  • the single-machine AGC command value is reasonably allocated, and the single-machine AGC command value and the power adjustment command are sent to each single-machine frequency modulation module 122 through the optical fiber, so that each single-machine frequency modulation module 122 can quickly respond to the single-machine AGC command value and power adjustment.
  • Directive PV inverters participate in the power control of the entire photovoltaic power plant to the maximum extent, with faster corresponding speed and accuracy to maintain the stability of the power system.
  • condition for secondary frequency modulation of the photovoltaic power plant includes any one of the following conditions:
  • the difference between the current power control total command value and the last power control total command value is greater than a preset first power limit threshold; the time interval between the time when the power allocation is performed and the time point when the power split was last executed is greater than the a time threshold; or the difference between the current AGC total command value and the photovoltaic power plant's grid-connected active power value is less than a preset second power limit threshold, wherein the AGC total command value is passed through each non-standard machine
  • the AGC instruction is calculated by summation.
  • the field level controller 121 may include a secondary frequency power distribution device 310 and an AGC command value adjustment device 320.
  • the secondary frequency modulation power distribution device 310 when the operating data of the photovoltaic power plant meets the preset secondary frequency modulation condition, selects a corresponding distribution mode for the photovoltaic inverter according to the detected active power of the photovoltaic inverter output Non-standard machine for power distribution;
  • the secondary frequency power distribution device 310 includes:
  • the first command value assigning module 311 is configured to: when the operating data of the photovoltaic power plant meets the direct allocation condition of the AGC command value, send the corresponding first single AGC command value to the non-standard bar machine that satisfies the direct allocation condition;
  • the command value direct allocation condition includes any one of the following conditions: the grid-connected active power value of the photovoltaic power plant is less than a preset grid-connected active power lower threshold; and the benchmarking machine in the photovoltaic inverter is faulty. State; or the operating data of the grid point does not satisfy the secondary frequency modulation condition.
  • the field level controller 121 directly forwards the single AGC command value of the grid.
  • the second command value distribution module 312 is configured to, according to the non-standard machine single-machine AGC command value, distribute the single-machine AGC command value according to different photovoltaic arrays, and send the first to the non-standard rod machine in the photovoltaic inverter that meets the command value delivery condition. Two single AGC command values.
  • the command value delivery condition includes any one of the following conditions: the first stand-alone AGC command value or the second stand-alone AGC command value is used as a stand-alone AGC assignment value, and the non-standard machine single-machine AGC assignment value is the last time
  • the difference between the single-machine AGC allocation value is greater than the preset third power limit threshold; the time interval from the last time the single-machine AGC allocation value is greater than the first time interval threshold; the difference between the single-machine AGC allocation value and the non-standard machine power value Less than the fourth power limit threshold.
  • the second command value assignment module 312 is specifically configured to:
  • the AGC total command value of the non-standard machine in the PV inverter is calculated; based on the active power output of the benchmarking machine, the AGC of the non-standard machine will be totaled.
  • the command values are evenly distributed to each of the photovoltaic arrays to obtain the AGC command values corresponding to each of the photovoltaic arrays; the AGC command values corresponding to each of the photovoltaic arrays are evenly distributed to the photovoltaic generator sets in each of the photovoltaic arrays.
  • the stand-alone AGC command value for photovoltaic inversion in each photovoltaic array can be calculated according to the following expression.
  • the active power of the benchmark machine represents the active power of the benchmarking machine in a photovoltaic array
  • the sum of the AGC command values of all non-standard pole machines represents the sum of the single AGC command values of all non-standard pole machines in the photovoltaic array, all non-standard pole machines
  • the sum of the theoretical powers is referenced to the active power of the benchmarking machine, and the non-standard pole machine in the photovoltaic array is theoretically capable of outputting active power.
  • the benchmarking machine in the photovoltaic array can be operated at full power, and the non-standard pole machine in the photovoltaic array can theoretically output the active power as the full power.
  • the AGC command value adjusting device 320 is configured to sequentially determine whether each non-standard rod machine satisfies a preset command value re-adjustment condition according to the obtained single-machine AGC command value of the non-standard rod machine after the power distribution, and generate a power adjustment instruction, which is satisfied.
  • the non-standard machine that re-adjusts the command value performs power adjustment.
  • the AGC command value adjustment device 320 may include:
  • the command value screening module 321 is configured to traverse the single AGC command value of the non-standard bar machine in the photovoltaic inverter, and determine the minimum single machine AGC command value and the maximum stand-alone AGC command value in the single machine AGC command value.
  • the to-be-modulated unit determining module 322 is configured to: when the minimum single-machine AGC command value is less than the preset unit active power lower limit threshold, and the maximum single-machine AGC command value is greater than the unit active power lower limit threshold, the non-standard machine having the smallest single-machine AGC command value And the non-standard machine with the largest single AGC command value is used as the PV inverter to be regulated.
  • the command value adjustment module 323 is configured to perform a command value adjustment step on the frequency-modulated photovoltaic inverter according to the generated power adjustment instruction, until the traversal times reach a preset number of times threshold or the single-machine AGC command values of all the non-standard pole machines are greater than the unit active power Power lower threshold.
  • the command value adjustment step may include: adjusting a single-machine AGC command value of the PV inverter to be adjusted to a lower limit value of the active power of the unit, and obtaining an upward adjustment amount, and using the downward adjustment amount equal to the upward adjustment amount.
  • Non-standard machine with maximum AGC command value may include: adjusting a single-machine AGC command value of the PV inverter to be adjusted to a lower limit value of the active power of the unit, and obtaining an upward adjustment amount, and using the downward adjustment amount equal to the upward adjustment amount.
  • the single-machine AGC command value of the photovoltaic inverter with the smallest AGC command value can be adjusted to 10% Pn, while the equal-down down-regulation has the largest stand-alone AGC command value.
  • the traversal of the AGC command values of all units until the number N of traversing processes reaches half of the number of photovoltaic inverters, or when the single-machine AGC command values of all photovoltaic inverters are greater than 10% Pn, the re-adjustment is stopped.
  • the AGC command values of all PV inverters as many PV inverters as possible can participate in the primary frequency modulation of the power system.
  • the photovoltaic inverter 112 may include a benchmarking machine and a non-standard pole machine.
  • the benchmarking machine corresponding to the photovoltaic inverter is used according to a preset selection method of the benchmarking machine, and the selection method of the benchmarking machine includes:
  • the benchmarking machine is used to operate at the rated power of the PV inverter.
  • the field level controller 121 may further include:
  • the inverter operating state monitoring device 330 is configured to determine whether the operating state of the benchmarking machine corresponding to the photovoltaic inverter is normal according to the preset fault-free operating condition, and use the benchmarking machine with an abnormal operating state as the fault marking machine;
  • the virtual benchmarking machine setting device 340 is configured to select a corresponding virtual benchmarking machine for the photovoltaic inverter corresponding to the faulty benchmarking machine according to a preset virtual benchmarking machine selecting step, and select the selected virtual benchmarking machine as a new corresponding to the photovoltaic inverter.
  • the benchmarking machine with normal running status updates the number of benchmarking machines with normal running status in real time.
  • the virtual benchmarking machine selection steps include:
  • the station frequency modulation control system further includes a power rate change rate control device for performing a frequency modulation on the photovoltaic power plant, if the photovoltaic power plant satisfies the primary frequency modulation and the secondary frequency modulation blocking stack processing condition, and the photovoltaic power generation
  • a power rate change rate control device for performing a frequency modulation on the photovoltaic power plant, if the photovoltaic power plant satisfies the primary frequency modulation and the secondary frequency modulation blocking stack processing condition, and the photovoltaic power generation
  • the AGC instruction can be a secondary frequency modulation instruction.
  • the active power control target value of the grid-connected point of the photovoltaic power plant is the active power increment value of the frequency offset continuously and the active power increment value of the current AGC command based on the initial value of the active power of the photovoltaic power plant, when the grid frequency is When the dot frequency is within the allowable range, the active power control target value of the grid point should be the AGC command value and the fast frequency response adjustment amount algebra sum.
  • the active power of the last AGC command is maintained. Based on the incremental value, the active power increment value of the current AGC instruction is no longer superimposed.
  • the fast frequency response function of the photovoltaic power plant should be coordinated with the AGC control.
  • the active power control target value of the new energy field station should be the AGC command value and the fast frequency response adjustment amount algebra sum.
  • the new energy fast frequency response latches the AGC reverse adjustment command.
  • the step of 10% Pn per second may be followed. Long increase the active power value of the inverter.
  • the active power increase value of the inverter is issued according to the preset control strategy period value.
  • the number and power state of the benchmarking machine are refreshed in real time, and when the photovoltaic power plant meets the secondary frequency modulation condition, the average distribution of the AGC command value is performed for each non-standard rod machine according to the AGC command value issued by the power grid. And after the average distribution of the AGC command values, traverse the AGC command values of all non-standard pole machines, and adjust the output power of the non-standard pole machine to optimize the power consumption of the second frequency-modulation limit based on the primary frequency modulation requirement.
  • the field power control has a fast response speed and high precision, which further improves the stability of the power system.
  • the secondary frequency modulation control method 500 in the embodiment of the present disclosure includes the following steps:
  • Step S510 monitoring operation data of the photovoltaic power plant.
  • Step S520 determining that the operating data of the photovoltaic power plant meets a preset secondary frequency modulation condition.
  • Step S530 performing power distribution on the photovoltaic inverter based on the power control AGC command value.
  • Step S540 adjusting the active power output by the photovoltaic inverter according to the AGC command value of the photovoltaic inverter after the power distribution.
  • step S530 may specifically include: step S531 and step S532.
  • Step S531 according to the detected active power output by the photovoltaic inverter, select a corresponding distribution mode to perform power distribution on the non-standard pole machine in the photovoltaic inverter.
  • step S531 may specifically include:
  • Step S531-01 If the running data of the photovoltaic power plant satisfies the direct allocation condition of the AGC command value, the corresponding first single machine AGC command value is sent to the non-standard machine that satisfies the direct allocation condition.
  • Step S531-02 based on the single-machine AGC command value of the non-standard bar machine, according to different photovoltaic arrays, the single-machine AGC command value is evenly distributed, and the second single-machine AGC command value is sent to the non-standard bar machine in the photovoltaic inverter that meets the command value delivery condition. ;
  • the AGC total command value of the non-standard machine in the photovoltaic inverter is calculated according to the single AGC command value of the non-standard machine and the number of non-standard machines;
  • the AGC total command value of the non-standard machine is evenly distributed to each photovoltaic array, and the AGC command value corresponding to each photovoltaic array is obtained;
  • the AGC command values corresponding to each PV array are assigned to the PV generator sets in each of the PV arrays according to a specified allocation.
  • Step S532 according to the acquired AGC command value of each non-standard rod machine after power acquisition, sequentially determine whether each non-standard rod machine satisfies a preset command value re-adjustment condition, generate a power adjustment instruction, and re-adjust the condition to satisfy the command value.
  • the non-standard machine performs power adjustment.
  • the step of performing power adjustment on the non-standard machine that meets the re-adjustment condition of the command value in step S532 may specifically include:
  • Step S532-01 traversing the single-machine AGC command value of the non-standard bar machine in the photovoltaic inverter, and determining the minimum single-machine AGC command value and the maximum stand-alone AGC command value in the single-machine AGC command value.
  • Step S533-02 when the minimum stand-alone AGC command value is less than the preset unit active power lower limit threshold, and the maximum single machine AGC command value is greater than the unit active power lower limit threshold, the non-standard machine with the smallest stand-alone AGC command value and the largest stand-alone machine The non-standard machine of the AGC command value is used as the PV inverter to be regulated.
  • Step S533-03 according to the generated power adjustment instruction, the instruction value adjustment step is performed on the frequency-modulated photovoltaic inverter, until the traversal times reach a preset number of times threshold or the single-machine AGC command values of all non-standard pole machines are greater than the unit active power lower limit threshold. .
  • step S533-03 may include:
  • the instruction value adjustment step is performed on the frequency-modulated photovoltaic inverter until the number of traversals reaches a preset number of times threshold or the single-machine AGC command values of all non-standard machines are greater than the lower limit value of the unit active power lower limit.
  • the benchmarking device corresponding to the photovoltaic inverter is used according to a preset selection method of the benchmarking machine, and the selection method of the benchmarking machine includes:
  • Step S01 acquiring a plurality of groups for the photovoltaic inverter, and screening, in each of the grouped photovoltaic inverters, a photovoltaic inverter having similar geographical locations and the same output capacity;
  • Step S02 selecting a photovoltaic inverter as a benchmarking machine in the selected photovoltaic inverter, and using a photovoltaic inverter other than the benchmarking machine as a non-standard pole machine, and the benchmarking machine is used according to the rated power of the photovoltaic inverter. run.
  • the running data of the benchmarking machine such as the number of effective benchmarks and the power value of the benchmarking machine are refreshed in real time, and is used to allocate the AGC command value of the single machine.
  • the AGC command value is allocated with reference to the active power output by the benchmarking machine.
  • the operating state of the benchmarking machine can be judged in real time.
  • the benchmarking machine is in communication failure or system failure, it needs to be
  • the corresponding marked unit replaces the virtual benchmarking machine.
  • the principle of replacing the virtual benchmarking machine is as follows: among the remaining benchmarking machines, a unit with a power slightly higher than the measured power value of the marked unit is selected as the virtual benchmarking machine of the unit.
  • the benchmarking machine corresponding to the photovoltaic inverter is normal, and the benchmarking machine with abnormal operating state is used as the fault marking machine;
  • the corresponding virtual benchmarking machine is selected for the photovoltaic inverter corresponding to the faulty benchmarking machine, and the selected virtual benchmarking machine is used as a new benchmarking machine with a normal running state corresponding to the photovoltaic inverter, and is updated in real time.
  • the number of benchmarking machines with normal running status, wherein the virtual benchmarking machine selection steps include:
  • the active power value increase amount is greater than 10% of the photovoltaic power generation full field power rating
  • the active power value is increased by 10% Pn/s step size, when When the active power command value is less than 10% Pn, the active power increase value is issued according to the control strategy period value.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product or a computer readable storage medium.
  • the computer program product or computer readable storage medium includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present disclosure are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Abstract

一种光伏发电厂及其二次调频控制方法。该光伏发电厂包括光伏发电站和有功功率控制系统;其中,光伏发电站,包括光伏阵列和光伏逆变器,光伏逆变器用于将光伏阵列产生的直流电能转换为交流电能;有功功率控制系统,用于当光伏发电厂的运行数据满足预设的二次调频条件的情况下,基于功率控制AGC指令值对光伏逆变器进行功率分配,并基于功率分配后的光伏逆变器的AGC指令值,调整光伏逆变器输出的有功功率。该光伏发电站可以提高功率控制的精度和电力系统稳定性。

Description

光伏发电厂及其二次调频控制方法 技术领域
本公开涉及电力系统功率控制领域,尤其涉及光伏发电厂及其二次调频控制方法。
背景技术
随着新能源发电机组渗透率的不断增加,大规模新能源场站集中接入对电力系统的安全、稳定和高效运行带来了新的挑战。在电网实际运行中,当电量消耗与电量供给不匹配时,即可引起电网频率出现变化较小以及变动周期较短的微小分量,通常可以与通过发电机组调节系统的自身频率修正电网频率的波动,这个过程即可称为发电机组的一次调频。二次调频是指当电力系统负荷或发电出力发生较大变化时,一次调频不能恢复频率至规定范围时采用的调频方式。
传统火电机组调频需求如下:
一次调频情况下:火力发电机组参与一次调频的响应滞后时间应小于3s,频率波动持续时间小于1分钟;
二次调频情况下:频率波动持续时间为几分钟。
新能源场站参与电力系统的一次调频控制时,要求光伏发电站满足实时限功率需求,也就是说,光伏发电站输出的有功功率大于有功功率下限阈值,以使新能源场站具有备用功率进行能量储备。
针对该电网需求,通常是在原有能量管理平台基础上进行改造,或者采用能量管理平台进行有功功率功率控制,功率控制精度低,电力系统稳定性差。
发明内容
本公开实施例提供一种光伏发电厂及其二次调频控制方法,可以提高 功率控制的精度和电力系统稳定性。
根据本公开实施例的一方面,提供一种光伏发电厂,包括:光伏发电站和有功功率控制系统;其中,光伏发电站,包括光伏阵列和光伏逆变器,光伏逆变器用于将光伏阵列产生的直流电能转换为交流电能;有功功率控制系统,用于当光伏发电厂的运行数据满足预设的二次调频条件的情况下,基于功率控制AGC指令值对光伏逆变器进行功率分配,并基于功率分配后的光伏逆变器的AGC指令值,调整光伏逆变器输出的有功功率。
根据本公开实施例的另一方面,提供一种二次调频控制方法,包括:监测光伏发电厂的运行数据;确定光伏发电厂的运行数据满足预设的二次调频条件;基于功率控制AGC指令值对光伏逆变器进行功率分配;并且,根据功率分配后的光伏逆变器的AGC指令值,调整光伏逆变器输出的有功功率。
根据本公开实施例中的光伏发电厂及其二次调频控制方法,在光伏发电厂满足二次调频条件时,根据电网下发的AGC指令值对每台非标杆机进行AGC指令值的平均分配,并在AGC指令值的平均分配后,再次对非标杆机的输出功率进行调整,从而达成包括但不限于下述项的益处:对基于一次调频需求的二次调频限功率测量进行优化,光伏电站整场功率控制响应速度快,精度高,进一步提高电力系统的稳定性。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是示出根据本公开实施例的光伏发电厂的框架结构示意图;
图2是示出根据本公开示例性实施例的光伏发电厂的拓扑结构示意图;
图3是示出根据本公开实施例的场级控制器的结构示意图;
图4是示出根据本公开另一实施例的光伏发电厂的结构示意图;
图5是示出根据本公开实施例的二次调频控制方法的流程图。
具体实施方式
下面将详细描述本公开的各个方面的特征和示例性实施例,为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细描述。应理解,此处所描述的具体实施例仅用于解释本公开,并不用于限定本公开。对于本领域技术人员来说,本公开可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本公开的示例来提供对本公开更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
为了更好的理解本公开,下面将结合附图,详细描述根据本公开实施例的,应注意,这些实施例并不是用来限制本公开公开的范围。
如图1所示,在一个实施例中,光伏发电厂可以包括光伏发电站和有功功率控制系统;其中,光伏发电站,包括光伏阵列111和光伏逆变器112,光伏逆变器112与光伏阵列111中对应的光伏发电机组10连接,光伏逆变器112用于将多个光伏阵列111产生的直流电能转换为交流电能,升压站可以用于将转换得到的交流电能进行电压升高处理,将电压升压处理得到的高压交流电能输送至电网。
有功功率控制系统,用于当光伏发电厂的并网点的频率值满足预设的一次调频触发条件时,根据光伏逆变器112的运行状态确定单机有功功率变化量,控制光伏发电厂进行一次调频。具体地,根据每个光伏逆变器112的运行状态,调整每个光伏逆变器输出的有功功率。
有功功率控制系统,还用于当光伏发电厂的运行数据满足预设的二次 调频条件的情况下,基于功率控制AGC指令值对光伏逆变器进行功率分配,并基于功率分配后的光伏逆变器的AGC指令值,调整光伏逆变器输出的有功功率。
在本公开实施例中,有功功率控制系统采用集中控制方案,调节整个电网输出的有功功率,在满足光伏发电厂的一次调频需求的情况下,可以按照自动发电量控制AGC指令,控制每个光伏逆变器输出的有功功率,实现二次调频,对光伏发电厂整场控制速度快,精度高,从而增加系统的稳定性,改善风电的并网友好性。
需要说明的是,本公开实施例中的光伏发电厂不包括储能装置,利用有功功率控制系统控制光伏逆变器的有功出力。
继续参考图1,在一个实施例中,有功功率控制系统包括场级控制器121和单机调频模块122,其中,
场级控制器121,用于在光伏发电厂的运行数据满足二次调频条件的情况下,基于AGC指令值对光伏逆变器112进行功率分配,对于功率分配后满足预设的指令值调整条件的光伏逆变器112,生成对应的功率调整指令;
单机调频模块122,与对应的光伏逆变器112连接,单机调频模块122用于根据AGC指令值和功率调整指令调整光伏逆变器112输出的有功功率。
其中,单机调频模块122包括:
单机通信接口,与场级控制器121连接,用于接收场级控制器121下发的AGC指令值和功率调整指令,将接收到的AGC指令值和功率调整指令发送至对应的待调频光伏逆变器;
光伏控制器,用于根据AGC指令值和功率调整指令,按照预设的功率调节步长和调节速率,调整待调频光伏逆变器输出的有功功率。
如图2所示,在一个实施例中,光伏发电站中,每个光伏逆变器(图中未示出)与光伏阵列中对应的光伏发电机组连接,每个光伏逆变器将连接的光伏阵列产生的直流电能转换为交流电能,并将转换得到的交流电能汇入光伏母线;光伏母线通过与低压母线的电缆连接传输该交流电能到低 压母线,低压母线通过升压站与高压母线相连接,低压母线上的交流电能经过升压处理成符合电网要求的交流电能,通过为与高压母线上的并网点接入电网。
继续参考图2,有功功率控制系统的场级控制器121与每个单机调频模块122可以通过光纤连接。场级控制器121作为一个精细化的能量管理平台,实时监测光伏发电厂的运行数据,根据监测的运行数据判断光伏发电厂的运行数据是否满足预设的二次调频条件,在满足预设的二次调频条件时,合理分配单机AGC指令值,并通过光纤发送单机AGC指令值和功率调整指令到每个单机调频模块122,使每个单机调频模块122能够快速响应单机AGC指令值和功率调整指令,光伏逆变器最大限度的参与到整个光伏发电厂的功率控制,具有较快的相应速度和精度,维持电力系统的稳定性。
在本公开实施例中,对光伏发电厂进行二次调频的条件包括以下条件中的任一个:
本次功率控制总指令值与上一次功率控制总指令值的差值大于预设的第一功率限制阈值;本次执行功率分配的时间点与上一次执行功率分配的时间点的时间间隔大于第一时间阈值;或者本次AGC总指令值与光伏发电厂的并网点有功功率值的差值小于预设的第二功率限制阈值,其中,AGC总指令值是通过对每个非标杆机的单机AGC指令进行求和计算得到的。
如图3所示,在一个实施例中,场级控制器121可以包括:二次调频功率分配装置310和AGC指令值调整装置320。
二次调频功率分配装置310,用于光伏发电厂的运行数据满足预设的二次调频条件时,根据检测的光伏逆变器输出的有功功率,选择对应的分配方式对光伏逆变器中的非标杆机进行功率分配;
在一个实施例中,二次调频功率分配装置310包括:
第一指令值分配模块311,用于光伏发电厂的运行数据满足AGC指令值的直接分配条件时,向满足直接分配条件的非标杆机发送对应的第一单机AGC指令值;
在一个实施例中,指令值直接分配条件包括如下条件中的任一个:光伏发电厂的并网点有功功率值小于预设的并网点有功功率下限阈值;光伏逆变器中的标杆机均为故障状态;或者并网点的运行数据不满足二次调频条件。
在一个实施例中,当光伏发电厂整场输出的有功功率小于并网点额定功率的10%时,场级控制器121直接转发电网的单机AGC指令值。
第二指令值分配模块312,用于基于非标杆机的单机AGC指令值,按照不同的光伏阵列平均分配单机AGC指令值,向光伏逆变器中满足指令值下发条件的非标杆机发送第二单机AGC指令值。
在一个实施例中,指令值下发条件包括以下条件中的任一个:将第一单机AGC指令值或第二单机AGC指令值作为单机AGC分配值,非标杆机的单机AGC分配值与上一次单机AGC分配值的差值大于预设的第三功率限制阈值;当前时间距离上一次发送单机AGC分配值的时间间隔大于第一时间间隔阈值;单机AGC分配值与非标杆机功率值的差值小于第四功率限制阈值。
在一个实施例中,第二指令值分配模块312具体用于:
根据非标杆机的单机AGC指令值和非标杆机的个数,计算得到光伏逆变器中非标杆机的AGC总指令值;基于监测的标杆机输出的有功功率,将非标杆机的AGC总指令值平均分配到每个光伏阵列,得到每个光伏阵列对应的AGC指令值;将每个光伏阵列对应的AGC指令值平均分配到每个光伏阵列中的光伏发电机组。
作为一个示例,可以根据下面的表达式计算每个光伏阵列中的光伏逆变的单机AGC指令值。
Figure PCTCN2018086351-appb-000001
其中,标杆机的有功功率表示一个光伏阵列中的标杆机的有功功率,所有非标杆机的AGC指令值的和表示该光伏阵列中所有非标杆机的单机AGC指令值的和,所有非标杆机的理论功率的和表示以标杆机的有功功率 做参考,该光伏阵列中的非标杆机理论上能够输出的有功功率。
例如,光伏阵列中的标杆机可以按照满额功率运行,则该光伏阵列中的非标杆机理论上能够输出的有功功率为该满额功率。
AGC指令值调整装置320,用于根据获取的功率分配后的非标杆机的单机AGC指令值,依次判定每个非标杆机是否满足预设的指令值重新调整条件,生成功率调整指令,对满足指令值重新调整条件的非标杆机进行功率调整。
在一个实施例中,AGC指令值调整装置320可以包括:
指令值筛选模块321,用于遍历光伏逆变器中非标杆机的单机AGC指令值,确定单机AGC指令值中的最小单机AGC指令值和最大单机AGC指令值。
待调频机组确定模块322,用于当最小单机AGC指令值小于预设的机组有功功率下限阈值,且最大单机AGC指令值大于机组有功功率下限阈值时,将具有最小单机AGC指令值的非标杆机和具有最大单机AGC指令值的非标杆机分别作为待调频光伏逆变器。
作为一个示例,遍历所有光伏逆变器中非标杆机的单机AGC指令值,如果所最小单机AGC指令值小于10%Pn,并且最大单机AGC指令值大于10%Pn,说明光伏逆变器中的非标杆机具备重新调整AGC指令值的条件。
指令值调整模块323,用于根据生成的功率调整指令,对待调频光伏逆变器执行指令值调整步骤,直到遍历次数达到预设的次数阈值或者所有非标杆机的单机AGC指令值均大于机组有功功率下限阈值。
在一个实施例中,指令值调整步骤可以包括:将待调频光伏逆变器的单机AGC指令值上调至机组有功功率下限阈值,并获取上调的上调额度,使用与上调额度等额的下调额度下调具有最大AGC指令值的非标杆机。
作为一个示例,可将具有最小AGC指令值的光伏逆变器的单机AGC指令值上调至10%Pn,同时,等额度的下调具有最大单机AGC指令值。重复遍历所有机组的AGC指令值,直到上述遍历过程的次数N达到光伏逆变器个数的一半,或者所有的光伏逆变器的单机AGC指令值都大于10%Pn时,停止重新调整。通过调整所有光伏逆变器的AGC指令值,可 以使尽可能多的光伏逆变器可以参与电力系统的一次调频。
在本公开实施例中,光伏逆变器112可以包括标杆机和非标杆机。光伏逆变器对应的标杆机用于按照预设的标杆机选取方法获得,标杆机选取方法包括:
选取每个分组的光伏逆变器中具有相似地理位置和相同输出容量的光伏逆变器的一台,将选取的光伏逆变器作为分组中其他光伏发电机连接的逆变器的标杆机,标杆机用于按照光伏逆变器额定功率运行。
如图4所示,在一个实施例中,场级控制器121还可以包括:
逆变器运行状态监测装置330,用于根据预设的无故障运行条件,判定光伏逆变器对应的标杆机的运行状态是否正常,将运行状态不正常的标杆机作为故障标杆机;
虚拟标杆机设置装置340,用于按照预设的虚拟标杆机选取步骤为故障标杆机对应的光伏逆变器选取对应的虚拟标杆机,将选取的虚拟标杆机作为光伏逆变器对应的新的运行状态正常的标杆机,实时更新运行状态正常的标杆机的个数。虚拟标杆机选取步骤包括:
获取故障标杆机连接的光伏逆变器,测量光伏逆变器输出的有功功率值,得到第一有功功率测量值,在运行正常的标杆机中选取有功功率值大于第一有功功率测量值的有效标杆机,作为虚拟标杆机。
在一个实施例中,场站调频控制系统还包括功率变化率控制装置,用于在对光伏发电厂进行一次调频时,如果光伏发电厂满足一次调频和二次调频闭锁叠加工况,且光伏发电厂的并网点的有功功率增加量大于并网点有功功率下限阈值时,按照指定的第一调节速率和第一调节步长,对光伏发电厂的功率值进行调整;以及当多个光伏逆变器中非标杆机的AGC总指令值小于并网点有功功率下限阈值时,按照指定的第二调节速率和第二调节步长,对光伏发电厂的功率值进行调整。
作为一个示例,AGC指令可以为二次调频指令。光伏电厂并网点有功功率控制目标值为在光伏发电厂的有功功率初始值的基础上不断叠加频率偏移量的有功功率增量值和当前AGC指令的有功功率增量值,当电网频率在并网点频率允许变动范围内时,并网点有功功率控制目标值应为AGC 指令值与快速频率响应调节量代数和,当电网频率超出并网点频率允许变动范围,在保持上一次的AGC指令的有功功率增量值的基础上,不再叠加当前AGC指令的有功功率增量值。
也就是说,光伏发电厂快速频率响应功能应与AGC控制相协调。当电网频率超出频率死区但小于50±0.1Hz时,新能源场站有功功率控制目标值应为AGC指令值与快速频率响应调节量代数和。当电网频率超出50±0.1Hz时,新能源快速频率响应闭锁AGC反向调节指令。
小于0.1Hz举例:假设电网频率死区为±0.06Hz,当前频率值为50.08Hz,全场参与系统一次调频,DeltP=-500kW。在此期间,假设一:二次调频指令为要求全场功率由30000kW增加至30500kW,此时全场执行的总功率为30500-500=30000;假设二:二次调频指令为要求全场功率由30000kW增加至29500kW,此时全场执行的总功率为29500-500=29000kW(即不论一次调频与二次调频的方向如何,都是代数和)。
大于0.1Hz举例:假设电网频率死区为±0.06Hz,当前频率值为50.12Hz,全场参与系统一次调频,DeltP=-1500kW。在此期间,假设一:二次调频指令为要求全场功率由30000kW增加至30500kW,此时全场执行的总功率为30000-1500=28500;假设二:二次调频指令为要求全场功率由30000kW增加至29500kW,此时全场执行的总功率为29500-1500=28000kW(即一次调频与二次调频的闭锁逻辑,同方向相加,反方向闭锁)。
作为一个示例,在光伏电厂在一次调频和二次调频闭锁叠加期间,当光伏发电厂的并网点的有功功率值增加量大于全场额定功率的10%时,可以按照每秒10%Pn的步长增加逆变器的有功功率值。作为一个示例,当光伏发电厂的并网点的有功功率指令值小于10%Pn时,按预设的控制策略周期值下发有逆变器的有功功率增加值。
在本公开实施例中,实时刷新标杆机的个数和功率状态,在光伏发电厂满足二次调频条件时,根据电网下发的AGC指令值对每台非标杆机进行AGC指令值的平均分配,并在AGC指令值的平均分配后,遍历所有非标杆机的AGC指令值,对非标杆机的输出功率进行调整,从而对基于一 次调频需求的二次调频限功率测量进行优化,光伏电站整场功率控制响应速度快,精度高,进一步提高电力系统的稳定性。
如图5所示,本公开实施例中的二次调频控制方法500包括以下步骤:
步骤S510,监测光伏发电厂的运行数据。
步骤S520,确定光伏发电厂的运行数据满足预设的二次调频条件。
步骤S530,基于功率控制AGC指令值对光伏逆变器进行功率分配。
步骤S540,根据功率分配后的光伏逆变器的AGC指令值,调整光伏逆变器输出的有功功率。
在一个实施例中,步骤S530具体可以包括:步骤S531和步骤S532。
步骤S531,根据检测的光伏逆变器输出的有功功率,选择对应的分配方式对光伏逆变器中的非标杆机进行功率分配。
在一个实施例中,步骤S531具体可以包括:
步骤S531-01,如果光伏发电厂的运行数据满足AGC指令值的直接分配条件时,向满足直接分配条件的非标杆机发送对应的第一单机AGC指令值。
步骤S531-02,基于非标杆机的单机AGC指令值,按照不同的光伏阵列平均分配单机AGC指令值,向光伏逆变器中满足指令值下发条件的非标杆机发送第二单机AGC指令值;
具体而言,根据非标杆机的单机AGC指令值和非标杆机的个数,计算得到所述光伏逆变器中非标杆机的AGC总指令值;
基于监测的标杆机输出的有功功率,将非标杆机的AGC总指令值平均分配到每个光伏阵列,得到每个光伏阵列对应的AGC指令值;
按照指定的分配方式,将每个光伏阵列对应的AGC指令值分配到所述每个光伏阵列中的光伏发电机组。
步骤S532,根据获取的功率分配后的每个非标杆机的AGC指令值,依次判定每个非标杆机是否满足预设的指令值重新调整条件,生成功率调整指令,对满足指令值重新调整条件的非标杆机进行功率调整。
在一个实施例中,步骤S532中对满足指令值重新调整条件的非标杆机进行功率调整的步骤具体可以包括:
步骤S532-01,遍历光伏逆变器中非标杆机的单机AGC指令值,确定单机AGC指令值中的最小单机AGC指令值和最大单机AGC指令值。
步骤S533-02,当最小单机AGC指令值小于预设的机组有功功率下限阈值,且最大单机AGC指令值大于机组有功功率下限阈值时,将具有最小单机AGC指令值的非标杆机和具有最大单机AGC指令值的非标杆机分别作为待调频光伏逆变器。
步骤S533-03,根据生成的功率调整指令,对待调频光伏逆变器执行指令值调整步骤,直到遍历次数达到预设的次数阈值或者所有非标杆机的单机AGC指令值均大于机组有功功率下限阈值。
具体地,步骤S533-03中对待调频光伏逆变器进行指令值调整步骤可以包括:
根据生成的功率调整指令,对待调频光伏逆变器执行指令值调整步骤,直到遍历次数达到预设的次数阈值或者所有非标杆机的单机AGC指令值均大于机组有功功率下限阈值。
在本公开实施例中,光伏逆变器对应的标杆机用于按照预设的标杆机选取方法获得,标杆机选取方法包括:
步骤S01,获取对光伏逆变器的多个分组,在每个分组的光伏逆变器中筛选地理位置相似且输出容量相同的光伏逆变器;
步骤S02,在筛选得到的光伏逆变器中选择一个光伏逆变器作为标杆机,以及将分组中标杆机以外的光伏逆变器作为非标杆机,标杆机用于按照光伏逆变器额定功率运行。
在一个实施例中,实时刷新有效的标杆机个数和标杆机功率值等标杆机的运行数据,用于分配单机的AGC指令值。
在本公开实施例中,AGC指令值分配时参考标杆机输出的有功功率,为了AGC指令分配的准确性,可以实时判断标杆机的运行状态,当标杆机处于通讯故障或系统故障时候,需将其对应的被标机组替换虚拟的标杆机。替换虚拟标杆机的原则为:在其余的标杆机中选择功率略高于该被标机组实测功率值的机组作为该机组的虚拟标杆机。
根据预设的无故障运行条件,判定光伏逆变器对应的标杆机的运行状 态是否正常,将运行状态不正常的标杆机作为故障标杆机;
按照预设的虚拟标杆机选取步骤为故障标杆机对应的光伏逆变器选取对应的虚拟标杆机,将选取的虚拟标杆机作为光伏逆变器对应的新的运行状态正常的标杆机,实时更新运行状态正常的标杆机的个数,其中,虚拟标杆机选取步骤包括:
获取故障标杆机连接的光伏逆变器,测量光伏逆变器输出的有功功率值,得到第一有功功率测量值,在运行正常的标杆机中选取有功功率值大于第一有功功率测量值的有效标杆机,作为虚拟标杆机。
作为一个示例,在一次调频和二次调频AGC指令的闭锁叠加期间,当有功功率值增加量大于光伏发电全场额定功率的10%时,按10%Pn/s步长增加有功功率值,当有功功率指令值小于10%Pn时,按控制策略周期值下发有功功率增加值。
根据本公开实施例的装置的其他细节与以上结合图1描述的根据本公开实施例的方法类似,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品或计算机可读存储介质的形式实现。所述计算机程序产品或计算机可读存储介质包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
需要明确的是,本公开并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本公开的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本公开的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述,仅为本公开的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保护范围之内。

Claims (20)

  1. 一种光伏发电厂,其中包括光伏发电站和有功功率控制系统;其中,
    所述光伏发电站,包括光伏阵列和光伏逆变器,所述光伏逆变器用于将所述光伏阵列产生的直流电能转换为交流电能;
    所述有功功率控制系统,用于当所述光伏发电厂的运行数据满足预设的二次调频条件的情况下,基于功率控制AGC指令值对所述光伏逆变器进行功率分配,并基于功率分配后的所述光伏逆变器的AGC指令值,调整所述光伏逆变器输出的有功功率。
  2. 根据权利要求1所述的光伏发电厂,其中所述有功功率控制系统包括场级控制器和单机调频模块,其中,
    所述场级控制器,用于在所述光伏发电厂的运行数据满足所述二次调频条件的情况下,基于所述AGC指令值对所述光伏逆变器进行功率分配,对于所述功率分配后满足预设的指令值调整条件的光伏逆变器,生成对应的功率调整指令;
    所述单机调频模块,与对应的光伏逆变器连接,所述单机调频模块用于根据所述AGC指令值和所述功率调整指令调整所述光伏逆变器输出的有功功率。
  3. 权利要求2所述的光伏发电厂,其中所述单机调频模块包括:
    单机通信接口,与所述场级控制器连接,用于接收所述场级控制器下发的所述AGC指令值和功率调整指令,将接收到的AGC指令值和功率调整指令发送至对应的待调频光伏逆变器;
    光伏控制器,用于根据所述AGC指令值和所述功率调整指令,按照预设的功率调节步长和调节速率,调整所述待调频光伏逆变器输出的有功功率。
  4. 根据权利要求3所述的光伏发电厂,其中所述场级控制器包括:
    二次调频功率分配装置,用于所述光伏发电厂的运行数据满足预设的二次调频条件时,根据检测的所述光伏逆变器输出的有功功率,选择对应的分配方式对所述光伏逆变器中的非标杆机进行功率分配;
    AGC指令值调整装置,用于根据获取的所述功率分配后的所述非标杆机的单机AGC指令值,依次判定每个非标杆机是否满足预设的指令值重新调整条件,生成功率调整指令,对满足所述指令值重新调整条件的非标杆机进行功率调整。
  5. 根据权利要求4所述的光伏发电厂,其中所述二次调频功率分配装置包括:
    第一指令值分配模块,用于所述光伏发电厂的运行数据满足所述AGC指令值的直接分配条件时,向满足所述直接分配条件的非标杆机发送对应的第一单机AGC指令值;
    第二指令值分配模块,用于基于所述非标杆机的单机AGC指令值,按照不同的光伏阵列平均分配所述单机AGC指令值,向所述光伏逆变器中满足所述指令值下发条件的非标杆机发送第二单机AGC指令值。
  6. 根据权利要求5所述的光伏发电厂,其中所述第二指令值分配模块具体用于:
    根据所述非标杆机的单机AGC指令值和所述非标杆机的个数,计算得到所述光伏逆变器中非标杆机的AGC总指令值;
    基于监测的所述标杆机输出的有功功率,将所述非标杆机的AGC总指令值平均分配到每个光伏阵列,得到所述每个光伏阵列对应的AGC指令值;
    将所述每个光伏阵列对应的AGC指令值平均分配到所述每个光伏阵列中的光伏发电机组。
  7. 根据权利要求4所述的光伏发电厂,其中所述AGC指令值调整装置包括:
    指令值筛选模块,用于遍历所述光伏逆变器中非标杆机的单机AGC指令值,确定所述单机AGC指令值中的最小单机AGC指令值和最大单机AGC指令值;
    待调频机组确定模块,用于当所述最小单机AGC指令值小于预设的机组有功功率下限阈值,且所述最大单机AGC指令值大于所述机组有功功率下限阈值时,将具有所述最小单机AGC指令值的非标杆机和具有所 述最大单机AGC指令值的非标杆机分别作为待调频光伏逆变器;
    指令值调整模块,用于根据生成的功率调整指令,对所述待调频光伏逆变器执行指令值调整步骤,直到所述遍历次数达到预设的次数阈值或者所有非标杆机的单机AGC指令值均大于所述机组有功功率下限阈值。
  8. 根据权利要求7所述的光伏发电厂,其中所述指令值调整步骤包括:
    将所述待调频光伏逆变器的单机AGC指令值上调至所述机组有功功率下限阈值,并获取所述上调的上调额度,使用与所述上调额度等额的下调额度下调具有所述最大AGC指令值的非标杆机。
  9. 根据权利要求4所述的光伏发电厂,其中
    所述光伏逆变器对应的标杆机用于按照预设的标杆机选取方法获得,所述标杆机选取方法包括:
    选取每个分组的光伏逆变器中具有相似地理位置和相同输出容量的光伏逆变器的一台,将选取的所述光伏逆变器作为所述分组中其他光伏发电机连接的逆变器的标杆机,所述标杆机用于按照光伏逆变器额定功率运行。
  10. 根据权利要求4所述的光伏发电厂,其中所述场级控制器还包括:
    逆变器运行状态监测装置,用于根据预设的无故障运行条件,判定所述光伏逆变器对应的标杆机的运行状态是否正常,将运行状态不正常的标杆机作为故障标杆机;
    虚拟标杆机设置装置,用于按照预设的虚拟标杆机选取步骤为所述故障标杆机对应的光伏逆变器选取对应的虚拟标杆机,将选取的虚拟标杆机作为所述光伏逆变器对应的新的运行状态正常的标杆机,实时更新运行状态正常的标杆机的个数。
  11. 根据权利要求2所述的光伏发电厂,其中所述场级控制器还包括:
    功率变化率控制装置,用于在对所述光伏发电厂进行一次调频时,如果所述光伏发电厂满足一次调频和二次调频闭锁叠加工况,且所述光伏发电厂的并网点的有功功率增加量大于并网点有功功率下限阈值时,按照指定的第一调节速率和第一调节步长,对所述光伏发电厂的功率值进行调整;以及
    当多个光伏逆变器中非标杆机的AGC总指令值小于并网点有功功率 下限阈值时,按照指定的第二调节速率和第二调节步长,对所述光伏发电厂的功率值进行调整。
  12. 一种光伏发电厂的二次调频控制方法,其中包括:
    监测所述光伏发电厂的运行数据;
    确定所述光伏发电厂的运行数据满足预设的二次调频条件;
    基于功率控制AGC指令值对所述光伏逆变器进行功率分配;并且,
    根据功率分配后的所述光伏逆变器的AGC指令值,调整所述光伏逆变器输出的有功功率。
  13. 根据权利要求12所述的二次调频控制方法,其中所述基于功率控制AGC指令值对所述光伏逆变器进行功率分配,包括:
    根据检测的所述光伏逆变器输出的有功功率,选择对应的分配方式对所述光伏逆变器中的非标杆机进行功率分配;
    根据获取的所述功率分配后的每个非标杆机的AGC指令值,依次判定所述每个非标杆机是否满足预设的指令值重新调整条件,生成功率调整指令,对满足所述指令值重新调整条件的非标杆机进行功率调整。
  14. 根据权利要求13所述的二次调频控制方法,其中所述根据检测的所述光伏逆变器输出的有功功率,选择对应的分配方式对所述光伏逆变器中的非标杆机进行功率分配,包括:
    所述光伏发电厂的运行数据满足所述AGC指令值的直接分配条件时,向满足所述直接分配条件的非标杆机发送对应的第一单机AGC指令值;
    基于所述非标杆机的单机AGC指令值,按照不同的光伏阵列平均分配所述单机AGC指令值,向所述光伏逆变器中满足所述指令值下发条件的非标杆机发送所述第二单机AGC指令值。
  15. 根据权利要求14所述的二次调频控制方法,其中所述基于所述非标杆机的单机AGC指令值,按照不同的光伏阵列平均分配所述单机AGC指令值,向所述光伏逆变器中满足所述指令值下发条件的非标杆机发送第二单机AGC指令值,包括:
    根据所述非标杆机的单机AGC指令值和所述非标杆机的个数,计算得到所述光伏逆变器中非标杆机的AGC总指令值;
    基于监测的所述标杆机输出的有功功率,将所述非标杆机的AGC总指令值平均分配到每个光伏阵列,得到所述每个光伏阵列对应的AGC指令值;
    按照指定的分配方式,将所述每个光伏阵列对应的AGC指令值分配到所述每个光伏阵列中的光伏发电机组。
  16. 根据权利要求13所述的二次调频控制方法,其中所述根据获取的所述功率分配后的每个非标杆机的AGC指令值,依次判定所述每个非标杆机是否满足预设的指令值重新调整条件,生成功率调整指令,对满足所述指令值重新调整条件的非标杆机进行功率调整,包括:
    遍历所述光伏逆变器中非标杆机的单机AGC指令值,确定所述单机AGC指令值中的最小单机AGC指令值和最大单机AGC指令值;
    当所述最小单机AGC指令值小于预设的机组有功功率下限阈值,且所述最大单机AGC指令值大于所述机组有功功率下限阈值时,将具有所述最小单机AGC指令值的非标杆机和具有所述最大单机AGC指令值的非标杆机分别作为待调频光伏逆变器;
    根据生成的功率调整指令,对所述待调频光伏逆变器执行指令值调整步骤,直到所述遍历次数达到预设的次数阈值或者所述所有非标杆机的单机AGC指令值均大于所述机组有功功率下限阈值。
  17. 根据权利要求16所述的二次调频控制方法,其中所述根据生成的功率调整指令,对所述待调频光伏逆变器进行指令值调整步骤,包括:
    将所述待调频光伏逆变器的单机AGC指令值上调至所述机组有功功率下限阈值;
    获取所述上调的上调额度,使用与所述上调额度等额的下调额度下调具有所述最大AGC指令值的非标杆机。
  18. 根据权利要求13所述的二次调频控制方法,其中
    所述光伏逆变器对应的标杆机用于按照预设的标杆机选取方法获得,所述标杆机选取方法包括:
    获取对所述光伏逆变器的多个分组,在每个分组的光伏逆变器中筛选地理位置相似且输出容量相同的光伏逆变器;
    在筛选得到的光伏逆变器中选择一个光伏逆变器作为所述标杆机,以及将所述分组中所述标杆机以外的光伏逆变器作为非标杆机,所述标杆机用于按照光伏逆变器额定功率运行。
  19. 根据权利要求13所述的二次调频控制方法,其中所述二次调频控制方法还包括:
    根据预设的无故障运行条件,判定所述光伏逆变器对应的标杆机的运行状态是否正常,将运行状态不正常的标杆机作为故障标杆机;
    按照预设的虚拟标杆机选取步骤为所述故障标杆机对应的光伏逆变器选取对应的虚拟标杆机,将选取的虚拟标杆机作为所述光伏逆变器对应的新的运行状态正常的标杆机,实时更新运行状态正常的标杆机的个数,其中,所述虚拟标杆机选取步骤包括:
    获取所述故障标杆机连接的光伏逆变器,测量所述光伏逆变器输出的有功功率值,得到第一有功功率测量值,在运行正常的标杆机中选取有功功率值大于所述第一有功功率测量值的有效标杆机,作为所述虚拟标杆机。
  20. 根据权利要求12所述的二次调频控制方法,其中所述根据功率分配后的所述光伏逆变器的AGC指令值,调整所述光伏逆变器输出的有功功率,包括:
    在对所述光伏发电厂进行一次调频时,如果所述光伏发电厂满足一次调频和二次调频闭锁叠加工况,且所述光伏发电厂的并网点的有功功率增加量大于并网点有功功率下限阈值时,按照指定的第一调节速率和第一调节步长,对所述光伏发电厂的功率值进行调整;以及
    当多个光伏逆变器中非标杆机的AGC总指令值小于并网点有功功率下限阈值时,按照指定的第二调节速率和第二调节步长,对所述光伏发电厂的功率值进行调整。
PCT/CN2018/086351 2017-12-31 2018-05-10 光伏发电厂及其二次调频控制方法 WO2019128037A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/616,959 US11682905B2 (en) 2017-12-31 2018-05-10 Photovoltaic power plant and secondary frequency modulation control method therefor
AU2018396280A AU2018396280B2 (en) 2017-12-31 2018-05-10 Photovoltaic power plant and secondary frequency modulation control method therefor
EP18897136.0A EP3618217B1 (en) 2017-12-31 2018-05-10 Photovoltaic power plant and secondary control method therefor
ES18897136T ES2962987T3 (es) 2017-12-31 2018-05-10 Planta de energía fotovoltaica y método de control secundario de la misma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711497115.6A CN108199420B (zh) 2017-12-31 2017-12-31 光伏发电厂及其二次调频控制方法
CN201711497115.6 2017-12-31

Publications (1)

Publication Number Publication Date
WO2019128037A1 true WO2019128037A1 (zh) 2019-07-04

Family

ID=62587642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086351 WO2019128037A1 (zh) 2017-12-31 2018-05-10 光伏发电厂及其二次调频控制方法

Country Status (6)

Country Link
US (1) US11682905B2 (zh)
EP (1) EP3618217B1 (zh)
CN (1) CN108199420B (zh)
AU (1) AU2018396280B2 (zh)
ES (1) ES2962987T3 (zh)
WO (1) WO2019128037A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707757A (zh) * 2019-10-24 2020-01-17 国网新疆电力有限公司 一种基于新能源消纳的多类型能源分层协调控制方法
CN113872254A (zh) * 2021-10-27 2021-12-31 国网宁夏电力有限公司 一种平抑光伏秒级出力波动的光伏电站频率主动支撑控制方法
CN115313528A (zh) * 2022-10-11 2022-11-08 力高(山东)新能源技术股份有限公司 一种新能源发电站agc有功功率调节方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832720B (zh) * 2018-06-29 2020-07-24 北京金风科创风电设备有限公司 光伏场站的通信控制系统、方法和装置
CN109256786B (zh) * 2018-09-21 2023-08-11 国网青海省电力公司 一种光储电站有功协调控制方法和系统
CN110928273B (zh) * 2019-12-08 2022-09-02 国网山西省电力公司电力科学研究院 一种光伏电站自动发电控制功能试验的自动测试方法
CN112084640B (zh) * 2020-08-28 2022-07-08 华能澜沧江水电股份有限公司 一种调频市场下不同调频容量水电机组的开停机仿真模型
CN112583056A (zh) * 2020-11-09 2021-03-30 中国长江电力股份有限公司 一种开度模式下电厂agc与一次调频配合控制系统及方法
CN112737637B (zh) * 2020-12-24 2022-11-15 阳光电源股份有限公司 一种电力载波通信串扰优化方法及光伏系统
CN112838614B (zh) * 2020-12-31 2022-07-15 国网山东省电力公司经济技术研究院 一种光伏电站调频-调压协同控制方法及系统
CN112787340B (zh) * 2021-01-04 2023-07-18 上海外高桥第三发电有限责任公司 一种火电与储能系统联合调频的控制方法
CN113078659B (zh) * 2021-03-31 2023-02-07 西安热工研究院有限公司 一种储能辅助火电机组agc调频装置的容量选择方法
CN113300398B (zh) * 2021-04-30 2024-04-09 华为数字能源技术有限公司 电力系统和电力系统的控制方法
CN113809760B (zh) * 2021-09-24 2024-01-26 国网江苏省电力有限公司电力科学研究院 一种风电场参与电网二次调频的控制方法及装置
CN113708423A (zh) * 2021-09-27 2021-11-26 阳光电源股份有限公司 一种光伏系统的有功功率调度方法及系统
CN114069859A (zh) * 2021-11-12 2022-02-18 许继集团有限公司 一种新能源电站混合分布式机群的协调发电控制系统
CN114336774B (zh) * 2021-11-22 2023-11-07 华能新能源股份有限公司 考虑储能的风电场agc和一次调频协调控制控制方法和系统
CN114552662B (zh) * 2022-04-22 2022-08-09 深圳市德兰明海科技有限公司 一种光储发电系统控制方法及存储介质
CN115347577B (zh) * 2022-10-13 2023-01-03 石家庄科林物联网科技有限公司 基于分布式光伏的多区域限值电压调控方法及装置
CN117200280B (zh) * 2023-11-08 2024-02-09 国网信息通信产业集团有限公司 光伏电站功率控制方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275822B1 (en) * 2001-07-13 2009-05-06 Petrobas Energia S.A. Primary frequency regulation method in combined-cycle steam turbines
CN105449701A (zh) * 2016-01-18 2016-03-30 华北电力科学研究院有限责任公司 一种储能系统参与电网频率控制的方法及装置
CN107026461A (zh) * 2017-05-11 2017-08-08 南京南瑞继保电气有限公司 一种新能源站参与一次调频的快速功率协调控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427244B (zh) * 2011-10-10 2014-01-29 国电南瑞科技股份有限公司 大规模光伏风电信息接入系统
US9755430B2 (en) * 2013-04-11 2017-09-05 Solantro Semiconductor Corp. Virtual inverter for power generation units
CN103928940A (zh) * 2014-03-31 2014-07-16 国家电网公司 一种分布式光伏电站有功功率控制装置及控制方法
US10038321B2 (en) 2014-10-02 2018-07-31 First Solar, Inc. System for operation of photovoltaic power plant and DC power collection within
EP3096004A1 (en) * 2015-05-18 2016-11-23 ABB Technology AG Wind farm inertial response

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275822B1 (en) * 2001-07-13 2009-05-06 Petrobas Energia S.A. Primary frequency regulation method in combined-cycle steam turbines
CN105449701A (zh) * 2016-01-18 2016-03-30 华北电力科学研究院有限责任公司 一种储能系统参与电网频率控制的方法及装置
CN107026461A (zh) * 2017-05-11 2017-08-08 南京南瑞继保电气有限公司 一种新能源站参与一次调频的快速功率协调控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707757A (zh) * 2019-10-24 2020-01-17 国网新疆电力有限公司 一种基于新能源消纳的多类型能源分层协调控制方法
CN110707757B (zh) * 2019-10-24 2023-02-17 国网新疆电力有限公司 一种基于新能源消纳的多类型能源分层协调控制方法
CN113872254A (zh) * 2021-10-27 2021-12-31 国网宁夏电力有限公司 一种平抑光伏秒级出力波动的光伏电站频率主动支撑控制方法
CN113872254B (zh) * 2021-10-27 2023-07-14 国网宁夏电力有限公司 一种平抑光伏秒级出力波动的光伏电站频率主动支撑控制方法
CN115313528A (zh) * 2022-10-11 2022-11-08 力高(山东)新能源技术股份有限公司 一种新能源发电站agc有功功率调节方法

Also Published As

Publication number Publication date
EP3618217A4 (en) 2020-06-24
EP3618217B1 (en) 2023-10-11
EP3618217C0 (en) 2023-10-11
CN108199420B (zh) 2019-10-22
US20200259333A1 (en) 2020-08-13
AU2018396280B2 (en) 2021-06-10
ES2962987T3 (es) 2024-03-22
EP3618217A1 (en) 2020-03-04
AU2018396280A1 (en) 2019-12-05
CN108199420A (zh) 2018-06-22
US11682905B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2019128037A1 (zh) 光伏发电厂及其二次调频控制方法
WO2019128036A1 (zh) 光伏发电厂及其一次调频控制方法
US8346400B2 (en) System and method for power management in a photovoltaic installation
WO2019192151A1 (zh) 风电场的功率控制方法、设备和系统
JP6450142B2 (ja) 電力系統制御システム、電力系統制御方法、および電力変換装置
EP3308444B1 (en) Method and apparatus for control of intelligent loads in microgrids
US11211796B2 (en) Method and system for locally controlling power delivery along a distribution feeder of an electricity grid
WO2015029138A1 (ja) 太陽光発電システム
EP2485378A1 (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
WO2011122681A1 (ja) 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム
US11146068B2 (en) Method and apparatus for minimizing circulating currents in microgrids
JP2016025842A (ja) 配電系統の電圧を調整する方法、電圧違反を監視する監視制御部および変電所変圧器を備える配電系統
JP6730305B2 (ja) 少なくとも一つの再生可能エネルギー源により誘起される電圧変動を調整するための方法とシステムと装置
US20170294779A1 (en) Control system for solar power plant
US10680437B2 (en) Method of stabilizing an electrical network by load shedding
WO2020218191A1 (ja) 電力制御装置、電力制御装置の制御方法、分散型発電システム
D’silva et al. Coordinated power reserve control of PV sources for frequency restoration in power electronics dominated grid
EP3011653A1 (en) Dynamic power distribution in photovoltaic installations
Zhai et al. Adaptive virtual inertia control-based frequency support method for photovoltaic penetrated power system
CN109217378B (zh) 适用于新能源的功率波动调节方法与装置
JP7119664B2 (ja) 発電予備力測定装置及び発電予備力測定方法
JP7185178B2 (ja) 発電予備力測定装置及び発電予備力測定方法
WO2019049380A1 (ja) 発電システム
JP2023117664A (ja) 電力システム、電力システムの制御方法
CN104821606A (zh) 一种发电源的控制方法、设备及其分布式发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018396280

Country of ref document: AU

Date of ref document: 20180510

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018897136

Country of ref document: EP

Effective date: 20191129

NENP Non-entry into the national phase

Ref country code: DE