WO2019128036A1 - 光伏发电厂及其一次调频控制方法 - Google Patents

光伏发电厂及其一次调频控制方法 Download PDF

Info

Publication number
WO2019128036A1
WO2019128036A1 PCT/CN2018/086348 CN2018086348W WO2019128036A1 WO 2019128036 A1 WO2019128036 A1 WO 2019128036A1 CN 2018086348 W CN2018086348 W CN 2018086348W WO 2019128036 A1 WO2019128036 A1 WO 2019128036A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
grid
active power
power
photovoltaic
Prior art date
Application number
PCT/CN2018/086348
Other languages
English (en)
French (fr)
Inventor
张毅
乔元
包献文
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to AU2018396279A priority Critical patent/AU2018396279B2/en
Priority to US16/632,331 priority patent/US11101770B2/en
Priority to EP18727649.8A priority patent/EP3651299B1/en
Publication of WO2019128036A1 publication Critical patent/WO2019128036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present disclosure relates to the field of power system power control, and in particular, to a photovoltaic power plant and a primary frequency modulation control method thereof.
  • the secondary frequency modulation refers to the frequency modulation method used when the frequency modulation cannot restore the frequency to the specified range when the power system load or the power generation output changes greatly.
  • the response lag time of the thermal power generating unit participating in the primary frequency modulation should be less than 3 s, and the frequency fluctuation duration is less than 1 minute;
  • the frequency fluctuation duration is a few minutes.
  • new energy generator sets usually use power electronic converters for grid connection.
  • the grid-connected converters have fast response speed and do not have the inertia and damping required to maintain the safe and stable operation of the system. Therefore, there is a lack of an effective “synchronization” mechanism with the distribution network.
  • the total moment of inertia of the system decreases relatively, which affects the fast frequency response speed of the system, and the stability of the power grid is greatly reduced.
  • the commonly used method is to transform the existing grid energy management platform, but this method has low precision of the primary frequency modulation response of the generator set, resulting in the overall generator set.
  • the frequency modulation action is inconsistent, and the primary frequency response of the generator set is slow, resulting in poor power system stability.
  • the embodiments of the present disclosure provide a photovoltaic power plant and a primary frequency modulation control method thereof, which can improve the response speed and accuracy of the primary frequency modulation of the generator set of the photovoltaic power plant, and the actions of the respective generator sets are consistent, and the stability of the power system is high.
  • a photovoltaic power plant including: a photovoltaic power station and an active power control system; wherein the photovoltaic power plant includes a photovoltaic array and a photovoltaic inverter, and the photovoltaic inverter generates the photovoltaic array
  • the DC power is converted into AC power;
  • the active power control system is used to determine the amount of active power change of the single unit according to the operating state of the PV inverter when the frequency value of the grid connection point of the photovoltaic power plant meets the preset primary frequency triggering condition The active power output by the photovoltaic inverter.
  • a primary frequency modulation control method for the photovoltaic power plant described in the above embodiment comprising: monitoring a frequency value of a grid point of a photovoltaic power plant; determining a grid connection point When the frequency value satisfies the preset primary frequency modulation trigger condition, the single-machine active power change amount is determined according to the operating state of the photovoltaic inverter; and the active power outputted by the photovoltaic inverter is adjusted based on the single-machine active power variation amount.
  • the benefits including, but not limited to, improving the response speed and accuracy of the primary frequency modulation of the genset of the photovoltaic power plant, each genset action has Consistency, high stability of the power system.
  • FIG. 1 is a schematic view showing a frame structure of a photovoltaic power plant according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing a topology of a photovoltaic power plant according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing the output power response of a photovoltaic power plant in accordance with the frequency fluctuation of the grid point in the embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing a specific structure of a field level controller according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing a specific structure of the total active power increment value determining device 320 of FIG. 4;
  • FIG. 6 is a schematic diagram of a specific structure of a single-machine primary frequency triggering device according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a single-machine active power distribution device of FIG. 4;
  • FIG. 8 illustrates a specific flowchart of a primary frequency modulation control method according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram showing a curve of output power response and grid point frequency fluctuation when the grid point frequency is shifted.
  • FIG. 10 is a diagram showing a frequency response waveform of a photovoltaic power plant with a frequency increase and decrease rapidly in a frequency disturbance test according to an embodiment of the present disclosure
  • FIG. 11 is a graph showing a frequency response waveform of a photovoltaic power plant with a frequency jump in a frequency disturbance test of an embodiment of the present disclosure.
  • a photovoltaic power plant may include a photovoltaic power plant and an active power control system; wherein the photovoltaic power plant includes a plurality of photovoltaic arrays 111 and a plurality of photovoltaic inverters 112, each of which is inversed by PV
  • the transformer 112 is connected to a corresponding photovoltaic generator set 10 in the photovoltaic array 111, and the plurality of photovoltaic inverters 112 are used to convert DC power generated by the plurality of photovoltaic arrays 111 into AC power; an active power control system is used for photovoltaic power generation.
  • the single-machine active power change amount is determined according to the operating state of the photovoltaic inverter 112, and the photovoltaic power plant is controlled to perform one frequency-modulation. Specifically, the active power output by each photovoltaic inverter is adjusted according to the operating state of each photovoltaic inverter 112.
  • the active power control system adopts a centralized control scheme to adjust the active power of the entire power grid, so that the photovoltaic power plant participates in the primary frequency modulation of the power system, and the frequency value of the grid-connected point of the photovoltaic power plant satisfies a preset primary frequency modulation.
  • the active power control system adjusts the output power of each photovoltaic inverter according to the operating state of each photovoltaic inverter, and the respective photovoltaic inverters have the same action, the whole field control speed is fast, and the precision is high, thereby Increase the stability of the system and improve the grid-friendly nature of wind power.
  • the active power control system can include a field level controller 121 and a stand-alone frequency modulation module 122, wherein the field level controller 121 is disposed at a booster station of the photovoltaic power plant, field level control The device 121 is configured to determine a total active power increment value of the grid-connected point based on the frequency value of the grid-connected point when the frequency value of the grid-connected point satisfies the one-frequency triggering condition, and generate a single machine once according to the operating state of each photovoltaic inverter 112.
  • the frequency modulation command is sent to the corresponding photovoltaic inverter 112; the single frequency modulation module 122 is connected to the corresponding photovoltaic inverter 112, and the single frequency modulation module 122 is also used to receive the single frequency modulation command, and the single frequency modulation is performed according to the single machine.
  • the command adjusts the active power output by the corresponding photovoltaic inverter 112.
  • the boosting station may be configured to perform voltage raising processing on the converted AC power, and deliver the high voltage AC power obtained by the voltage boosting process to the power grid.
  • FIG. 2 and FIG. 1 use the same reference numerals.
  • each photovoltaic inverter in a photovoltaic power plant, may be connected to a corresponding photovoltaic generator set 10 in the photovoltaic array 111, each photovoltaic inverter. Converting the DC power generated by the connected photovoltaic array 111 into AC power, and converting the converted AC power into the PV bus; the PV bus transmits the AC power to the low voltage bus through a cable connection with the low voltage bus, and the low voltage bus passes through the booster station Connected to the high-voltage busbar, the AC power on the low-voltage busbar is boosted into AC power that meets the requirements of the grid, and is connected to the grid through a grid connection point with the high-voltage bus.
  • the field level controller 121 can detect the frequency of the grid connection point as the grid frequency in real time, and can solve the collection caused by the relatively large harmonic of the inverter outlet voltage when collecting the grid frequency through the photovoltaic inverter.
  • the problem of inaccurate frequency and the problem that the frequency of the whole field is inconsistent due to the different frequencies collected by each photovoltaic inverter can improve the measurement accuracy of the grid frequency detection and improve the consistency of the primary frequency modulation action.
  • the field level controller 121 of the active power control system and each of the stand-alone frequency modulation modules 122 can be connected by fiber optics.
  • the field level controller 121 transmits a single frequency modulation command to each single frequency modulation module 122 through an optical fiber transmission.
  • Each single frequency modulation module 122 controls a corresponding photovoltaic inverter to perform a single primary frequency modulation operation through a single frequency modulation instruction, and the active power control system dynamic frequency.
  • the fast response speed can meet the requirements of the grid for the participation of the photovoltaic field station in the fast frequency response speed.
  • the curve of the output power response of the photovoltaic power plant shown in FIG. 3 in response to the grid point frequency fluctuation may be simply referred to as an active/frequency characteristic curve.
  • the active power control system of the embodiment of the present disclosure can monitor the frequency fluctuation of the grid-connected point of the photovoltaic power plant, and realize the primary frequency control of the photovoltaic power plant by coordinating and controlling the active power of the photovoltaic power plant.
  • the plant's active power control system can achieve a fast frequency response function of the photovoltaic field station through a given active/frequency characteristic curve.
  • the active power control system 120 does not require active power regulation for this small fluctuation of the grid frequency.
  • the deadband frequency is a frequency offset set to avoid unnecessary action of the active power control system when the frequency of the grid-connected point is shifted.
  • the dead zone frequency may include a positive dead zone threshold DB + and a negative dead zone threshold DB - , a positive dead zone threshold DB + and a negative dead zone threshold DB - both may be set according to the actual operation of the power grid, and therefore, are dead in the positive direction
  • the absolute value of the zone threshold DB + and the set negative dead zone threshold DB - may be the same or different.
  • the fast frequency response action threshold f d of the active power control system 120 can be determined, and the fast frequency response action threshold f d includes:
  • the photovoltaic power plant 100 is triggered to use the active power control system 120.
  • One frequency modulation As shown in FIG. 3, when the grid frequency f is greater than the fast frequency response forward threshold value fd+ , or the grid frequency f is less than the fast frequency response negative threshold value fd- , the photovoltaic power plant 100 is triggered to use the active power control system 120.
  • One frequency modulation As shown in FIG. 3, when the grid frequency f is greater than the fast frequency response forward threshold value fd+ , or the grid frequency f is less than the fast frequency response negative threshold value fd- , the photovoltaic power plant 100 is triggered to use the active power control system 120.
  • One frequency modulation As shown in FIG. 3, when the grid frequency f is greater than the fast frequency response forward threshold value fd+ , or the grid frequency f is less than the fast frequency response negative threshold value fd- .
  • the frequency reference value f N of the photovoltaic power plant may be, for example, 50 Hz
  • the forward dead zone threshold DB + is 0.06 Hz
  • the negative dead zone threshold DB - is -0.06 Hz, according to the frequency reference value f N , the forward direction
  • the dead zone threshold DB + and the negative dead zone threshold DB - can determine the fast frequency response action threshold f d , wherein the fast frequency response forward threshold value f d+ is 50.06 Hz, and the fast frequency response negative threshold value f d- is 49.94 Hz.
  • the photovoltaic power plant 100 is triggered to perform frequency modulation using the active power control system 120.
  • the relationship between the active power of the grid-connected points in the active/frequency characteristic curve and the frequency value of the grid-connected point can be expressed by the following expression (1).
  • P represents the active power value of the grid-connected point calculated in real time according to the fluctuation of the frequency value of the grid-connected point
  • p 0 represents the initial value of the active power before the photovoltaic power plant enters the primary frequency modulation (hereinafter referred to as power).
  • the initial value p 0 ), p N represents the rated power of the photovoltaic power plant, f represents the frequency value of the detected grid connection point, f d represents the fast frequency response action threshold, f N represents the preset frequency reference value, and ⁇ % represents the photovoltaic power generation
  • the modulation coefficient of the photovoltaic generator set is the slope of the active/frequency characteristic curve.
  • the expression (2) can also be expressed as the following expression (3), which is two different expressions of the active power increment value DeltP1. .
  • the above expression (1) can also be expressed as the following expression (4), and the expression (1) and the expression (4) are two different expressions of the active power value P of the grid point. the way:
  • the frequency value of the grid point is higher than the frequency dead zone, that is, f ⁇ f d+ , and can be obtained by the above expression (2) or expression (3).
  • the active power increment value DeltP of the photovoltaic power plant is less than zero, and the active power value P of the grid point is smaller than the active power initial value p 0 . Therefore, it is necessary to reduce the active power of the photovoltaic power plant.
  • the frequency value of the grid point is lower than the frequency dead zone, that is, f ⁇ f d+ .
  • the active power increment value DeltP of the photovoltaic power plant is greater than zero, and the active power value P of the grid point is greater than the active power initial value p 0 . Therefore, it is necessary to increase the active power of the photovoltaic power plant.
  • the adjustable power value has an adjustable power limit. Adjusting power limits includes: increasing power limits and reducing power limits.
  • the power value that can be increased can be less than the preset boost power limit, and the power value can be reduced less than the power limit can be reduced.
  • both the boostable power limit and the reduced power limit can be set to a PV plant minimum output limit of 10% P N .
  • the downward adjustment may not be performed.
  • the minimum output limit of the photovoltaic power plant is set to 10% P N to prevent the photovoltaic power station from being disconnected due to the adjustment of the frequency modulation process.
  • the active power of the power grid when the active power of the power grid is high, the active power can be reduced to 10% of the rated output, and the power limitation of the primary frequency modulation and the power reduction can be set to the rated output of the photovoltaic power plant. 10%.
  • the total active power of the grid-connected point can be calculated according to the real-time frequency of the grid-connected point.
  • the control system allocates the active power increment of the photovoltaic power plant grid-connected point according to the operating state of each inverter to each photovoltaic inverter operating state, and delivers it to each photovoltaic inverter.
  • the photovoltaic power plant in the embodiment of the present disclosure does not include an energy storage device, and the active power control system is used to control the active output of the photovoltaic inverter.
  • the field level controller 121 may include: a photovoltaic power plant primary frequency modulation triggering device 310, a total active power incremental value determining device 320, a single-machine primary frequency modulation triggering device 330, and a single active power distribution.
  • Device 340 wherein
  • the primary frequency modulation triggering device 310 of the photovoltaic power plant is configured to monitor the frequency value of the grid-connected point. When the frequency value of the monitored grid-connected point is offset from the preset frequency reference value, and the frequency offset meets the initial frequency-trigger triggering condition, the photovoltaic inverse is adjusted.
  • the active power output of the transformer, the primary frequency triggering condition includes that the frequency value of the grid-connected point is greater than a preset positive dead zone threshold, or the frequency value of the grid-connected point is less than the negative dead zone threshold.
  • the total active power increment value determining device 320 is configured to use the detected initial value of the active power of the photovoltaic power plant, the frequency value of the grid connection point, and the automatic power generation of the power grid when the frequency offset amount satisfies the primary frequency modulation trigger condition.
  • the AGC command value is controlled, the total active power control target value of the grid point is determined, and the total active power increment value of the grid point is calculated according to the total active power control target value.
  • the single-stage primary frequency triggering device 330 is configured to determine whether the photovoltaic power generation in the photovoltaic power station is normal and whether the photovoltaic inverter meets the preset single-machine active power distribution condition, and determines that the photovoltaic power station is allowed to participate in the primary frequency modulation.
  • the PV inverter to be frequency modulated.
  • the single-machine active power distribution device 340 is configured to allocate the total active power increment value according to the operating state of each PV inverter to be modulated, and obtain the output power target value of each PV inverter to be modulated, to each standby
  • the frequency modulated photovoltaic inverter transmits a single-machine primary frequency modulation command including an output power target value, a preset power adjustment step size, and an adjustment rate.
  • the grid state is monitored in real time, the total active increment value of the grid-connected point is calculated, and based on the operating state of the photovoltaic inverter in the photovoltaic power station, the PV-to-FM inverse that is allowed to participate in the primary frequency modulation in the photovoltaic power station is determined.
  • the transformer adjusts the output power of the PV inverter to be modulated, participates in the system's primary frequency modulation, and reasonably allocates the active increment of the whole field.
  • the total active power delta value determining device 320 may include: a total active power control target value determining module 321, a total active power target limit value setting module 322, and a total active power incremental value. Calculation module 323. among them,
  • the total active power control target value determining module 321 is configured to determine the total value of the grid-connected point by using the initial value of the active power of the photovoltaic power plant, the frequency value of the grid-connected point, and the AGC command value when the frequency offset meets the first-frequency triggering condition. Active power control target value.
  • the total active power control target value determining module 321 may include: a primary frequency active power increment value calculating unit, an AGC command active power incremental value calculating unit, a first total control target value calculating unit, and a second total control target. a value calculation unit and a third total control target value calculation unit; wherein
  • a frequency-modulated active increment value calculation unit is configured to calculate a frequency offset of the grid-connected point based on the detected frequency value of the grid-connected point, and calculate the active power of the frequency offset of the grid-connected point by using the frequency offset of the grid-connected point Incremental value.
  • the AGC command active power value calculation unit is configured to use the difference between the current AGC command value and the last AGC command value as the active power increment value of the current AGC command according to the current AGC command value of the power grid and the last AGC command value.
  • the first total control target value calculation unit is configured to set the total active power control target value of the grid-connected point when the first active power control condition is satisfied, and increase the active power increment of the current AGC command based on the initial value of the active power.
  • the first active incremental control condition includes any of the following conditions:
  • the frequency value of the grid-connected point is within the allowable range of the frequency of the grid-connected point
  • the second total control target value calculation unit is configured to maintain the grid AGC command value as the last AGC command value when the second active incremental control condition is satisfied, and increase the active power of the frequency offset based on the initial value of the active power
  • the power increment value is the total active power increment value of the active point of the grid connection point.
  • the second active incremental control condition includes:
  • the total active power target limit value setting module 322 is configured to set the active power control target value of the grid-connected point to the grid-connected active power lower limit threshold when the active power control target value of the grid-connected point is lower than the preset grid-connected active power lower limit threshold.
  • the third total control target value calculation unit is configured to set the total active power control target value of the grid connection point to the current AGC command value when the third active power increment control condition is satisfied.
  • the third active incremental control condition includes:
  • the frequency offset of the grid-connected point is greater than the negative dead zone threshold and less than the positive dead zone threshold; wherein the same adjustment direction indicates that the active power increment value of the current AGC command and the active power increment value of the frequency offset are positive.
  • the number or both are negative; the difference of the adjustment direction means that the active power increment value of the AGC instruction is positive when the active power increment value of the frequency offset is different and is not negative when it is not.
  • the frequency offset of the grid-connected point does not exceed the frequency deadband, as an example, it can be expressed as 50 +DB - ⁇ f ⁇ 50+DB + ,
  • the fast frequency response function of the photovoltaic power plant should be coordinated with the AGC control, that is, the active power control target value of the grid connection point should be the AGC command value and the fast frequency response adjustment amount algebra sum.
  • the grid frequency exceeds the allowable range of the grid-connected point frequency, for example, 50 ⁇ 0.1 Hz, the new energy fast frequency response latches the AGC reverse regulation command.
  • the grid-connected active power control target value is an active power increment value that continuously superimposes the frequency offset and an active power increment value of the current AGC command based on the initial value of the active power of the photovoltaic power plant, when the grid frequency Exceeding the allowable range of the grid-connected frequency, the active power increment value of the current AGC command is no longer superimposed on the basis of maintaining the active power increment value of the last AGC command.
  • the AGC instruction can be a secondary frequency modulation instruction.
  • the fast frequency response function of the PV power plant should be coordinated with the AGC control.
  • the active power control target value of the new energy field station should be the AGC command value and the fast frequency response adjustment amount algebra sum.
  • the new energy fast frequency response latches the AGC reverse adjustment command.
  • the difference between the negative-frequency threshold of the fast-frequency response and the frequency value of the grid-connected point is taken as The frequency offset of the dot.
  • the difference between the fast threshold value of the fast frequency response and the frequency value of the grid-connected point is used as the frequency offset of the grid-connected point. the amount.
  • the difference between the fast-frequency response negative threshold value and the fast frequency response frequency minimum value is used as the frequency offset of the grid-connected point.
  • the difference between the fast-frequency response forward threshold and the maximum fast-frequency response frequency is taken as the frequency offset of the grid-connected point.
  • the fast frequency response negative threshold value f d ⁇ is the sum of the frequency reference value f N and the negative dead zone threshold DB ⁇
  • the fast frequency response forward threshold value f d+ is the frequency reference value f N and the positive dead zone threshold DB + 's and.
  • the primary frequency active power increment value calculation unit uses the frequency offset of the grid-connected point to calculate the active power increment value of the frequency offset of the grid-connected point, and is specifically used for:
  • the active power control target value of the grid-connected point corresponding to the grid point frequency offset is calculated by the following expression (5):
  • the active power control target value of the grid-connected point corresponding to the grid point frequency offset is calculated by the following expression (7):
  • the active power control target value of the grid-connected point corresponding to the grid point frequency offset is calculated by the following expression (8):
  • P 1 is the active power control target value of the grid-connected point corresponding to the grid point frequency offset
  • f is the frequency value of the detected grid-connected point
  • P 0 is once entered.
  • Deltf is the calculated frequency offset of the grid-connected point
  • P E is the rated power of the photovoltaic power plant
  • f N is the frequency reference value
  • ⁇ % is the preset primary frequency modulation
  • the adjustment coefficient f max is the maximum value of the fast frequency response frequency
  • f min is the minimum value of the fast frequency response frequency.
  • the total active power incremental value calculation module is configured to use the difference between the total active power control target value and the initial value of the active power of the photovoltaic power plant as the total active power increment value of the grid connection point.
  • FIG. 6 is a schematic diagram of a specific structure of the single-machine primary frequency triggering device of FIG. 4 according to an embodiment of the present disclosure.
  • the single-machine primary frequency triggering device 330 may include:
  • the model machine state determining module 331 is configured to determine that the running state of the model machine is normal when the template machine meets the preset fault-free operating condition.
  • the model machine is used to operate according to the rated power of the photovoltaic inverter, and the model machine corresponding to each power-limited inverter is used to select in advance according to a preset model selection step, and the selection process of the template machine includes:
  • Step 01 Obtain multiple groups of multiple PV inverters, and screen PV inverters with similar geographical locations and the same output capacity in each grouped PV inverter;
  • step 02 a photovoltaic inverter is selected as a model machine among the selected photovoltaic inverters, and a photovoltaic inverter other than the sample machine in the group is used as the power limiting inverter.
  • each of the grouped photovoltaic inverters one of the inverters of similar geographic location and the same capacity is selected, and the model machine is used for full operation of the rated power. And in one frequency modulation, the output power of the model machine does not need to be adjusted.
  • the component to be determined satisfies the following conditions:
  • the communication interface of the component to be determined is normal, the component to be determined has no fault alarm, the measured active power of the component to be determined is greater than or equal to a preset lower limit value of the active power of the grid connection point, and the active power rate of the component to be determined is less than the active power rate change threshold. .
  • the limited power inverter state determining module 332 is configured to meet the fault-free operating condition of the power limiting inverter, and determine that the limited power inverter operating state is normal when the model machine corresponding to the power limiting inverter simultaneously meets the faultless operating condition. .
  • the fault-free judgment of the current model corresponding to the inverter needs to satisfy the following conditions:
  • the active power measurement value of the model machine is more than 10% of the rated capacity
  • the active rate of the prototype is less than 5 kW/s.
  • the current inverter faultless judgment needs to meet the following conditions:
  • the measured value of active power is more than 10% of the rated capacity
  • the rate of change of active power is less than 5 kW/s
  • FIG. 7 is a schematic diagram showing the specific structure of the single-machine active power distribution device of FIG. 4.
  • the single-machine active power distribution device 340 may specifically include:
  • the grid-connected power adjustable value calculation module 341 is configured to calculate an active power adjustable value of the grid-connected point according to the total active power increment value of the grid-connected point and the active power value of each of the acquired PV inverters, and the network point
  • the active power adjustable value includes the active power boostable value of the grid point or the active power of the grid point can be reduced;
  • the grid point power adjustable value calculation module 341 may include a grid point power boostable value calculation unit and a grid point power down value calculation unit.
  • the grid-connected power boostable value calculating unit is configured to: when the total active power increment value of the grid-connected point is greater than zero and greater than a preset maximum boostable power limit, each of the to-be-tuned photovoltaic inverters is corresponding The difference between the active power value of the model machine and the active power value of the PV inverter to be frequency-modulated, as the boostable power value of each PV inverter to be frequency-modulated, and each PV inverter to be frequency-modulated Increasing the sum of the power values as a grid-connected point can increase the active power value;
  • the grid-connected power reduction value calculation unit is configured to: each of the to-be-modulated photovoltaic inverters when the total active power increment value of the grid-connected point is less than zero and less than a preset maximum-reduced active power limit The difference between the active power value and the lower limit of the active power of the grid-connected point is used as the power-reducible power value of each PV inverter to be frequency-modulated, and the sum of the power-reducible power values of each PV inverter to be frequency-modulated is used as a grid-connected point.
  • the active power value can be reduced.
  • the grid-connected power boostable value calculation unit is further configured to: when the achievable active power value of the grid-connected point is greater than the maximum achievable power limit, the maximum achievable power limit is used as the grid-connected point to improve the active power. Power value
  • the grid-connected power reduction value calculation unit is further used to reduce the active power value when the reduced active power value of the grid-connected point is less than the maximum power-reducible power limit, and the maximum power-reducible power limit is used as a grid-connected point. .
  • the single-machine adjustment ratio calculation module 342 is configured to calculate an active power adjustment ratio of each PV inverter to be frequency-modulated based on the total active power increment value of the grid-connected point and the active power adjustable value of the grid-connected point, and each of the to-be-modulated photovoltaic inverses
  • the active power adjustment ratio of the transformer includes an increase in the power adjustment ratio or a reduction in the power adjustment ratio
  • the single-machine adjustable ratio calculation unit is configured to use the ratio of the total active power increment value of the grid-connected point to the boostable active power value when the total active power increment value of the grid-connected point is greater than zero.
  • Each of the PV inverters to be upgraded can increase the power adjustment ratio, and when the boostable power adjustment ratio is greater than 100%, the boostable power adjustment ratio is set to 1.
  • the single machine can reduce the adjustment ratio calculation unit, and when the total active power increment value of the grid connection point is less than zero, the ratio of the total active power increment value of the grid connection point to the decreaseable active power value is used as
  • Each of the to-be-tuned photovoltaic inverters can reduce the power adjustment ratio, and when the power adjustment ratio can be reduced by 100% or less, the boostable power adjustment ratio is set to -1.
  • the single-machine active incremental value calculation module 343 is configured to calculate an output power target value of each of the to-be-modulated photovoltaic inverters based on the active power adjustment ratio and the active power value of each of the to-be-modulated photovoltaic inverters.
  • the stand-alone power boost value calculation unit is configured to calculate the boostable output power increment value of the to-be-modulated photovoltaic inverter using the expression (9):
  • CommandP n (ModelMachineMeasP[n]-MeasP n )* ⁇ 1 %+CommandP n0 (9)
  • CommandP n is the target value of the boostable output power of the PV inverter to be modulated
  • ModelMachineMeasP[n] is the active power value of the model machine corresponding to the PV inverter to be modulated
  • MeasP n is the FM to be modulated.
  • the active power value of the photovoltaic inverter, ⁇ 1 % is the preset boostable power ratio
  • CommandP n0 is the active power value before the frequency modulation of the PV inverter to be modulated.
  • the single-machine reduced power increment value calculation unit is configured to calculate the reduced output power increment value of the current to-be-modulated photovoltaic inverter using the expression (10):
  • CommandP n (MeasP[n]-n%P n )* ⁇ 2 %+CommandP n0 (10)
  • CommandP n is the target value of the output power of the PV inverter to be reduced
  • MeasP n is the active power value of the PV inverter to be frequency modulated
  • n%P n is the minimum active power limit value
  • P n For the rated power of the photovoltaic power plant ⁇ 2 % is the preset power reduction ratio
  • CommandP n0 is the active power value before the frequency modulation of the PV inverter to be modulated.
  • the single-machine power allocation determining module 222 is configured to: when determining that the running state of the model machine is normal, the operating state of the power-limited inverter is normal, and the total active power increment value of the grid-connected point is greater than or equal to the lower limit of the active power of the grid-connected point, the photovoltaic power station is A limited power inverter other than the model machine is used as the PV inverter to be modulated.
  • the photovoltaic power plant in order to ensure the stability of the photovoltaic power plant operation, prevent the minimum output limit of the photovoltaic power plant from being set to 10% Pn, to prevent the photovoltaic power plant from being disconnected due to the adjustment of the frequency modulation process, when the photovoltaic power plant full field active power increment value, ie The active power increment value of the grid-connected point is lower than the lower limit of the active power of the grid-connected point, and no single-machine power allocation is performed.
  • the stand-alone frequency modulation module 122 may include: a stand-alone communication interface and a photovoltaic controller, where
  • a single-machine communication interface configured to be connected to the field level controller 121, receive the single-machine primary frequency modulation command generated by the field level controller 121, and send the received single-machine primary frequency modulation command to the corresponding to-be-modulated photovoltaic inverter;
  • the photovoltaic controller is configured to be connected to the corresponding photovoltaic array 111, and according to the output power target value, the preset power adjustment step size and the adjustment rate in the single-stage primary frequency modulation command, the step size and the adjustment rate are adjusted according to the preset power, and the frequency to be modulated is to be adjusted.
  • the PV inverter is adjusted to the output power target value.
  • the active power value is increased by 10% Pn/s step, and when the active power command value is less than 10% Pn, according to the control
  • the policy period value is issued with an active power increase value, where P n is the rated power value of the photovoltaic power plant.
  • the active power control system adopts a centralized control mode to collect voltage and current signals of the grid connection point, and calculates the frequency, active and reactive power of the grid in real time; the active power control system can be combined with each photovoltaic inverter. Through optical fiber communication, the operation state of each inverter is obtained in real time; when the frequency offset of the power grid triggers one frequency modulation, the active power control system performs the proportional operation according to the operation state of each inverter according to the requirements of one frequency modulation.
  • Adjusting the active power value of the PV inverter to be modulated, realizing the full field distribution of active power, and the first frequency modulation action of each PV inverter to be frequency modulated is consistent throughout the entire frequency modulation process, and the whole field control speed is fast and the precision is high.
  • FIG. 8 shows a detailed flow chart of a primary frequency modulation control method in accordance with an embodiment of the present disclosure.
  • the primary frequency control method 800 can include:
  • Step S810 monitoring the frequency value of the grid connection point.
  • step S820 when it is determined that the frequency value of the grid-connected point satisfies the preset primary frequency-trigger trigger condition, the single-machine active power change amount is determined according to the operating state of the photovoltaic inverter.
  • Step S830 adjusting the active power output by the photovoltaic inverter based on the amount of change in the active power of the single unit.
  • the response speed and accuracy of the primary frequency modulation of the genset of the photovoltaic power plant can be improved, the operation of each genset is consistent, and the stability of the power system is high.
  • step S820 the step of determining the amount of change of the active power of the single unit according to the operating state of the photovoltaic inverter may specifically include:
  • Step S821 determining a total active power control target value of the grid connection point, and calculating a total active power variation amount of the grid connection point according to the total active power control target value.
  • step S821 may specifically include:
  • Step S821-01 when the frequency offset of the grid-connected point satisfies the primary frequency-trigger trigger condition, the initial active power control target of the grid-connected point is determined by using the initial value of the active power of the photovoltaic power plant, the frequency value of the grid-connected point, and the AGC command value. value.
  • step of determining the total active power control target value of the grid connection point in step S821-01 may specifically include:
  • Step S01 Calculate the frequency offset of the grid-connected point based on the detected frequency value of the grid-connected point, and calculate the active power increment value of the frequency offset of the grid-connected point by using the frequency offset of the grid-connected point.
  • the step of calculating the active power increment value of the frequency offset of the grid connection point in the step S01 may specifically include:
  • the difference between the fast threshold value of the fast frequency response and the frequency value of the grid-connected point is used as the frequency offset of the grid-connected point. the amount;
  • the difference between the fast frequency response negative threshold value and the fast frequency response frequency minimum value is taken as the frequency offset of the grid connection point
  • the difference between the fast-frequency response forward threshold and the maximum fast-frequency response frequency is taken as the frequency offset of the grid-connected point.
  • the fast frequency response negative threshold is the sum of the frequency reference and the negative deadband threshold
  • the fast frequency response frequency maximum is the sum of the frequency reference and the positive deadband threshold
  • Step S02 according to the current AGC command value of the power grid and the last AGC command value, the difference between the current AGC command value and the last AGC command value is used as the active power increment value of the current AGC command;
  • Step S803 when the first active power increment control condition is met, setting a total active power control target value of the grid-connected point to increase the active power increment value and the frequency offset of the current AGC command based on the initial value of the active power.
  • the algebraic sum of the power increment values which yields the active total active power increment value of the grid-connected point.
  • the first active power control condition includes any one of the following conditions: the frequency value of the grid point is within the allowable range of the grid point frequency; the frequency value of the grid point exceeds the allowable range of the grid point frequency and the current AGC The direction in which the command value is adjusted is the same as the direction in which the active power increment value of the frequency offset is adjusted.
  • the same adjustment direction indicates that the active power increment value of the current AGC instruction and the active power increment value of the frequency offset are positive or negative; the different adjustment directions indicate the active power increment of the AGC instruction.
  • the value is different from the active power increment value of the frequency offset, it is a positive number and is not a negative number at the same time.
  • Step S04 when the second active power incremental control condition is satisfied, the grid AGC command value is maintained as the last AGC command value, and based on the initial value of the active power, the active power increment value of the frequency offset is increased to obtain a grid connection point.
  • the active total active power increment value of the active power is increased.
  • the second active power control condition includes: the frequency value of the grid connection point exceeds the allowable range of the grid point frequency, and the adjustment direction of the current AGC command value is different from the adjustment direction of the active power increment value of the frequency offset. .
  • step S05 when the third active power incremental control condition is met, the total active power control target value of the grid-connected point is set to the current AGC command value.
  • the third active incremental control condition includes: the frequency offset of the grid point is greater than the negative dead zone threshold and less than the positive dead zone threshold.
  • Step S821-02 When the active power control target value of the grid-connected point is lower than the preset grid-connected active power lower limit threshold, the active power control target value of the grid-connected point is set as the grid-connected active power lower limit threshold.
  • Step S821-03 the difference between the total active power control target value and the initial value of the active power of the photovoltaic power plant is taken as the total active power increment value of the grid connection point.
  • Step S822 determining a to-be-tuned PV inverter that is allowed to participate in the primary frequency modulation in the photovoltaic power station based on the operating state of the photovoltaic inverter in the photovoltaic power station and the single-machine active power distribution condition.
  • the photovoltaic inverter in the photovoltaic power station includes a limited power inverter and a limited power inverter corresponding to the model machine.
  • step S822 the step of determining the to-be-tuned PV inverter that is allowed to participate in the primary frequency modulation in the photovoltaic power station may specifically include:
  • Step S822-01 when the template machine meets the preset fault-free operating condition, it is determined that the running state of the model machine is normal;
  • Step S822-02 the limited power inverter meets the fault-free operating condition, and when the model machine corresponding to the power limited inverter meets the fault-free operating condition at the same time, the operating state of the limited power inverter is determined to be normal;
  • the component to be determined satisfies the following conditions:
  • the communication interface of the component to be determined is normal, the component to be determined has no fault alarm, the measured active power of the component to be determined is greater than or equal to a preset lower limit value of the active power of the grid connection point, and the active power rate of the component to be determined is less than the active power rate change threshold. .
  • the model machine is configured to operate according to the rated power of the photovoltaic inverter, and each model machine corresponding to the power limited inverter is used to select in advance according to a preset model selection step, and the template selection step includes :
  • Step S822-03 when it is determined that the running state of the model machine is normal, the operating state of the limited power inverter is normal, and the total active power increment value of the grid connection point is greater than or equal to the lower limit of the active power limit of the grid connection point, the photovoltaic power station is other than the model machine.
  • the limited power inverter is used as a PV inverter to be frequency modulated.
  • Step S823 the total active power increment value is allocated according to the operating state of each PV inverter to be modulated, and the output power target value of each PV inverter to be modulated is obtained, and is sent to each PV inverter to be modulated.
  • a single-machine primary frequency command that includes an output power target value, a preset power adjustment step size, and an adjustment rate.
  • the model machine is used to operate according to the rated power of the photovoltaic inverter, and the model machine corresponding to each limited power inverter is used to select according to the preset selection procedure of the sample machine in advance, and the selection procedure of the model machine is selected.
  • step S823 the total active power increment value is allocated according to the operating state of each PV inverter to be modulated, and the output power target value of each PV inverter to be frequency-modulated is obtained.
  • Step S823 the total active power increment value is allocated according to the operating state of each PV inverter to be modulated, and the output power target value of each PV inverter to be modulated is obtained, including:
  • Step S823-01 calculating an active power adjustable value of the grid-connected point according to the total active power increment value of the grid-connected point and the active power value of each of the acquired PV inverters, and the active power adjustable value of the grid point includes The active power of the grid point can be increased or the active power of the grid point can be reduced.
  • step S823-01 may include:
  • the active power value of the model machine corresponding to each PV inverter to be frequency-modulated and the PV-inverted PV inverter The difference between the active power values of the devices, as the boostable power value of each PV inverter to be modulated, and the sum of the boostable power values of each PV inverter to be used as the grid-connected boostable active power value .
  • the power value can be reduced, and the sum of the power-reducible values of each of the PV inverters to be frequency-modulated can be used as a grid-connected point to reduce the active power value.
  • step S823-01 may further include:
  • the maximum achievable power limit is used as the achievable active power value of the grid-connected point
  • the maximum power-reducible power limit can be reduced as the power-down value of the grid-connected point.
  • Step S823-02 calculating an active power adjustment ratio of each PV inverter to be frequency-modulated based on the total active power increment value of the grid-connected point and the active power adjustable value of the grid-connected point, and the active power of each PV inverter to be frequency-modulated
  • the power adjustment ratio includes an increase in the power adjustment ratio or a reduction in the power adjustment ratio
  • step S823-02 may specifically include:
  • the ratio of the total active power increment value of the grid-connected point to the boostable active power value is used as the adjustable power adjustment ratio of each PV inverter to be modulated, and When the boostable power adjustment ratio is greater than 100%, the boostable power adjustment ratio is set to 1;
  • the ratio of the total active power increment value of the grid-connected point to the reduced active power value is used as the power-reducing ratio of each of the PV inverters to be frequency-modulated, and
  • the boostable power adjustment ratio is set to -1.
  • Step S823-03 calculating an output power target value of each PV inverter to be frequency-modulated based on the active power adjustment ratio and the active power value of each PV inverter to be frequency-modulated.
  • CommandP n ModelMachineMeasP[n]-MeasP n )* ⁇ 1 %+CommandP n0 to calculate the increaseable output power increment value of the PV inverter to be modulated, wherein
  • CommandP n is the target value of the boostable output power of the PV inverter to be modulated.
  • ModelMachineMeasP[n] is the active power value of the model machine corresponding to the PV inverter to be modulated, and MeasP n is the inverse of the PV to be modulated.
  • the active power value of the transformer, ⁇ 1 % is the preset boostable power ratio, and CommandP n0 is the active power value before the frequency modulation of the PV inverter to be modulated;
  • CommandP n is the target value of the output power of the PV inverter to be reduced. MeasP n is the active power value of the PV inverter to be frequency modulated, n% P n is the minimum active power limit value, and P n is the PV The rated power of the power plant, ⁇ 2 % is the preset power reduction ratio, and CommandP n0 is the active power value before the frequency modulation of the PV inverter to be modulated.
  • the primary frequency control method 800 can further include:
  • the S850 adjusts the to-be-tuned PV inverter to the output power target value according to the preset power adjustment step size and the adjustment rate according to the preset power adjustment step size and the adjustment rate in the single-stage FM command.
  • Fig. 9 is a schematic diagram showing the curve of the output power response and the grid frequency fluctuation when the grid point frequency is shifted.
  • the photovoltaic power plant is rated at 30 MW
  • the photovoltaic power plant can use two different models of the first photovoltaic inverter and the second photovoltaic inverter, wherein the first photovoltaic inverter is rated at 10 MW, and The second photovoltaic inverter is rated at 20 MW and the reference frequency of the photovoltaic power plant is 50 Hz.
  • the active power performs a frequency-modulating action according to the active/frequency characteristic curve.
  • the grid-connected point simulation device is used to simulate the frequency fluctuation of the grid-connected point.
  • the frequency occurs as follows: 50 Hz ⁇ 49.95 Hz ⁇ 49.92 Hz ⁇ 49.89 Hz ⁇ 49.85 Hz ⁇ 49.89 Hz ⁇ 49.92 Hz ⁇ 49.95 Hz ⁇ 50 Hz.
  • the active power of the photovoltaic field is responded to within 500ms.
  • the frequency disturbance test of the grid frequency is performed by rapidly increasing the load, rapidly reducing the load, and inverting the power of the inverters of the designated photovoltaic power plant.
  • Table 1 shows the frequency fast increase and decrease test values in the frequency disturbance test
  • Table 2 shows the frequency jump test settings in the frequency disturbance test.
  • FIG. 10 is a diagram showing a frequency response of a photovoltaic power plant in a frequency disturbance test in a frequency disturbance test according to an embodiment of the present disclosure
  • FIG. 11 is a diagram showing a frequency of a photovoltaic power plant having a frequency jump in a frequency disturbance test according to an embodiment of the present disclosure
  • Fast response waveform is a diagram showing a frequency response of a photovoltaic power plant in a frequency disturbance test in a frequency disturbance test according to an embodiment of the present disclosure.
  • the maximum frequency disturbance is about 50.08 Hz
  • the full field power command is 2200 kW
  • the actual grid point gold wind power is about 10 MW.
  • the power value of the photovoltaic power plant increases rapidly according to the frequency. Reduce the frequency to respond quickly.
  • the maximum frequency disturbance is about 49.91 Hz
  • the PV full-field power command is 2200 kW
  • the actual grid-connected gold wind power is about 12 MW.
  • the power value of the photovoltaic power plant jumps according to the frequency. Perform a fast frequency response.
  • the frequency test test of the above photovoltaic power plant can be obtained, and the whole field frequency test result of the actual photovoltaic power plant can be obtained.
  • the photovoltaic power plant photovoltaic inverter unit can better track the frequency disturbance under the limited power condition, and the full field active power
  • the response time is less than 500ms, which effectively improves the response speed and accuracy of the primary frequency modulation of the generator set of the photovoltaic power plant.
  • the operation of each generator set is consistent and the stability of the power system is high.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product or a computer readable storage medium.
  • the computer program product or computer readable storage medium includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present disclosure are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Abstract

本公开实施例公开了一种光伏发电厂及其一次调频控制方法。该光伏发电厂包括光伏发电站和有功功率控制系统;其中,光伏发电站包括光伏阵列和光伏逆变器,光伏逆变器将光伏阵列产生的直流电能转换为交流电能;有功功率控制系统,用于当光伏发电厂的并网点的频率值满足预设的一次调频触发条件时,根据光伏逆变器的运行状态确定单机有功功率变化量,调整光伏逆变器输出的有功功率。根据本公开实施例提供的光伏发电厂,可以提高发电机组的一次调频的响应速度和精度,各个发电机组动作具有一致性,电力系统稳定性高。

Description

光伏发电厂及其一次调频控制方法 技术领域
本公开涉及电力系统功率控制领域,尤其涉及一种光伏发电厂及其一次调频控制方法。
背景技术
随着新能源发电机组渗透率的不断增加,大规模新能源场站集中接入对电力系统的安全、稳定和高效运行带来了新的挑战。在电网实际运行中,当电量消耗与电量供给不匹配时,即可引起电网频率出现变化较小以及变动周期较短的微小分量,通常可以与通过发电机组调节系统的自身频率修正电网频率的波动,这个过程即可称为发电机组的一次调频。二次调频是指当电力系统负荷或发电出力发生较大变化时,一次调频不能恢复频率至规定范围时采用的调频方式。
传统火电机组调频需求如下:
一次调频情况下:火力发电机组参与一次调频的响应滞后时间应小于3s,频率波动持续时间小于1分钟;
二次调频情况下:频率波动持续时间为几分钟。
但是新能源发电机组通常采用电力电子变换器并网,并网变换器响应速度快,不具备维持系统安全稳定运行所需的惯性和阻尼,因此缺乏一种与配电网有效的“同步”机制,当大规模的新能源机组并入电网后,系统总转动惯量相对下降,从而影响到系统的快速频率响应速度,促使电网的稳定性大大降低。
为了提高新能源场站的快速频率能力,促进电网的稳定性,通常采用的方法是改造现有的电网能量管理平台,但是这种方法对发电机组的一次调频响应精度低,从而导致整体发电机组一次调频动作不一致,且对发电机组的一次调频响应速度较慢,导致电力系统稳定性差。
发明内容
本公开实施例提供一种光伏发电厂及其一次调频控制方法,可以提高光伏发电厂的发电机组的一次调频的响应速度和精度,各个发电机组动作具有一致性,电力系统稳定性高。
根据本公开实施例的一方面,提供一种光伏发电厂,包括:光伏发电站和有功功率控制系统;其中,光伏发电站包括光伏阵列和光伏逆变器,光伏逆变器将光伏阵列产生的直流电能转换为交流电能;有功功率控制系统,用于当光伏发电厂的并网点的频率值满足预设的一次调频触发条件时,根据光伏逆变器的运行状态确定单机有功功率变化量,调整光伏逆变器输出的有功功率。
根据本公开实施例的另一方面,提供了一种一次调频控制方法,用于上述实施例描述的光伏发电厂,该一次调频控制方法包括:监测光伏发电厂并网点的频率值;确定并网点的频率值满足预设的一次调频触发条件时,根据光伏逆变器的运行状态确定单机有功功率变化量;基于单机有功功率变化量调整光伏逆变器输出的有功功率。
根据本公开实施例中的光伏发电厂及其一次调频控制方法,可以得到包括但不限于下述项的益处:提高光伏发电厂的发电机组的一次调频的响应速度和精度,各个发电机组动作具有一致性,电力系统稳定性高。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是示出根据本公开实施例的光伏发电厂的框架结构示意图;
图2是示出根据本公开示例性实施例的光伏发电厂的拓扑结构示意图;
图3是示出本公开实施例中光伏发电厂的输出功率响应并网点频率波动的曲线示意图;
图4是示出根据本公开实施例的场级控制器的具体结构示意图;
图5是图4中总有功功率增量值确定装置320的具体结构示意图;
图6是图4中根据本公开实施例的单机一次调频触发装置的具体结构示意图;
图7是图4中单机有功功率分配装置的具体结构示意图;
图8示出了根据本公开实施例的一次调频控制方法的具体流程图;
图9示意性地示出并网点频率偏移时输出功率响应并网点频率波动的曲线示意图;
图10示出了本公开实施例的频率扰动测试中频率快增快减的光伏发电厂频率快速响应波形图;
图11示出了本公开实施例的频率扰动测试中频率打跳的光伏发电厂频率快速响应波形图。
具体实施方式
下面将详细描述本公开的各个方面的特征和示例性实施例,为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细描述。应理解,此处所描述的具体实施例仅用于解释本公开,并不用于限定本公开。对于本领域技术人员来说,本公开可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本公开的示例来提供对本公开更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
为了更好的理解本公开,下面将结合附图,详细描述根据本公开实施 例的,应注意,这些实施例并不是用来限制本公开公开的范围。
如图1所示,在一个实施例中,光伏发电厂可以包括光伏发电站和有功功率控制系统;其中,光伏发电站包括多个光伏阵列111和多个光伏逆变器112,每个光伏逆变器112与光伏阵列111中对应的光伏发电机组10连接,多个光伏逆变器112用于将多个光伏阵列111产生的直流电能转换为交流电能;有功功率控制系统,用于当光伏发电厂的并网点的频率值满足预设的一次调频触发条件时,根据光伏逆变器112的运行状态确定单机有功功率变化量,控制光伏发电厂进行一次调频。具体地,根据每个光伏逆变器112的运行状态,调整每个光伏逆变器输出的有功功率。
在本公开实施例中,有功功率控制系统采用集中控制方案,调节整个电网的有功功率,使光伏发电厂参与电力系统的一次调频,在光伏发电厂的并网点的频率值满足预设的一次调频触发条件时,有功功率控制系统根据每个光伏逆变器的运行状态,调整每个光伏逆变器的输出功率,各个光伏逆变器动作具有一致性,整场控制速度快,精度高,从而增加系统的稳定性,改善风电的并网友好性。
继续参考图1,在一个实施例中,有功功率控制系统可以包括场级控制器121和单机调频模块122,其中,场级控制器121,被设置在光伏发电厂的升压站,场级控制器121用于确定并网点的频率值满足一次调频触发条件时,基于并网点的频率值计算并网点的总有功功率增量值,以及根据每个光伏逆变器112的运行状态,生成单机一次调频命令,并发送单机一次调频命令至对应的光伏逆变器112;单机调频模块122,与对应的光伏逆变器112连接,单机调频模块122还用于接收单机一次调频命令,根据单机一次调频指令调整对应的光伏逆变器112输出的有功功率。
在本公开实施例中,升压站可以用于将转换得到的交流电能进行电压升高处理,将电压升压处理得到的高压交流电能输送至电网。
图2与图1相同或等同的组件使用相同的标号。
如图2所示,在一个实施例中,光伏发电站中,每个光伏逆变器(图中未示出)可以与光伏阵列111中对应的光伏发电机组10连接,每个光伏逆变器将连接的光伏阵列111产生的直流电能转换为交流电能,并将转 换得到的交流电能汇入光伏母线;光伏母线通过与低压母线的电缆连接传输该交流电能到低压母线,低压母线通过升压站与高压母线相连接,低压母线上的交流电能经过升压处理成符合电网要求的交流电能,通过为与高压母线上的并网点接入电网。
场级控制器121作为一个精细化的能量管理平台,通过实时检测并网点的频率值作为电网频率,可以解决通过光伏逆变器采集电网频率时由于逆变器出口电压谐波比较大造成的采集频率不准确的问题,以及可以解决由于每个光伏逆变器采集的频率不同,造成全场的动作特性不一致的问题,从而提高电网频率检测的测量精度,提高一次调频动作的一致性。
继续参考图2,有功功率控制系统的场级控制器121与每个单机调频模块122可以通过光纤连接。场级控制器121通过光纤传输下发单机调频指令到每个单机调频模块122,每个单机调频模块122通过单机调频指令控制对应的光伏逆变器执行单机一次调频动作,有功功率控制系统动态频率响应速度快,可以达到电网对光伏场站参与快速频率响应速度的要求。
下面参考图3,详细介绍根据本公开实施例的光伏发电厂100通过有功功率控制系统120参与一次调频的基本原理。为了描述方便,在下述实施例的描述中,可以将如图3所示的光伏发电厂的输出功率响应并网点频率波动的曲线简称为有功/频率特性曲线。
如图3所示,本公开实施例的有功功率控制系统可以监测光伏发电厂并网点的频率波动,通过协调控制光伏发电厂全场的有功功率,实现对光伏发电厂的一次调频控制,光伏发电厂的有功功率控制系统可以通过给定的有功/频率特性曲线,实现光伏场站的快速频率响应功能。
在本公开实施例中,如图3所示,光伏发电厂的运行过程中,当并网点的频率f相对于频率基准值f N发生了偏移,且频率偏移量Δf未超过设定的死区频率范围时,为了维持光伏发电机组的稳定运行,有功功率控制系统120对电网频率的该微小波动不需要进行有功功率调节。
在本公开实施例中,死区频率是并网点的频率发生偏移时,为了避免有功功率控制系统产生不必要的动作而设置的频率偏移量。死区频率可以包括正向死区阈值DB +和负向死区阈值DB -,正向死区阈值DB +和负向死 区阈值DB -均可以根据电网实际运行情况设置,因此,正向死区阈值的绝对值DB +和设置的负向死区阈值DB -的绝对值可以相同,也可以不同。
在该示例中,根据频率基准值f N、正向死区阈值DB +和负向死区阈值DB -,可以确定有功功率控制系统120的快速频率响应动作门槛f d,快速频率响应动作门槛f d包括:
(1)与正向死区阈值DB +对应的快速频率响应正向门槛值f d+,且f d+=f N+DB +,以及
(2)与负向死区阈值DB -对应的快速频率响应负向门槛值f d-,且f d-=f N+DB -
如图3所示,当电网频率f大于快速频率响应正向门槛值f d+,或电网频率f小于快速频率响应负向门槛值f d-时,触发光伏发电厂100使用有功功率控制系统120进行一次调频。
作为一个示例,光伏发电厂的频率基准值f N例如可以是50Hz,正向死区阈值DB +为0.06Hz,负向死区阈值DB -为-0.06Hz,根据频率基准值f N,正向死区阈值DB +和负向死区阈值DB -,可以确定快速频率响应动作门槛f d,其中,快速频率响应正向门槛值f d+为50.06Hz,快速频率响应负向门槛值f d-为49.94Hz。当f≥50.06Hz或者f≤49094Hz时,触发光伏发电厂100使用有功功率控制系统120进行一次调频。
在一个实施例中,可以通过下述表达式(1)表示有功/频率特性曲线中并网点的有功功率与并网点的频率值的变化关系。
Figure PCTCN2018086348-appb-000001
在上述表达式(1)中,P表示根据并网点频率值的波动实时计算得到的并网点的有功功率值,p 0表示光伏发电厂进入一次调频前的有功功率初始值(下面可以简称为功率初值p 0),p N表示光伏发电厂的额定功率,f表示检测的并网点的频率值,f d表示快速频率响应动作门槛,f N表示预设的频率基准值,δ%表示光伏发电厂中光伏发电机组的调差系数。
在上述表达式中,当并网点的频率值f超过快速频率响应动作门槛f d 时,光伏发电机组的调差系数即为有功/频率特性曲线的斜率。
并且,在上述公式(1)中,
Figure PCTCN2018086348-appb-000002
可以表示:并网点的频率值f超出快速频率响应动作门槛f d时,并网点的有功功率增量值DeltP1,即可以通过下面的表达式(2)表示f超过快速频率响应动作门槛f d的并网点的有功功率增量值DeltP1。
Figure PCTCN2018086348-appb-000003
在一个实施例中,该表达式(2)还可以表示为下面的表达式(3),该表达式(2)和表达式(3)是有功功率增量值DeltP1的两种不同的表达方式。
Figure PCTCN2018086348-appb-000004
根据表达式(3),上述表达式(1)也可以表示为下述表达式(4),表达式(1)和表达式(4)是并网点的有功功率值P的两种不同的表达方式:
Figure PCTCN2018086348-appb-000005
在一个实施例中,当f d-≤f≤f d+,认为并网点的频率值在频率死区内,当f≥f d+时,认为并网点的频率值超过频率死区并高于频率死区,当f≤f d-时,认为并网点的频率值超过频率死区并低于频率死区。
继续参考图3,在一个实施例中,当电网发生高频扰动,并网点的频率值高于频率死区,即f≥f d+,通过上述表达式(2)或表达式(3)可以得出,光伏发电厂全场的有功功率增量值DeltP小于零,并网点的有功功率值P小于有功功率初始值p 0,因此,需要降低光伏发电厂的有功功率。
继续参考图3,在一个实施例中,当电网发生低频扰动,并网点的频率值低于频率死区,即f≥f d+,通过上述表达式(2)或表达式(3)可以得出,光伏发电厂全场的有功功率增量值DeltP大于零,并网点的有功功率值P大于有功功率初始值p 0,因此,需要增大光伏发电厂的有功功率。
在一个实施例中,由于光伏发电厂对电网的有功功率的贡献存在有功功率贡献量上限阈值,因此,对光伏发电厂的有功功率进行调节时,可调节功率值存在可调节功率限值,可调节功率限值包括:可提升功率限值和可降低功率限值。
也就是说,对光伏发电厂的有功功率进行调节时,可提升功率值可以小于预设的提升功率限值,可降低功率值应小于可降低功率限值。作为一个示例,可提升功率限值和可降低功率限值均可以设置为光伏电站最小出力限制值为10%P N
在一个实施例中,有功功率降至并网点有功功率下限阈值时不可再向下调节,例如,设置光伏电站最小出力限制值为10%P N,防止因调频过程调节导致光伏电站脱网。
作为一个示例,当电网高频扰动情况下,有功功率降至额定出力的10%时可不再向下调节,且一次调频的可提升功率限制和可降低功率限制可以设置为光伏发电厂额定出力的10%。
在本公开实施例中,基于图3所示的有功/频率特性曲线,当电网发生频率偏移并触发一次调频时,可以根据并网点的实时频率计算出并网点的总有功增量,由集中该控制系统根据每台逆变器的运行状态,将光伏发电厂并网点的有功功率增量按每个光伏逆变器运行状态进行分配,下发至每一个光伏逆变器。
需要说明的是,本公开实施例中的光伏发电厂不包括储能装置,利用有功功率控制系统控制光伏逆变器的有功出力。
下面结合附图和具体实施例,详细描述根据本公开实施例的光伏发电厂通过有功功率控制系统进行一次调频控制的具体过程。
如图4所示,在一个实施例中,场级控制器121可以包括:光伏发电厂一次调频触发装置310、总有功功率增量值确定装置320、单机一次调频触发装置330和单机有功功率分配装置340,其中,
光伏发电厂一次调频触发装置310,用于监测并网点的频率值,当监测的并网点的频率值偏移预设的频率基准值,且频率偏移量满足一次调频触发条件时,调整光伏逆变器输出的有功功率,一次调频触发条件包括并 网点的频率值大于预设的正向死区阈值,或者,并网点的频率值小于负向死区阈值。
总有功功率增量值确定装置320,用于当频率偏移量满足一次调频触发条件时,利用检测的一次调频前光伏发电厂的有功功率初始值、并网点的频率值、以及电网的自动发电控制AGC指令值,确定并网点的总有功功率控制目标值,并根据总有功功率控制目标值,计算并网点的总有功功率增量值。
单机一次调频触发装置330,用于基于光伏发电站中的光伏逆变器的运行状态是否正常和光伏逆变器是否满足预设的单机有功功率分配条件,确定光伏发电站中允许参与一次调频的待调频光伏逆变器。
单机有功功率分配装置340,用于将总有功功率增量值按照每台待调频光伏逆变器的运行状态进行分配,得到每台待调频光伏逆变器的输出功率目标值,向每台待调频光伏逆变器发送包含输出功率目标值、预设功率调节步长和调节速率的单机一次调频命令。
在该实施例中,实时监测电网状态,计算并网点的总有功增量值,并基于光伏发电站中的光伏逆变器的运行状态,确定光伏发电站中允许参与一次调频的待调频光伏逆变器,调整待调频光伏逆变器的输出功率,参与系统一次调频,合理分配全场的有功增量。
如图5所示,在一个实施例中,总有功功率增量值确定装置320可以包括:总有功功率控制目标值确定模块321、总有功功率目标限制值设置模块322和总有功功率增量值计算模块323。其中,
总有功功率控制目标值确定模块321,用于当频率偏移量满足一次调频触发条件时,利用光伏发电厂的有功功率初始值、并网点的频率值、以及AGC指令值,确定并网点的总有功功率控制目标值。
在一个实施例中,总有功功率控制目标值确定模块321可以包括:一次调频有功增量值计算单元、AGC指令有功增量值计算单元、第一总控制目标值计算单元、第二总控制目标值计算单元和第三总控制目标值计算单元;其中,
一次调频有功增量值计算单元,用于基于检测的并网点的频率值,计 算并网点的频率偏移量,并利用并网点的频率偏移量,计算并网点的频率偏移量的有功功率增量值。
AGC指令有功增量值计算单元,用于根据电网的当前AGC指令值和上一次AGC指令值,将当前AGC指令值与上一次AGC指令值的差值作为当前AGC指令的有功功率增量值。
第一总控制目标值计算单元,用于满足第一有功增量控制条件时,设置并网点的总有功功率控制目标值为在有功功率初始值的基础上,增加当前AGC指令的有功功率增量值与频率偏移量的有功功率增量值的代数和,得到并网点的有功的总有功功率增量值。
作为一个示例,第一有功增量控制条件包括如下条件中的任一个:
(1)并网点的频率值在并网点频率允许变动范围内、以及
(2)并网点的频率值超过并网点频率允许变动范围且当前AGC指令值的调节方向与频率偏移量的有功功率增量值的调节方向相同。
第二总控制目标值计算单元,用于满足第二有功增量控制条件时,保持电网AGC指令值为上一次AGC指令值,并在有功功率初始值的基础上,增加频率偏移量的有功功率增量值,得到并网点的有功的总有功功率增量值。
作为一个示例,第二有功增量控制条件包括:
(1)并网点的频率值超过并网点频率允许变动范围,并且
(2)当前AGC指令值的调节方向与频率偏移量的有功功率增量值的调节方向不同;
总有功功率目标限制值设置模块322,用于当并网点的有功功率控制目标值低于预设的并网点有功功率下限阈值时,设置并网点的有功功率控制目标值为并网点有功功率下限阈值。
第三总控制目标值计算单元,用于满足第三有功增量控制条件时,设置并网点的总有功功率控制目标值为当前AGC指令值。
作为一个示例,第三有功增量控制条件包括:
并网点的频率偏移量大于负向死区阈值且小于正向死区阈值;其中,调节方向相同表示当前AGC指令的有功功率增量值与频率偏移量的有功 功率增量值均为正数或均为负数;调节方向不同表示AGC指令的有功功率增量值与频率偏移量的有功功率增量值不同时为正数且不同时为负数。
作为一个示例,当并网点的频率值大于快速频率响应负向门槛值且小于快速频率响应正向门槛值时,并网点的频率偏移量未超过频率死区,作为一个示例,可以表示为50+DB -≤f≤50+DB +
在该实施例中,光伏发电厂快速频率响应功能应与AGC控制相协调,即并网点有功功率控制目标值应为AGC指令值与快速频率响应调节量代数和。当电网频率超出并网点频率允许变动范围例如50±0.1Hz时,新能源快速频率响应闭锁AGC反向调节指令。
作为一个示例,并网点有功功率控制目标值为在光伏发电厂的有功功率初始值的基础上不断叠加频率偏移量的有功功率增量值和当前AGC指令的有功功率增量值,当电网频率超出并网点频率允许变动范围,在保持上一次的AGC指令的有功功率增量值的基础上,不再叠加当前AGC指令的有功功率增量值。
在一个具体的示例中,AGC指令可以为二次调频指令。光伏发电厂快速频率响应功能应与AGC控制相协调。当电网频率超出频率死区但小于50±0.1Hz时,新能源场站有功功率控制目标值应为AGC指令值与快速频率响应调节量代数和。当电网频率超出50±0.1Hz时,新能源快速频率响应闭锁AGC反向调节指令。
小于0.1Hz举例:假设电网频率死区为±0.06Hz,当前频率值为50.08Hz,全场参与系统一次调频,DeltP=-500kW。在此期间,假设一:二次调频指令为要求全场功率由30000kW增加至30500kW,此时全场执行的总功率为30500-500=30000;假设二:二次调频指令为要求全场功率由30000kW增加至29500kW,此时全场执行的总功率为29500-500=29000kW(即不论一次调频与二次调频的方向如何,都是代数和)。
大于0.1Hz举例:假设电网频率死区为±0.06Hz,当前频率值为50.12Hz,全场参与系统一次调频,DeltP=-1500kW。在此期间,假设一:二次调频指令为要求全场功率由30000kW增加至30500kW,此时全场执行的总功率为30000-1500=28500;假设二:二次调频指令为要求全场功率 由30000kW增加至29500kW,此时全场执行的总功率为29500-1500=28000kW(即一次调频与二次调频的闭锁逻辑,同方向相加,反方向闭锁)。
下面通过一个具体的示例,介绍本公开实施例中,根据并网点的频率值计算并网点的频率偏移量的具体步骤,在该示例中:
当并网点的频率值大于等于快速频率响应频率最小值,且并网点的频率值小于快速频率响应负向门槛值时,将快速频率响应负向门槛值与并网点的频率值的差值作为并网点的频率偏移量。
也就是说,当f min<f<f N+DB -时,并网点的频率偏移量Deltf=f N-f+DB -
当并网点的频率值大于快速频率响应正向门槛值,且小于等于快速频率响应频率最大值时,将快速频率响应正向门槛值与并网点的频率值的差值作为并网点的频率偏移量。
也就是说,当f N+DB -<f<f max时,并网点的频率偏移量Deltf=fN-f+DB+。
当并网点的频率值小于快速频率响应频率最小值,将快速频率响应负向门槛值与快速频率响应频率最小值的差值作为并网点的频率偏移量。
也就是说,当f<f min时,并网点的频率偏移量Deltf=f N-f min+DB -
当并网点的频率值大于快速频率响应频率最大值,将快速频率响应正向门槛值与快速频率响应频率最大值的差值作为并网点的频率偏移量。
也就是说,当f>f max时,并网点的频率偏移量Deltf=f N-f max+DB +
其中,快速频率响应负向门槛值f d-为频率基准值f N与负向死区阈值DB -的和,快速频率响应正向门槛值f d+为频率基准值f N与正向死区阈值DB +的和。
在上述公式中,一次调频有功增量值计算单元在利用并网点的频率偏移量,计算并网点的频率偏移量的有功功率增量值时,具体用于:
利用表达式
Figure PCTCN2018086348-appb-000006
计算并网点的频率偏移量的有功功 率增量值,其中,DeltP 1为频率偏移量的有功功率增量值,Deltf为计算得到的并网点的频率偏移量,P N为光伏发电厂的额定功率,f N为频率基准值,δ%为预设的一次调频调差系数。
作为一个具体地示例,当并网点预设的频率基准值f N为50Hz时,上述表达式
Figure PCTCN2018086348-appb-000007
具体可以表示为:
当f min≤f<50+DB -,通过下面的表达式(5)计算与并网点频率偏移对应的并网点的有功功率控制目标值:
Figure PCTCN2018086348-appb-000008
当50+DB +<f≤f max,下面的表达式(6)计算与并网点频率偏移对应的并网点的有功功率控制目标值:
Figure PCTCN2018086348-appb-000009
当f<f min,通过下面的表达式(7)计算与并网点频率偏移对应的并网点的有功功率控制目标值:
Figure PCTCN2018086348-appb-000010
当f>f max,通过下面的表达式(8)计算与并网点频率偏移对应的并网点的有功功率控制目标值:
Figure PCTCN2018086348-appb-000011
在上述表达式(5)到表达式(8)中,P 1为与并网点频率偏移对应的并网点的有功功率控制目标值,f为检测的并网点的频率值,P 0为进入一 次调频前检测的并网点的有功功率初始值,Deltf为计算得到的并网点的频率偏移量,P E为光伏发电厂的额定功率,f N为频率基准值,δ%为预设的一次调频调差系数,f max为快速频率响应频率最大值,f min为快速频率响应频率最小值。
总有功功率增量值计算模块,用于将总有功功率控制目标值与光伏发电厂的有功功率初始值的差值,作为并网点的总有功功率增量值。
图6是图4中根据本公开实施例的单机一次调频触发装置的具体结构示意图。如图6所示,在一个实施例中,单机一次调频触发装置330可以包括:
样板机状态判定模块331,用于当样板机满足预设的无故障运行条件时,确定样板机运行状态正常。
作为一个示例,样板机用于按照光伏逆变器额定功率运行,且每台限功率逆变器对应的样板机用于预先按照预设的样板机选取步骤进行选取,样板机选取步骤包括:
步骤01,获取对多个光伏逆变器的多个分组,在每个分组的光伏逆变器中筛选地理位置相似且输出容量相同的光伏逆变器;
步骤02,在筛选得到的光伏逆变器中选择一个光伏逆变器作为样板机,以及将分组中样板机以外的光伏逆变器作为限功率逆变器。
在该实施例中,在每个分组的光伏逆变器中,选择相似的地理位置和相同容量的逆变器中选取一台样板机,样板机用于额定功率的满额运行。并且一次调频中,样板机的输出功率可以不需要进行调节。
作为一个示例,无故障运行条件包括样板机或限功率逆变器分别作为待判定组件时,待判定组件满足如下条件:
待判定组件的通信接口正常、待判定组件无故障报警、测量的待判定组件的有功功率大于等于预设的并网点有功功率下限阈值、以及待判定组件的有功功率变化速率小于有功功率变化速率阈值。
限功率逆变器状态判定模块332,用于限功率逆变器满足无故障运行条件,并且限功率逆变器对应的样板机同时满足无故障运行条件时,确定限功率逆变器运行状态正常。
作为一个示例,当前逆变器对应的样板机无故障判断需同时满足一下条件:
(1)样板机通信正常;
(2)样板机无故障报警信号;
(3)样板机的有功功率测量值为额定容量的10%以上;
(4)样板机的有功变化速率小于5kW/s。
作为一个示例,当前逆变器无故障判断需同时满足以下条件:
(1)通信正常;
(2)机组无故障报警信号;
(3)有功功率测量值为额定容量的10%以上;
(4)有功变化速率小于5kW/s;
(5)对应的样板机运行正常。
图7是图4中单机有功功率分配装置的具体结构示意图。如图7所示,在一个实施例中,单机有功功率分配装置340具体可以包括:
并网点功率可调整值计算模块341,用于根据并网点的总有功功率增量值和采集的每台待调频光伏逆变器的有功功率值,计算并网点的有功功率可调整值,并网点的有功功率可调整值包括并网点的有功功率可提升值或并网点的有功功率可降低值;
在一个实施例中,并网点功率可调整值计算模块341可以包括并网点功率可提升值计算单元和并网点功率可降低值计算单元。
具体地,并网点功率可提升值计算单元,用于当并网点的总有功功率增量值大于零且大于预设的最大可提升功率限值时,将每台待调频光伏逆变器对应的样板机的有功功率值与本台待调频光伏逆变器的有功功率值的差值,作为每台待调频光伏逆变器的可提升功率值,并将每台待调频光伏逆变器的可提升功率值的和作为并网点的可提升有功功率值;
具体地,并网点功率可降低值计算单元,用于当并网点的总有功功率增量值小于零时且小于预设的最大可降低有功功率限值时,将每台待调频光伏逆变器的有功功率值与并网点有功功率下限阈值的差值作为每台待调频光伏逆变器的可降低功率值,并将每台待调频光伏逆变器的可降低功率 值的和作为并网点的可降低有功功率值。
在一个实施例中,并网点功率可提升值计算单元,还用于当并网点的可提升有功功率值大于最大可提升功率限值时,将最大可提升功率限值作为并网点的可提升有功功率值;
在一个实施例中,并网点功率可降低值计算单元,还用于并网点的可降低有功功率值小于最大可降低功率限值时,将最大可降低功率限制作为并网点的可降低有功功率值。
单机调整比率计算模块342,用于基于并网点的总有功功率增量值和并网点的有功功率可调整值,计算每台待调频光伏逆变器的有功功率调整比率,每台待调频光伏逆变器的有功功率调整比率包括可提升功率调整比率或可降低功率调整比率;
在一个实施例中,单机可提升调整比率计算单元,用于当并网点的总有功功率增量值大于零时,将并网点的总有功功率增量值与可提升有功功率值的比值,作为每台待调频光伏逆变器的可提升功率调整比率,且当可提升功率调整比率大于100%时,将可提升功率调整比率设置为1。
在一个实施例中,单机可降低调整比率计算单元,用于当并网点的总有功功率增量值小于零时,将并网点的总有功功率增量值与可降低有功功率值的比值,作为每台待调频光伏逆变器的可降低功率调整比率,且当可降低功率调整比率小于等于100%时,将可提升功率调整比率设置为-1。
单机有功增量值计算模块343,用于基于有功功率调整比率和每台待调频光伏逆变器的有功功率值,计算每台待调频光伏逆变器的输出功率目标值。
在一个实施例中,单机可提升功率增量值计算单元,用于利用表达式(9)计算本台待调频光伏逆变器的可提升输出功率增量值:
CommandP n=(ModelMachineMeasP[n]-MeasP n)*σ 1%+CommandP n0                           (9)
其中,CommandP n为本台待调频光伏逆变器的可提升输出功率目标值,ModelMachineMeasP[n]为本台待调频光伏逆变器对应的样板机的有功功率值,MeasP n为本台待调频光伏逆变器的有功功率值,σ 1%为预设的可提升 功率比率,CommandP n0为本台待调频光伏逆变器进行一次调频前的有功功率值。
在一个实施例中,单机可降低功率增量值计算单元,用于利用表达式(10)计算本台待调频光伏逆变器的可降低输出功率增量值:
CommandP n=(MeasP[n]-n%P n)*σ 2%+CommandP n0(10)
其中,CommandP n为本台待调频光伏逆变器的可降低输出功率目标值,MeasP n为本台待调频光伏逆变器的有功功率值,n%P n为最小有功功率限制值,P n为光伏发电厂的额定功率,σ 2%为预设的可降低功率比率,CommandP n0为本台待调频光伏逆变器进行一次调频前的有功功率值。
单机功率分配确定模块222,用于当确定样板机运行状态正常、限功率逆变器运行状态正常、以及并网点的总有功功率增量值大于等于并网点有功功率下限阈值时,将光伏电站中样板机以外的限功率逆变器作为待调频光伏逆变器。
作为一个示例,为了保证光伏发电厂运行稳定性,防止设置光伏电站最小出力限制值为10%Pn,防止因调频过程调节导致光伏电站脱网,当光伏发电厂全场有功功率增量值,即并网点有功功率增量值低于并网点有功功率下限阈值,不进行单机功率分配。
在一个实施例中,单机调频模块122可以包括:单机通信接口和光伏控制器,其中,
单机通信接口,用于与场级控制器121连接,接收场级控制器121生成的单机一次调频命令,将接收到的单机一次调频命令发送至对应的待调频光伏逆变器;
光伏控制器,用于与对应的光伏阵列111连接,根据单机一次调频命令中的输出功率目标值、预设功率调节步长和调节速率,按照预设功率调节步长和调节速率,将待调频光伏逆变器调整至输出功率目标值。
作为一个示例,当并网点的总有功功率值增加量大于全场额定功率的10%时,按10%Pn/s步长增加有功功率值,当有功功率指令值小于10%Pn时,按控制策略周期值下发有功功率增加值,其中P n为光伏发电厂的额定 功率值。
在本公开实施例中,由有功功率控制系统采用集中控制方式,采集并网点的电压、电流信号,实时计算出来电网的频率、有功和无功;有功功率控制系统可以与每个光伏逆变器通过光纤通信,实时获取每台逆变器的运状态;当电网发生频率偏移触发一次调频时,由有功功率控制系统根据每台逆变器的运行状态,按照一次调频的需求,等比例进行调节待调频光伏逆变器的有功功率值,实现全场分配有功,整个一次调频过程各个待调频光伏逆变器的一次调频动作具有一致性,整场控制速度快且精度高。
下面结合附图,详细介绍根据本公开实施例的一次调频控制方法。图8示出了根据本公开实施例的一次调频控制方法的具体流程图。如图8所示,在一个实施例中,一次调频控制方法800可以包括:
步骤S810,监测并网点的频率值。
步骤S820,确定并网点的频率值满足预设的一次调频触发条件时,根据光伏逆变器的运行状态确定单机有功功率变化量。
步骤S830,基于单机有功功率变化量调整光伏逆变器输出的有功功率。
根据本公开实施例的一次调频控制方法,可以提高光伏发电厂的发电机组的一次调频的响应速度和精度,各个发电机组动作具有一致性,电力系统稳定性高。
在一个实施例中,步骤S820中,根据光伏逆变器的运行状态确定单机有功功率变化量的步骤,具体可以包括:
步骤S821,确定并网点的总的有功功率控制目标值,并根据总的有功功率控制目标值,计算并网点的总的有功功率变化量。
在一个实施例中,步骤S821具体可以包括:
步骤S821-01,当并网点的频率偏移量满足一次调频触发条件时,利用光伏发电厂的有功功率初始值、并网点的频率值、以及AGC指令值,确定并网点的总有功功率控制目标值。
具体地,步骤S821-01中,确定并网点的总的有功功率控制目标值的步骤,具体可以包括:
步骤S01,基于检测的并网点的频率值,计算并网点的频率偏移量, 并利用并网点的频率偏移量,计算并网点的频率偏移量的有功功率增量值。
在一个实施例中,该步骤S01中,计算并网点的频率偏移量的有功功率增量值的步骤,具体可以包括:
当并网点的频率值大于等于快速频率响应频率最小值,且并网点的频率值小于快速频率响应负向门槛值时,将快速频率响应负向门槛值与并网点的频率值的差值作为并网点的频率偏移量;
当并网点的频率值大于快速频率响应正向门槛值,且小于等于快速频率响应频率最大值时,将快速频率响应正向门槛值与并网点的频率值的差值作为并网点的频率偏移量;
当并网点的频率值小于快速频率响应频率最小值,将快速频率响应负向门槛值与快速频率响应频率最小值的差值作为并网点的频率偏移量;
当并网点的频率值大于快速频率响应频率最大值,将快速频率响应正向门槛值与快速频率响应频率最大值的差值作为并网点的频率偏移量。
在该实施例中,快速频率响应负向门槛值为频率基准值与负向死区阈值的和,快速频率响应频率最大值为频率基准值与正向死区阈值的和。
步骤S02,根据电网的当前AGC指令值和上一次AGC指令值,将当前AGC指令值与上一次AGC指令值的差值作为当前AGC指令的有功功率增量值;
步骤S803,满足第一有功增量控制条件时,设置并网点的总有功功率控制目标值为在有功功率初始值的基础上,增加当前AGC指令的有功功率增量值与频率偏移量的有功功率增量值的代数和,得到并网点的有功的总有功功率增量值。
在一个实施例中,第一有功增量控制条件包括如下条件中的任一个:并网点的频率值在并网点频率允许变动范围内;并网点的频率值超过并网点频率允许变动范围且当前AGC指令值的调节方向与频率偏移量的有功功率增量值的调节方向相同。
在一个实施例中,调节方向相同表示当前AGC指令的有功功率增量值与频率偏移量的有功功率增量值均为正数或均为负数;调节方向不同表示AGC指令的有功功率增量值与频率偏移量的有功功率增量值不同时为 正数且不同时为负数。
步骤S04,满足第二有功增量控制条件时,保持电网AGC指令值为上一次AGC指令值,并在有功功率初始值的基础上,增加频率偏移量的有功功率增量值,得到并网点的有功的总有功功率增量值。
在一个实施例中,第二有功增量控制条件包括:并网点的频率值超过并网点频率允许变动范围且当前AGC指令值的调节方向与频率偏移量的有功功率增量值的调节方向不同。
步骤S05,满足第三有功增量控制条件时,设置并网点的总有功功率控制目标值为当前AGC指令值。
第三有功增量控制条件包括:并网点的频率偏移量大于负向死区阈值且小于正向死区阈值。
步骤S821-02,当并网点的有功功率控制目标值低于预设的并网点有功功率下限阈值时,设置并网点的有功功率控制目标值为并网点有功功率下限阈值。
步骤S821-03,将总有功功率控制目标值与光伏发电厂的有功功率初始值的差值,作为并网点的总有功功率增量值。
步骤S822,基于光伏发电站中的光伏逆变器的运行状态和单机有功功率分配条件,确定光伏发电站中允许参与一次调频的待调频光伏逆变器。
在本公开实施例中,光伏发电站中的光伏逆变器包括限功率逆变器和限功率逆变器对应的样板机。
在该步骤中,步骤S822中,确定光伏发电站中允许参与一次调频的待调频光伏逆变器的步骤,具体可以包括:
步骤S822-01,当样板机满足预设的无故障运行条件时,确定样板机运行状态正常;
步骤S822-02,限功率逆变器满足无故障运行条件,并且限功率逆变器对应的样板机同时满足无故障运行条件时,确定限功率逆变器运行状态正常;
在该步骤中,无故障运行条件包括样板机或限功率逆变器分别作为待判定组件时,待判定组件满足如下条件:
待判定组件的通信接口正常、待判定组件无故障报警、测量的待判定组件的有功功率大于等于预设的并网点有功功率下限阈值、以及待判定组件的有功功率变化速率小于有功功率变化速率阈值。
在一个实施例中,样板机用于按照光伏逆变器额定功率运行,且每台限功率逆变器对应的样板机用于预先按照预设的样板机选取步骤进行选取,样板机选取步骤包括:
S01,获取对多个光伏逆变器的多个分组,在每个分组的光伏逆变器中筛选地理位置相似且输出容量相同的光伏逆变器;
S02,在筛选得到的光伏逆变器中选择一个光伏逆变器作为样板机,以及将分组中样板机以外的光伏逆变器作为限功率逆变器。
步骤S822-03,当确定样板机运行状态正常、限功率逆变器运行状态正常、以及并网点的总有功功率增量值大于等于并网点有功功率下限阈值时,将光伏电站中样板机以外的限功率逆变器作为待调频光伏逆变器。
步骤S823,将总有功功率增量值按照每台待调频光伏逆变器的运行状态进行分配,得到每台待调频光伏逆变器的输出功率目标值,向每台待调频光伏逆变器发送包含输出功率目标值、预设功率调节步长和调节速率的单机一次调频命令。
在本公开实施例中,样板机用于按照光伏逆变器额定功率运行,且每台限功率逆变器对应的样板机用于预先按照预设的样板机选取步骤进行选取,样板机选取步骤可以包括:
获取对多个光伏逆变器的多个分组,在每个分组的光伏逆变器中筛选地理位置相似且输出容量相同的光伏逆变器;在筛选得到的光伏逆变器中选择一个光伏逆变器作为样板机,以及将分组中样板机以外的光伏逆变器作为限功率逆变器。
在一个实施例中,步骤S823中,将总有功功率增量值按照每台待调频光伏逆变器的运行状态进行分配,得到每台待调频光伏逆变器的输出功率目标值的步骤,具体可以包括:
步骤S823,将总有功功率增量值按照每台待调频光伏逆变器的运行状态进行分配,得到每台待调频光伏逆变器的输出功率目标值,包括:
步骤S823-01,根据并网点的总有功功率增量值和采集的每台待调频光伏逆变器的有功功率值,计算并网点的有功功率可调整值,并网点的有功功率可调整值包括并网点的有功功率可提升值或并网点的有功功率可降低值。
在一个实施例中,步骤S823-01可以包括:
当并网点的总有功功率增量值大于零且大于预设的最大可提升功率限值时,将每台待调频光伏逆变器对应的样板机的有功功率值与本台待调频光伏逆变器的有功功率值的差值,作为每台待调频光伏逆变器的可提升功率值,并将每台待调频光伏逆变器的可提升功率值的和作为并网点的可提升有功功率值。
当并网点的总有功功率增量值小于零时且小于预设的最大可降低有功功率限值时,将每台待调频光伏逆变器的有功功率值与并网点有功功率下限阈值的差值作为每台待调频光伏逆变器的可降低功率值,并将每台待调频光伏逆变器的可降低功率值的和作为并网点的可降低有功功率值。
在一个实施例中,步骤S823-01还可以包括:
当并网点的可提升有功功率值大于最大可提升功率限值时,将最大可提升功率限值作为并网点的可提升有功功率值;
当并网点的可降低有功功率值小于最大可降低功率限值时,将最大可降低功率限制作为并网点的可降低有功功率值。
步骤S823-02,基于并网点的总有功功率增量值和并网点的有功功率可调整值,计算每台待调频光伏逆变器的有功功率调整比率,每台待调频光伏逆变器的有功功率调整比率包括可提升功率调整比率或可降低功率调整比率;
在一个实施例中,步骤S823-02具体可以包括:
当并网点的总有功功率增量值大于零时,将并网点的总有功功率增量值与可提升有功功率值的比值,作为每台待调频光伏逆变器的可提升功率调整比率,且当可提升功率调整比率大于100%时,将可提升功率调整比率设置为1;以及
当并网点的总有功功率增量值小于零时,将并网点的总有功功率增量 值与可降低有功功率值的比值,作为每台待调频光伏逆变器的可降低功率调整比率,且当可降低功率调整比率小于等于100%时,将可提升功率调整比率设置为-1。
步骤S823-03,基于有功功率调整比率和每台待调频光伏逆变器的有功功率值,计算每台待调频光伏逆变器的输出功率目标值。
作为一个示例,利用表达式CommandP n=ModelMachineMeasP[n]-MeasP n)*σ 1%+CommandP n0计算本台待调频光伏逆变器的可提升输出功率增量值,其中,
CommandP n为本台待调频光伏逆变器的可提升输出功率目标值,ModelMachineMeasP[n]为本台待调频光伏逆变器对应的样板机的有功功率值,MeasP n为本台待调频光伏逆变器的有功功率值,σ 1%为预设的可提升功率比率,CommandP n0为本台待调频光伏逆变器进行一次调频前的有功功率值;
作为一个示例,可以利用表达式CommandP n=MeasP[n]-n%P n)*σ 2%+CommandP n0计算本台待调频光伏逆变器的可降低输出功率增量值,其中,
CommandP n为本台待调频光伏逆变器的可降低输出功率目标值,MeasP n为本台待调频光伏逆变器的有功功率值,n%P n为最小有功功率限制值,P n为光伏发电厂的额定功率,σ 2%为预设的可降低功率比率,CommandP n0为本台待调频光伏逆变器进行一次调频前的有功功率值。
在一个实施例中,一次调频控制方法800还可以包括:
S840,接收单机一次调频命令,将接收到的单机一次调频命令发送至对应的待调频光伏逆变器;
S850,根据单机一次调频命令中的输出功率目标值、预设功率调节步长和调节速率,按照预设功率调节步长和调节速率,将待调频光伏逆变器调整至输出功率目标值。
根据本公开实施例的单机一次调频的其他细节与以上结合图1至图8描述的根据本公开实施例的光伏发电厂利用有功功率控制系统进行一次调频的过程类似,在此不再赘述。
下面通过示例性实施例描述本公开实施例中的使用有功功率控制系统对光伏发电厂进行一次调频的方法的测试方案和技术效果。
图9示意性地示出并网点频率偏移时输出功率响应并网点频率波动的曲线示意图。
在该实施例中,光伏电站额定功率为30MW,该光伏电站可以使用两种不同型号的第一光伏逆变器和第二光伏逆变器,其中,第一光伏逆变器额定功率10MW,以及第二光伏逆变器额定功率20MW,该光伏发电厂的基准频率为50Hz。
如图9所示,当并网点的频率值发生超过频率死区的波动时,有功功率根据有功/频率特性曲线进行一次调频动作。在该实施例中,采用并网点模拟装置模拟并网点频率波动,通过图9可以看出,当频率发生如下连续阶跃变化:50Hz→49.95Hz→49.92Hz→49.89Hz→49.85Hz→49.89Hz→49.92Hz→49.95Hz→50Hz。经测试,并网点频率变化期间,光伏全场的有功功率在500ms内响应到位。
在一个实施例中,通过对指定光伏发电厂的多台逆变器进行并网快速增负荷、快速减负荷以及逆变器功率打跳,对电网频率进行频率扰动测试。
具体地,表1示出了频率扰动测试中的频率快增快减试验定值,表2示出了频率扰动测试中的频率打跳试验定值。
表1频率快增快减试验定值
定值名称 值(低频/过频) 单位
死区DeadBand -0.05/0.05 Hz
下垂系数 0.667/0.667
截止频率 49.8/50.2 Hz
表2频率打跳试验定值
定值名称 值(低频/过频) 单位
死区DeadBand -0.05/0.05 Hz
下垂系数 1/1
截止频率 49.85/50.15 Hz
图10示出了本公开实施例的频率扰动测试中频率快增快减的光伏发电厂频率快速响应波形;图11示出了本公开实施例的频率扰动测试中频率打跳的光伏发电厂频率快速响应波形。
如图10所示,在指定的测试时间段,频率最大扰动大约为50.08Hz,全场限功率命令为2200kW,实际并网点金风功率大约为10MW,光伏发电厂的功率值根据频率快增快减进行频率快速响应。
如图11所示,在指定的测试时间段,频率最大扰动大约为49.91Hz,光伏全场限功率命令为2200kW,实际并网点金风功率大约为12MW,光伏发电厂的功率值根据频率打跳进行频率快速响应。
通过上述光伏发电厂的频率测试试验可以得到,通过实际光伏发电厂整场频率测试结果可以得到,光伏电站光伏逆变器机组在限功率情况下,可以较好的跟踪频率扰动,全场有功功率响应时间小于500ms,有效地提高了光伏发电厂的发电机组的一次调频的响应速度和精度,各个发电机组动作具有一致性,电力系统稳定性高。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品或计算机可读存储介质的形式实现。所述计算机程序产品或计算机可读存储介质包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等) 方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
需要明确的是,本公开并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本公开的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本公开的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述,仅为本公开的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保护范围之内。

Claims (20)

  1. 一种光伏发电厂,其中包括光伏发电站和有功功率控制系统;其中,
    所述光伏发电站包括光伏阵列和光伏逆变器,所述光伏逆变器将所述光伏阵列产生的直流电能转换为交流电能;
    所述有功功率控制系统,用于当所述光伏发电厂的并网点的频率值满足预设的一次调频触发条件时,根据所述光伏逆变器的运行状态确定单机有功功率变化量,调整所述光伏逆变器输出的有功功率。
  2. 根据权利要求1所述的光伏发电厂,其中所述有功功率控制系统包括场级控制器和单机调频模块,其中,
    所述场级控制器,用于确定所述并网点的频率值满足所述一次调频触发条件时,基于所述并网点的频率值计算所述并网点的总有功功率增量值,以及根据光伏逆变器的运行状态生成单机一次调频命令;
    所述单机调频模块,与对应的光伏逆变器连接,所述单机调频模块用于根据所述单机一次调频指令调整所述对应的光伏逆变器输出的有功功率。
  3. 根据权利要求2所述的光伏发电厂,其中所述单机调频模块包括:
    单机通信接口,与所述场级控制器连接,接收所述场级控制器生成的单机一次调频命令,将接收到的所述单机一次调频命令发送至对应的待调频光伏逆变器;
    光伏控制器,用于根据所述单机一次调频命令中的输出功率目标值、预设功率调节步长和调节速率,按照所述预设功率调节步长和调节速率,将所述待调频光伏逆变器输出的有功功率调整至所述输出功率目标值。
  4. 根据权利要求3所述的光伏发电厂,其中所述场级控制器包括:
    光伏发电厂一次调频触发装置,用于监测所述并网点的频率值,当监测的所述并网点的频率值偏移预设的频率基准值,且频率偏移量满足所述一次调频触发条件时,调整所述光伏逆变器输出的有功功率,所述一次调频触发条件包括所述并网点的频率值大于预设的正向死区阈值,或者,所述并网点的频率值小于预设的负向死区阈值;
    总有功功率增量值确定装置,用于当所述频率偏移量满足所述一次调 频触发条件时,确定所述并网点的总有功功率控制目标值,并根据所述总有功功率控制目标值,计算所述并网点的总有功功率增量值;
    单机一次调频触发装置,用于基于所述光伏发电站中的光伏逆变器的运行状态和单机有功功率分配条件,确定所述光伏发电站中允许参与一次调频的待调频光伏逆变器;
    单机有功功率分配装置,用于将所述总有功功率增量值按照每台待调频光伏逆变器的运行状态进行分配,得到所述每台待调频光伏逆变器的输出功率目标值,向所述待调频光伏逆变器发送包含所述输出功率目标值、预设功率调节步长和调节速率的单机一次调频命令。
  5. 根据权利要求4所述的光伏发电厂,其中所述总有功功率增量值确定装置包括:
    总有功功率控制目标值确定模块,用于当所述频率偏移量满足所述一次调频触发条件时,利用所述光伏发电厂的有功功率初始值、所述并网点的频率值、以及AGC指令值,确定所述并网点的总有功功率控制目标值;
    总有功功率目标限制值设置模块,用于当所述并网点的有功功率控制目标值低于预设的并网点有功功率下限阈值时,设置所述并网点的有功功率控制目标值为所述并网点有功功率下限阈值;
    总有功功率增量值计算模块,用于将所述总有功功率控制目标值与所述光伏发电厂的有功功率初始值的差值,作为所述并网点的总有功功率增量值。
  6. 根据权利要求5所述的光伏发电厂,其中所述总有功功率控制目标值确定模块包括:
    一次调频有功增量值计算单元,用于基于检测的所述并网点的频率值,计算所述并网点的频率偏移量,并利用所述并网点的频率偏移量,计算所述并网点的频率偏移量的有功功率增量值;
    AGC指令有功增量值计算单元,用于将当前AGC指令值与上一次AGC指令值的差值作为当前AGC指令的有功功率增量值;
    第一总控制目标值计算单元,用于满足第一有功增量控制条件时,设置所述并网点的总有功功率控制目标值为在所述有功功率初始值的基础上, 增加当前AGC指令的有功功率增量值与所述频率偏移量的有功功率增量值的代数和,得到所述并网点的有功的总有功功率增量值;
    第二总控制目标值计算单元,用于满足第二有功增量控制条件时,保持电网AGC指令值为上一次AGC指令值,并在所述有功功率初始值的基础上,增加所述频率偏移量的有功功率增量值,得到所述并网点的有功的总有功功率增量值;
    第三总控制目标值计算单元,用于满足第三有功增量控制条件时,设置所述并网点的总有功功率控制目标值为当前AGC指令值。
  7. 根据权利要求4所述的光伏发电厂,其中所述光伏逆变器包括限功率逆变器,所述光伏阵列包括与所述限功率逆变器对应的样板机;
    所述单机一次调频触发装置包括:
    样板机状态判定模块,用于当所述样板机满足预设的无故障运行条件时,确定所述样板机运行状态正常;
    限功率逆变器状态判定模块,用于所述限功率逆变器满足所述无故障运行条件,并且所述限功率逆变器对应的样板机同时满足所述无故障运行条件时,确定所述限功率逆变器运行状态正常;
    单机功率分配确定模块,用于当确定所述样板机运行状态正常、所述限功率逆变器运行状态正常、以及所述并网点的总有功功率增量值大于等于所述并网点有功功率下限阈值时,将光伏电站中所述样板机以外的限功率逆变器作为所述待调频光伏逆变器。
  8. 根据权利要求7所述的光伏发电厂,其中
    所述样板机用于按照光伏逆变器额定功率运行,且所述每台限功率逆变器对应的样板机用于预先按照预设的样板机选取步骤进行选取,所述样板机选取步骤包括:
    获取对所述光伏逆变器的多个分组,在每个分组的光伏逆变器中筛选地理位置相似且输出容量相同的光伏逆变器;
    在筛选得到的光伏逆变器中选择一个光伏逆变器作为所述样板机,以及将所述分组中所述样板机以外的光伏逆变器作为限功率逆变器。
  9. 根据权利要求4所述的光伏发电厂,其中所述单机有功功率分配装 置包括:
    并网点功率可调整值计算模块,用于根据所述并网点的总有功功率增量值和采集的每台待调频光伏逆变器的有功功率值,计算所述并网点的有功功率可调整值,所述并网点的有功功率可调整值包括所述并网点的有功功率可提升值或所述并网点的有功功率可降低值;
    单机调整比率计算模块,用于基于所述并网点的总有功功率增量值和所述并网点的有功功率可调整值,计算所述每台待调频光伏逆变器的有功功率调整比率,所述每台待调频光伏逆变器的有功功率调整比率包括可提升功率调整比率或可降低功率调整比率;
    单机有功增量值计算模块,用于基于所述有功功率调整比率和所述每台待调频光伏逆变器的有功功率值,计算每台待调频光伏逆变器的输出功率目标值。
  10. 根据权利要求9所述的光伏发电厂,其中所述并网点功率可调整值计算模块包括:
    并网点功率可提升值计算单元,用于当所述并网点的总有功功率增量值大于零且大于预设的最大可提升功率限值时,将所述每台待调频光伏逆变器对应的样板机的有功功率值与本台待调频光伏逆变器的有功功率值的差值,作为所述每台待调频光伏逆变器的可提升功率值,并将所述每台待调频光伏逆变器的可提升功率值的和作为所述并网点的可提升有功功率值;
    并网点功率可降低值计算单元,用于当所述并网点的总有功功率增量值小于零时且小于预设的最大可降低有功功率限值时,将所述每台待调频光伏逆变器的有功功率值与所述并网点有功功率下限阈值的差值作为所述每台待调频光伏逆变器的可降低功率值,并将所述每台待调频光伏逆变器的可降低功率值的和作为所述并网点的可降低有功功率值。
  11. 一种光伏发电厂的一次调频控制方法,其中包括:
    监测所述光伏发电厂并网点的频率值;
    确定所述并网点的频率值满足预设的一次调频触发条件时,根据光伏逆变器的运行状态确定单机有功功率变化量;
    基于所述单机有功功率变化量调整所述光伏逆变器输出的有功功率。
  12. 根据权利要求11所述的一次调频控制方法,其中所述根据光伏逆变器的运行状态确定单机有功功率变化量,包括:
    确定所述并网点的总有功功率控制目标值,并根据所述总有功功率控制目标值,计算所述并网点的总有功功率变化量;
    基于所述光伏发电站中的光伏逆变器的运行状态和单机有功功率分配条件,确定所述光伏发电站中允许参与一次调频的待调频光伏逆变器;
    将所述总有功功率变化量按照每台待调频光伏逆变器的运行状态进行分配,得到所述每台待调频光伏逆变器的输出功率目标值,向所述待调频光伏逆变器发送包含所述输出功率目标值、预设功率调节步长和调节速率的单机一次调频命令。
  13. 根据权利要求12所述的一次调频控制方法,其中所述确定所述并网点的总有功功率控制目标值,并根据所述总有功功率控制目标值,计算所述并网点的总有功功率增量值,包括:
    当并网点的频率偏移量满足所述一次调频触发条件时,利用所述光伏发电厂的有功功率初始值、所述并网点的频率值、以及AGC指令值,确定所述并网点的总有功功率控制目标值;
    当所述并网点的有功功率控制目标值低于预设的并网点有功功率下限阈值时,设置所述并网点的有功功率控制目标值为所述并网点有功功率下限阈值;
    将所述总有功功率控制目标值与所述光伏发电厂的有功功率初始值的差值,作为所述并网点的总有功功率增量值。
  14. 根据权利要求13所述的一次调频控制方法,其中所述利用所述光伏发电厂的有功功率初始值、所述并网点的频率值、以及AGC指令值,确定所述并网点的总有功功率控制目标值,包括:
    基于检测的所述并网点的频率值,计算所述并网点的频率偏移量,并利用所述并网点的频率偏移量,计算所述并网点的频率偏移量的有功功率增量值;
    根据所述电网的当前AGC指令值和上一次AGC指令值,将当前AGC指令值与上一次AGC指令值的差值作为当前AGC指令的有功功率 增量值;
    满足第一有功增量控制条件时,设置所述并网点的总有功功率控制目标值为在所述有功功率初始值的基础上,增加当前AGC指令的有功功率增量值与所述频率偏移量的有功功率增量值的代数和,得到所述并网点的有功的总有功功率增量值;
    满足第二有功增量控制条件时,保持所述电网AGC指令值为上一次AGC指令值,并在所述有功功率初始值的基础上,增加所述频率偏移量的有功功率增量值,得到所述并网点的有功的总有功功率增量值;
    满足第三有功增量控制条件时,设置所述并网点的总有功功率控制目标值为当前AGC指令值。
  15. 根据权利要求14所述的一次调频控制方法,其中所述基于检测的所述并网点的频率值,计算所述并网点的频率偏移量,包括:
    当所述并网点的频率值大于等于快速频率响应频率最小值,且所述并网点的频率值小于快速频率响应负向门槛值时,将所述快速频率响应负向门槛值与所述并网点的频率值的差值作为所述并网点的频率偏移量;
    当所述并网点的频率值大于所述快速频率响应正向门槛值,且小于等于所述快速频率响应频率最大值时,将所述快速频率响应正向门槛值与所述并网点的频率值的差值作为所述并网点的频率偏移量;
    当所述并网点的频率值小于所述快速频率响应频率最小值,将所述快速频率响应负向门槛值与所述快速频率响应频率最小值的差值作为所述并网点的频率偏移量;
    当所述并网点的频率值大于所述快速频率响应频率最大值,将所述快速频率响应正向门槛值与所述快速频率响应频率最大值的差值作为所述并网点的频率偏移量,其中,
    所述快速频率响应负向门槛值为所述频率基准值与所述负向死区阈值的和,所述快速频率响应频率最大值为所述频率基准值与所述正向死区阈值的和。
  16. 根据权利要求12所述的一次调频控制方法,其中所述光伏发电站中的光伏逆变器包括限功率逆变器和所述限功率逆变器对应的样板机;
    所述基于所述光伏发电站中的光伏逆变器的运行状态和单机有功功率分配条件,确定所述光伏发电站中允许参与一次调频的待调频光伏逆变器,包括:
    当所述样板机满足预设的无故障运行条件时,确定所述样板机运行状态正常;
    所述限功率逆变器满足所述无故障运行条件,并且所述限功率逆变器对应的样板机同时满足所述无故障运行条件时,确定所述限功率逆变器运行状态正常;
    当确定所述样板机运行状态正常、所述限功率逆变器运行状态正常、以及所述并网点的总有功功率增量值大于等于所述并网点有功功率下限阈值时,将光伏电站中所述样板机以外的限功率逆变器作为所述待调频光伏逆变器。
  17. 根据权利要求16所述的一次调频控制方法,其中
    所述无故障运行条件包括所述样板机或所述限功率逆变器分别作为待判定组件时,所述待判定组件满足如下条件:
    所述待判定组件的通信接口正常、所述待判定组件无故障报警、测量的所述待判定组件的有功功率大于等于预设的并网点有功功率下限阈值、以及所述待判定组件的有功功率变化速率小于有功功率变化速率阈值。
  18. 根据权利要求16所述的一次调频控制方法,其中
    所述样板机用于按照光伏逆变器额定功率运行,且所述每台限功率逆变器对应的样板机用于预先按照预设的样板机选取步骤进行选取,所述样板机选取步骤包括:
    获取对所述多个光伏逆变器的多个分组,在每个分组的光伏逆变器中筛选地理位置相似且输出容量相同的光伏逆变器;
    在筛选得到的光伏逆变器中选择一个光伏逆变器作为所述样板机,以及将所述分组中所述样板机以外的光伏逆变器作为限功率逆变器。
  19. 根据权利要求12所述的一次调频控制方法,其中所述将所述总有功功率增量值按照每台待调频光伏逆变器的运行状态进行分配,得到所述每台待调频光伏逆变器的输出功率目标值,包括:
    根据所述并网点的总有功功率增量值和采集的每台待调频光伏逆变器的有功功率值,计算所述并网点的有功功率可调整值,所述并网点的有功功率可调整值包括所述并网点的有功功率可提升值或所述并网点的有功功率可降低值;
    基于所述并网点的总有功功率增量值和所述并网点的有功功率可调整值,计算所述每台待调频光伏逆变器的有功功率调整比率,所述每台待调频光伏逆变器的有功功率调整比率包括可提升功率调整比率或可降低功率调整比率;
    基于所述有功功率调整比率和所述每台待调频光伏逆变器的有功功率值,计算每台待调频光伏逆变器的输出功率目标值。
  20. 根据权利要求19所述的一次调频控制方法,其中所述根据所述并网点的总有功功率增量值和采集的每台待调频光伏逆变器的有功功率值,计算所述并网点的有功功率可调整值,包括:
    当所述并网点的总有功功率增量值大于零且大于预设的最大可提升功率限值时,将所述每台待调频光伏逆变器对应的样板机的有功功率值与本台待调频光伏逆变器的有功功率值的差值,作为所述每台待调频光伏逆变器的可提升功率值,并将所述每台待调频光伏逆变器的可提升功率值的和作为所述并网点的可提升有功功率值;
    当所述并网点的总有功功率增量值小于零时且小于预设的最大可降低有功功率限值时,将所述每台待调频光伏逆变器的有功功率值与所述并网点有功功率下限阈值的差值作为所述每台待调频光伏逆变器的可降低功率值,并将所述每台待调频光伏逆变器的可降低功率值的和作为所述并网点的可降低有功功率值。
PCT/CN2018/086348 2017-12-31 2018-05-10 光伏发电厂及其一次调频控制方法 WO2019128036A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018396279A AU2018396279B2 (en) 2017-12-31 2018-05-10 Photovoltaic power plant and primary frequency modulation control method therefor
US16/632,331 US11101770B2 (en) 2017-12-31 2018-05-10 Photovoltaic power plant and primary frequency modulation control method therefor
EP18727649.8A EP3651299B1 (en) 2017-12-31 2018-05-10 Photovoltaic power plant and primary frequency modulation control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711497106.7 2017-12-31
CN201711497106.7A CN108054770B (zh) 2017-12-31 2017-12-31 光伏发电厂及其一次调频控制方法

Publications (1)

Publication Number Publication Date
WO2019128036A1 true WO2019128036A1 (zh) 2019-07-04

Family

ID=62129811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086348 WO2019128036A1 (zh) 2017-12-31 2018-05-10 光伏发电厂及其一次调频控制方法

Country Status (5)

Country Link
US (1) US11101770B2 (zh)
EP (1) EP3651299B1 (zh)
CN (1) CN108054770B (zh)
AU (1) AU2018396279B2 (zh)
WO (1) WO2019128036A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110783953A (zh) * 2019-10-31 2020-02-11 特变电工西安电气科技有限公司 一种组串式逆变器光伏电站快速调频响应通信方法
CN110829464A (zh) * 2019-11-19 2020-02-21 国网安徽省电力有限公司 一种基于直流侧的光伏储能电池调频系统和方法
CN110943492A (zh) * 2019-12-30 2020-03-31 苏州电力设计研究院有限公司 一种平抑光伏出力波动的抽水蓄能机组发电功率控制方法
CN112072678A (zh) * 2020-09-28 2020-12-11 北京国电电力新能源技术有限公司 风电机组一次调频控制方法
CN112600236A (zh) * 2020-12-09 2021-04-02 国电南瑞科技股份有限公司 基于多源柔性功率快调的频率集中校正控制方法及其系统
CN112736934A (zh) * 2020-12-23 2021-04-30 贵州电网有限责任公司 一种水电机组开度模式下一次调频与agc叠加控制方法
CN113964886A (zh) * 2021-10-28 2022-01-21 国网四川省电力公司 基于排序的分布式光伏并网下逆变器电压控制方法及系统
CN113991706A (zh) * 2021-11-11 2022-01-28 国电南瑞科技股份有限公司 一种主动支撑型光伏电站一体化功率控制系统及方法
CN114172199A (zh) * 2021-12-08 2022-03-11 国网辽宁省电力有限公司阜新供电公司 利用储能风电一体化机组实现调频及虚拟惯量响应的方法
CN114665488A (zh) * 2022-03-17 2022-06-24 西安热工研究院有限公司 一种提高火电机组一次调频响应行为的控制系统
CN114899888A (zh) * 2022-05-13 2022-08-12 华中科技大学 一种光伏电站一次调频方法及系统
CN115065167A (zh) * 2022-07-15 2022-09-16 国网江苏省电力有限公司 新能源场站一次调频在线监测系统
CN115173438A (zh) * 2022-09-08 2022-10-11 西安热工研究院有限公司 可控高压厂用飞轮储能辅助火电的调频系统及方法
CN114899888B (zh) * 2022-05-13 2024-04-23 华中科技大学 一种光伏电站一次调频方法及系统

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242819B (zh) * 2016-12-26 2021-01-22 北京金风科创风电设备有限公司 用于风力发电场的测控装置、系统和方法
CN108695897B (zh) * 2018-06-27 2020-05-12 北京金风科创风电设备有限公司 光伏电站的功率控制方法、装置、控制器、系统及介质
CN109494762B (zh) * 2018-10-15 2021-01-26 国网陕西省电力公司电力科学研究院 基于多主站协调控制的光伏电站一次调频控制方法及系统
CN109687508A (zh) * 2018-12-06 2019-04-26 中国电力科学研究院有限公司 一种新能源发电单元快速频率响应控制方法和装置
CN109378853B (zh) * 2018-12-14 2020-10-16 国网山东省电力公司电力科学研究院 直流故障下并网机组一次调频快速调整系统及方法
US11296539B2 (en) * 2018-12-31 2022-04-05 Itron, Inc. Solar hybrid battery for powering network devices over extended time intervals
US11184831B2 (en) 2018-12-31 2021-11-23 Itron, Inc. Solar-powered relay for coupling remotely-located leaf nodes to a wireless network
US11172423B2 (en) 2018-12-31 2021-11-09 Itron, Inc. Solar-powered access point for load balancing network traffic across backhaul networks
CN109755961B (zh) * 2019-01-25 2022-03-04 中国电力科学研究院有限公司 基于光伏电站秒级功率扰动的主动控制参数整定方法
CN110176790B (zh) * 2019-05-29 2020-12-22 王阳 具有快速频率响应的新能源发电站的功率控制方法和系统
CN110266052A (zh) * 2019-07-22 2019-09-20 武汉能众科技有限公司 一种适用于光伏电站的快速调频装置及方法
CN110365030A (zh) * 2019-08-09 2019-10-22 武汉能众科技有限公司 一种新能源快速频率响应控制装置
CN110994640A (zh) * 2019-11-12 2020-04-10 国网电力科学研究院有限公司 一种新能源场站一次调频控制方法及装置和系统
CN111064233B (zh) * 2019-12-04 2022-10-04 中国电力科学研究院有限公司 一种逆变器有功无功电流比例分配方法及系统
CN110854935B (zh) * 2019-12-08 2022-07-12 国网山西省电力公司电力科学研究院 一种样板逆变器参与的光伏电站有功功率自动控制方法
CN111106623A (zh) * 2019-12-27 2020-05-05 郑州众智科技股份有限公司 屋顶光伏发电并网控制系统
CN111313483B (zh) * 2020-04-02 2021-11-19 西安交通大学 基于邻域通信的多光伏电站协同调频系统及控制方法
CN111416364B (zh) * 2020-04-14 2023-06-02 三峡大学 考虑实际风速特性的风电场变协同调频控制方法
CN111555310B (zh) * 2020-04-29 2023-07-21 云南电网有限责任公司电力科学研究院 一种新能源参与异步送端电网调频的方法
CN111555308B (zh) * 2020-04-29 2023-07-21 云南电网有限责任公司电力科学研究院 一种光伏电站参与区域电网频率调节的方法
CN111555309B (zh) * 2020-04-29 2023-09-22 云南电网有限责任公司电力科学研究院 一种新能源参与异步送端电网调频的方法
CN111900741B (zh) * 2020-06-16 2024-02-20 苏州斯威高科信息技术有限公司 一种电网快速调频装置和方法
WO2021258271A1 (zh) * 2020-06-23 2021-12-30 华为数字能源技术有限公司 一种光伏电站功率协调的方法及电站
CN112003301A (zh) * 2020-08-18 2020-11-27 国网天津市电力公司电力科学研究院 一种光伏并网发电系统具备一次调频功能的控制方法
CN112084640B (zh) * 2020-08-28 2022-07-08 华能澜沧江水电股份有限公司 一种调频市场下不同调频容量水电机组的开停机仿真模型
CN112332409B (zh) * 2020-10-22 2023-08-22 云南电网有限责任公司 一种电力系统输电断面潮流调整方法及装置
CN112366731B (zh) * 2020-11-05 2023-08-11 国能日新科技股份有限公司 一种电网频率调节方法、系统、服务器及存储介质
CN112332429B (zh) * 2020-11-06 2022-05-24 阳光电源股份有限公司 基于储能系统的调频方法及装置
CN112104003B (zh) * 2020-11-06 2021-02-02 南京中汇电气科技有限公司 一种分布式光伏电站调频调压管理系统及其方法
CN112366758B (zh) * 2020-11-09 2022-12-20 华北电力科学研究院有限责任公司 电网调频控制方法及装置
CN112421694A (zh) 2020-11-13 2021-02-26 阳光电源股份有限公司 新能源发电的一次调频方法及装置
CN112531740B (zh) * 2020-12-04 2022-12-13 国网河南省电力公司洛阳供电公司 一种基于新能源场站的动态调节有功速度的测试方法
CN112583030B (zh) * 2020-12-07 2022-07-26 北京奥德威特电力科技股份有限公司 基于边缘计算风光储一次调频协调控制系统和方法
CN112564169B (zh) * 2020-12-14 2021-10-26 济宁华源热电有限公司 一种基于负荷反馈的火力发电一次调频系统及方法
CN112688367A (zh) * 2020-12-18 2021-04-20 合肥阳光新能源科技有限公司 一种光伏单元、光伏系统及光伏系统控制方法
CN112838614B (zh) * 2020-12-31 2022-07-15 国网山东省电力公司经济技术研究院 一种光伏电站调频-调压协同控制方法及系统
CN112881795A (zh) * 2021-01-07 2021-06-01 国网河南省电力公司电力科学研究院 一种基于小波分析的电网频率大扰动快速判别方法和系统
CN112928778B (zh) * 2021-01-27 2023-11-28 许继集团有限公司 一种用于光伏储能电站的调功调频控制方法
CN112994038B (zh) * 2021-02-18 2023-06-16 国网陕西省电力公司电力科学研究院 一种新能源一次调频控制方法、系统和装置
CN113036781A (zh) * 2021-03-17 2021-06-25 国网天津市电力公司电力科学研究院 一种防止电网频率波动的新能源负荷控制方法
CN113285493A (zh) * 2021-03-24 2021-08-20 云南电力试验研究院(集团)有限公司 一种新能源场站一次调频与agc协调控制方法
CN115133567A (zh) * 2021-03-27 2022-09-30 华为数字能源技术有限公司 光伏系统和光伏系统的漏电流控制方法
CN113078660B (zh) * 2021-04-09 2022-04-26 国网湖南省电力有限公司 虚拟同步机控制的光伏发电系统调频模型的应用方法及系统
CN113054677B (zh) * 2021-04-19 2022-09-30 广东电网有限责任公司电力调度控制中心 储能系统辅助火电机组调频控制方法、装置、设备及介质
CN113193570B (zh) * 2021-04-25 2022-06-28 武汉大学 考虑光强和运行特性的光伏一次调频功率控制方法及装置
CN113541160A (zh) * 2021-07-21 2021-10-22 国能日新科技股份有限公司 一次调频系统协调控制的方法及装置
CN113595103A (zh) * 2021-07-22 2021-11-02 中能智新科技产业发展有限公司 基于实时通讯网络的新能源快速调频系统及其控制方法
CN113381451B (zh) * 2021-07-22 2022-07-12 南方电网科学研究院有限责任公司 一种光伏电站逆变器集群调控方法和装置
CN113690951A (zh) * 2021-08-20 2021-11-23 杭州意能电力技术有限公司 一种新能源频率智能控制方法及系统
CN114156909A (zh) * 2021-08-26 2022-03-08 华北电力大学(保定) 一种基于高阶辅助函数的电力系统调频事件触发控制方法
CN113794210B (zh) * 2021-08-27 2023-06-16 深圳市禾望电气股份有限公司 一种新能源场站一次调频和惯量响应协调控制方法
CN113824132B (zh) * 2021-09-08 2023-08-18 许昌许继风电科技有限公司 一种具备能量管理功能的新能源场站一次调频方法及系统
CN113708389B (zh) * 2021-09-10 2023-08-04 国网湖南省电力有限公司 基于实际功率响应的风电场一次调频模型参数辨识方法及系统
CN113890062B (zh) * 2021-10-18 2023-08-25 中国华能集团清洁能源技术研究院有限公司 一种用于风力发电机组一次调频功率控制的方法
CN113991656A (zh) * 2021-10-29 2022-01-28 阳光新能源开发股份有限公司 新能源场站的功率控制方法、装置及计算机存储介质
CN114188991B (zh) * 2021-11-03 2024-03-12 国网吉林省电力有限公司 风电场一次调频模型辨识方法、装置、电子设备和存储介质
CN113991705A (zh) * 2021-11-05 2022-01-28 南京工业大学 一种含储能风电场参与一次调频控制的风电并网系统调频控制方法
CN114050586A (zh) * 2021-11-22 2022-02-15 国网冀北电力有限公司电力科学研究院 柔直新能源场站功率控制性能测试方法及装置
CN114221383A (zh) * 2021-12-14 2022-03-22 阳光新能源开发股份有限公司 新能源电站及其控制方法、装置
CN114285098B (zh) * 2021-12-27 2024-03-22 上海电气风电集团股份有限公司 功率控制方法、功率控制系统和可读存储介质
CN114678895B (zh) * 2022-04-20 2024-01-23 国网江苏省电力有限公司电力科学研究院 一种面向电力系统互联区域的电动汽车集群协同调频控制方法及装置
CN114583722B (zh) * 2022-05-07 2022-09-02 深圳市德兰明海科技有限公司 一种电表平衡控制方法及其装置、电子设备和系统
CN114899844B (zh) * 2022-06-13 2023-06-20 华能国际电力股份有限公司德州电厂 一种小扰动火电机组一次调频控制系统
CN115117896A (zh) * 2022-07-27 2022-09-27 国网青海省电力公司电力科学研究院 基于一致性算法的光伏电站分区分布式频率控制方法
CN115276130B (zh) * 2022-09-05 2023-07-25 中国长江三峡集团有限公司 一种风光储调频控制方法、装置、存储介质及电子设备
CN115224742B (zh) * 2022-09-21 2022-12-20 赫里欧绿能建筑科技有限公司 一种bipv光伏发电汇流并网系统及方法
CN115514019B (zh) * 2022-10-13 2023-05-16 国家电网有限公司 新能源经柔性直流外送的大负荷试验控制方法及系统
CN116154877B (zh) * 2023-04-24 2023-06-23 华北电力大学 一种优化新能源场站集群调频参数的方法
CN116418048B (zh) * 2023-06-05 2023-08-25 深圳鹏锐信息技术股份有限公司 光伏发电的检测方法、装置、计算机设备和存储介质
CN116418014B (zh) * 2023-06-07 2023-08-22 坎德拉(深圳)新能源科技有限公司 并网发电系统的控制方法、系统、系统控制器及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609361B2 (en) * 2001-07-13 2003-08-26 Pecom Energia, S.A. Primary frequency regulation method in combined-cycle steam turbines
CN105449701A (zh) * 2016-01-18 2016-03-30 华北电力科学研究院有限责任公司 一种储能系统参与电网频率控制的方法及装置
CN106300394A (zh) * 2016-11-04 2017-01-04 中国电力科学研究院 一种新能源电站的一次调频控制方法及系统
CN106571646A (zh) * 2016-09-30 2017-04-19 深圳市禾望电气股份有限公司 光伏发电系统动态有功调频方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297980B2 (ja) * 1995-06-30 2002-07-02 シャープ株式会社 座標入力装置
US9755430B2 (en) * 2013-04-11 2017-09-05 Solantro Semiconductor Corp. Virtual inverter for power generation units
CN105162172B (zh) * 2015-08-13 2018-07-20 中国电力科学研究院 一种并网光伏发电站功率自动控制系统
US20170149373A1 (en) * 2015-11-23 2017-05-25 Sunedison, Inc. Methods and systems for dynamically controlling a photovoltaic power plant
CN107026461A (zh) * 2017-05-11 2017-08-08 南京南瑞继保电气有限公司 一种新能源站参与一次调频的快速功率协调控制方法
CN108039740A (zh) * 2017-12-20 2018-05-15 北京四方继保自动化股份有限公司 一种光伏电站参与一次调频的控制系统及实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609361B2 (en) * 2001-07-13 2003-08-26 Pecom Energia, S.A. Primary frequency regulation method in combined-cycle steam turbines
CN105449701A (zh) * 2016-01-18 2016-03-30 华北电力科学研究院有限责任公司 一种储能系统参与电网频率控制的方法及装置
CN106571646A (zh) * 2016-09-30 2017-04-19 深圳市禾望电气股份有限公司 光伏发电系统动态有功调频方法及装置
CN106300394A (zh) * 2016-11-04 2017-01-04 中国电力科学研究院 一种新能源电站的一次调频控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3651299A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110783953A (zh) * 2019-10-31 2020-02-11 特变电工西安电气科技有限公司 一种组串式逆变器光伏电站快速调频响应通信方法
CN110783953B (zh) * 2019-10-31 2023-11-14 特变电工西安电气科技有限公司 一种组串式逆变器光伏电站快速调频响应通信方法
CN110829464A (zh) * 2019-11-19 2020-02-21 国网安徽省电力有限公司 一种基于直流侧的光伏储能电池调频系统和方法
CN110943492A (zh) * 2019-12-30 2020-03-31 苏州电力设计研究院有限公司 一种平抑光伏出力波动的抽水蓄能机组发电功率控制方法
CN110943492B (zh) * 2019-12-30 2023-09-01 苏州电力设计研究院有限公司 一种平抑光伏出力波动的抽水蓄能机组发电功率控制方法
CN112072678A (zh) * 2020-09-28 2020-12-11 北京国电电力新能源技术有限公司 风电机组一次调频控制方法
CN112600236B (zh) * 2020-12-09 2023-02-28 国电南瑞科技股份有限公司 基于多源柔性功率快调的频率集中校正控制方法及其系统
CN112600236A (zh) * 2020-12-09 2021-04-02 国电南瑞科技股份有限公司 基于多源柔性功率快调的频率集中校正控制方法及其系统
CN112736934A (zh) * 2020-12-23 2021-04-30 贵州电网有限责任公司 一种水电机组开度模式下一次调频与agc叠加控制方法
CN112736934B (zh) * 2020-12-23 2023-03-28 贵州电网有限责任公司 一种水电机组开度模式下一次调频与agc叠加控制方法
CN113964886B (zh) * 2021-10-28 2023-11-17 国网四川省电力公司 基于排序的分布式光伏并网下逆变器电压控制方法及系统
CN113964886A (zh) * 2021-10-28 2022-01-21 国网四川省电力公司 基于排序的分布式光伏并网下逆变器电压控制方法及系统
CN113991706A (zh) * 2021-11-11 2022-01-28 国电南瑞科技股份有限公司 一种主动支撑型光伏电站一体化功率控制系统及方法
CN113991706B (zh) * 2021-11-11 2023-12-15 国电南瑞科技股份有限公司 一种主动支撑型光伏电站一体化功率控制系统及方法
CN114172199A (zh) * 2021-12-08 2022-03-11 国网辽宁省电力有限公司阜新供电公司 利用储能风电一体化机组实现调频及虚拟惯量响应的方法
CN114665488A (zh) * 2022-03-17 2022-06-24 西安热工研究院有限公司 一种提高火电机组一次调频响应行为的控制系统
CN114665488B (zh) * 2022-03-17 2024-04-02 西安热工研究院有限公司 一种提高火电机组一次调频响应行为的控制系统
CN114899888A (zh) * 2022-05-13 2022-08-12 华中科技大学 一种光伏电站一次调频方法及系统
CN114899888B (zh) * 2022-05-13 2024-04-23 华中科技大学 一种光伏电站一次调频方法及系统
CN115065167B (zh) * 2022-07-15 2023-10-20 国网江苏省电力有限公司 新能源场站一次调频在线监测系统
CN115065167A (zh) * 2022-07-15 2022-09-16 国网江苏省电力有限公司 新能源场站一次调频在线监测系统
CN115173438A (zh) * 2022-09-08 2022-10-11 西安热工研究院有限公司 可控高压厂用飞轮储能辅助火电的调频系统及方法

Also Published As

Publication number Publication date
EP3651299A4 (en) 2020-06-17
CN108054770A (zh) 2018-05-18
AU2018396279B2 (en) 2021-03-11
AU2018396279A1 (en) 2020-02-20
EP3651299A1 (en) 2020-05-13
EP3651299B1 (en) 2022-10-19
CN108054770B (zh) 2019-04-23
US11101770B2 (en) 2021-08-24
US20200169219A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2019128036A1 (zh) 光伏发电厂及其一次调频控制方法
EP3618217B1 (en) Photovoltaic power plant and secondary control method therefor
US9941700B2 (en) Utility scale renewable energy system controls for ramp-rate, voltage, and frequency management
CN109494762A (zh) 基于多主站协调控制的光伏电站一次调频控制方法及系统
US20140306534A1 (en) Pmu based distributed generation control for microgrid during islanding process
JP6450142B2 (ja) 電力系統制御システム、電力系統制御方法、および電力変換装置
US20130274946A1 (en) Methods and systems for controlling a power plant
CN111555309B (zh) 一种新能源参与异步送端电网调频的方法
WO2014106095A1 (en) Responding to local grid events and distributed grid events
CN111555310B (zh) 一种新能源参与异步送端电网调频的方法
Ortega et al. Impact of frequency estimation for VSC-based devices with primary frequency control
CN109802413B (zh) 一种主动支撑电网频率响应控制方法及系统
CN110572067B (zh) 一种孤岛储能型功率单元串联微电网结构及控制方法
KR20190026379A (ko) 정격 전압 및 정격 주파수의 유지 제어가 가능한 독립형 마이크로그리드 시스템
CN113078661B (zh) 一种新能源快速频率响应装置及方法
CN109474027B (zh) 一种下垂控制方法、装置及变流器
CN109888843B (zh) 一种大规模新能源接入直流电网的功率调节方法及系统
Gong et al. Available capacity based AGC signal distribution strategy with energy storage system
CN106532783B (zh) 分布式光伏协调控制系统
CN108988397A (zh) 一种储能变流器并联运行功率分配控制方法
WO2014183421A1 (zh) 一种风电场并网发电输出有功功率的控制方法
CN111082471B (zh) 一种稳态下的逆变器有功无功电流动态分配方法及系统
CN111064233B (zh) 一种逆变器有功无功电流比例分配方法及系统
CN109217378B (zh) 适用于新能源的功率波动调节方法与装置
CN116094036A (zh) 输出功率调节方法、装置、电子设备及电站系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18727649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018727649

Country of ref document: EP

Effective date: 20200204

ENP Entry into the national phase

Ref document number: 2018396279

Country of ref document: AU

Date of ref document: 20180510

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018727649

Country of ref document: EP

Effective date: 20200204

NENP Non-entry into the national phase

Ref country code: DE