WO2019127675A1 - 冷却系统及蒸镀机 - Google Patents

冷却系统及蒸镀机 Download PDF

Info

Publication number
WO2019127675A1
WO2019127675A1 PCT/CN2018/072614 CN2018072614W WO2019127675A1 WO 2019127675 A1 WO2019127675 A1 WO 2019127675A1 CN 2018072614 W CN2018072614 W CN 2018072614W WO 2019127675 A1 WO2019127675 A1 WO 2019127675A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cooling
water circuit
circuit
disposed
Prior art date
Application number
PCT/CN2018/072614
Other languages
English (en)
French (fr)
Inventor
宋春来
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/997,894 priority Critical patent/US20190203342A1/en
Publication of WO2019127675A1 publication Critical patent/WO2019127675A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Definitions

  • the present application belongs to the technical field of OLED manufacturing, and in particular, to a cooling system and an evaporation machine.
  • the Cooling Plate of the OLED vapor deposition machine has two main functions. One is to make the vapor-deposited glass substrate back to the surface of the flat cooling plate for evaporation, and to support it. The second is to cool through the cooling plate.
  • the water circuit controls the temperature of the vapor-deposited glass substrate, and the heat carried by the vapor deposition material which is not evaporated by the evaporation source causes the glass substrate to be thermally deformed, thereby causing a positional deviation of the vapor deposition film layer.
  • the cooling water circuit of the existing cooling plate is a water circuit arranged on the entire surface of the cooling plate, and only one water inlet and the water outlet are provided, the temperature control is uniform, and the temperature change on the glass substrate is due to the evaporation material.
  • the relative positions are different and are different and uneven.
  • the overall consistent temperature control does not allow for corresponding adjustments to different locations of uneven heating.
  • the purpose of the present application is to provide a cooling system capable of sub-regional temperature regulation and improving the yield of the vapor deposited film layer.
  • a cooling system in a first aspect, includes a cooling plate, a water storage tank, and a thermostat, the cooling plate including a plurality of cooling regions, each of the cooling regions being respectively provided with a water circuit, the water circuit including a water inlet and a water outlet for regulating a temperature of water stored in the water storage tank, the water storage tank for conveying water to the water inlet, and recovering water from the water outlet, the plurality of The temperature of the water flowing in the water circuit of the cooling zone is different.
  • the cooling plate includes opposite first and second long sides, and opposite first and second short sides, and the plurality of cooling regions The first cooling area, the second cooling area, and the third cooling area are disposed, the first cooling area is disposed adjacent to the first short side, and the third cooling area is disposed adjacent to the second short side, the second A cooling zone is provided between the first cooling zone and the third cooling zone.
  • the water circuit includes a first water circuit, a second water circuit, and a third water circuit
  • the first water circuit is disposed in the first cooling zone, and the water inlet and the water outlet of the first water circuit are disposed on the first short side.
  • the second water circuit is disposed in the second cooling region, where The water inlet and the water outlet of the two-water circuit are disposed on the first long side and/or the second long side.
  • the water circuit of the first cooling region includes a fourth water circuit and a fifth water circuit And a sixth water circuit, the fourth water circuit, the fifth water circuit and the sixth water circuit are continuously disposed along the first short side direction and fill the first cooling area, the fourth The water circuit, the fifth water circuit, and the water inlet and the water outlet of the sixth water circuit are disposed on the first short side.
  • the water circuit of the second cooling region includes the first long side a seventh water circuit, an eighth water circuit, and a ninth water circuit, which are sequentially disposed in the second long side direction, wherein the seventh water circuit, the eighth water circuit, and the ninth water circuit are covered with the second a cooling zone, a water inlet and a water outlet of the seventh water circuit are disposed on the first long side, and a water inlet of the eighth water circuit is disposed on the first long side, and the eighth water circuit is out The water nozzle is disposed on the second long side, and the water inlet and the water outlet of the ninth water circuit are disposed on the second long side.
  • the water circuit includes a main cooling segment extending along the first longitudinal direction, And a transition section connecting the two adjacent main cooling sections, the transition section extending along the first short side direction, and the distance between the adjacent main cooling sections is equal.
  • the adjacent the first cooling region and the second cooling region are adjacent to each other
  • the distance between the second cooling zone and the transition section of the water circuit of the third cooling zone is equal.
  • the water circuit of the adjacent first cooling region and the second cooling region The distance between the transition segments is equal to the separation distance between adjacent primary cooling segments.
  • the present application also provides an evaporation machine comprising a cooling system of various implementations of the first aspect.
  • the present invention provides a cooling system in which a plurality of cooling zones are divided on a cooling plate, and water circuits are respectively disposed in a plurality of cooling zones, a plurality of water circuits are supplied by the water storage tanks, and the thermostat adjusts the water of the water storage tanks.
  • the temperature of the water in the plurality of water circuits is different, so that the temperature of each part of the glass substrate is adjusted by the water circuit of the plurality of cooling regions on the cooling plate during the OLED evaporation process, so that the glass substrate can be heated uniformly. Improve the yield of the vapor deposited film layer.
  • FIG. 1 is a schematic view of a cooling system of an embodiment of the present application, in which a water circuit is omitted;
  • FIG. 2 is a schematic structural view of a cooling plate of an embodiment
  • FIG. 3 is a schematic structural view of a cooling plate of another embodiment
  • FIG. 4 is a schematic structural view of a cooling plate and a water circuit of an embodiment
  • Figure 5 is a schematic structural view of a cooling plate and a water circuit of another embodiment
  • Fig. 6 is a schematic structural view of a cooling plate and a water circuit of another embodiment.
  • Embodiments of the present application provide an evaporation machine including a cooling system for performing cooling of different temperature of a glass substrate in different regions.
  • FIG. 1 is a schematic diagram of a cooling system according to an embodiment of the present application, wherein a water circuit is omitted
  • FIG. 2 is a schematic structural view of a cooling plate according to an embodiment
  • FIG. 3 is another Schematic diagram of a cooling plate of an embodiment
  • an embodiment of the present application provides a cooling system including a cooling plate 100 including opposing first long side 101 and second long side 102, and opposite A short side 103 and a second short side 104, the first short side 103 and the second short side 104 are connected between the first long side 101 and the second long side 102, and the cooling plate 100 may have a rectangular shape.
  • the cooling plate 100 includes a plurality of cooling zones, and in one embodiment, the plurality of cooling zones have the same area.
  • the plurality of cooling regions include a first cooling region 110, a second cooling region 120, and a third cooling region 130, the first cooling region 110 being disposed adjacent to the first short side 103, The third cooling zone 130 is disposed adjacent to the second short side 104, and the second cooling zone 120 is disposed between the first cooling zone 110 and the third cooling zone 130.
  • the first cooling region 110 occupies an area of the cooling plate 100 extending from the first short side 103 toward the middle of the cooling plate 100, the extending direction is the direction of the first long side 110, and the third cooling area 130 occupies the cooling plate 100.
  • An area of the third short side 130 extending toward the middle of the cooling plate 100 extends in the direction of the first long side 110, and the second cooling area 120 occupies an area between the first cooling area 110 and the third cooling area 130.
  • the first cooling zone 110, the second cooling zone 120, and the third cooling zone 130 are three consecutive zones that are connected together.
  • the area of 130 is the same.
  • the first cooling area 110, the second cooling area 120, and the third cooling area 130 are rectangular, and the three divide the cooling plate 100 into three areas of the same area, and the area of each area is cooled. One-third of the total area of the board 100.
  • a plurality of the cooling regions are respectively provided with a water circuit, and the water circuit includes a water inlet and a water outlet.
  • the water circuit is arranged in a serpentine shape within the cooling zone.
  • the cooling system further includes a water storage tank 210 for regulating the temperature of water stored in the water storage tank 210, and a temperature controller 500 for The nozzle conveys water and recovers water from the water outlet, and the temperature of the water flowing in the water circuit of the plurality of cooling zones is different.
  • the water inlet and the water outlet respectively enter and discharge water, and the cooling water flows in the water circuit.
  • the heat of the glass substrate absorbed by the water circuit is absorbed by the cooling water, and the water flow takes away the heat.
  • the serpentine-shaped water circuit can cover more area, and the water circuit can be evenly arranged in each part of the cooling area, and the heat can be absorbed and taken away by the evenly arranged water circuit.
  • the water storage tank 210 may include a plurality of water storage areas of different temperatures, and the temperature of the water of the water storage area of different temperatures is regulated by the temperature controller 500, and the water storage tank 210 may also be a plurality of similar water storage tanks. For example, there are a water storage tank 220, a water storage tank 230, etc., each of which corresponds to a cooling water circuit so that the water temperature of each cooling water circuit is different, and the glass substrate can be subjected to different temperature control in different regions.
  • the heat of the glass substrate can also be transferred to the cooling plate 100 first, and the heat of the cooling plate 100 can be transferred to the water circuit, and the heat of the glass substrate can also be carried away.
  • FIG. 4 is a schematic structural diagram of a cooling plate and a water circuit according to an embodiment
  • FIG. 5 is a schematic structural view of a cooling plate and a water circuit according to another embodiment
  • FIG. 6 is another implementation. Schematic diagram of the structure of the cooling plate and the water circuit.
  • the cooling plate 100 includes opposite upper and lower surfaces, wherein the upper surface is for supporting a glass substrate (not shown), the water circuit can be disposed in the cooling plate (as shown in FIG. 3), or on the cooling plate.
  • the surface (as shown in Figure 4), or the lower surface of the cooling plate (as shown in Figure 5) the water circuit forms a support plane when the water circuit is placed on the upper surface of the cooling plate.
  • the water circuit When the water circuit is disposed on the surface of the cooling plate or the lower surface, the water circuit can be made of the pipe material, and the pipe material is fixed to the upper surface or the lower surface of the cooling plate by welding or pasting, and the pipe material should have good heat dissipation performance, for example, For metal materials such as steel or aluminum alloy, the cross section of the pipe can be round or rectangular.
  • the water circuit When the water circuit is disposed in the cooling plate, the water circuit may be a channel dug in the cooling plate, and the cooling plate may have a two-layer structure, and the internal water circuit is dug through the surface of the two cooling plates respectively, and then two The layer cooling plates are combined and made in one piece. In some other embodiments, the water circuit may also be formed by grooving the surface of the cooling plate.
  • the cooling plate is placed on a workbench (not shown) or mounted on a bracket (not shown).
  • the cooling plate is generally placed horizontally so that the glass substrate supported by the cooling plate is in a horizontal position to facilitate evaporation of the OLED.
  • the process steam acts on the glass substrate.
  • the plurality of water circuits are supplied by the water storage tank, and the temperature controller adjusts the temperature of the water of the water storage tanks, so that the plurality of water circuits The temperature of the water is different, so that the temperature of each part on the glass substrate is adjusted by the water circuit of the plurality of cooling regions on the cooling plate 100 during the OLED evaporation process, so that the glass substrate can be heated uniformly and the yield of the vapor deposited film layer can be improved.
  • the water circuit includes a first water circuit 310 , a second water circuit 320 , and a third water circuit 330 .
  • the first water circuit 310 is disposed in the first cooling region 110 .
  • the water inlet 311 and the water outlet 312 of the first water circuit 310 are disposed on the first short side 103.
  • the water inlet 311 of the first water circuit 310 may be disposed on the first long side 101, and the water outlet 312 of the first water circuit 310 may be disposed on the second long side 102.
  • the water inlet 311 and the water outlet 312 of the first water circuit 310 are disposed at different positions, so that the temperature of the edge portion of the cooling plate 100 is changed.
  • the water inlet 311 and the water outlet 312 of the first water circuit 310 are symmetrically arranged.
  • the temperature change at the edge of the cooling plate 100 is made small, and the difference in temperature transmitted to the glass substrate is reduced to cause an adverse effect.
  • the symmetric arrangement of the water inlet and the water outlet is also a preferred embodiment of other embodiments in the present application.
  • the water inlet 311 and the water outlet 312 of the first water circuit 310 are connected to a cooling water delivery pipe (not shown).
  • a cooling water delivery pipe (not shown).
  • the water inlet and the water outlet of each water circuit are connected to each other for cooling.
  • the water delivery pipes are different to achieve independent control of the temperature of the different water circuits.
  • the second water circuit 320 is disposed in the second cooling area 120.
  • the water inlet 321 of the second water circuit 320 is disposed on the first long side 101, and the water outlet 322 of the second water circuit 320 is disposed.
  • the water inlet 321 and the water outlet 322 of the second water circuit 320 may also be disposed on the first long side 101 or the second long side 102 at the same time.
  • the arrangement of the third water circuit 330 may be similar to that of the first water circuit 310, except that the water inlet 331 and the water outlet 332 of the third water circuit 330 are disposed on the second short side. 104.
  • the first water circuit 310 and the third water circuit 330 have a symmetrical structure.
  • the first water circuit 310 includes a main cooling section extending in the direction of the first long side 101, and a transition section connecting adjacent two main cooling sections, the transition section along the first short side 103 The direction is extended, and the distance between adjacent main cooling sections is equal (as shown by d1 in Fig. 1).
  • the length of the primary cooling section is greater than the length of the transition section, and in some embodiments, the length of the primary transition section is 2 to 10 times the length of the transition section.
  • the main transition section and the transition section are interconnected to form a serpentine shape of the first water circuit 310 and are evenly arranged within the first cooling zone 110.
  • the main cooling section connected to the water inlet 311 of the first water circuit 310 is located at the edge of the first cooling zone 110, adjacent to the first long side 101 and parallel to the first long side 101, and the water outlet 312 of the first water circuit.
  • the connected main cooling section is located at the edge of the other side of the first cooling zone 110, adjacent to the second long side 102 and parallel to the second long side 102, and the main cooling section connected to the water inlet 311 of the first water circuit is
  • the other major cooling sections between the main cooling sections to which the water outlets 312 are connected are connected by the transition sections such that the first water circuit 310 forms a complete loop from the water inlets 311 to the water outlets 312 and forms a serpentine shape.
  • the structure of the second water circuit 320 is similar to that of the first water circuit 310, and includes a main cooling section extending in the direction of the first long side 101, and a transition section connecting the two adjacent main cooling sections.
  • the transition section extends in the direction of the first short side 103, and the distance between the adjacent main cooling sections is equal (as shown by d2 in FIG. 1).
  • the structure of the third water circuit 330 is also similar to the structure of the first water circuit 310, and also includes a main cooling section extending in the direction of the first long side 101, and a transition section connecting the adjacent two main cooling sections, The transition section extends in the direction of the first short side 103, and the distance between the adjacent main cooling sections is equal (as shown by d3 in FIG. 1).
  • the distance d1 between the adjacent main cooling sections of the first water circuit 310, the distance d2 between the adjacent main cooling sections of the second water circuit 320, and the adjacent main cooling of the third water circuit 330 are equal such that the temperature changes of the respective slits inside the water circuit of the first cooling region 110, the second cooling region 120, and the third cooling region 130 are the same.
  • the distance between the adjacent first cooling region 110 and the second cooling region 120 and the transition portion of the water circuit of the adjacent second cooling region 120 and the third cooling region 130 equal.
  • a distance between the transition section of the first water circuit 310 and the transition section of the second water circuit 320 of the first cooling zone 110 and the second cooling zone 120 is L1
  • the second cooling zone 120 The distance between the transition of the second water circuit 320 of the third cooling zone 130 and the transition of the third water circuit 330 is L2, which is equal to L2. It is disposed such that the temperature change of the gap between the water circuits disposed between the adjacent first cooling region 110, the second cooling region 120, and the third cooling region 130 on the cooling plate 100 is the same.
  • a distance between adjacent transition sections of the first cooling zone 110 and the water circuit of the second cooling zone 120 is equal to a separation distance between adjacent primary cooling sections.
  • the distance L1 between the transition section of the first water circuit 310 and the transition section of the second water circuit 320 is equal to the separation distance d1 between the adjacent main cooling sections of the first water circuit 310, preferably, L1 Equal to d2 equals d3.
  • the water circuit 410 of the first cooling region 110 includes a fourth water circuit 411, a fifth water circuit 412, and a sixth water circuit 413, and the fourth water circuit 411,
  • the fifth water circuit 412 and the sixth water circuit 413 are continuously disposed along the first short side 103 and fill the first cooling region 110, the fourth water circuit 411, the fifth water circuit
  • the water inlet and the water outlet of the 412 and the sixth water circuit 413 are disposed on the first short side 103.
  • the water circuit disposed in the first cooling region 110 in the embodiment is substantially the same as that in the previous embodiment, except that the fourth water circuit 411 is respectively provided with the water inlet 414 and the water outlet 415, and the fifth water.
  • the circuit 412 is provided with a water inlet 416 and a water outlet 417, respectively, and the sixth water circuit 413 is respectively provided with a water inlet 418 and a water outlet 419, that is, the space of the first cooling region 110 is again divided into 3 in this embodiment.
  • the water circuit is temperature controlled such that the temperature control within the first cooling zone 110 is more fine.
  • the water circuit 420 of the second cooling region 120 includes a seventh water circuit 421, an eighth water circuit 422, and a ninth water sequentially disposed along the first long side 101 toward the second long side 102.
  • the seventh water circuit 421, the eighth water circuit 422 and the ninth water circuit 423 are filled with the second cooling area 120, the water inlet 424 and the water outlet of the seventh water circuit 421.
  • 425 is disposed on the first long side 101
  • the water inlet 426 of the eighth water circuit 422 is disposed on the first long side 101
  • the water outlet 427 of the eighth water circuit 422 is disposed on the second long side
  • the water inlet 428 and the water outlet 429 of the ninth water circuit 423 are disposed on the second long side 102.
  • the water inlet 424 of the seventh water circuit 421 is disposed at a position closer to the first cooling region 110, and the water outlet 425 of the seventh water circuit 421 is offset from the first short side 103 by a distance; the ninth water
  • the structure of the loop 423 is similar to that of the seventh water circuit 421, and corresponds to a structure that is axisymmetric along the midpoint of the first short side 103 and the second short side 104.
  • the water inlet 426 and the water outlet 427 of the eighth water circuit 422 are disposed closer to the third cooling region 130.
  • the seventh water circuit 421 and the ninth water circuit 422 may be slightly oriented.
  • the distance from the second short side 104 is offset by a distance for accommodating the position of the water inlet 426 and the water outlet 427 of the eighth water circuit 422.
  • the water circuit 430 of the third cooling zone 130 is substantially the same as the water circuit 410 of the first cooling zone 110, that is, the water circuit 430 of the third cooling zone 130 includes a tenth water circuit 431,
  • the eleventh water circuit 432 and the twelfth water circuit 433, the tenth water circuit 431, the eleventh water circuit 432, and the twelfth water circuit 433 are continuously disposed along the second short side 104 direction and
  • the third cooling zone 130, the tenth water circuit 431, the eleventh water circuit 432, and the twelfth water circuit 433, the tenth water circuit 431, the eleventh water circuit 432, and the first The water inlet and the water outlet of the twelve water circuit 433 are disposed on the first short side 103.
  • the water inlet 434 and the water outlet 435 of the tenth water circuit 431 are disposed on the second short side 104, and the water inlet 436 and the water outlet 437 of the eleventh water circuit 432 are also disposed on the second short side 104, the twelfth The water inlet 438 and the water outlet 439 of the water circuit 433 are also disposed on the second short side 104, and the water circuit 410 of the first cooling area 110 and the water circuit 430 of the third cooling area 130 have a symmetrical structure.
  • the fourth water circuit 411 includes a main cooling section extending along the direction of the first long side 101, and a transition section connecting adjacent two main cooling sections, the transition section being along the first
  • the short side 103 extends in the direction of the distance d4 between the adjacent main cooling sections.
  • the structure of the fifth water circuit 412 and the sixth water circuit 413 is similar to that of the fourth water circuit 411, that is, the distance d5 between the adjacent main cooling sections of the fifth water circuit 412 is equal, and the sixth water circuit 413 is equal.
  • the adjacent distances d6 between the adjacent main cooling sections are equal.
  • the structure of the seventh water circuit 421 is similar to that of the fourth water circuit 411.
  • the distance d7 between the adjacent main cooling sections is equal, and the eighth water circuit 422 and the ninth water circuit 423 are similar, that is, the eighth.
  • the interval d8 between the adjacent main cooling sections of the water circuit 422 is equal, and the distance d9 between the adjacent main cooling sections of the ninth water circuit 413 is equal.
  • the structure of the tenth water circuit 431 is also similar to that of the fourth water circuit 411.
  • the distance d10 between the adjacent main cooling sections is equal, and the eleventh water circuit 432 and the twelfth water circuit 433 are similar. That is, the distance d11 between the adjacent main cooling sections of the eleventh water circuit 432 is equal, and the distance d12 between the adjacent main cooling sections of the twelfth water circuit 433 is equal.
  • the distance between the adjacent main cooling sections of the fourth water circuit 411, the fifth water circuit 412, and the sixth water circuit 413 in the first cooling zone 110 is equal.
  • the distance between the fourth main water circuit 411 and the adjacent main cooling section of the fifth water circuit 412 is L3
  • L3 is equal to L4.
  • the distance between the adjacent main cooling sections of the seventh water circuit 421, the eighth water circuit 422, and the ninth water circuit 423 in the second cooling zone 120 is equal.
  • the distance between the seventh main water circuit 421 and the adjacent main cooling section of the eighth water circuit 422 is L5
  • the distance between the tenth water circuit 431, the eleventh water circuit 432, and the adjacent main cooling section of the twelfth water circuit 433 in the third cooling zone 130 is equal.
  • the distance between the tenth water circuit 431 and the adjacent main cooling section of the eleventh water circuit 432 is L7
  • the adjacent main cooling sections of the eleventh water circuit 432 and the twelfth water circuit 433 are The distance between them is L8, and L7 is equal to L8.
  • the distance between the adjacent first cooling region 110 and the second cooling region 120 and the transition portion of the water circuit of the adjacent second cooling region 120 and the third cooling region 130 equal.
  • the distance between the transition section of the fourth water circuit 411 and the seventh water circuit 421 is L9
  • the distance between the transition section of the fifth water circuit 412 and the eighth water circuit 422 is L10
  • the sixth water circuit 413 The distance between the transition section of the ninth water circuit 423 is L11
  • the distance between the transition section of the eighth water circuit 422 and the transition section of the tenth water circuit 431 is L14
  • the transition section of the eleventh water circuit 432 The distance between them is L15
  • the distance between the transition portion of the twelfth water circuit 433 is L16
  • L9, L10, L11, L14, L15, and L16 are equal.
  • the distance between the seventh water circuit 421 in the second cooling region 120 and the adjacent transition portion of the eighth water circuit 422 is L12
  • the adjacent transition of the eighth water circuit 422 and the ninth water circuit 423 The distance between the segments is L13 and L12 is equal to L13.
  • a distance between adjacent transition sections of the first cooling zone 110 and the water circuit of the second cooling zone 120 is equal to a separation distance between adjacent primary cooling sections.
  • d4, d5, d6, d7, d8, d9, d10, d11, d12, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14 , L15 and L16 are equal.
  • the water circuit arrangement mode of the cooling system provided by the present application can realize temperature control for different regions separately, so that the temperature of the glass substrate can be effectively controlled, and the defects caused by the temperature control of the existing water circuit can be solved, and the steaming can be improved.
  • the yield of the coating layer can realize temperature control for different regions separately, so that the temperature of the glass substrate can be effectively controlled, and the defects caused by the temperature control of the existing water circuit can be solved, and the steaming can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请提供一种冷却系统,包括冷却板、储水罐和温控器,所述冷却板包括多个冷却区域,多个所述冷却区域分别设置水回路,所述水回路包括进水口和出水口,所述温控器用于调节所述储水罐内储存的水的温度,所述储水罐用于向所述进水口输送水,并从所述出水口回收水,所述多个冷却区域的水回路内流动的水的温度不同。通过在冷却板上划分多个冷却区域,并在多个冷却区域分别设置水回路,多个水回路由储水罐供水,温控器调节储水罐的水的温度,使得多个水回路的水的温度不同,使得在OLED蒸镀过程中,玻璃基板上各部分的温度由冷却板上多个冷却区域的水回路进行调节,可以保证玻璃基板受热均匀,提高蒸镀膜层的良率。

Description

冷却系统及蒸镀机
本申请要求于2017年12月29日提交中国专利局、申请号为201711473336.X、申请名称为“冷却系统及蒸镀机”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请属于OLED制作技术领域,尤其涉及一种冷却系统及蒸镀机。
背景技术
OLED蒸镀机的冷却板(Cooling Plate)主要的作用有二,一是使蒸镀玻璃基板背靠在平坦的冷却板表面进行蒸镀,起到支撑的作用;二是通过冷却板上的冷却水回路使蒸镀玻璃基板的温度受控,不会被蒸镀源蒸发出来的蒸镀材料携带的热量导致玻璃基板受热变形,从而产生蒸镀膜层位置偏差。
现有的冷却板的冷却水回路是一个水回路在冷却板上整面排布,仅设置一个进水口和出水口,对温控是整体一致的,而玻璃基板上的温度变化因蒸镀材料的相对位置不同,是有差异的,不均匀的。整体一致的温控不能对受热不均的不同位置做出相对应的调整。
因此,需要提供一种新的冷却系统,解决上述技术问题,以提高蒸镀膜层的良率。
发明内容
本申请的目的是提供一种冷却系统,能对温度进行分区域调控,可提高蒸镀膜层的良率。
为实现本申请的目的,本申请提供了如下的技术方案:
第一方面,一种冷却系统,包括冷却板、储水罐和温控器,所述冷却板包括多个冷却区域,多个所述冷却区域分别设置水回路,所述水回路包括进水口和出水口,所述温控器用于调节所述储水罐内储存的水的温度,所述储水罐用 于向所述进水口输送水,并从所述出水口回收水,所述多个冷却区域的水回路内流动的水的温度不同。
在第一方面的第一种可能的实现方式中,所述冷却板包括相对的第一长边和第二长边,以及相对的第一短边和第二短边,多个所述冷却区域包括第一冷却区域、第二冷却区域和第三冷却区域,所述第一冷却区域靠近所述第一短边设置,所述第三冷却区域靠近所述第二短边设置,所述第二冷却区域设于所述第一冷却区域和所述第三冷却区域之间。
结合第一方面及第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述水回路包括第一水回路、第二水回路和第三水回路,所述第一水回路设置于所述第一冷却区域内,所述第一水回路的进水口和出水口设置于所述第一短边。
结合第一方面及第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述第二水回路设置于所述第二冷却区域内,所述第二水回路的进水口和出水口设置于所述第一长边和/或所述第二长边。
结合第一方面及第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述第一冷却区域的水回路包括第四水回路、第五水回路和第六水回路,所述第四水回路、所述第五水回路和所述第六水回路沿所述第一短边方向连续设置并布满所述第一冷却区域,所述第四水回路、所述第五水回路和所述第六水回路的进水口和出水口设置于所述第一短边。
结合第一方面及第一方面的第一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述第二冷却区域的水回路包括沿所述第一长边向所述第二长边方向依次设置的第七水回路、第八水回路和第九水回路,所述第七水回路、所述第八水回路和所述第九水回路布满所述第二冷却区域,所述第七水回路的进水口和出水口设置于所述第一长边,所述第八水回路的进水口设置于所述第一长边,所述第八水回路的出水口设置于所述第二长边,所述第九水回路的进水口和出水口设置于所述第二长边。
结合第一方面及第一方面的第一种可能的实现方式,在第一方面的第六种可能的实现方式中,所述水回路包括沿所述第一长边方向延伸的主要冷却段,和连接相邻两个所述主要冷却段的过渡段,所述过渡段沿所述第一短边方向延 伸,相邻的所述主要冷却段之间间隔距离相等。
结合第一方面及第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,相邻的所述第一冷却区域和所述第二冷却区域与相邻的所述第二冷却区域和所述第三冷却区域的水回路的过渡段之间的距离相等。
结合第一方面及第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,相邻的所述第一冷却区域与所述第二冷却区域的水回路的过渡段之间的距离等于相邻的所述主要冷却段之间的间隔距离。
第二方面,本申请还提供了一种蒸镀机,包括第一方面各种实现方式的冷却系统。
本申请的有益效果:
本申请提供的一种冷却系统,通过在冷却板上划分多个冷却区域,并在多个冷却区域分别设置水回路,多个水回路由储水罐供水,温控器调节储水罐的水的温度,使得多个水回路的水的温度不同,使得在OLED蒸镀过程中,玻璃基板上各部分的温度由冷却板上多个冷却区域的水回路进行调节,可以保证玻璃基板受热均匀,提高蒸镀膜层的良率。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一种实施方式的冷却系统的示意图,图中省略了水回路;
图2是一种实施方式的冷却板的结构示意图;
图3是另一种实施方式的冷却板的结构示意图;
图4是一种实施方式的冷却板和水回路的结构示意图;
图5是另一种实施方式的冷却板和水回路的结构示意图;
图6是另一种实施方式的冷却板和水回路的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种蒸镀机,包括冷却系统,用于对玻璃基板进行分区域不同温度的冷却。
请参阅图1至图3,图1是本申请一种实施方式的冷却系统的示意图,图中省略了水回路,图2是一种实施方式的冷却板的结构示意图,图3是另一种实施方式的冷却板的结构示意图,本申请的实施例提供了一种冷却系统,包括冷却板100,所述冷却板100包括相对的第一长边101和第二长边102,以及相对的第一短边103和第二短边104,第一短边103和第二短边104连接在第一长边101和第二长边102之间,冷却板100可以呈矩形形状。
所述冷却板100包括多个冷却区域,一种实施方式中,多个所述冷却区域的面积相同。
一种实施方式中,多个所述冷却区域包括第一冷却区域110、第二冷却区域120和第三冷却区域130,所述第一冷却区域110靠近所述第一短边103设置,所述第三冷却区域130靠近所述第二短边104设置,所述第二冷却区域120设于所述第一冷却区域110和所述第三冷却区域130之间。
具体的,第一冷却区域110占据冷却板100自第一短边103向冷却板100中部延伸的一块面积,延伸的方向为第一长边110的方向,第三冷却区域130占据冷却板100自第三短边130向冷却板100中部延伸的一块面积,延伸的方向为第一长边110的方向,第二冷却区域120占据第一冷却区域110和第三冷却区域130之间的一块面积。第一冷却区域110、第二冷却区域120和第三冷却区域130为连接在一起的连续的三块区域,一种实施方式中,第一冷却区域110、第二冷却区域120和第三冷却区域130的面积相同,进一步的,第一冷却区域110、第二冷却区域120和第三冷却区域130为矩形,三者将冷却板100分为三块面积相同的区域,每块区域的面积为冷却板100总面积的三分之一。
进一步的,多个所述冷却区域分别设置水回路,所述水回路包括进水口和出水口。优选的,所述水回路呈蛇形布置在所述冷却区域内。所述冷却系统还 包括储水罐210和温控器500,所述温控器500用于调节所述储水罐210内储存的水的温度,所述储水罐210用于向所述进水口输送水,并从所述出水口回收水,所述多个冷却区域的水回路内流动的水的温度不同。进水口和出水口分别进水和出水,冷却水在水回路内流动,水回路吸收的玻璃基板的热量被冷却水吸收,水流动将热量带走。呈蛇形布置的水回路能覆盖更多的面积,并且可以使冷却区域内的各个部分均匀的布置有水回路,热量可被均匀布置的水回路吸收而带走。所述储水罐210内可以包括多个不同温度的储水区域,不同温度的储水区域的水的温度由温控器500调节,储水罐210还可以为多个类似的储水罐,例如还有储水罐220、储水罐230等,每个储水罐对应一个冷却水回路,以使每个冷却水回路的水温都不同,可以对玻璃基板进行分区域不同的温度控制。
玻璃基板的热量也可以先传递至冷却板100,冷却板100的热量再传递至水回路,也可将玻璃基板的热量带走。
请参考图4至图6,图4是一种实施方式的冷却板和水回路的结构示意图,图5是另一种实施方式的冷却板和水回路的结构示意图;图6是另一种实施方式的冷却板和水回路的结构示意图。冷却板100包括相背的上表面和下表面,其中上表面用于支撑玻璃基板(图中未示出),水回路可设置于冷却板内(如图3所示),或冷却板的上表面(如图4所示),或冷却板的下表面(如图5所示),水回路设置于冷却板的上表面时,水回路形成支撑平面。当水回路设置于冷却板上表面或下表面时,水回路可以为管材制作而成,管材通过焊接或粘贴等工艺固定于冷却板的上表面或下表面,管材应具有良好的散热性能,例如为钢铁或铝合金等金属材质,管材横截面可以为圆形,也可以为矩形。当水回路设置于冷却板内时,水回路可以为在冷却板内挖设的通道,冷却板可以为两层结构,内部水回路通过分别在两层冷却板表面挖出凹槽,再将两层冷却板组合成一体制成。在其他的一些实施方式中,水回路还可以为在冷却板上表面挖槽形成。冷却板置于工作台(图中未示出)上或架设于支架(图中未示出)上,冷却板一般为水平放置,使得冷却板支撑的玻璃基板处于水平位置,便于OLED的蒸镀制程的蒸汽作用于玻璃基板上。
通过在冷却板100上划分多个冷却区域,并在多个冷却区域分别设置水回 路,多个水回路由储水罐供水,温控器调节储水罐的水的温度,使得多个水回路的水的温度不同,使得在OLED蒸镀过程中,玻璃基板上各部分的温度由冷却板100上多个冷却区域的水回路进行调节,可以保证玻璃基板受热均匀,提高蒸镀膜层的良率。
请参考图2,一种实施例中,所述水回路包括第一水回路310、第二水回路320和第三水回路330,所述第一水回路310设置于所述第一冷却区域110内,所述第一水回路310的进水口311和出水口312设置于所述第一短边103。在其他实施方式中,所述第一水回路310的进水口311可以设置于第一长边101,第一水回路310的出水口312可以设置于第二长边102。所述第一水回路310的进水口311和出水口312的设置位置不同,使冷却板100的边缘部分的温度有变化,优选的,第一水回路310的进水口311和出水口312对称设置,使冷却板100边缘的温度变化较小,减小传递到玻璃基板上的温度的差异造成不良的影响。进水口和出水口对称设置同样是本申请中其他实施例的优选实施方式。
所述第一水回路310的进水口311和出水口312与冷却水输送管道(图中未示出)连接,本申请的各个实施例中,各个水回路的进水口和出水口所连接的冷却水输送管道不同,以实现不同各个水回路的温度的独立控制。
所述第二水回路320设置于所述第二冷却区域120内,所述第二水回路320的进水口321设置于所述第一长边101,所述第二水回路320的出水口322设置于所述第二长边102。在其他实施方式中,第二水回路320的进水口321和出水口322也可同时设置于所述第一长边101或所述第二长边102。
所述第三水回路330的设置方式可以与所述第一水回路310的设置方式类似,不同的是所述第三水回路330的进水口331和出水口332设置于所述第二短边104,在一种优选的实施方式中,第一水回路310与第三水回路330呈对称的结构。
所述第一水回路310包括沿所述第一长边101方向延伸的主要冷却段,和连接相邻两个所述主要冷却段的过渡段,所述过渡段沿所述第一短边103方向延伸,相邻的所述主要冷却段之间间隔距离相等(如图1中d1所示)。主要冷却段的长度大于过渡段的长度,在一些实施方式中,主要过渡段的长度是过渡 段的长度的2~10倍。主要过渡段和过渡段互相连接构成第一水回路310的蛇形形状,并在第一冷却区域110内均匀布置。具体的,第一水回路310的进水口311所连接的主要冷却段位于第一冷却区域110的边缘,靠近第一长边101并与第一长边101平行,第一水回路的出水口312所连接的主要冷却段位于第一冷却区域110的另一侧的边缘,靠近第二长边102并与第二长边102平行,在第一水回路的进水口311所连接的主要冷却段与出水口312所连接的主要冷却段之间的其他主要冷却段由过渡段进行连接,使第一水回路310自进水口311到出水口312形成完整的回路,并且形成蛇形的形状。
第二水回路320的结构与第一水回路310的结构类似,也包括沿所述第一长边101方向延伸的主要冷却段,和连接相邻两个所述主要冷却段的过渡段,所述过渡段沿所述第一短边103方向延伸,相邻的所述主要冷却段之间间隔距离相等(如图1中d2所示)。第三水回路330的结构也与第一水回路310的结构类似,也包括沿所述第一长边101方向延伸的主要冷却段,和连接相邻两个所述主要冷却段的过渡段,所述过渡段沿所述第一短边103方向延伸,相邻的所述主要冷却段之间间隔距离相等(如图1中d3所示)。
进一步的,第一水回路310的相邻的主要冷却段之间的距离d1、第二水回路320的相邻的主要冷却段之间的距离d2和第三水回路330的相邻的主要冷却段之间的距离d3相等,使得第一冷却区域110、第二冷却区域120和第三冷却区域130的水回路内部的各个缝隙的温度变化相同。
进一步的,相邻的所述第一冷却区域110和所述第二冷却区域120与相邻的所述第二冷却区域120和所述第三冷却区域130的水回路的过渡段之间的距离相等。具体的,所述第一冷却区域110和所述第二冷却区域120的第一水回路310的过渡段和第二水回路320的过渡段之间的距离为L1,所述第二冷却区域120和所述第三冷却区域130的第二水回路320的过渡段和第三水回路330的过渡段之间的距离为L2,L1等于L2。如此设置,使得冷却板100上相邻的第一冷却区域110、第二冷却区域120和第三冷却区域130之间布置的水回路之间的缝隙的温度变化相同。
进一步的,相邻的所述第一冷却区域110与所述第二冷却区域120的水回路的过渡段之间的距离等于相邻的所述主要冷却段之间的间隔距离。具体的, 第一水回路310的过渡段和第二水回路320的过渡段之间的距离L1与第一水回路310的相邻的主要冷却段之间的间隔距离d1相等,优选的,L1等于d2等于d3。通过上述设置,使得冷却板100上相邻的第一冷却区域110、第二冷却区域120和第三冷却区域130之间布置的水回路均匀的布满冷却板100,提升对玻璃基板的散热效果。
请参考图3,另一实施例中,所述第一冷却区域110的水回路410包括第四水回路411、第五水回路412和第六水回路413,所述第四水回路411、所述第五水回路412和所述第六水回路413沿所述第一短边103方向连续设置并布满所述第一冷却区域110,所述第四水回路411、所述第五水回路412和所述第六水回路413的进水口和出水口设置于所述第一短边103。具体的,本实施例中的第一冷却区域110内设置的水回路与前一实施例的基本相同,不同的是,第四水回路411分别设置有进水口414和出水口415,第五水回路412分别设置有进水口416和出水口417,第六水回路413分别设有进水口418和出水口419,也就是说,本实施例中将第一冷却区域110的空间再次进行划分为3个水回路进行温度控制,使得第一冷却区域110内的温度控制更为精细。
进一步的,所述第二冷却区域120的水回路420包括沿所述第一长边101向所述第二长边102方向依次设置的第七水回路421、第八水回路422和第九水回路423,所述第七水回路421、所述第八水回路422和所述第九水回路423布满所述第二冷却区域120,所述第七水回路421的进水口424和出水口425设置于所述第一长边101,所述第八水回路422的进水口426设置于所述第一长边101,所述第八水回路422的出水口427设置于所述第二长边102,所述第九水回路423的进水口428和出水口429设置于所述第二长边102。
具体的,第七水回路421的进水口424设置于更靠近第一冷却区域110的位置,第七水回路421的出水口425向远离第一短边103的方向偏移一段距离;第九水回路423的结构与第七水回路421的结构类似,相当于沿第一短边103中点和第二短边104中点连线轴对称的结构。第八水回路422的进水口426和出水口427设置于更靠近第三冷却区域130的位置,为了使水回路的布置更为均匀,可将第七水回路421和第九水回路422稍向远离第二短边104方向偏移一段距离,用以容纳第八水回路422的进水口426和出水口427的位置空间。
进一步的,所述第三冷却区域130的水回路430与第一冷却区域110的水回路410的设置基本相同,即,所述第三冷却区域130的水回路430包括第十水回路431、第十一水回路432和第十二水回路433,所述第十水回路431、所述第十一水回路432和所述第十二水回路433沿所述第二短边104方向连续设置并布满所述第三冷却区域130,第十水回路431、第十一水回路432和第十二水回路433,所述第十水回路431、所述第十一水回路432和所述第十二水回路433的进水口和出水口设置于所述第一短边103。具体的,第十水回路431的进水口434和出水口435设置于第二短边104,第十一水回路432的进水口436和出水口437也设置于第二短边104,第十二水回路433的进水口438和出水口439同样设置于第二短边104,第一冷却区域110的水回路410和第三冷却区域130的水回路430呈对称的结构。
进一步的,所述第四水回路411包括沿所述第一长边101方向延伸的主要冷却段,和连接相邻两个所述主要冷却段的过渡段,所述过渡段沿所述第一短边103方向延伸,相邻的所述主要冷却段之间间隔距离d4相等。第五水回路412和第六水回路413的结构与第四水回路411的结构类似,即第五水回路412的相邻的所述主要冷却段之间间隔距离d5相等,第六水回路413的相邻的所述主要冷却段之间间隔距离d6相等。
所述第七水回路421的结构与第四水回路411结构类似,相邻的所述主要冷却段之间间隔距离d7相等,第八水回路422和第九水回路423也类似,即第八水回路422的相邻的所述主要冷却段之间间隔距离d8相等,第九水回路413的相邻的所述主要冷却段之间间隔距离d9相等。
所述第十水回路431的结构也与第四水回路411结构类似,相邻的所述主要冷却段之间间隔距离d10相等,第十一水回路432和第十二水回路433也类似,即第十一水回路432的相邻的所述主要冷却段之间间隔距离d11相等,第十二水回路433的相邻的所述主要冷却段之间间隔距离d12相等。
进一步的,第一冷却区域110内的第四水回路411、第五水回路412和第六水回路413的相邻的主要冷却段之间的距离相等。具体的,第四水回路411与第五水回路412的相邻的主要冷却段之间的距离为L3,第五水回路423与第六水回路413的相邻的主要冷却段之间的距离为L4,L3等于L4。
第二冷却区域120内的第七水回路421、第八水回路422和第九水回路423的相邻的主要冷却段之间的距离相等。具体的,第七水回路421与第八水回路422的相邻的主要冷却段之间的距离为L5,第八水回路422和第九水回路423的相邻的主要冷却段之间的距离为L6,L5等于L6。
第三冷却区域130内的第十水回路431、第十一水回路432和第十二水回路433的相邻的主要冷却段之间的距离相等。具体的,第十水回路431与第十一水回路432的相邻的主要冷却段之间的距离为L7,第十一水回路432和第十二水回路433的相邻的主要冷却段之间的距离为L8,L7等于L8。
进一步的,相邻的所述第一冷却区域110和所述第二冷却区域120与相邻的所述第二冷却区域120和所述第三冷却区域130的水回路的过渡段之间的距离相等。具体的,第四水回路411与第七水回路421的过渡段之间的距离为L9,第五水回路412与第八水回路422的过渡段之间的距离为L10,第六水回路413与第九水回路423的过渡段之间的距离为L11,第八水回路422的过渡段与第十水回路431的过渡段之间的距离为L14,与第十一水回路432的过渡段之间的距离为L15,与第十二水回路433的过渡段之间的距离为L16,L9、L10、L11、L14、L15、L16相等。
进一步的,第二冷却区域120内的第七水回路421与第八水回路422的相邻的过渡段之间的距离为L12,第八水回路422与第九水回路423的相邻的过渡段之间的距离为L13,L12等于L13。
进一步的,相邻的所述第一冷却区域110与所述第二冷却区域120的水回路的过渡段之间的距离等于相邻的所述主要冷却段之间的间隔距离。具体的,结合上文所述,d4、d5、d6、d7、d8、d9、d10、d11、d12、L3、L4、L5、L6、L7、L8、L9、L10、L11、L12、L13、L14、L15和L16相等。
通过上述设置,本申请提供的冷却系统的水回路布置方式,可以实现对不同区域分别进行温度控制,使得玻璃基板的温度得到有效的控制,可以解决现有水回路温度控制造成的缺陷,提高蒸镀膜层的良率。
以上所揭露的仅为本申请一种较佳实施方式而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施方式的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。

Claims (18)

  1. 一种冷却系统,其中,包括冷却板、储水罐和温控器,所述冷却板包括多个冷却区域,多个所述冷却区域分别设置水回路,所述水回路包括进水口和出水口,所述温控器用于调节所述储水罐内储存的水的温度,所述储水罐用于向所述进水口输送水,并从所述出水口回收水,所述多个冷却区域的水回路内流动的水的温度不同。
  2. 如权利要求1所述的冷却系统,其中,所述冷却板包括相对的第一长边和第二长边,以及相对的第一短边和第二短边,多个所述冷却区域包括第一冷却区域、第二冷却区域和第三冷却区域,所述第一冷却区域靠近所述第一短边设置,所述第三冷却区域靠近所述第二短边设置,所述第二冷却区域设于所述第一冷却区域和所述第三冷却区域之间。
  3. 如权利要求2所述的冷却系统,其中,所述水回路包括第一水回路、第二水回路和第三水回路,所述第一水回路设置于所述第一冷却区域内,所述第一水回路的进水口和出水口设置于所述第一短边。
  4. 如权利要求3所述的冷却系统,其中,所述第二水回路设置于所述第二冷却区域内,所述第二水回路的进水口和出水口设置于所述第一长边和/或所述第二长边。
  5. 如权利要求2所述的冷却系统,其中,所述第一冷却区域的水回路包括第四水回路、第五水回路和第六水回路,所述第四水回路、所述第五水回路和所述第六水回路沿所述第一短边方向连续设置并布满所述第一冷却区域,所述第四水回路、所述第五水回路和所述第六水回路的进水口和出水口设置于所述第一短边。
  6. 如权利要求2所述的冷却系统,其中,所述第二冷却区域的水回路包括沿所述第一长边向所述第二长边方向依次设置的第七水回路、第八水回路和第九水回路,所述第七水回路、所述第八水回路和所述第九水回路布满所述第二冷却区域,所述第七水回路的进水口和出水口设置于所述第一长边,所述第八水回路的进水口设置于所述第一长边,所述第八水回路的出水口设置于所述第二长边,所述第九水回路的进水口和出水口设置于所述第二长边。
  7. 如权利要求2所述的冷却系统,其中,所述水回路包括沿所述第一长边方向延伸的主要冷却段,和连接相邻两个所述主要冷却段的过渡段,所述过渡段沿所述第一短边方向延伸,相邻的所述主要冷却段之间间隔距离相等。
  8. 如权利要求7所述的冷却系统,其中,相邻的所述第一冷却区域和所述第二冷却区域与相邻的所述第二冷却区域和所述第三冷却区域的水回路的过渡段之间的距离相等。
  9. 如权利要求8所述的冷却系统,其中,相邻的所述第一冷却区域与所述第二冷却区域的水回路的过渡段之间的距离等于相邻的所述主要冷却段之间的间隔距离。
  10. 一种蒸镀机,其中,包括冷却板、储水罐和温控器,所述冷却板包括多个冷却区域,多个所述冷却区域分别设置水回路,所述水回路包括进水口和出水口,所述温控器用于调节所述储水罐内储存的水的温度,所述储水罐用于向所述进水口输送水,并从所述出水口回收水,所述多个冷却区域的水回路内流动的水的温度不同。
  11. 如权利要求10所述的蒸镀机,其中,所述冷却板包括相对的第一长边和第二长边,以及相对的第一短边和第二短边,多个所述冷却区域包括第一冷却区域、第二冷却区域和第三冷却区域,所述第一冷却区域靠近所述第一短边设置,所述第三冷却区域靠近所述第二短边设置,所述第二冷却区域设于所述第一冷却区域和所述第三冷却区域之间。
  12. 如权利要求11所述的蒸镀机,其中,所述水回路包括第一水回路、第二水回路和第三水回路,所述第一水回路设置于所述第一冷却区域内,所述第一水回路的进水口和出水口设置于所述第一短边。
  13. 如权利要求12所述的蒸镀机,其中,所述第二水回路设置于所述第二冷却区域内,所述第二水回路的进水口和出水口设置于所述第一长边和/或所述第二长边。
  14. 如权利要求11所述的蒸镀机,其中,所述第一冷却区域的水回路包括第四水回路、第五水回路和第六水回路,所述第四水回路、所述第五水回路和所述第六水回路沿所述第一短边方向连续设置并布满所述第一冷却区域,所述第四水回路、所述第五水回路和所述第六水回路的进水口和出水口设置于所 述第一短边。
  15. 如权利要求11所述的蒸镀机,其中,所述第二冷却区域的水回路包括沿所述第一长边向所述第二长边方向依次设置的第七水回路、第八水回路和第九水回路,所述第七水回路、所述第八水回路和所述第九水回路布满所述第二冷却区域,所述第七水回路的进水口和出水口设置于所述第一长边,所述第八水回路的进水口设置于所述第一长边,所述第八水回路的出水口设置于所述第二长边,所述第九水回路的进水口和出水口设置于所述第二长边。
  16. 如权利要求11所述的蒸镀机,其中,所述水回路包括沿所述第一长边方向延伸的主要冷却段,和连接相邻两个所述主要冷却段的过渡段,所述过渡段沿所述第一短边方向延伸,相邻的所述主要冷却段之间间隔距离相等。
  17. 如权利要求16所述的蒸镀机,其中,相邻的所述第一冷却区域和所述第二冷却区域与相邻的所述第二冷却区域和所述第三冷却区域的水回路的过渡段之间的距离相等。
  18. 如权利要求17所述的冷却系统,其中,相邻的所述第一冷却区域与所述第二冷却区域的水回路的过渡段之间的距离等于相邻的所述主要冷却段之间的间隔距离。
PCT/CN2018/072614 2017-12-29 2018-01-15 冷却系统及蒸镀机 WO2019127675A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/997,894 US20190203342A1 (en) 2017-12-29 2018-06-05 Cooling system and evaporation machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711473336.XA CN108179383A (zh) 2017-12-29 2017-12-29 冷却系统及蒸镀机
CN201711473336.X 2017-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/997,894 Continuation US20190203342A1 (en) 2017-12-29 2018-06-05 Cooling system and evaporation machine

Publications (1)

Publication Number Publication Date
WO2019127675A1 true WO2019127675A1 (zh) 2019-07-04

Family

ID=62549039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072614 WO2019127675A1 (zh) 2017-12-29 2018-01-15 冷却系统及蒸镀机

Country Status (2)

Country Link
CN (1) CN108179383A (zh)
WO (1) WO2019127675A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234697B (zh) * 2018-09-30 2020-11-03 佛山科学技术学院 一种真空镀膜用高效冷却装置
CN109023260A (zh) * 2018-10-09 2018-12-18 京东方科技集团股份有限公司 蒸镀源、蒸镀装置
CN112713498A (zh) * 2019-10-25 2021-04-27 山东华光光电子股份有限公司 一种改善激光器smile效应的水冷热沉及封装方法
CN112095078B (zh) * 2020-09-24 2023-12-05 福建华佳彩有限公司 一种用于面蒸发源的冷却缓存室及驱动方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019303A1 (en) * 1995-11-17 1997-05-29 Cvc Products, Inc. Temperature controlled chuck for vacuum processing
CN1907897A (zh) * 2005-08-02 2007-02-07 应用材料公司 衬底支撑的加热和冷却
JP2007231314A (ja) * 2006-02-28 2007-09-13 Canon Inc パターン形成装置
CN102315143A (zh) * 2010-06-30 2012-01-11 东京毅力科创株式会社 基板处理装置
CN103074579A (zh) * 2011-10-26 2013-05-01 塔工程有限公司 薄膜沉积设备
CN203728923U (zh) * 2013-12-16 2014-07-23 湘潭宏大真空技术股份有限公司 一种调温装置
CN104233195A (zh) * 2014-08-28 2014-12-24 京东方科技集团股份有限公司 一种蒸镀设备及蒸镀方法
CN104846346A (zh) * 2015-05-20 2015-08-19 中国科学院宁波材料技术与工程研究所 衬底温度的控制方法、装置及薄膜沉积设备
CN106893982A (zh) * 2017-03-30 2017-06-27 京东方科技集团股份有限公司 一种冷却板和蒸镀装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019303A1 (en) * 1995-11-17 1997-05-29 Cvc Products, Inc. Temperature controlled chuck for vacuum processing
CN1907897A (zh) * 2005-08-02 2007-02-07 应用材料公司 衬底支撑的加热和冷却
JP2007231314A (ja) * 2006-02-28 2007-09-13 Canon Inc パターン形成装置
CN102315143A (zh) * 2010-06-30 2012-01-11 东京毅力科创株式会社 基板处理装置
CN103074579A (zh) * 2011-10-26 2013-05-01 塔工程有限公司 薄膜沉积设备
CN203728923U (zh) * 2013-12-16 2014-07-23 湘潭宏大真空技术股份有限公司 一种调温装置
CN104233195A (zh) * 2014-08-28 2014-12-24 京东方科技集团股份有限公司 一种蒸镀设备及蒸镀方法
CN104846346A (zh) * 2015-05-20 2015-08-19 中国科学院宁波材料技术与工程研究所 衬底温度的控制方法、装置及薄膜沉积设备
CN106893982A (zh) * 2017-03-30 2017-06-27 京东方科技集团股份有限公司 一种冷却板和蒸镀装置

Also Published As

Publication number Publication date
CN108179383A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
WO2019127675A1 (zh) 冷却系统及蒸镀机
CN102414863B (zh) 用于有机蒸汽印刷的方法和设备
US8177912B2 (en) Evaporation source and vacuum evaporator using the same
WO2017173875A1 (zh) 一种线性蒸发源、蒸发源系统及蒸镀装置
TWI582263B (zh) 氣體輸送系統與氣體輸送系統的使用方法
KR102260572B1 (ko) 복수의 증발원을 갖는 박막 증착장치
BR112013014566B1 (pt) fonte de evaporação linear e método para revestir substratos
CN104878370A (zh) 一种分体式可控温加热盘结构
US9428832B2 (en) Heat equalizer
TW201404900A (zh) 遮罩組件及使用其之有機氣相沉積裝置與熱蒸鍍裝置
CN103074579A (zh) 薄膜沉积设备
CN107109649A (zh) 用于对大面积基板覆层的cvd或pvd覆层设备
WO2018077388A1 (en) Measurement assembly for measuring a deposition rate, evaporation source, deposition apparatus, and method therefor
JP2015108185A (ja) 真空蒸着装置用マニホールド
KR102260617B1 (ko) 복수의 도가니가 장착된 증발원을 갖는 박막 증착장치
CN208136329U (zh) 一种带防液滴喷溅格栅的热蒸发装置
KR102082193B1 (ko) 증착률을 측정하기 위한 측정 어셈블리 및 이를 위한 방법
US20190203342A1 (en) Cooling system and evaporation machine
JP2010038363A (ja) オープンラック型気化装置の散水機構
TWI689616B (zh) 用於塗佈大型基板之裝置
US20130240189A1 (en) Cooling plate
JP6931599B2 (ja) 蒸着装置及び蒸着方法
JP5311985B2 (ja) 蒸着装置および有機発光装置の製造方法
CN105575871A (zh) 承载装置和反应腔室
CN210215520U (zh) 用于分配工艺气体的喷头和物理气相沉积设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897782

Country of ref document: EP

Kind code of ref document: A1