WO2019127562A1 - 样本分析仪及其试剂供应方法 - Google Patents

样本分析仪及其试剂供应方法 Download PDF

Info

Publication number
WO2019127562A1
WO2019127562A1 PCT/CN2017/120373 CN2017120373W WO2019127562A1 WO 2019127562 A1 WO2019127562 A1 WO 2019127562A1 CN 2017120373 W CN2017120373 W CN 2017120373W WO 2019127562 A1 WO2019127562 A1 WO 2019127562A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
reservoir
machine
tank
storage tank
Prior art date
Application number
PCT/CN2017/120373
Other languages
English (en)
French (fr)
Inventor
石汇林
燕宇峰
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2017/120373 priority Critical patent/WO2019127562A1/zh
Priority to CN201780097032.XA priority patent/CN111373262A/zh
Priority to CN201822091238.6U priority patent/CN210037838U/zh
Priority to CN201811521942.9A priority patent/CN109991431A/zh
Publication of WO2019127562A1 publication Critical patent/WO2019127562A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids

Definitions

  • the present application relates to the field of biological sample analysis, and in particular to a sample analyzer and a reagent supply method thereof.
  • the amount of reagent residue in the old reagent barrel when the sample analyzer is replaced affects the cost of the sample analyzer.
  • the reagent residue in the old reagent barrel is large, the time for replacing the new reagent barrel is long, and the reagent consumption is high when the new reagent barrel is replaced, and the use cost is high.
  • the embodiment of the present application discloses a sample analyzer and a reagent supply method thereof to solve the above problems.
  • a sample analyzer disclosed in the embodiment of the present application includes a sampling device, a reagent supply device, at least one reaction device, and at least one detecting device, wherein the sampling device is configured to collect a sample to be tested and at least the sample to be tested Transferring a portion to the at least one reaction device, the reagent supply device comprising at least one in-storage reservoir, each in-storage reservoir drawing a reagent from an off-site reagent tank through a power source to perform the machine Filling operation of the inner liquid storage tank, and transferring the reagents in the internal liquid storage tank to the reaction device communicating with the internal liquid storage tank, the sample to be tested and the reagent in each of the reaction devices
  • the mixing reaction obtains a test solution
  • the detecting device detects the test solution and generates detection information.
  • a reagent supply method of a sample analyzer disclosed in the embodiment of the present application includes the steps of: providing an in-machine liquid storage tank having a reagent, the internal liquid storage tank and a machine connected to the internal liquid storage tank Forming a confined space between the outer reagent barrels; providing a reagent transfer device, wherein the reagent transfer device transfers reagents from the internal reservoir to the reaction device in communication with the internal reservoir, while the sealing The space forms a negative pressure; and the negative pressure causes the in-machine reservoir to draw reagent from the reagent tank to replenish in the in-tank reservoir.
  • the sample analyzer of the present application and the reagent supply method of the sample analyzer absorb the reagent from the external reagent barrel, the time for replacing the new reagent barrel is short, the reagent consumption is small when the new reagent barrel is replaced, and the residual amount of the reagent in the old reagent barrel is low.
  • FIG. 1 is a schematic block diagram of a sample analyzer in an embodiment of the present application.
  • FIG. 2 is a schematic view showing a liquid path of a reagent supply device and a reaction device in the first embodiment of the present application.
  • FIG 3 is a schematic view showing a liquid path of a reagent supply device and a reaction device in a second embodiment of the present application.
  • FIG. 4 is a schematic view showing a liquid path of a reagent supply device and a reaction device in a third embodiment of the present application.
  • Fig. 5 is a schematic view showing a liquid path of a reagent supply device and a reaction device in a fourth embodiment of the present application.
  • FIG. 6 is a schematic flow chart of a reagent supply method of a sample analyzer in a first embodiment of the present application.
  • FIG. 7 is a schematic flow chart of a reagent supply method of a sample analyzer in a second embodiment of the present application.
  • FIG. 1 is a schematic block diagram of a sample analyzer 100 according to an embodiment of the present application.
  • the sample analyzer 100 is used for medical analysis of the sample to be tested and generates corresponding detection information.
  • the sample to be tested is a blood sample. It is to be understood that in other embodiments, the sample to be tested may also be a body fluid sample, a serum sample, a plasma sample, a urine sample or other suitable biological sample, which is not limited herein.
  • the sample analyzer 100 includes a sampling device 10, a reagent supply device 30, at least one reaction device 50, and at least one detection device 70.
  • the sampling device 10 is configured to collect a sample to be tested (not shown) and transfer at least one of the samples to be tested to the at least one reaction device 50. It can be understood that, in the embodiment, the sampling device 100 can divide the sample to be tested into multiple parts, and transfer each sample to be tested to the corresponding reaction device 50. In other embodiments, each of the samples to be tested can be transferred to the corresponding reaction device 50 by means of a syringe injection.
  • FIG. 2 is a schematic diagram of a liquid path of the reagent supply device 30 and the reaction device 50 in the first embodiment of the present application.
  • the reagent supply device 30 includes at least one in-machine reservoir 31 and a power source 32.
  • the power source 32 is in communication with each of the in-machine reservoirs 31, respectively.
  • the power source 32 is a high pressure air pump capable of generating a negative pressure.
  • Each of the in-machine reservoirs 31 draws reagents from an off-machine reagent tank 33 through the power source 32 to perform a reagent filling operation on the in-tank reservoir 31.
  • the reagent includes, but is not limited to, a hemolysing agent for hemoglobin measurement, a hemolytic agent for leukocyte analysis, a hemolytic agent for nucleated red blood cell analysis, and a diluent for reticulocyte analysis. Any reagent may be contained in the reagent tank 33 as needed.
  • the "filling" means that the in-machine reservoir 31 is filled with a reagent. During the process of filling the reagent reservoir 31 in the in-flight reservoir 31, the air in the in-tank reservoir 31 is discharged along the flow path between the in-chamber reservoir 31 and the power source 32. No additional dedicated bubble removal steps are required.
  • the capacity of each of the in-machine reservoirs 31 is small, not exceeding 100 ml, and the low capacity of the in-tank reservoirs 31 enables the filling of the in-machine reservoirs 31 to be fast.
  • the time required to replenish the liquid amount is only a few seconds, the reagent replacement speed can be fast, the standby time of the sample analyzer 100 can be reduced, and the work can be improved. Efficiency, providing customers with more efficient services.
  • the sample analyzer 100 includes a machine table (not shown), and the machine has a receiving space (not shown), and the in-machine liquid storage tank 31 is disposed in the receiving space.
  • the reagent tank 33 may be placed on the ground outside the machine, and the position of the internal liquid storage tank 31 is high.
  • the reagent tank 33 is lower than the reaction device 50.
  • the receiving space may also be disposed at the top of the machine.
  • the reagents in each of the in-tank reservoirs 31 are transferred to the reaction device 50 in communication with the in-machine reservoirs 31.
  • the sample to be tested and the reagent in each of the reaction devices 50 are mixed to obtain a test solution.
  • the detecting device 70 detects the test solution and generates detection information.
  • the at least one in-machine reservoir 31 is disposed in one-to-one correspondence with the at least one reaction device 50.
  • Each of the in-machine reservoirs 31 provides reagents to the corresponding reaction device 50.
  • the at least one reaction device 50 and the at least one detection device 70 are disposed one-to-one.
  • Each of the reaction devices 50 provides a test solution for the corresponding detection device 70 for the detection device 70 to perform test solution detection and generate corresponding detection information.
  • each of the in-machine liquid storage tanks 31 is in communication with the corresponding reagent tank 33, and each of the in-machine liquid storage tanks 31 does not pass through a valve but directly corresponds to the corresponding reagent tank 33. Connected.
  • the in-flight reservoir 31 and the corresponding reagent are A confined space is formed between the tubs 33.
  • the sealed space is a sealed space of normal pressure.
  • the "normal pressure" means that the pressure in the in-tank reservoir 31 remains substantially unchanged, and a short negative pressure is dynamically generated only when the reagent is supplied to the corresponding reaction device 50, and the negative pressure is to be
  • the reagent in the reagent tank 33 is replenished to the in-tank reservoir 31 and disappears.
  • the in-machine liquid storage tank 31 supplies the reagent to the reaction device 50 in communication with the in-machine liquid storage tank 31, and between the in-machine liquid storage tank 31 and the reaction device 50.
  • the formed negative pressure causes the in-machine reservoir 31 to draw reagent from the reagent tank 33 to be replenished in the in-tank reservoir 31.
  • the reagent supply device 30 further includes at least one metering pump 312, each of which is disposed in the corresponding in-machine reservoir 31 and the reaction device connected to the in-tank reservoir 31.
  • the metering pump 312 draws a quantity of reagent from the in-tank reservoir 31 and transfers it to the reaction unit 50 in communication with the in-tank reservoir 31.
  • the in-machine reservoir 31, the metering pump 312, and the reaction device 50 are connected by a three-way valve 313.
  • the metering pump 312 is connected to the negative pressure power source 3151 and the positive pressure power source 3152 through a three-way valve 314.
  • the negative pressure power source 3151 causes the metering pump 312 to draw reagent from the in-tank reservoir 31.
  • the positive pressure power source 3152 causes the metering pump 312 to transfer reagents to the reaction device 50.
  • the level of the position of the metering pump is higher than the in-machine reservoir 31 and lower than the reaction unit 20.
  • the in-machine reservoir 31 communicates with the reagent tank 33 to form a closed space, the machine
  • the inner reservoir 31 is formed between the in-storage reservoir 31 and the reagent tank 33 after supplying the quantitative reagent to the reaction device 50 in communication with the in-tank reservoir 31.
  • the negative pressure causes the in-machine reservoir 31 to draw the amount of the reagent from the reagent tank 33 to be replenished in the in-tank reservoir 31.
  • the in-machine liquid storage tank 31 adds a reagent to the reaction device 50 connected to the in-machine liquid storage tank 31, a certain negative pressure is formed in the internal liquid storage tank 31.
  • the negative pressure causes the reagent to be automatically replenished from the inside of the reagent tank 33, and the sample analyzer 100 does not need to refill the in-tank reservoir 31 during the sample analysis, thereby saving the system during the measurement process. Air consumption.
  • the reagent supply device 30 further includes a controller 310 and at least one first control valve 34, each of which is connected to the power source 32 through a corresponding first control valve 34. .
  • the controller 310 controls the at least one first control valve 34 to open to fill the in-tank reservoir 31 corresponding to the first control valve 34 with a reagent. Specifically, when the first control valve 34 is opened, the power source 32 communicates with the in-machine reservoir 31. Thus, the in-machine reservoir 31 connected to the first control valve 34 can be filled with reagents by the power source 32.
  • the controller 310 controls the at least one first control valve 34 to close to stop filling the in-machine reservoir 31 with reagents. Specifically, when the first control valve 34 is closed, the power source 32 and the in-machine reservoir 31 are not in communication. Thus, the in-machine reservoir 31 connected to the first control valve 34 may not be filled with reagents by the power source 32.
  • the number of the at least one first control valve 34 is the same as the number of the at least one in-machine reservoir 31, and the at least one first control valve 34 and the at least one in-machine
  • the reservoirs 31 are arranged in communication with each other, and the at least one first control valve 34 is connected to the power source 32, respectively. Therefore, the at least one in-machine liquid storage tank 31 can perform the reagent filling operation by using different filling pressures respectively, and each of the in-machine liquid storage tanks 31 can independently perform the filling operation without being otherwise described. The influence of the internal reservoir 31.
  • the reagent supply device 30 further includes at least one liquid level sensor 35.
  • the liquid level sensor 35 is a float. The float moves with the liquid surface, and the liquid level can be detected in real time to obtain liquid level information. It can be understood that in other embodiments, the liquid level sensor 35 includes at least two level plates, each level plate corresponding to a liquid level to be monitored. The liquid level plate is connected to the sensor through the connecting rod, and whether the liquid surface reaches the target liquid level generates two kinds of electric signals to generate liquid level information.
  • the at least one liquid level sensor 35 is disposed corresponding to the at least one in-machine liquid storage tank 31.
  • at least one of the liquid level sensors 35 is disposed in each of the in-machine liquid storage tanks 31, and the controller 310 controls the liquid when the liquid level sensor 35 senses the first liquid level.
  • the first control valve 34 corresponding to the position sensor 35 is turned off to stop filling the in-tank reservoir 31 corresponding to the liquid level sensor 35, and the controller 310 senses at the liquid level.
  • the reagent supply device 30 is controlled to stop supplying the reagent to the reaction device 50.
  • the first liquid level is a high liquid level
  • the second liquid level is a low liquid level.
  • the controller 310 controls the reagent supply device 30 to stop providing reagents to the reaction device 50, and generates reagent-free failure information.
  • the controller 310 controls the first control valve corresponding to the liquid level sensor 35 after the user replaces the new reagent tank 33 filled with the reagent and cancels the fault on the user interface of the sample analyzer 100.
  • 34 is opened to transfer reagents from the new reagent tank 33 to the in-machine reservoir 31 under the drive of the power source 32.
  • the controller 310 controls the first control valve 34 corresponding to the liquid level sensor 35 to be turned off to stop charging when the liquid level sensor 35 senses the first liquid level.
  • the height difference between the first liquid level and the second liquid level of the in-machine liquid storage tank 31 is small, so that the liquid level sensor 31 detects that the internal liquid storage tank 31 is full.
  • the liquid level sensor 35 detects a process in which the internal liquid storage tank 31 is empty, and the liquid level of the internal liquid storage tank 31 decreases little. After replacing a new reagent tank 33 filled with reagents, the liquid level sensor 35 is added.
  • the liquid consumption takes only a few seconds, and the reagent replacement speed can be fast, the standby time of the sample analyzer 100 can be further reduced, the work efficiency is improved, and the customer is provided with more efficient service.
  • the controller 310 issues a reagent-free failure information when the liquid level sensor 35 senses the third liquid level, and the reagent in the internal liquid storage tank 31 is continuously transferred to the machine.
  • the reaction device 50 to which the inner reservoir 31 is connected.
  • the controller 310 controls the first control valve 34 to communicate with the power source 32 and the new reagent bucket 33 filled with reagents and after failing over the user interface of the sample analyzer 100
  • the in-tank reservoir 31 transfers reagents from the new reagent tank 33 to the in-machine reservoir 31 under the driving of the power source 32, and the reagents in the in-tank reservoir 31 during the filling process. It is continuously transferred to the reaction device 50 connected to the in-flight reservoir 31.
  • the third liquid level is an early warning liquid level between the first liquid level and the second liquid level.
  • the sample analyzer 100 when the liquid level sensor 35 senses the third liquid level, the sample analyzer 100 generates no reagent failure information to provide the user to replace the new reagent tank 33 and perform the refilling operation, and generate the reagentless failure information.
  • the reagent of the in-tank reservoir 31 is continuously supplied to the reaction device 50 connected to the in-tank reservoir 31, thereby realizing the non-stop replacement of the reagent, saving the user. Time, with a better user experience.
  • the absolute value of the negative pressure provided by the power source 32 for refilling is less than the absolute value of the pressure that the metering pump 312 transfers reagents from the in-chamber reservoir 31 to the reaction device 50.
  • a negative pressure may be provided for refilling by means of a separately provided low negative pressure air pump.
  • the reagent in the reagent tank 33 can be repeatedly transferred to the in-tank reservoir 31 by a separately provided dosing pump or syringe.
  • the controller 310 controls the first control valve 34 to communicate with the power source 32 and the in-storage reservoir 31 to perform the charging for a preset period of time
  • the liquid level sensor 35 is still not sensed.
  • the reagent supply device 30 is controlled to stop supplying the reagent to the reaction device 50.
  • the presence or absence of the reagent is detected by the liquid level sensor 35 in the in-tank reservoir 31, and when the liquid level drops to the liquid level sensor 35 and a trigger signal is generated, no reagent failure information is generated.
  • the reagent in the reagent tank 33 has been inhaled to the in-machine reservoir 31 to a maximum extent, and the residual amount of the reagent in the reagent tank 33 is low.
  • the reagent in the reagent tank 33 is filled into the in-tank reservoir 31 by the power source 32, when the liquid level sensor 35 floats and generates When the signal is triggered, the reagent is successfully replaced. In the process, the sample analyzer 100 does not consume the reagent, and no reagent is wasted during the reagent replacement process.
  • FIG. 3 is a schematic diagram of a liquid path of the reagent supply device 30a and the reaction device 50 in the second embodiment of the present application.
  • the reagent supply device 30a is similar to the reagent supply device 30, except that the power source 32a of the reagent supply device 30a is a small air pump, which is different from the high pressure air pump in the first embodiment.
  • the low cost of the air pump can also be used to generate the negative pressure required to fill the reagent, but the high pressure air pump not only produces the negative pressure required to fill the reagent, but also produces a positive pressure for other uses.
  • FIG. 4 is a schematic diagram of a liquid path of the reagent supply device 30b and the reaction device 50 in the third embodiment of the present application.
  • the reagent supply device 30b is similar to the reagent supply device 30 except that the reagent supply device 30b further includes a waste liquid pool 36, a third control valve 38, and a waste liquid tank 39.
  • the waste liquid pool 36 collects the test liquid of the reaction device 50 and the detecting device 70, the waste liquid tank 39 is connected to the waste liquid pool 36, and the waste liquid pool 36 is disposed at the at least one machine
  • the third control valve 38 is disposed between the waste pool 36 and the power source 32.
  • the power source 32 is a high pressure air pump that can provide a positive pressure and can also provide a negative pressure.
  • the third control valve 38 When the third control valve 38 is opened, the power source 32 supplies a positive pressure to the waste liquid pool 36 to evacuate the waste liquid of the waste liquid pool 36 into the waste liquid tank 39, the power source 32
  • the waste pool 36 provides a negative pressure to collect waste liquid to the waste liquid tank 36.
  • the waste liquid pool 36 is also connected to the internal liquid storage tank 31 through the first control valve 34. When the internal liquid storage tank 31 needs to be filled, the first control valve 34 is opened, and the waste liquid pool 36 is internal.
  • the reservoir 31 provides a negative pressure to allow the reagent of the reagent tank 33 to enter the in-tank reservoir 31.
  • the third control valve 38 may be omitted and the power source 32 is directly coupled to the waste reservoir 36.
  • the absolute value of the negative pressure of the waste liquid pool 36 is adjusted to be smaller than that of the quantitative pump 312.
  • the pressure of the reagent in the in-tank reservoir 31 does not affect the operation of the metering pump 312, and the reagent of the reagent tank 33 enters the in-tank reservoir 31, and the liquid level sensor 35 senses the location.
  • the power source 32 for filling the in-machine reservoir 31 uses the sample analyzer 100 for the waste liquid pool 36 of other passage waste collection, which has the advantage that when the liquid level sensor 35 is abnormal, it cannot be detected.
  • the reagent inside the in-tank reservoir 31 may be poured into the gas path. After the waste liquid pool 36 is used, the reagent can be buffered in the waste liquid pool 36 without entering the gas source of the instrument. Damage the sample analyzer.
  • the reagent in the reagent tank 33 is filled into the internal liquid storage tank 31 by using the power source 32 in the waste liquid pool 36, when the liquid After the position sensor 35 floats and generates a trigger signal, the reagent is successfully replaced. In the process, the sample analyzer 100 does not consume the reagent, and no reagent is wasted during the reagent replacement.
  • FIG. 5 is a schematic diagram of a liquid path of the reagent supply device 30c and the reaction device 50 in the fourth embodiment of the present application.
  • the reagent supply device 30c is similar to the reagent supply device 30b, except that the reagent supply device further includes at least one first control valve 34 and at least one second control valve 37, the at least one first control The valve 34 is the same as that of the first embodiment, and is not described herein again.
  • the at least one second control valve 37 is disposed in a flow connected between the at least one in-machine reservoir 31 and the at least one reagent tank 33.
  • the at least one second control valve 37 causes the in-machine reservoir 31 and the reagent barrel in the process of performing the filling reagent and supplying the reagent to the reaction device 50 in the in-tank reservoir 31. 33 is in communication, and the at least one second control valve 37 is connected to the atmosphere when the in-machine reservoir 31 empties the reagent for inspection.
  • the at least one second control valve 37 and the at least one in-machine reservoir 31 are connected one-to-one, the at least one second control valve 37 and the at least one in-machine reservoir 31 One-to-one correspondence between the two.
  • the second control valve 37 is added between the reagent tank 33 and the in-tank reservoir 31, which is advantageous in that it is not necessary to evacuate the reagent of the in-tank reservoir 31 for maintenance or the like.
  • the cap assembly (not shown) of the reagent tub 33 is lifted from the reagent tub 33 to turn on the atmosphere, and the second control valve 37 is switched to the atmosphere to facilitate the inspection operation.
  • FIG. 6 is a schematic flow chart of a reagent supply method of the sample analyzer 100 in the first embodiment of the present application.
  • the reagent supply method is applied to the aforementioned sample analyzer 100, and the order of execution is not limited to the order shown in FIG. 6.
  • the method includes the steps of:
  • Step 610 Providing an in-tank reservoir 31 having a reagent, and a sealed space is formed between the in-tank reservoir 31 and an off-machine reagent tank 33 connected to the in-machine reservoir 31.
  • the sealed space is a sealed space of normal pressure.
  • Step 620 Providing a reagent transfer device that transfers the reagent from the in-tank reservoir 31 to the reaction device 50 in which the in-tank reservoir 31 is connected, and forms a negative in the confined space.
  • the reagent transfer device may be a metering pump 312, a syringe or the like.
  • Step 630 The negative pressure causes the in-machine reservoir 31 to draw reagent from the reagent tank 33 to be replenished in the in-tank reservoir 31.
  • the amount of the reagent that is transferred to the in-tank reservoir 31 by the reagent transfer device is equal to the amount of the reagent that is replenished to the in-tank reservoir 31 each time.
  • the reagent supply method further comprises the steps of:
  • Step 640 Acquire liquid level information of the reagent of the liquid storage tank 31 in the machine. Specifically, the controller 310 acquires liquid level information of the reagent of the in-tank reservoir 31 through the liquid level sensor 35.
  • Step 650 When it is determined that the liquid level is in the second liquid level, the reagent transfer device is controlled to stop. Specifically, the controller 310 controls the reagent transfer device to stop when the liquid level is in the second liquid level. Wherein the second liquid level is at a low liquid level.
  • the reagent supply method further comprises the steps of:
  • Step 660 The reagent transfer device stops operating to generate reagent-free failure information. Specifically, the controller 310 controls the reagent transfer device to stop the action, generates no reagent failure information, and controls the reagent-free fault information to be displayed on the user interface of the sample analyzer 100.
  • Step 670 After obtaining the fault elimination information, the in-machine liquid storage tank 31 transfers the reagent from the external reagent tank 33 to the in-machine liquid storage tank 31 under the driving of the power source 32.
  • the controller 310 obtains fault elimination information in response to a user's point of failure operation on the user interface, and controls the in-machine reservoir 31 to be driven by the power source 32.
  • a reagent is transferred into the in-tank reservoir 31 in the reagent tank 33.
  • Step 680 Obtain liquid level information of the reagent in the in-tank reservoir 31, and determine that the liquid level is in the first liquid level, and stop the reagent transfer. Specifically, when the controller 310 acquires the liquid level information of the reagent in the liquid storage tank 31 through the liquid level sensor 35, it is determined that the liquid level is in the first liquid level, that is, when the liquid level is high. And controlling the first control valve 34 to close to stop filling the in-machine reservoir 31 with the reagent.
  • the reagent supply device may stop filling the in-machine reservoir 31 with the reagent at the first liquid level, and control the reagent transfer device to stop at the second liquid level, which may be avoided on the one hand.
  • the liquid storage tank 31 inverts the intake passage due to the excessive amount of liquid, and on the other hand, prevents the liquid amount from being too small to cause the air bubbles to enter the liquid passage between the in-machine storage tank 31 and the reaction device 50.
  • the sample analyzer 100 of the embodiment has a small-volume internal reservoir 31 disposed inside the instrument, and first fills the reagent of the external reagent tank 33, such as a hemolytic agent, into the internal reservoir 31. Then, the internal liquid storage tank 31 and the external reagent tank 33 form a pressure-balanced closed space, and the temporary negative pressure generated by the reagent storage unit 50 by the internal liquid storage tank 31 is used to promptly replenish the reagent of the external reagent tank 33.
  • the in-tank reservoir 31 can make full use of reagents and shorten the time required for the instrument to stop working due to reagent replacement, thereby increasing the test speed.
  • FIG. 7 is a schematic flow chart of a reagent supply method of the sample analyzer 100 in the second embodiment of the present application.
  • the reagent supply method is applied to the aforementioned sample analyzer 100, and the order of execution is not limited to the order shown in FIG.
  • the method includes the steps of:
  • Step 710 Providing an in-tank reservoir 31 having a reagent, and a sealed space is formed between the in-flight reservoir 31 and an off-machine reagent tank 33 connected to the in-tank reservoir 31.
  • the sealed space is a sealed space of normal pressure.
  • Step 720 Providing a reagent transfer device, which transfers the reagent from the in-machine reservoir 31 to the reaction device 50 in which the in-tank reservoir 31 is connected, and forms a negative in the sealed space. Pressure.
  • Step 730 The negative pressure causes the in-machine reservoir 31 to draw reagent from the reagent tank 33 to be replenished in the in-tank reservoir 31.
  • the amount of the reagent that is transferred to the in-tank reservoir 31 by the reagent transfer device is equal to the amount of the reagent that is replenished to the in-tank reservoir 31 each time.
  • the reagent supply method further comprises the steps of:
  • Step 740 Acquire liquid level information of the reagent of the liquid storage tank 31 in the machine. Specifically, the controller 310 acquires liquid level information of the reagent of the in-tank reservoir 31 through the liquid level sensor 35.
  • Step 750 When the liquid level is determined to be in the third liquid level, no reagent failure information is generated, and the reagent transfer device still transfers the reagent from the internal liquid storage tank to the liquid storage pool connected to the internal liquid storage tank according to the detection requirement.
  • the reaction device 50 Specifically, the controller 310 acquires the liquid level information of the reagent of the liquid storage tank 31 in the liquid storage tank 35, and determines that the liquid level is in the third liquid level, that is, the early warning liquid level, and is generated. There is no reagent failure information, and the reagent transfer device still transfers the reagent to the reaction device 50 connected to the in-tank reservoir 31 as needed for detection.
  • Step 760 After obtaining the fault elimination information, the in-machine liquid storage tank 31 transfers the reagent from the external reagent tank 33 to the in-machine liquid storage tank 31 for charging under the driving of the power source 32, and During the filling process, the reagents in the in-tank reservoir 31 are still transferred to the reaction device 50 connected to the in-machine reservoir 31 in accordance with the detection requirements. Specifically, the controller 310 obtains fault elimination information in response to a user's point of failure operation on the user interface, and controls the in-machine reservoir 31 to be driven by the power source 32.
  • the reagent tank 33 transfers the reagent to the in-machine liquid storage tank 31 for filling, and during the filling process, the reagents in the internal liquid storage tank 31 are still transferred to the internal liquid storage according to the detection needs.
  • Step 770 Stop the reagent transfer when the liquid level sensor 35 senses that the liquid level in the internal liquid storage tank 31 is at the first liquid level. Specifically, the controller 310 stops the reagent transfer when the liquid level sensor 35 senses that the liquid level in the in-tank reservoir 31 is at the first liquid level, that is, the high liquid level.
  • the sample analyzer 100 when the liquid level sensor 35 senses the third liquid level, the sample analyzer 100 generates no reagent failure information to provide the user to replace the new reagent bucket 33 and perform the refilling operation, and generate In the process of refilling the reagents, the reagents in the in-tank reservoir 31 are continuously supplied to the reaction device 50 connected to the in-tank reservoir 31, so that the reagents are replaced without stopping the reagents. , save time for users and have a better user experience.

Abstract

一种样本分析仪,包括取样装置(10)、试剂供应装置(30)、至少一个反应装置(50)和至少一个检测装置(70),取样装置(10)采集一待测样本并将待测样本的至少一份移送至至少一个反应装置(50),试剂供应装置(30)包括至少一个机内储液池(31),每个机内储液池(31)通过动力源(32)从一机外试剂桶(33)内吸取试剂以进行对机内储液池(31)的充灌作业,并将机内储液池(31)内的试剂移送至与机内储液池(31)连通的反应装置(50),每个反应装置(50)中的待测样本和试剂混合反应得到试液,检测装置(70)对试液进行检测并产生检测信息。一种样本分析仪的试剂供应方法。通过机内储液池(31)从机外试剂桶(33)吸取试剂,更换新试剂桶时旧试剂桶内试剂残余量低,更换新试剂桶的时间短,更换新试剂桶时试剂消耗少。

Description

样本分析仪及其试剂供应方法 技术领域
本申请涉及生物样本分析领域,尤其涉及一种样本分析仪及其试剂供应方法。
背景技术
随着科学技术的发展,人们不仅希望产品物美价廉,还希望产品在使用过程中其使用成本越低越好。例如,样本分析仪在更换新试剂桶时旧试剂桶内试剂残余量,更换新试剂桶的时间,更换新试剂桶时试剂消耗量等都直接影响着样本分析仪的使用成本。然而,现有的样本分析仪在更换新试剂桶时旧试剂桶内试剂残余量多,更换新试剂桶的时间长,更换新试剂桶时试剂消耗多,使用成本高。
发明内容
本申请实施方式公开一种样本分析仪及其试剂供应方法,以解决上述问题。
本申请实施方式公开的一种样本分析仪,包括取样装置、试剂供应装置、至少一个反应装置和至少一个检测装置,所述取样装置用于采集一待测样本并将所述待测样本的至少一份移送至所述至少一个反应装置,所述试剂供应装置包括至少一个机内储液池,每个机内储液池通过动力源从一机外试剂桶内吸取试剂以进行对所述机内储液池的充灌作业,并将所述机内储液池内的试剂移送至与所述机内储液池连通的所述反应装置,每个所述反应装置中的待测样本和试剂混合反应得到试液,所述检测装置对所述试液进行检测并产生检测信息。
本申请实施方式公开的一种样本分析仪的试剂供应方法,包括步骤:提供一具有试剂的机内储液池,所述机内储液池和与所述机内储液池相连的一机外试剂桶之间形成密闭空间;提供一试剂移送装置,所述试剂移送装置从所述机内储液池将试剂移送到所述机内储液池连通的反应装置的同时,在所述密闭空间形成负压;及所述负压促使所述机内储液池从所述试剂桶吸取试剂以补充在所述机内储液池内。
本申请的样本分析仪及样本分析仪的试剂供应方法从机外试剂桶吸取试剂,更换新试剂桶的时间短,更换新试剂桶时试剂消耗少,并且旧试剂桶内试 剂残余量低。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式中的样本分析仪的模块示意图。
图2为本申请第一实施方式中的试剂供应装置和反应装置的液路示意图。
图3为本申请第二实施方式中的试剂供应装置和反应装置的液路示意图。
图4为本申请第三实施方式中的试剂供应装置和反应装置的液路示意图。
图5为本申请第四实施方式中的试剂供应装置和反应装置的液路示意图。
图6为本申请第一实施方式中的样本分析仪的试剂供应方法的流程示意图。
图7为本申请第二实施方式中的样本分析仪的试剂供应方法的流程示意图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
请参阅图1,图1为本申请一实施方式中的样本分析仪100的模块示意图。所述样本分析仪100用于对待测样本进行医学分析并产生相应的检测信息。本实施方式中,所述待测样本为血液样本。可理解,在其它实施方式中,所述待测样本还可以是体液样本、血清样本、血浆样本、尿液样本或其它适合的生物 样本,此处不做限制。具体地,所述样本分析仪100包括取样装置10、试剂供应装置30、至少一个反应装置50和至少一个检测装置70。所述取样装置10用于采集一待测样本(图未示)并将所述待测样本的至少一份移送至所述至少一个反应装置50。可理解,在本实施方式中,所述取样装置100可将所述待测样本分成多份,并将每份待测样本移送至对应的所述反应装置50。在其它实施方式中,所述每份待测样本可通过针管注射的方式移送至对应的所述反应装置50。
请一并参考图2,图2为本申请第一实施方式中的试剂供应装置30和反应装置50的液路示意图。所述试剂供应装置30包括至少一个机内储液池31和动力源32。所述动力源32分别与每个所述机内储液池31连通。本实施方式中,所述动力源32为高压气泵,其能够产生负压。每个所述机内储液池31通过所述动力源32从一机外试剂桶33内吸取试剂以进行对所述机内储液池31的试剂充灌作业。其中,所述试剂包括但不限于:血红蛋白测量用溶血剂、白细胞分析用溶血剂、有核红细胞分析用溶血剂和网织红细胞分析用稀释液等。所述试剂桶33内根据需要可以装任意一种试剂。所述“充灌”是指将所述机内储液池31用试剂灌满。所述机内储液池31进行试剂充灌的过程中,所述机内储液池31的空气沿着所述机内储液池31与所述动力源32之间的流路排出,因此不需额外的专门的排气泡步骤。
具体地,每个所述机内储液池31的容量较小,不超过100毫升,所述机内储液池31的低容量使得所述机内储液池31的充灌速度快,在更换一个充满试剂的新的装满试剂的试剂桶33后,补充该液量所耗的时间只需几秒,可以实现更换试剂速度快,可以减少所述样本分析仪100的待机时间,提高工作效率,为客户提供更高效的服务。
具体地,所述样本分析仪100包括机台(图未示),所述机台具有一收容空间(图未示),所述机内储液池31设置在所述收容空间内。
优选地,为了尽可能减少或排出试剂供应装置管路中的气泡,可以将所述试剂桶33放置在所述机台外部的地面上,所述机内储液池31的位置的水平高度高于所述试剂桶33且低于所述反应装置50。在其他实施方式中,为了方便机器内组件排布,也可以将所述收容空间设置在所述机台的顶部。
每个机内储液池31内的试剂被移送至与所述机内储液池31连通的所述反应装置50。每个所述反应装置50中的待测样本和试剂混合反应得到试液。所述检测装置70对所述试液进行检测并产生检测信息。
具体地,所述至少一个机内储液池31与所述至少一个反应装置50一一对应连通设置。每个所述机内储液池31为对应的所述反应装置50提供试剂。
具体地,所述至少一个反应装置50和所述至少一个检测装置70一一对应设置。每个所述反应装置50为对应的所述检测装置70提供试液,以供所述检测装置70进行试液检测并产生相应的检测信息。
具体地,每个所述机内储液池31与对应的所述试剂桶33相连通,而且,每个所述机内储液池31不经过阀而是直接与对应的所述试剂桶33相连通。
具体地,每个机内储液池31的试剂被移送至与所述机内储液池31连通的所述反应装置50的过程中,所述机内储液池31与对应的所述试剂桶33之间形成密闭空间。
其中,所述密闭空间为常压的密闭空间。所述“常压”是指所述机内储液池31内的压力基本保持不变,仅在向对应的所述反应装置50供应试剂时动态产生短暂的负压,并且所述负压待所述试剂桶33内的试剂补充到所述机内储液池31后便消失。
具体地,所述机内储液池31每次向与所述机内储液池31连通的所述反应装置50供应试剂后,所述机内储液池31与所述反应装置50之间形成的负压促使所述机内储液池31从所述试剂桶33吸取试剂以补充在所述机内储液池31内。
具体地,所述试剂供应装置30还包括至少一个定量泵312,每个定量泵312设置在对应的所述机内储液池31和与所述机内储液池31连接的所述反应装置50之间,所述定量泵312从所述机内储液池31吸取定量的试剂并移送至与所述机内储液池31相连通的所述反应装置50。进一步具体地,所述机内储液池31、所述定量泵312和所述反应装置50之间通过三通阀313连接。所述定量泵312通过三通阀314与负压动力源3151和正压动力源3152连接。所述负压动力源3151促使所述定量泵312从所述机内储液池31吸取试剂。所述正压动力源3152促使所述定量泵312将试剂移送到所述反应装置50。优选的, 定量泵的位置的水平高低,高于所述机内储液池31且低于所述反应装置20。
具体地,所述定量泵312从所述机内储液池31吸取定量的所述试剂时,所述机内储液池31与所述试剂桶33相连通并形成的密闭空间,所述机内储液池31每次向与所述机内储液池31连通的所述反应装置50供应所述定量的试剂后,所述机内储液池31与所述试剂桶33之间形成的负压促使所述机内储液池31从所述试剂桶33吸取所述定量的所述试剂以补充在所述机内储液池31内。
从而,所述机内储液池31在向与所述机内储液池31连接的所述反应装置50中加入试剂后时,所述机内储液池31内形成一定的负压,所述负压促使从所述试剂桶33内部自动补充消耗的试剂,所述样本分析仪100进行样本分析的过程中无需额外再充灌所述机内储液池31,可以节省测量过程中的系统耗气量。
具体地,所述试剂供应装置30还包括控制器310和至少一个第一控制阀34,每个所述机内储液池31通过对应的所述第一控制阀34与所述动力源32连接。
所述控制器310控制所述至少一个第一控制阀34打开以向与所述第一控制阀34对应的所述机内储液池31充灌试剂。具体地,所述第一控制阀34打开时,所述动力源32与所述机内储液池31之间连通。因而,可以通过所述动力源32对与所述第一控制阀34连接的所述机内储液池31充灌试剂。
所述控制器310控制所述至少一个第一控制阀34关闭以停止向所述机内储液池31充灌试剂。具体地,所述第一控制阀34关闭时,所述动力源32与所述机内储液池31之间不连通。因而,不可以通过所述动力源32对与所述第一控制阀34连接的所述机内储液池31充灌试剂。
可理解,本实施方式中,所述至少一个第一控制阀34的数量与所述至少一个机内储液池31的数量相同,所述至少一个第一控制阀34与所述至少一个机内储液池31一一对应连通设置,所述至少一个第一控制阀34分别与所述动力源32连接。从而,所述至少一个机内储液池31可分别采用不同的充灌压力进行试剂充灌作业,并且,每个所述机内储液池31可独立完成充灌作业,不受其他所述机内储液池31的影响。
具体地,所述试剂供应装置30还包括至少一个液位感应器35。本实施方式中,所述液位感应器35为浮子。所述浮子随液面移动,并可以实时检测液面高度以获得液位信息。可理解,在其它实施方式中,所述液位感应器35包括至少两块液位板,每个液位板对应一个需要监测的液面高度。液位板通过连杆与传感器连接,液面是否到达目标液面,会产生两种电信号,产生液位信息。
所述至少一个液位感应器35与所述至少一个机内储液池31对应设置。其中,每个所述机内储液池31中设置至少一个所述液位感应器35,所述控制器310在所述液位感应器35感应到第一液位时,控制与所述液位感应器35对应的所述第一控制阀34关闭以停止向与所述液位感应器35对应的所述机内储液池31充灌试剂,所述控制器310在所述液位感应器35感应到第二液位时,控制所述试剂供应装置30停止向所述反应装置50提供试剂。其中,本实施方式中,所述第一液位为高液位,所述第二液位为低液位。
具体地,所述控制器310控制所述试剂供应装置30停止向所述反应装置50提供试剂后,产生无试剂故障信息。当用户更换装满试剂的新试剂桶33并在所述样本分析仪100的用户界面上点消故障后,所述控制器310控制与所述液位感应器35对应的所述第一控制阀34打开,以在所述动力源32的驱动下从新试剂桶33内移送试剂到所述机内储液池31。所述控制器310在所述液位感应器35感应到第一液位时,控制与所述液位感应器35对应的所述第一控制阀34关闭以停止充灌。
具体地,所述机内储液池31的第一液位和第二液位之间的高度差较小,从而由于所述液位感应器35检测所述机内储液池31为满到所述液位感应器35检测所述机内储液池31为空的过程,所述机内储液池31的液位下降较小,在更换一个充满试剂的新试剂桶33后,补充该液量所耗的时间只需几秒,可以实现更换试剂速度快,可以进一步减少所述样本分析仪100的待机时间,提高工作效率,为客户提供更高效的服务。
具体地,所述控制器310在所述液位感应器35感应到第三液位时,发出无试剂故障信息,同时所述机内储液池31内的试剂持续被移送至与所述机内储液池31连接的所述反应装置50。当用户更换装满试剂的新试剂桶33并在所述样本分析仪100的用户界面上点消故障后,所述控制器310控制所述第一 控制阀34连通所述动力源32和所述机内储液池31以在所述动力源32的驱动下从新试剂桶33内移送试剂到所述机内储液池31,且在充灌过程中所述机内储液池31内的试剂持续被移送至与所述机内储液池31连接的所述反应装置50。其中,所述第三液位是一个预警液位,位于所述第一液位和所述第二液位之间。从而,所样本分析仪100在所述液位感应器35感应到第三液位时,产生无试剂故障信息,以提供用户更换新试剂桶33并执行再次充灌作业,并且产生无试剂故障信息到再次充灌作业的过程中,所述机内储液池31的试剂被持续供应到与所述机内储液池31连接的所述反应装置50,实现了不停机更换试剂,为用户节约时间,具有更好的用户体验。
具体地,所述动力源32为再次充灌提供的负压的绝对值小于所述定量泵312将试剂从所述机内储液池31移送至所述反应装置50的压力绝对值。可理解,在一实施方式中,可通过另外设置的低负压气泵为再次充灌提供负压。在另一实施方式中,可通过另外设置的定量泵或者注射器,将所述试剂桶33中的试剂反复移送到所述机内储液池31中。
具体地,所述控制器310控制所述第一控制阀34连通所述动力源32和所述机内储液池31执行充灌预设时间段后,所述液位感应器35仍没有感应到最第一液位时,控制所述试剂供应装置30停止向所述反应装置50提供试剂。
从而,利用所述机内储液池31中的所述液位感应器35检测试剂有无,当液位下降到所述液位感应器35并产生触发信号时,产生无试剂故障信息,此时,所述试剂桶33内的试剂已最大程度的吸入到所述机内储液池31中,所述试剂桶33内的试剂残余量低。更换充满试剂的新试剂桶33后,利用所述动力源32,将所述试剂桶33内的试剂充灌到所述机内储液池31,当所述液位感应器35浮起并产生触发信号时则更换试剂成功,此过程中,所述样本分析仪100并不消耗试剂,更换试剂过程中无试剂浪费。
请一并参考图3,图3为本申请第二实施方式中的试剂供应装置30a和反应装置50的液路示意图。所述试剂供应装置30a与所述试剂供应装置30相似,区别之处在于,所述试剂供应装置30a的动力源32a为小气泵,与第一实施方式中的高压气泵不同的是,所述小气泵成本低,也可以用来产生充灌试剂需要的负压,但所述高压气泵不仅能产生充灌试剂需要的负压,还能产生正压,用 作其它用途。
请一并参考图4,图4为本申请第三实施方式中的试剂供应装置30b和反应装置50的液路示意图。所述试剂供应装置30b与所述试剂供应装置30相似,区别之处在于,所述试剂供应装置30b还包括废液池36、第三控制阀38和废液桶39。所述废液池36收集所述反应装置50和所述检测装置70的试液,所述废液桶39与所述废液池36连接,所述废液池36设置在所述至少一个机内储液池31和所述动力源32之间,所述第三控制阀38设置在所述废液池36和所述动力源32之间。所述动力源32为高压气泵,其可以提供正压,还可以提供负压。所述第三控制阀38打开时,所述动力源32向所述废液池36提供正压以排空废液池36的废液到所述废液桶39中,所述动力源32向所述废液池36提供负压以收集废液到所述废液池36。所述废液池36还通过第一控制阀34与所述机内储液池31连接,当机内储液池31需要充灌时,打开第一控制阀34,废液池36为机内储液池31提供负压,以使所述试剂桶33的试剂进入所述机内储液池31。
可理解,在其它实施方式中,所述第三控制阀38可省略,所述动力源32直接与所述废液池36连接。
可理解,当用户更换装满试剂的新试剂桶33并在所述样本分析仪100的用户界面上点消故障后,调解所述废液池36的负压绝对值小于所述定量泵312从所述机内储液31池吸取试剂的压力,不影响所述定量泵312工作,让所述试剂桶33的试剂进入所述机内储液池31,所述液位感应器35感应到所述第一液位时,充灌完成。
充灌所述机内储液池31的动力源32使用所述样本分析仪100用于其它通道废液收集的废液池36,其优点是当所述液位感应器35有异常无法准检测液位时,所述机内储液池31内部的试剂可能会倒灌进入气路,使用所述废液池36后,试剂能够在所述废液池36中缓存而不会进入仪器的气源损坏所述样本分析仪。
更换充满试剂的新试剂桶33后,利用所述废液池36中的所述动力源32,将所述试剂桶33内的试剂充灌到所述机内储液池31,当所述液位感应器35浮起并产生触发信号后则更换试剂成功,此过程中,所述样本分析仪100并不 消耗试剂,更换试剂过程中无试剂浪费。
请一并参考图5,图5为本申请第四实施方式中的试剂供应装置30c和反应装置50的液路示意图。所述试剂供应装置30c与所述试剂供应装置30b相似,区别之处在于,所述试剂供应装置还包括至少一个第一控制阀34和至少一个第二控制阀37,所述至少一个第一控制阀34与第一实施方式的相同,此处不再赘述,所述至少一个第二控制阀37设置在所述至少一个机内储液池31与所述至少一个试剂桶33之间连接的流路上,所述至少一个第二控制阀37在所述机内储液池31执行充灌试剂和向所述反应装置50供应试剂的过程中使所述机内储液池31和所述试剂桶33连通,所述至少一个第二控制阀37在所述机内储液池31排空试剂以进行检修时连通大气。
具体地,所述至少一个第二控制阀37和所述至少一个机内储液池31之间一一对应连接,所述至少一个第二控制阀37和所述至少一个机内储液池31之间一一对应连接。
在所述试剂桶33和所述机内储液池31之间增加所述第二控制阀37,好处在于,为了检修等的需要,需排空所述机内储液池31的试剂时无需将所述试剂桶33的瓶盖组件(图未示)从所述试剂桶33中提出来以接通大气,而是将所述第二控制阀37切换接通大气即可,方便检修操作。
图6为本申请第一实施方式中的样本分析仪100的试剂供应方法的流程示意图。所述试剂供应方法应用于前述的样本分析仪100中,执行顺序并不限于图6所示的顺序。所述方法包括步骤:
步骤610:提供一具有试剂的机内储液池31,所述机内储液池31和与所述机内储液池31相连的一机外试剂桶33之间形成密闭空间。具体地,所述密闭空间为常压的密闭空间。
步骤620:提供一试剂移送装置,所述试剂移送装置从所述机内储液池31将试剂移送到所述机内储液池31连通的反应装置50的同时,在所述密闭空间形成负压。其中,所述试剂移送装置可以是定量泵312、注射器等。
步骤630:所述负压促使所述机内储液池31从所述试剂桶33吸取试剂以补充在所述机内储液池31内。
具体地,所述试剂移送装置每次移送到所述机内储液池31的试剂的量与 每次补充到所述机内储液池31的试剂的量相等。
可选择地,所述试剂供应方法还包括步骤:
步骤640:获取所述机内储液池31的试剂的液位信息。具体地,所述控制器310通过所述液位感应器35获取所述机内储液池31的试剂的液位信息。
步骤650:判断所述液位处于第二液位时,控制所述试剂移送装置停止动作。具体地,所述控制器310判断所述液位处于所述第二液位时,控制所述试剂移送装置停止动作。其中,所述第二液位时低液位。
可选择地,所述试剂供应方法还包括步骤:
步骤660:所述试剂移送装置停止动作,产生无试剂故障信息。具体地,所述控制器310控制所述试剂移送装置停止动作,产生无试剂故障信息,并控制所述样本分析仪100的用户界面上显示所述无试剂故障信息。
步骤670:获得故障消除信息后,所述机内储液池31在所述动力源32的驱动下从一机外试剂桶33内移送试剂到所述机内储液池31。
具体地,所述控制器310响应用户在所述用户界面上的点消故障操作后,获得故障消除信息,并控制所述机内储液池31在所述动力源32的驱动下从所述试剂桶33内移送试剂到所述机内储液池31。
步骤680:获得所述机内储液池31的试剂的液位信息,判断所述液位处于第一液位时,停止试剂移送。具体地,所述控制器310通过所述液位感应器35获取所述机内储液池31的试剂的液位信息时,判断所述液位处于第一液位,也就是高液位时,控制所述第一控制阀34关闭以停止向所述机内储液池31充灌试剂。
在本实施方式中,所述机内储液池31为与其连接的所述反应装置50中提供试剂后,所述机内储液池31内形成一定的负压,所述负压促使从所述试剂桶33内部自动补充消耗的试剂,所述样本分析仪100进行样本分析的过程中无需额外再充灌所述机内储液池31,可以节省测量过程中的系统耗气量。此外,试剂供应装置可以在第一液位时停止向所述机内储液池31充灌试剂,并在第二液位时控制所述试剂移送装置停止动作,可以一方面避免所述机内储液池31由于液量过多倒灌进气路,另一方面避免液量过少导致气泡进入所述机内储液池31和所述反应装置50之间的液路。本实施例方式的样本分析仪100, 具有设置在仪器内部的小容积的机内储液池31,先将机外试剂桶33的试剂,例如溶血剂,充灌到机内储液池31,然后使得机内储液池31与机外试剂桶33形成压力平衡的密闭空间,利用机内储液池31移送试剂给反应装置50产生的短暂负压使得机外试剂桶33的试剂及时补充到机内储液池31,可以充分利用试剂,并缩短试剂更换导致的仪器停止工作的时间,提高测试速度。
图7为本申请第二实施方式中的样本分析仪100的试剂供应方法的流程示意图。所述试剂供应方法应用于前述的样本分析仪100中,执行顺序并不限于图7所示的顺序。所述方法包括步骤:
步骤710:提供一具有试剂的机内储液池31,所述机内储液池31和与所述机内储液池31相连的一机外试剂桶33之间形成密闭空间。具体地,所述密闭空间为常压的密闭空间。
步骤720:提供一试剂移送装置,所述试剂移送装置从所述机内储液池31将试剂移送到所述机内储液池31连通的反应装置50的同时,在所述密闭空间形成负压。
步骤730:所述负压促使所述机内储液池31从所述试剂桶33吸取试剂以补充在所述机内储液池31内。
具体地,所述试剂移送装置每次移送到所述机内储液池31的试剂的量与每次补充到所述机内储液池31的试剂的量相等。
可选择地,所述试剂供应方法还包括步骤:
步骤740:获取所述机内储液池31的试剂的液位信息。具体地,所述控制器310通过所述液位感应器35获取所述机内储液池31的试剂的液位信息。
步骤750:判断所述液位处于第三液位时,产生无试剂故障信息,同时所述试剂移送装置仍按照检测需要从机内储液池移送试剂到与所述机内储液池连接的所述反应装置50。具体地,所述控制器310通过所述液位感应器35获取所述机内储液池31的试剂的液位信息,判断所述液位处于第三液位也就是预警液位时,产生无试剂故障信息,同时所述试剂移送装置仍按照检测需要移送试剂到与所述机内储液池31连接的所述反应装置50。
步骤760:获得故障消除信息后,所述机内储液池31在所述动力源32的驱动下从一机外试剂桶33内移送试剂到所述机内储液池31进行充灌,且在充 灌过程中,所述机内储液池31内的试剂仍按照检测需要移送至与所述机内储液池31连接的所述反应装置50。具体地,所述控制器310响应用户在所述用户界面上的点消故障操作后,获得故障消除信息,并控制所述机内储液池31在所述动力源32的驱动下从所述试剂桶33内移送试剂到所述机内储液池31进行充灌,且在充灌过程中,所述机内储液池31内的试剂仍按照检测需要移送至与所述机内储液池31连接的所述反应装置50。
步骤770:在所述液位感应器35感应到所述机内储液池31内的液位处于第一液位时,停止试剂移送。具体地,所述控制器310在所述液位感应器35感应到所述机内储液池31内的液位处于第一液位,即高液位时,停止试剂移送。
在本实施方式中,所样本分析仪100在所述液位感应器35感应到第三液位时,产生无试剂故障信息,以提供用户更换新试剂桶33并执行再次充灌作业,并且产生无试剂故障信息到再次充灌作业的过程中,所述机内储液池31的试剂被持续供应到与所述机内储液池31连接的所述反应装置50,实现了不停机更换试剂,为用户节约时间,具有更好的用户体验。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
以上所述是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (22)

  1. 一种样本分析仪,包括取样装置、试剂供应装置、至少一个反应装置和至少一个检测装置,所述取样装置用于采集一待测样本并将所述待测样本的至少一份移送至所述至少一个反应装置,所述试剂供应装置包括至少一个机内储液池,每个机内储液池通过动力源从一机外试剂桶内吸取试剂以进行对所述机内储液池的充灌作业,并将所述机内储液池内的试剂移送至与所述机内储液池连通的所述反应装置,每个所述反应装置中的待测样本和试剂混合反应得到试液,所述检测装置对所述试液进行检测并产生检测信息。
  2. 如权利要求1所述的样本分析仪,其特征在于,所述至少一个机内储液池与所述至少一个反应装置一一对应连通设置,每个所述机内储液池为对应的所述反应装置提供试剂。
  3. 如权利要求1所述的样本分析仪,其特征在于,每个机内储液池的所述试剂被移送至与所述机内储液池连通的所述反应装置的过程中,所述机内储液池与所述试剂桶之间形成密闭空间。
  4. 如权利要求3所述的样本分析仪,其特征在于,所述机内储液池每次向与所述机内储液池连通的所述反应装置供应试剂后,所述机内储液池与所述反应装置之间形成的负压促使所述机内储液池从所述试剂桶吸取试剂以补充在所述机内储液池内。
  5. 如权利要求1至4任一项所述的样本分析仪,其特征在于,所述试剂供应装置还包括至少一个定量泵,每个定量泵设置在对应的所述机内储液池和与所述机内储液池连接的所述反应装置之间,所述定量泵从所述机内储液池吸取定量的试剂并移送至与所述机内储液池相连通的所述反应装置。
  6. 如权利要求5所述的样本分析仪,其特征在于,所述定量泵从所述机 内储液池吸取定量的所述试剂时,所述机内储液池与所述试剂桶相连通,所述机内储液池每次向与所述机内储液池连通的所述反应装置供应所述定量的试剂后,所述机内储液池与所述试剂桶之间形成的负压促使所述机内储液池从所述试剂桶吸取所述定量的所述试剂以补充在所述机内储液池内。
  7. 如权利要求1所述的样本分析仪,其特征在于,所述机内储液池不经过阀直接与所述试剂桶相连通。
  8. 如权利要求1所述的样本分析仪,其特征在于,所述试剂供应装置还包括控制器和至少一个第一控制阀,每个所述机内储液池通过对应的所述第一控制阀与所述动力源连接,所述动力源提供负压,所述控制器控制所述至少一个第一控制阀打开以向与所述第一控制阀对应的所述机内储液池充灌试剂,所述控制器控制所述至少一个第一控制阀关闭以停止向所述机内储液池充灌试剂。
  9. 如权利要求8所述的样本分析仪,其特征在于,所述至少一个第一控制阀的数量与所述至少一个机内储液池的数量相同,所述至少一个第一控制阀与所述至少一个机内储液池一一对应连接,所述至少一个第一控制阀分别与所述动力源连接。
  10. 如权利要求8至9任一项所述的样本分析仪,其特征在于,所述试剂供应装置还包括至少一个第二控制阀,所述至少一个第二控制阀设置在所述至少一个机内储液池与所述至少一个试剂桶之间连接的流路上,所述至少一个第二控制阀在所述机内储液池执行充灌试剂和向所述反应装置供应试剂的过程中使所述机内储液池和所述试剂桶连通,所述至少一个第二控制阀在所述机内储液池排空时连通大气。
  11. 如权利要求10所述的样本分析仪,其特征在于,所述至少一个第二控制阀和所述至少一个机内储液池之间一一对应连接,所述至少一个第二控制阀和所述至少一个机内储液池之间一一对应连接。
  12. 如权利要求8所述的样本分析仪,其特征在于,所述试剂供应装置还包括废液池,所述废液池收集所述反应装置和所述检测装置的试液,所述废液池设置在所述至少一个第一控制阀和所述动力源之间,所述动力源向所述废液池提供正压以排空废液池的废液,所述动力源向所述废液池提供负压以收集废液到所述废液池;所述废液池连接所述机内储液池,为所述机内储液池提供负压,以使所述试剂桶的试剂进入所述机内储液池。
  13. 如权利要求1所述的样本分析仪,其特征在于,所述机内储液池的容量不大于100毫升。
  14. 如权利要求8所述的样本分析仪,其特征在于,所述至少一个机内储液池还包括液位感应器,所述控制器在所述液位感应器感应到第一液位时,控制与所述液位感应器对应的所述第一控制阀关闭以停止向与所述液位感应器对应的所述机内储液池充灌试剂,所述控制器在所述液位感应器感应到第二液位时,控制所述试剂供应装置停止向所述反应装置提供试剂。
  15. 如权利要求14所述的样本分析仪,其特征在于,所述控制器控制所述试剂供应装置停止向所述反应装置提供试剂后,所述控制器控制与所述液位感应器对应的所述第一控制阀打开以再次执行充灌的动作,所述控制器在所述液位感应器感应到的第一液位时,控制与所述液位感应器对应的所述第一控制阀关闭以停止充灌。
  16. 如权利要求14所述的样本分析仪,其特征在于,所述控制器在所述液位感应器感应到第三液位时,发出无试剂故障信息,同时所述机内储液池内的试剂持续被移送至与所述机内储液池连接的所述反应装置。
  17. 一种样本分析仪的试剂供应方法,包括步骤:
    提供一具有试剂的机内储液池,所述机内储液池和与所述机内储液池相连 的一机外试剂桶之间形成密闭空间;
    提供一试剂移送装置,所述试剂移送装置从所述机内储液池将试剂移送到所述机内储液池连通的反应装置的同时,在所述密闭空间形成负压;及
    所述负压促使所述机内储液池从所述试剂桶吸取试剂以补充在所述机内储液池内。
  18. 如权利要求17所述的试剂供应方法,其特征在于,所述试剂移送装置每次移送到所述机内储液池的试剂的量与每次补充到所述机内储液池的试剂的量相等。
  19. 如权利要求18所述的试剂供应方法,其特征在于,所述试剂供应方法还包括步骤:
    获取所述机内储液池的试剂的液位信息;
    判断所述液位处于第二液位时,控制所述试剂移送装置停止动作。
  20. 如权利要求19所述的试剂供应方法,其特征在于,所述试剂供应方法还包括步骤:
    所述试剂移送装置停止动作,产生无试剂故障信息;
    获得故障消除信息后,所述机内储液池在动力源的驱动下从一机外试剂桶内被移送试剂到所述机内储液池;
    获得所述机内储液池的试剂的液位信息,判断所述液位处于第一液位时,停止试剂移送。
  21. 如权利要求18所述的试剂供应方法,其特征在于,所述试剂供应方法还包括步骤:
    获得所述机内储液池的试剂的液位信息,判断所述液位处于第三液位时,产生无试剂故障信息,同时所述试剂移送装置仍按照检测需要从所述机内储液池移送试剂到与所述机内储液池连接的所述反应装置。
  22. 如权利要求21所述的试剂供应方法,其特征在于,所述试剂供应方法还包括步骤:
    获得故障消除信息后,所述机内储液池在动力源的驱动下从一机外试剂桶内移送试剂到所述机内储液池进行充灌,且在充灌过程中,所述试剂移送装置仍按照检测需要从所述机内储液池移送试剂至与所述机内储液池连接的所述反应装置;
    在所述液位感应器感应到所述机内储液池内的液位处于第一液位时,停止试剂移送到所述机内储液池。
PCT/CN2017/120373 2017-12-30 2017-12-30 样本分析仪及其试剂供应方法 WO2019127562A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/120373 WO2019127562A1 (zh) 2017-12-30 2017-12-30 样本分析仪及其试剂供应方法
CN201780097032.XA CN111373262A (zh) 2017-12-30 2017-12-30 样本分析仪及其试剂供应方法
CN201822091238.6U CN210037838U (zh) 2017-12-30 2018-12-12 样本分析仪
CN201811521942.9A CN109991431A (zh) 2017-12-30 2018-12-12 样本分析仪及其试剂供应方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/120373 WO2019127562A1 (zh) 2017-12-30 2017-12-30 样本分析仪及其试剂供应方法

Publications (1)

Publication Number Publication Date
WO2019127562A1 true WO2019127562A1 (zh) 2019-07-04

Family

ID=67062930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120373 WO2019127562A1 (zh) 2017-12-30 2017-12-30 样本分析仪及其试剂供应方法

Country Status (2)

Country Link
CN (3) CN111373262A (zh)
WO (1) WO2019127562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646743A (zh) * 2022-03-17 2022-06-21 重庆昕晟环保科技有限公司 一种二次供水末端滤芯去除余氯试验装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373262A (zh) * 2017-12-30 2020-07-03 深圳迈瑞生物医疗电子股份有限公司 样本分析仪及其试剂供应方法
CN110687307A (zh) * 2019-09-24 2020-01-14 香港大德昌龙生物科技有限公司 体外诊断试剂补充方法及系统、设备、存储介质
CN112782418B (zh) * 2019-11-01 2024-02-27 深圳迈瑞生物医疗电子股份有限公司 外置供液装置和供液方法
CN112763738B (zh) * 2019-11-01 2024-04-05 深圳迈瑞生物医疗电子股份有限公司 供液系统
CN112904036B (zh) * 2019-12-03 2024-02-06 深圳迈瑞生物医疗电子股份有限公司 一种供液系统及其方法
CN112904030A (zh) * 2019-12-03 2021-06-04 深圳迈瑞生物医疗电子股份有限公司 一种供液系统及其方法
CN113030478A (zh) * 2019-12-25 2021-06-25 深圳迈瑞生物医疗电子股份有限公司 一种特定蛋白反应池及特定蛋白的检测系统
CN114113004A (zh) * 2020-08-28 2022-03-01 深圳市帝迈生物技术有限公司 废液处理方法及装置、样本分析仪
CN112180047A (zh) * 2020-11-18 2021-01-05 广东省特种设备检测研究院 一种吸氢剂除氢测试装置及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201361A (zh) * 2006-12-15 2008-06-18 深圳迈瑞生物医疗电子股份有限公司 气液隔离式储液装置
CN102565063A (zh) * 2010-12-31 2012-07-11 深圳迈瑞生物医疗电子股份有限公司 试剂检测装置、系统及方法、血液分析装置
CN103946364A (zh) * 2011-09-25 2014-07-23 赛拉诺斯股份有限公司 用于多重分析的系统和方法
WO2014178085A2 (en) * 2013-05-02 2014-11-06 Ashish Jain A system integrated with communicating device for medical analysis of biological matter
CN107102156A (zh) * 2010-04-16 2017-08-29 欧普科诊断有限责任公司 用于样本分析的系统和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH429235A (de) * 1962-07-21 1967-01-31 Ckd Dukla Narodni Podnik Verfahren zur Erzeugung pneumatischer Unterdruckimpulse zur Betätigung von Überlaufpipetten
CN101246180B (zh) * 2007-02-16 2012-11-21 深圳迈瑞生物医疗电子股份有限公司 一种血液细胞分析仪清洁液自动灌注方法及装置
EP3543706B1 (en) * 2009-03-18 2021-11-10 Sysmex Corporation Method of analyzing a sample
CN102116771B (zh) * 2010-01-04 2013-12-04 深圳市亚辉龙生物科技有限公司 一种全自动酶联免疫分析仪
JP5550364B2 (ja) * 2010-01-26 2014-07-16 シスメックス株式会社 試薬調製装置
JP5705579B2 (ja) * 2011-02-18 2015-04-22 株式会社日立ハイテクノロジーズ 分析装置
JP6050939B2 (ja) * 2012-02-08 2016-12-21 株式会社日立ハイテクノロジーズ 容器及び容器を保持する装置
JP6384351B2 (ja) * 2015-02-10 2018-09-05 株式会社島津製作所 アミノ酸配列分析装置
CN105004872B (zh) * 2015-07-19 2017-03-08 武汉明德生物科技股份有限公司 全自动免疫定量分析仪
CN111373262A (zh) * 2017-12-30 2020-07-03 深圳迈瑞生物医疗电子股份有限公司 样本分析仪及其试剂供应方法
CN208334379U (zh) * 2017-12-30 2019-01-04 深圳迈瑞生物医疗电子股份有限公司 样本分析仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201361A (zh) * 2006-12-15 2008-06-18 深圳迈瑞生物医疗电子股份有限公司 气液隔离式储液装置
CN107102156A (zh) * 2010-04-16 2017-08-29 欧普科诊断有限责任公司 用于样本分析的系统和装置
CN102565063A (zh) * 2010-12-31 2012-07-11 深圳迈瑞生物医疗电子股份有限公司 试剂检测装置、系统及方法、血液分析装置
CN103946364A (zh) * 2011-09-25 2014-07-23 赛拉诺斯股份有限公司 用于多重分析的系统和方法
WO2014178085A2 (en) * 2013-05-02 2014-11-06 Ashish Jain A system integrated with communicating device for medical analysis of biological matter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646743A (zh) * 2022-03-17 2022-06-21 重庆昕晟环保科技有限公司 一种二次供水末端滤芯去除余氯试验装置
CN114646743B (zh) * 2022-03-17 2023-06-06 重庆昕晟环保科技有限公司 一种二次供水末端滤芯去除余氯试验装置

Also Published As

Publication number Publication date
CN111373262A (zh) 2020-07-03
CN210037838U (zh) 2020-02-07
CN109991431A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2019127562A1 (zh) 样本分析仪及其试剂供应方法
US20070243106A1 (en) Flow cytometer system with sheath and waste fluid measurement
US5641006A (en) Liquid supply apparatus and method of operation
US20020017534A1 (en) Chemical delivery systems and methods of delivery
JP6971411B2 (ja) 自動分析装置
CN109012444A (zh) 一种浓缩洗液自动配比系统及配比方法
JP2007322285A (ja) 分注装置
CN208334379U (zh) 样本分析仪
US20090071269A1 (en) Specimen analyzer and liquid suction assembly
CN215711746U (zh) 试剂加注装置
CN209961769U (zh) 水质分析仪和水质在线监测系统
JP5442627B2 (ja) 液体クロマトグラフィ装置
JP6813278B2 (ja) ピペット分注針のための洗浄ステーションの機能を監視する方法
WO2017128570A1 (zh) 在线监测系统
US20180369882A1 (en) Nozzle washing apparatus, dispensing apparatus, and method for washing nozzle
CN215449313U (zh) 一种除气泡的液路系统结构
JP3120180U (ja) 自動分析装置
CN113759139A (zh) 样本分析仪及其供液方法
CN217005985U (zh) 一种用于移液器清洗系统的液路监控装置及样本分析仪
JPH0672494A (ja) 液供給方法および装置
CN219915650U (zh) 样本分析仪
CN218917404U (zh) 一种储液装置以及样本分析仪
CN115676759A (zh) 试剂加注装置和方法
CN215866599U (zh) 样本分析仪
CN210311852U (zh) 一种溶胶罐在线放胶定量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936060

Country of ref document: EP

Kind code of ref document: A1