WO2019127509A1 - 具有触控功能的实体地球仪、显示终端和地图显示方法 - Google Patents

具有触控功能的实体地球仪、显示终端和地图显示方法 Download PDF

Info

Publication number
WO2019127509A1
WO2019127509A1 PCT/CN2017/120238 CN2017120238W WO2019127509A1 WO 2019127509 A1 WO2019127509 A1 WO 2019127509A1 CN 2017120238 W CN2017120238 W CN 2017120238W WO 2019127509 A1 WO2019127509 A1 WO 2019127509A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
touch gesture
globe
display
map
Prior art date
Application number
PCT/CN2017/120238
Other languages
English (en)
French (fr)
Inventor
谢俊
周霞
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201780097404.9A priority Critical patent/CN111433832B/zh
Priority to PCT/CN2017/120238 priority patent/WO2019127509A1/zh
Publication of WO2019127509A1 publication Critical patent/WO2019127509A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B27/00Planetaria; Globes
    • G09B27/08Globes

Definitions

  • the present application relates to the field of flexible touch, and in particular, to a physical globe with a touch function, a display terminal, and a map display method.
  • the globe is a model of the earth that is made to make it easier for people to know the earth, to mimic the shape of the earth, and to scale down according to a certain scale.
  • the common globe on the market only has the function of displaying the continents and maps of the seven continents, the four oceans, and the countries of the world.
  • the second is a video globe, which uses advanced invisible code optical recognition technology and digital voice technology. Just click on the video globe with a reader to play local detailed audio and video on the globe's display unit.
  • the existing globe can realize touch at a specific position only by providing a plurality of touch points in the inside thereof, and it is impossible to achieve touch at any position on the surface of the globe.
  • the embodiment of the present application discloses a physical globe with a touch function, a display terminal, and a map display method to solve the above problem.
  • the embodiment of the present application discloses a physical globe with a touch function, including a globe contour housing, the physical globe further includes: a processor and a flexible touch screen electrically connected to the processor, the flexible touch The control panel is disposed on a surface of the shell of the earth contour, and the flexible touch screen generates a corresponding touch signal in response to a touch operation of the user, and the processor is configured to: respond to the touch signal identifier
  • the touch coordinate sequence of the touch operation identifies a corresponding touch gesture according to the touch coordinate sequence, and sends the touch gesture to a display terminal to allow the display terminal to display a corresponding response in response to the touch gesture Map information.
  • the embodiment of the present application discloses a display terminal for wirelessly connecting with a physical globe
  • the display terminal includes a processor, a display unit, and a communication unit
  • the processor controls the display unit to display a virtual globe
  • the communication receives a touch gesture sent by the physical globe
  • the processor controls the virtual globe to display corresponding map information according to the touch gesture and the current display mode of the virtual globe.
  • the embodiment of the present application discloses a map display method, which is applied to a physical globe and a display terminal, where the physical globe includes an earth contoured shell and a flexible touch screen disposed on the shell surface of the earth contour shell.
  • the flexible touch screen generates a corresponding touch signal in response to the touch operation of the user
  • the display terminal displays a virtual globe
  • the map display method includes: recognizing the touch coordinates of the touch operation in response to the touch signal a sequence, identifying a corresponding touch gesture according to the touch coordinate sequence, and transmitting the touch gesture to the display terminal; the display terminal receiving a control gesture sent by the physical globe, and according to the touch The gesture and the current display mode of the virtual globe control the virtual globe to display corresponding map information.
  • the physical globe, the display terminal and the map display method with the touch function of the present application provide a flexible touch screen on the earth contour housing of the physical globe, and the flexible touch screen responds to the touch operation of the user on the touch screen.
  • a touch signal the processor of the physical globe recognizing the touch coordinate sequence of the touch operation in response to the touch signal, identifying a corresponding touch gesture according to the touch coordinate sequence, and transmitting the touch gesture to the display terminal.
  • the display terminal controls the virtual globe to display corresponding map information according to the touch gesture and the current display mode of the virtual globe, so that the display terminal can be controlled by a touch operation on the flexible touch screen of the physical globe.
  • the virtual globe displays the corresponding map information for a better user experience.
  • FIG. 1 is a schematic block diagram of a map display system in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a map display system in FIG. 1 according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an angle sensor and a coordinate system in the physical globe of FIG. 1 according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of gravity acceleration and projection components in an XY plane after the coordinate system of FIG. 3 is rotated by a certain angle in an embodiment of the present application.
  • FIG. 5 is a schematic plan view of the physical globe of FIG. 1 and its opening in the longitude direction according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart diagram of a map display method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a sub-flow after entering a map mode in a map display method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a sub-flow after entering the earth mode in the map display method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a calculation flow of a direction angle after entering the earth mode in the map display method according to an embodiment of the present application.
  • FIG. 1 is a schematic block diagram of a map display system 1000 according to an embodiment of the present application.
  • the map display system 1000 includes a physical globe 100 having a touch function and a display terminal 200.
  • the physical globe 100 is a physical globe with a physical mechanical structure.
  • the physical globe 100 and the display terminal 200 are connected by a network 300.
  • the network 300 can be an Internet (Online), an On-Demand virtual Lease Line, a wireless network including WIFI, Bluetooth, a telephone network including a GPRS network, a CDMA network, and a broadcast. TV network, etc.
  • the display terminal 200 displays a virtual globe 250 (shown in FIG. 2) having the same outer shape as the physical globe 100.
  • the physical globe 100 recognizes a user's touch operation on the shell surface and recognizes the touch gesture according to the touch operation, and passes The network 300 transmits a touch gesture to the display terminal 200, and the display terminal 200 controls the virtual globe 250 to display corresponding map information in response to the touch gesture.
  • the physical globe 100 includes an earth contour housing 110, a processor 120, a memory 130, a communication unit 140, a flexible touch screen 150, and an angle sensor 160.
  • the flexible touch screen 150 is disposed on the shell surface of the earth contoured housing 110, and an earth map is printed on the shell surface of the earth contour housing 110.
  • the processor 120, the memory 130, the communication unit 140, and the angle sensor 160 are disposed inside the earth contour housing 110, and the memory 130, the communication unit 140, and the angle sensor 160 are electrically connected to the processor 120, respectively.
  • the flexible touch screen 150 is disposed on the shell surface of the earth contour housing 110, and the earth map is printed on the flexible touch screen 150.
  • the earth map is printed on the shell surface of the earth contoured housing 110, the flexible touch screen 150 is disposed on the earth globe, and the flexible touch screen 150 is transparent.
  • the processor 120 may be a central processing unit (CPU), or may be other general-purpose processors, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and an off-the-shelf device. Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or a processor or any conventional processor or the like.
  • the processor 120 is a control center of the physical globe 100 and connects various parts of the entire physical globe 100 using various interfaces and lines.
  • the memory 130 is for storing computer programs and/or modules, and the processor 120 implements various functions of the physical globe 100 by running or executing computer programs and/or modules stored in the memory 130, and by invoking data stored in the memory 130.
  • the memory 130 may include a high-speed random access memory, and may also include a non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), and a secure digital (Secure Digital, SD). Cards, Flash Cards, multiple disk storage devices, flash memory devices, or other volatile solid-state storage devices.
  • the communication unit 140 is configured to establish a wireless/wired communication connection with other devices having communication functions, for example, the display terminal 200.
  • the communication unit 140 is a Bluetooth chip. It can be understood that in other embodiments, the communication unit 140 can also be another communication device with a communication function such as a WiFi chip.
  • the flexible touch screen 150 can be bent and deformed.
  • the flexible touch screen 150 is attached to the entire surface of the earth contour housing 110.
  • the manner in which the flexible touch screen 150 is attached to the shell surface of the earth contour housing 110 is as follows: the earth contour housing 110 is divided into north and south hemispheres, and the processor 120, the memory 130, and the communication unit 140 are disposed.
  • the electronic component and the line such as the angle sensor 160 are sewn together into the interior of the earth contour housing 110 at the junction of the north and south hemispheres. It can be understood that the earth contoured housing 110 can also be divided into more small pieces, and then attached in a similar manner as described above, and details are not described herein again.
  • the flexible touch screen 150 generates a touch signal by sensing a touch operation of the user on a surface thereof by a finger.
  • the angle sensor 160 is disposed on the equatorial plane 1101 of the earth contoured housing 110 or a plane parallel to the equatorial plane 1101.
  • the angle sensor 160 senses the direction angle r0 of the physical globe 100 in real time.
  • the direction angle r0 is an angle at which a reference point is rotated relative to the reference plane during the rotation of the contoured housing 110 about its own axis of rotation. It can be understood that the angle between the rotating shaft of the physical globe 100 and the horizontal plane cannot be equal to 90 degrees, because when the angle between the rotating shaft of the physical globe 100 and the horizontal plane is equal to 90 degrees, the angle sensor 160 cannot measure the direction angle r0.
  • the physical globe 100 further includes a power source 170.
  • Power source 170 can be, but is not limited to, a dry battery, a battery, and the like.
  • the power source 170 is disposed at a suitable location within the contoured housing 110 of the earth.
  • Power source 170 powers all of the electronic components within physical globe 100. It can be understood that in other embodiments, the power source 170 can be omitted, and the physical globe 100 is plugged into the display terminal 200 through a power line to power the physical globe 100; or the physical globe 100 receives the display terminal 200 to radiate in the form of wireless radiation.
  • the electrical energy is used to power the physical globe 100.
  • the display terminal 200 can be, but is not limited to, a plurality of electronic devices having a display function, such as a mobile phone, a tablet computer, an e-reader, a wearable electronic device, and the like.
  • the display terminal 200 includes, but is not limited to, a processor 210, and a memory 220, a display unit 230, and a communication unit 240 that are electrically connected to the processor 210, respectively.
  • FIG. 1 is only an example of the display terminal 200 and does not constitute a limitation of the display terminal 200.
  • the display terminal 200 may include more or less components than those shown in FIG. 1, or may combine some Some components, or different components, such as display terminal 200, may also include input and output devices, network access devices, data buses, and the like.
  • the processor 210 may be a central processing unit (CPU), or may be other general-purpose processors, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and an off-the-shelf Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or a processor or any conventional processor or the like, and the processor is a control center of the display terminal 200, and connects various parts of the entire display terminal 200 using various interfaces and lines.
  • the memory 220 is for storing computer programs and/or modules, and the processor 210 implements various functions of the display terminal 200 by running or executing computer programs and/or modules stored in the memory 220, and calling data stored in the memory 220.
  • the memory 220 may include a high-speed random access memory, and may also include a non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), and a secure digital (Secure Digital, SD). Cards, Flash Cards, multiple disk storage devices, flash memory devices, or other volatile solid-state storage devices.
  • the display unit 230 is configured to display various contents on the display terminal 200 that need to be displayed.
  • the communication unit 240 is configured to establish a wireless/wired communication connection with other devices having communication functions, for example, the physical globe 100.
  • the communication unit 240 is a Bluetooth chip. It can be understood that in other embodiments, the communication unit 240 can also be a communication device with a communication function such as a WiFi chip.
  • the display terminal 200 establishes a communication connection with the communication unit 140 of the physical globe 100 through the communication unit 240.
  • the detailed process of the physical globe 100 controlling the display terminal 200 to display map information is as follows:
  • the flexible touch screen 150 generates a corresponding touch signal in response to a user's touch operation. Specifically, when the user performs a touch operation on the flexible touch screen 150 of the physical globe 100 by the finger, the flexible touch screen 150 generates the touch signal in response to the finger lifting in an interrupted manner.
  • the processor 120 recognizes the touch coordinate sequence of the touch operation in response to the touch signal, identifies the corresponding touch gesture according to the touch coordinate sequence, and sends the touch gesture to the display terminal 200.
  • the processor 120 acquires the latitude and longitude corresponding to each touch coordinate from the correspondence relationship between a preset touch coordinate and the latitude and longitude according to the touch coordinate sequence, and replaces and updates the touch coordinates with the latitude and longitude, thereby forming a touch coordinate sequence represented by the latitude and longitude.
  • the memory 130 stores the correspondence
  • the communication unit 140 is controlled by the processor 120 to transmit the touch gesture to the display terminal 200.
  • the touch gesture is at least one of a single finger click, a single finger slide, a double pointing outer expansion, a double pointing inner contraction, and a multi-finger touch.
  • the processor 120 determines the sliding distance and the sliding direction of the touch operation according to the starting point and the last point of the touch coordinate sequence of the touch operation when determining the touch operation of the touch operation as a single-finger sliding operation, and according to the sliding distance and The sliding direction determines that the touch gesture is a single-finger sliding touch gesture having a sliding distance and a sliding direction.
  • the processor 120 calculates the first between the two starting points according to the starting point and the last point of the touch coordinate sequence of the touch operation corresponding to each finger when determining that the touch operation is a two-finger simultaneous sliding operation. a distance, and calculating a second distance between the two last points, and determining that the touch gesture is a two-pointed inner contraction touch gesture when the first distance is greater than the second distance.
  • the processor 120 determines the magnification of the reduced map according to the difference between the first distance and the second distance when determining that the touch gesture is a double-pointed and contracted touch gesture.
  • the actual calculation method of the reduction ratio can be calculated according to the magnitude of the reduction required, and no limitation is made here.
  • the processor 120 calculates the first between the two starting points according to the starting point and the last point of the touch coordinate sequence of the touch operation corresponding to each finger when determining that the touch operation is a two-finger simultaneous sliding operation. The distance is calculated, and the second distance between the two last points is calculated, and when the first distance is greater than the second distance, the touch gesture is determined to be a double-pointed outwardly-expanded touch gesture.
  • the processor 120 determines the magnification of the enlarged map according to the difference between the first distance and the second distance when determining that the touch gesture is a double-pointed outwardly-expanded touch gesture.
  • the actual calculation method of the magnification can be based on the magnitude of the amplification required, and no limitation is made here.
  • the latitude and longitude is used to represent the touch coordinates, the east longitude 180 degrees and the west longitude 180 degrees are coincident positions, so when the touch operation (whether single or multiple fingers) crosses 180 When the degree is reached, the longitude value will produce a mutation.
  • the following processing is performed.
  • the processor 120 determines that the difference between the longitudes of the adjacent two touch coordinates in the touch coordinate sequence of the touch operation is greater than a predetermined threshold, for example, greater than 300, and the longitude of the current touch coordinate is less than the longitude of the next touch coordinate.
  • a predetermined threshold for example, greater than 300
  • the distance between the next touch coordinate and the latitude of all the touch coordinates after the next touch coordinate is subtracted by 360 and the distance calculation is performed.
  • the processor 120 determines that the difference between the longitudes of the adjacent two touch coordinates in the touch coordinate sequence of the touch operation is greater than a predetermined threshold, for example, greater than 300, and the longitude of the current touch coordinate is greater than the longitude of the next touch coordinate.
  • a predetermined threshold for example, greater than 300
  • the radiance of the next touch coordinate and all subsequent touch coordinates is added to 360 and then the distance calculation is performed.
  • the processor 120 controls the communication unit 140 to transmit the direction angle r0 to the display terminal 200 to allow the display terminal 200 to display the corresponding map information according to the direction angle r0.
  • a coordinate system M is defined.
  • the X-axis of the coordinate system M is the direction from 180 degrees east longitude to 0 degrees east longitude in the equatorial plane 1101 of the contoured casing 110 of the earth
  • the Y-axis is the direction perpendicular to the X-axis in the equatorial plane 1101
  • the Z-axis is perpendicular to the X at the same time.
  • the direction of the axis and the Y axis is defined.
  • the angle sensor 160 includes a two-axis accelerometer and a one-axis gyroscope.
  • the two-axis accelerometer is disposed on the equatorial plane 1101 of the earth contoured housing 110 or a plane parallel to the equatorial plane 1101.
  • the two-axis accelerometer measures the projection component G1 of the gravitational acceleration G of the earth contoured housing 110 on the XY plane.
  • the angle between the projection component G1 and the X axis is the first angle r1.
  • the first angle r1 is equal to the direction angle r0 of the physical globe 100 itself. That is, the first angle r1 is the direction angle r0 of the physical globe 100.
  • the two-axis accelerometer cannot be placed just on the Z-axis of the physical globe 100. Therefore, during the rotation of the physical globe 100, the two-axis accelerometer also generates centripetal acceleration, and the centripetal acceleration affects the direction angle r0 of the physical globe 100.
  • the first angle r1 actually measured by the two-axis accelerometer is not equal to the direction angle r0 of the physical globe 100 itself.
  • the one-axis gyroscope is disposed on the equatorial plane 1101 of the earth contoured housing 110 or a plane parallel to the equatorial plane 1101 and disposed at the same position as the two-axis accelerometer.
  • a one-axis gyroscope measures the angle of rotation of the contoured housing 110 about the Z-axis. Specifically, the rotation angle measured by the one-axis gyroscope according to the cumulative angle of its rotational angular velocity in the clock cycle is the second angle r2.
  • the current direction angle r0 can also be calculated by the sum of the second angle r2 and the direction angle r0 of the initial state, but the one-axis gyroscope has an error, although the one-axis gyroscope is at each clock.
  • the error in the period is small, but in the process of accumulating the second angle r2, the error will become larger and larger, so the direction angle r0 cannot be calculated only by the value of the one-axis gyroscope.
  • the combination of the two-axis accelerometer and the one-axis gyroscope determines the direction angle r0.
  • the second angle r2 measured by the one-axis gyroscope is greater than the preset threshold R, it indicates that the physical globe 100 is rotating and the rotation speed is relatively fast.
  • the direction angle r0 is equal to the first angle r1 of the stationary state and the one-axis gyroscope. The sum of the measured second angles r2.
  • the second angle r2 measured by the one-axis gyroscope is less than or equal to the preset threshold R, indicating that the physical globe 100 rotates slowly or not
  • the measurement result of the two-axis accelerometer is more dependent, but in order to make the display terminal 200
  • r0 is the direction angle r0 of the physical globe 100 at the last moment
  • the first angle r1 is the currently measured angle of the two-axis accelerometer.
  • the value of k is changed from large to small, so that the direction angle is obtained.
  • R0 is smoothly transitioned from the direction angle r0 of the previous moment to the first angle r1 of the current moment.
  • the display terminal 200 receives a touch gesture transmitted by the physical globe 100.
  • the processor 210 controls the virtual globe 250 to display corresponding map information according to the touch gesture and the current display mode of the virtual globe 250.
  • the processor 210 controls the virtual globe 250 displayed by the display unit 230 to have an earth mode and a map mode.
  • the Earth model is convenient for users to observe the complete geo-geographic model on a macroscopic view.
  • the map mode allows the user to operate the virtual globe 250 as if it were a normal electronic map, and can view the details of each map area.
  • the communication unit 240 receives the touch gesture sent by the physical globe 100, and the touch gesture is a one-finger touch gesture
  • the processor 210 controls the virtual globe 250 to enter the map mode. And, after entering the map mode, displays the regional layout of the first-level city adjacent to the one-finger touch gesture.
  • the processor 210 is configured to find a city closest to the center touch coordinate of the touch gesture according to the pre-recorded first-level city and touch coordinate correspondence, and display an area map centered on the city.
  • the communication unit 240 receives the touch gesture sent by the physical globe 100, and when the touch gesture is a single-finger touch gesture, the processor 210 The control virtual globe 250 switches to display a regional map of the first-level city adjacent to the touch gesture.
  • the communication unit 240 receives the touch gesture sent by the physical globe 100, and when the touch gesture is a double-pointed outwardly-expanded touch gesture, the processor 210 touches according to the magnification of the touch gesture.
  • the center of the control gesture is centered to enlarge the map at a magnification to display more detailed map information.
  • the communication unit 240 receives the touch gesture sent by the physical globe 100, and the touch gesture is a double-pointed and contracted touch gesture, the processor 210 touches according to the zoom ratio of the touch gesture.
  • the center of the control gesture is centered to reduce the map by zooming out to display more rough map information.
  • the communication unit 240 receives the touch gesture sent by the physical globe, and when the touch gesture is a single-finger sliding touch gesture, the processor 210 moves and displays according to the sliding distance and the sliding direction of the touch gesture. region.
  • the communication unit 240 receives the touch gesture sent by the physical globe, and the touch gesture is a multi-finger touch gesture, the processor 210 controls the virtual globe 250 to enter the earth mode and enters the earth.
  • the control communication unit 240 receives the direction angle r0 of the physical globe transmitted by the physical globe 100, and controls the virtual globe 250 to display the map information according to the direction angle r0 according to the direction angle r0.
  • FIG. 6 is a flowchart of a map display method according to an embodiment of the present application.
  • the map display method is applied to the map display system 1000, and the order of execution is not limited to the order shown in FIG. 6.
  • the map display system 1000 includes a physical globe 100 and a display terminal 200.
  • the physical globe 100 and the display terminal 200 are connected by a network 300.
  • the map display method includes the steps:
  • step 600 the physical globe 100 and the display terminal 200 establish a wireless network connection through the network 300.
  • the power source 160 supplies power to all of the electronic components of the physical globe 100, and the physical globe 100 is thus activated.
  • the communication unit 140 of the physical globe 100 such as Bluetooth, starts scanning electronic devices that open the wireless connection function.
  • the communication unit 240 of the display terminal 200 such as Bluetooth, can establish a wireless network connection with the physical globe 100 when it is turned on.
  • the flexible touch screen 150 of the physical globe 100 generates a corresponding touch signal in response to a touch operation performed by the user. Specifically, when the user performs a touch operation on the flexible touch screen 150 of the physical globe 100 by the finger, the flexible touch screen 150 generates the touch signal in response to the finger lifting in an interrupted manner.
  • Step 620 The processor 120 identifies the touch coordinate sequence of the touch operation in response to the touch signal, identifies the corresponding touch gesture according to the touch coordinate sequence, and sends the touch gesture to the display terminal 200.
  • the processor 120 acquires the latitude and longitude corresponding to each touch coordinate from the correspondence relationship between a preset touch coordinate and the latitude and longitude according to the touch coordinate sequence, and replaces and updates the touch coordinates with the latitude and longitude, thereby forming a touch coordinate sequence represented by the latitude and longitude.
  • the memory 130 stores the correspondence
  • the communication unit 140 is controlled by the processor 120 to transmit the touch gesture to the display terminal 200.
  • the touch gesture is at least one of a single finger click, a single finger slide, a double pointing outer expansion, a double pointing inner contraction, and a multi-finger touch.
  • the processor 120 determines the sliding distance and the sliding direction of the touch operation according to the start point and the last position of the touch coordinate sequence of the touch operation, and according to The sliding distance and the sliding direction determine that the touch gesture is a single-finger sliding gesture with a sliding distance and a sliding direction.
  • the processor 120 calculates between the two starting points according to the start point and the last point of the touch coordinate sequence of the touch operation corresponding to each finger. The first distance is calculated, and the second distance between the two last points is calculated, and when the first distance is greater than the second distance, the touch gesture is determined to be a two-pointed inner contraction touch gesture. The processor 120 determines the magnification of the reduced map according to the difference between the first distance and the second distance when determining that the touch gesture is a double-pointed and contracted touch gesture.
  • the processor 120 calculates between the two starting points according to the start point and the last point of the touch coordinate sequence of the touch operation corresponding to each finger. The first distance is calculated, and the second distance between the two last points is calculated, and when the first distance is greater than the second distance, the touch gesture is determined to be a double-pointed outwardly-expanded touch gesture.
  • the processor 120 determines the magnification of the enlarged map according to the difference between the first distance and the second distance when determining that the touch gesture is a double-pointed outwardly-expanded touch gesture.
  • the processor 120 determines that the difference between the longitudes of the adjacent two touch coordinates in the touch coordinate sequence of the touch operation is greater than a preset threshold, for example, greater than 300, and the longitude of the current touch coordinate is less than the next touch coordinate.
  • the longitude is calculated by subtracting 360 from the next touch coordinate and the latitude of all touch coordinates after the next touch coordinate.
  • the processor 120 determines that the difference between the longitudes of the adjacent two touch coordinates in the touch coordinate sequence of the touch operation is greater than a preset threshold, for example, greater than 300, and the longitude of the current touch coordinate is greater than the next touch coordinate. For the longitude, the next touch coordinate and the latitude of all subsequent touch coordinates are added to 360 and then the distance is calculated.
  • a preset threshold for example, greater than 300
  • the processor 120 controls the communication unit 140 to transmit the direction angle r0 to the display terminal 200 to allow the display terminal 200 to display the corresponding map information according to the direction angle r0.
  • Step 630 the display terminal 200 receives the touch gesture sent by the physical globe 100.
  • the processor 210 controls the virtual globe 250 to display corresponding map information according to the touch gesture and the current display mode of the virtual globe 250.
  • the processor 210 controls the virtual globe 250 displayed by the display unit 230 to have an earth mode and a map mode.
  • the Earth model is convenient for users to observe the complete geo-geographic model on a macroscopic view.
  • the map mode allows the user to operate the virtual globe 250 as if it were a normal electronic map, and can view the details of each map area.
  • FIG. 7 is a schematic diagram of a sub-flow of step 630 in FIG.
  • the order of execution is not limited to the order shown in FIG.
  • the map display method includes the steps:
  • step 710 the virtual globe 250 is controlled to enter the map mode.
  • the communication unit 240 receives the touch gesture sent by the physical globe 100, and the touch gesture is a one-finger touch gesture, the processor 210 controls the virtual globe 250 to enter the map mode. .
  • Step 720 After the virtual globe 250 enters the map mode, the area map of the first-level city adjacent to the one-finger touch gesture is displayed.
  • the processor 210 is configured to find a city closest to the center touch coordinate of the touch gesture according to the pre-recorded first-level city and touch coordinate correspondence, and display an area map centered on the city.
  • Step 730 when receiving the double-pointed outwardly expanded touch gesture, displaying more detailed map information.
  • a more coarse map information is displayed.
  • the processor 210 uses the center of the touch gesture according to the magnification of the touch gesture.
  • the center zooms in on the map at a magnification to display more detailed map information.
  • the processor 210 reduces the zoom gesture according to the center of the touch gesture. Zoom out the map to show more coarse map information.
  • Step 740 when receiving a single-finger sliding touch gesture, moving the display area according to the sliding distance and the sliding direction.
  • the communication unit 240 receives the touch gesture sent by the physical globe, and when the touch gesture is a single-finger sliding touch gesture, the processor 210 follows the sliding distance and sliding of the touch gesture. Move the display area in the direction.
  • Step 750 When receiving a single-finger touch gesture, switch the city display.
  • the communication unit 240 receives the touch gesture sent by the physical globe 100, and the touch gesture is a single-finger touch gesture.
  • the processor 210 controls the virtual globe 250 to switch to display a regional layout of the primary city adjacent to the touch gesture.
  • Step 760 when receiving the touch gesture of the multi-finger touch, exit the map mode and enter the earth mode.
  • the communication unit 240 receives the touch gesture sent by the physical globe, and the touch gesture is a multi-finger touch gesture, the processor 210 controls the virtual globe 250 to enter the earth mode.
  • FIG. 8 is a schematic diagram of a sub-flow of step 630 in FIG.
  • the order of execution is not limited to the order shown in FIG.
  • the map display method includes the steps:
  • the virtual globe 250 is controlled to enter the earth mode.
  • Step 820 receiving a direction angle r0 of the physical globe sent by the physical globe 100.
  • the processor 210 controls the communication unit 240 to receive the direction angle r0 of the physical globe transmitted by the physical globe 100.
  • Step 830 controlling the virtual globe 250 to display the map information according to the direction angle r0 according to the direction angle r0.
  • Step 840 when receiving the touch gesture of the single-finger click, exit the earth mode and enter the map mode.
  • FIG. 9 is a schematic diagram of a calculation process of a direction angle after entering the earth mode in the map display method according to an embodiment of the present application. Specific steps are as follows:
  • Step 910 Calculate the first angle r1 according to the measurement of the two-axis accelerometer.
  • the two-axis accelerometer measures the projection component G1 of the gravitational acceleration G of the earth contoured housing 110 on the XY plane, and calculates the angle between the projection component G1 measured by the two-axis accelerometer and the X-axis as the first angle r1. .
  • Step 920 The one-axis gyroscope acquires the second angle r2. Specifically, the rotation angle measured by the one-axis gyroscope according to the cumulative angle of its rotational angular velocity in the clock cycle is the second angle r2.
  • Step 940 Determine whether the second angle r2 is greater than a preset threshold R. If yes, go to step 950, otherwise, go to step 960.
  • k is an adjustable parameter. 0 ⁇ k ⁇ 1.
  • r0 is the direction angle r0 of the physical globe 100 at the last moment
  • the first angle r1 is the currently measured angle of the two-axis accelerometer.
  • the value of k is changed from large to small, so that the direction angle is obtained.
  • R0 is smoothly transitioned from the direction angle r0 of the previous moment to the first angle r1 of the current moment.
  • the physical globe, the display terminal and the map display method with the touch function of the present application are provided with a flexible touch screen on the earth contour housing of the physical globe, and the flexible touch screen is generated in response to the touch operation of the user on the touch screen.
  • the processor recognizes the touch coordinate sequence of the touch operation in response to the touch signal, identifies the corresponding touch gesture according to the touch coordinate sequence, and sends the touch gesture to the display terminal, and the display terminal according to the touch gesture and the virtual
  • the current display mode of the globe controls the virtual globe to display the corresponding map information, thereby enabling the display content of the virtual globe of the display terminal to be controlled by the touch operation on the flexible touch screen of the physical globe, and has a better user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Human Computer Interaction (AREA)
  • User Interface Of Digital Computer (AREA)
  • Telephone Function (AREA)

Abstract

一种实体地球仪(100)、显示终端(200)和地图显示方法,实体地球仪(100)包括地球仿形壳体(110)、处理器(120)和与所述处理器(120)电性连接的柔性触控屏(150),所述柔性触控屏(150)设置在所述地球仿形壳体(110)的壳面上,所述柔性触控屏(150)响应用户的触控操作而产生相应的触控信号,所述处理器(120)用于:响应所述触控信号识别所述触控操作的触摸坐标序列,根据所述触摸坐标序列识别对应的触控手势,并将所述触控手势发送至一显示终端(200),以允许所述显示终端(200)响应所述触控手势而显示对应的地图信息。通过在实体地球仪(100)上的触控操作而控制显示终端(200)显示对应的地图信息,使得用户体验更好。

Description

具有触控功能的实体地球仪、显示终端和地图显示方法 技术领域
本申请涉及柔性触控领域,尤其涉及一种具有触控功能的实体地球仪、显示终端和地图显示方法。
背景技术
地球仪是为了便于认识地球,人们仿造地球的形状,按照一定的比例缩小,而制作的地球模型。市面上的普通地球仪只具备显示七大洲、四大洋以及世界各国疆域和版图的功能,功能单一。现在市面上还有两种功能比较丰富的地球仪,第一种是点读语音地球仪,其配套隐形码识读器,通过点到哪里读到哪里的方式获取当地详细的音频资讯。第二种是视频地球仪,其采用先进隐形码光学识别技术和数码语音技术,只需用识读器在视频地球仪上轻轻点读,即可在地球仪的显示单元上全屏播放当地详细的音视频资讯。然而,现有的地球仪仅通过在其内部设置多个触控点的方式实现特定位置触控,无法实现地球仪表面任意位置的触控。
发明内容
本申请实施例公开一种具有触控功能的实体地球仪、显示终端和地图显示方法,以解决上述问题。
本申请实施例公开一种具有触控功能的实体地球仪,包括地球仿形壳体,所述实体地球仪还包括:处理器和与所述处理器电性连接的柔性触控屏,所述柔性触控屏设置在所述地球仿形壳体的壳面上,所述柔性触控屏响应用户的触控操作而产生相应的触控信号,所述处理器用于:响应所述触控信号识别所述触控操作的触摸坐标序列,根据所述触摸坐标序列识别对应的触控手势,并将所述触控手势发送至一显示终端,以允许所述显示终端响应所述触控手势而显示对应的地图信息。
本申请实施例公开一种显示终端,用于与一实体地球仪无线连接,所述显示终端包括处理器、显示单元和通讯单元,所述处理器控制所述显示单元显示一虚拟地球仪,所述通讯单元接收由所述实体地球仪发送的触控手势,所述处理器根据所述触控手势以及所述虚拟地球仪当前的显示模式控制所述虚拟地球仪显示对应的地图信息。
本申请实施例公开一种地图显示方法,应用于实体地球仪和显示终端上,所述实 体地球仪包括地球仿形壳体和设置在所述地球仿形壳体壳面上的柔性触控屏,所述柔性触控屏响应用户的触控操作而产生相应的触控信号,所述显示终端显示一虚拟地球仪,所述地图显示方法包括:响应所述触控信号识别所述触控操作的触摸坐标序列,根据所述触摸坐标序列识别对应的触控手势,并将所述触控手势发送至所述显示终端;所述显示终端接收由所述实体地球仪发送的控手势,并根据所述触控手势以及所述虚拟地球仪当前的显示模式控制所述虚拟地球仪显示对应的地图信息。
本申请的具有触控功能的实体地球仪、显示终端和地图显示方法,在实体地球仪的地球仿形壳体上设置柔性触控屏,柔性触控屏响应用户在其上的触控操作而产生相应的触控信号,实体地球仪的处理器响应所述触控信号识别所述触控操作的触摸坐标序列,根据所述触摸坐标序列识别对应的触控手势,并将所述触控手势发送至显示终端。显示终端根据所述触控手势以及所述虚拟地球仪当前的显示模式控制所述虚拟地球仪显示对应的地图信息,从而能够通过所述实体地球仪的柔性触控屏上的触控操作控制所述显示终端的虚拟地球仪显示对应的地图信息,具有更好的用户体验。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中的地图显示系统的模块示意图。
图2为本申请一实施例中图1中的地图显示系统的结构示意图。
图3为本申请一实施例中图1中的实体地球仪中角度感测器和坐标系的示意图。
图4为本申请一实施例中图3中坐标系旋转一定角度后重力加速度和在XY平面投影分量的示意图。
图5为本申请一实施例中图1中的实体地球仪及其沿经度方向打开后的平面示意图。
图6为本申请一实施例中的地图显示方法的流程示意图。
图7为本申请一实施例中的地图显示方法中进入地图模式后的子流程示意图。
图8为本申请一实施例中的地图显示方法中进入地球模式后的子流程示意图。
图9为本申请一实施例中的地图显示方法中进入地球模式后的方向角的计算流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1为本申请一实施例中的地图显示系统1000的模块示意图。地图显示系统1000包括具有触控功能的实体地球仪100和显示终端200。实体地球仪100为具有实体机械结构的实体地球仪。实体地球仪100和显示终端200之间通过网络300连接。网络300可为互联网(Internet)、按需虚拟专线网(On-Demand virtual Lease Line)、包括WIFI、蓝牙在内的无线网(Wireless network)、包括GPRS网络、CDMA网络在内的电话网、广播电视网等。显示终端200显示与实体地球仪100的外形图案相同的虚拟地球仪250(如图2所示),实体地球仪100识别用户在其壳面上的触控操作并根据触控操作识别触控手势,且通过网络300将触控手势传送至显示终端200,显示终端200响应触控手势进而控制其虚拟地球仪250显示对应的地图信息。
具体地,请一并参考图2,实体地球仪100包括地球仿形壳体110、处理器120、存储器130、通讯单元140、柔性触控屏150和角度感应器160。柔性触控屏150设置在地球仿形壳体110的壳面上,且地球仿形壳体110的壳面上印制有地球地图。优选地,处理器120、存储器130、通讯单元140和角度感应器160设置在地球仿形壳体110的内部,且存储器130、通讯单元140和角度感应器160分别与处理器120电性连接。可选择地,在一实施例中,柔性触控屏150设置在地球仿形壳体110的壳面上,地球地图印刷在柔性触控屏150上。在另一实施例中,地球地图印刷在地球仿形壳体110的壳面上,柔性触控屏150设置在地球地球上,且柔性触控屏150透明。
处理器120可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable GateArray, FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者处理器也可以是任何常规的处理器等,处理器120是实体地球仪100的控制中心,利用各种接口和线路连接整个实体地球仪100的各个部分。
存储器130用于存储计算机程序和/或模块,处理器120通过运行或执行存储在存储器130内的计算机程序和/或模块,以及调用存储在存储器130内的数据,实现实体地球仪100的各种功能。此外,存储器130可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、多个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
通讯单元140用于与其它具有通讯功能的设备,例如,显示终端200建立无线/有线通讯连接。具体地,本实施例中,通讯单元140为蓝牙芯片。可理解,在其它实施例中,通讯单元140还可以是WiFi芯片等其他具有通讯功能的通讯设备。
柔性触控屏150可弯曲变形。柔性触控屏150贴在地球仿形壳体110的整个壳面上。其中,将柔性触控屏150贴在地球仿形壳体110的壳面上的贴合的方式为:将地球仿形壳体110分为南北半球,将处理器120、存储器130、通讯单元140和角度感应器160等电子元件和线路一起在南北半球的结合处开缝塞入地球仿形壳体110的内部。可理解,也可以将地球仿形壳体110切分成更多小块,再分别按照上述类似的方式贴合,此处不再赘述。柔性触控屏150在感应到用户通过手指在其表面上的触控操作而产生触控信号。
请一并参考图3和图4,角度感应器160设置在地球仿形壳体110的赤道平面1101或与赤道平面1101平行的平面上。角度感应器160实时感测实体地球仪100的方向角r0。方向角r0是地球仿形壳体110绕自身转轴转动的过程中某一参考点相对基准面转过的角度。可理解,实体地球仪100的转轴与水平面的夹角不能等于90度,因为,当实体地球仪100的转轴与水平面的夹角等于90度时,角度感应器160无法测得方向角r0。
请一并参考图1,实体地球仪100还包括电源170。电源170可以是但不限于干电池、蓄电池等。电源170设置在地球仿形壳体110内的适合位置上。电源170为实体地球仪100内的所有电子元件供电。可理解,其它实施例中,电源170可省略,实体地球仪100通过一电源线插接到显示终端200上以实现为实体地球仪100供电;或者 实体地球仪100接收显示终端200以无线辐射的方式辐射出的电能以实现为实体地球仪100供电。
显示终端200可以是但不限于手机、平板电脑、电子阅读器、穿戴式电子设备等各种具有显示功能的电子设备,此处不做限定。显示终端200包括但不限于处理器210,以及分别与处理器210电性连接的存储器220、显示单元230和通讯单元240。本领域技术人员应当理解的是,图1仅是显示终端200的示例,并不构成对显示终端200的限定,显示终端200可以包括比图1所示更多或更少的部件,或者组合某些部件,或者不同的部件,例如显示终端200还可以包括输入输出设备、网络接入设备、数据总线等。
处理器210可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable GateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者处理器也可以是任何常规的处理器等,处理器是显示终端200的控制中心,利用各种接口和线路连接整个显示终端200的各个部分。
存储器220用于存储计算机程序和/或模块,处理器210通过运行或执行存储在存储器220内的计算机程序和/或模块,以及调用存储在存储器220内的数据,实现显示终端200的各种功能。此外,存储器220可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、多个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
显示单元230用于显示显示终端200上各种需要显示的内容。
通讯单元240用于与其它具有通讯功能的设备,例如,实体地球仪100,建立无线/有线通讯连接。具体地,本实施例中,通讯单元240为蓝牙芯片。可理解,在其它实施例中,通讯单元240还可以是WiFi芯片等具有通讯功能的通讯设备。显示终端200通过通讯单元240与实体地球仪100的通讯单元140之间建立通讯连接。
实体地球仪100控制显示终端200显示地图信息的详细过程如下:
实体地球仪100端:
柔性触控屏150响应用户的触控操作而产生相应的触控信号。具体地,当用户在实体地球仪100的柔性触控屏150上通过手指执行触控操作时,柔性触控屏150以中 断的方式响应手指抬起时产生所述触控信号。
处理器120响应触控信号识别触控操作的触摸坐标序列,根据触摸坐标序列识别对应的触控手势,并将触控手势发送至显示终端200。
具体地,处理器120根据触摸坐标序列从一预设触摸坐标与经纬度的对应关系中获取每个触摸坐标对应的经纬度,并采用经纬度替代并更新触摸坐标,从而形成由经纬度表示的触摸坐标序列。
具体地,存储器130存储对应关系,通讯单元140被处理器120控制而将触控手势发送至显示终端200。
具体地,触控手势是单指单击、单指滑动、双指向外扩张、双指向内收缩、多指触摸中的至少一种。
处理器120在确定触控操作为单手指滑动的触控操作时,根据触控操作的触摸坐标序列的起始点和末位点,确定触控操作的滑动距离和滑动方向,并根据滑动距离和滑动方向确定触控手势为具有滑动距离和滑动方向的单指滑动的触控手势。
处理器120在确定触控操作为双指同时滑动的触控操作时,根据每个手指对应的触控操作的触摸坐标序列的起始点和末位点,计算两个起始点之间的第一距离,以及计算两个末位点之间的第二距离,并在第一距离大于第二距离时,确定触控手势为双指向内收缩的触控手势。处理器120在确定触控手势为双指向内收缩的触控手势时,根据第一距离与第二距离之间的差值大小确定缩小地图的倍率。其中,缩小倍率的实际计算方式可根据需要缩小的幅度制定计算公式,此处不做限制。
处理器120在确定触控操作为双指同时滑动的触控操作时,根据每个手指对应的触控操作的触摸坐标序列的起始点和末位点,计算两个起始点之间的第一距离,以及计算两个末位点之间的第二距离,并在第一距离大于第二距离时,确定触控手势为双指向外扩张的触控手势。处理器120在确定触控手势为双指向外扩张的触控手势时,根据第一距离和第二距离之间的差值确定放大地图的倍率。其中,放大倍率的实际计算方式可根据需要放大的幅度制定计算公式,此处不做限制。
需要说明的是,请一并参考图5,由于采用了经纬度来表示触摸坐标,东经180度和西经180度是重合位置,因此,当触控操作(无论单指或者多指)跨过180度时,其经度值会产生突变。为了能够顺利进行触控操作的触控手势的确定,进行了如下处理。
处理器120在确定触控操作的触摸坐标序列中的相邻两个触摸坐标的经度的差值大于一预设阈值,例如,大于300,且当前触摸坐标的经度小于下一触摸坐标的经度时,将该下一个触摸坐标和该下一个触摸坐标之后的所有触摸坐标的纬度都减去360再进行距离计算。
处理器120在确定触控操作的触摸坐标序列中的相邻两个触摸坐标的经度的差值大于一预设阈值,例如,大于300,且当前触摸坐标的经度大于下一个触摸坐标的经度时,将该下一个触摸坐标和之后的所有触摸坐标的纬度都加上360再进行距离计算。
请一并参考图3和图4,处理器120控制通讯单元140将方向角r0发送至显示终端200,以允许显示终端200根据方向角r0显示对应的地图信息。
为方便描述,特定义一坐标系M。坐标系M的X轴为地球仿形壳体110的赤道平面1101内东经180度到东经0度的方向,Y轴为赤道平面1101内与X轴相垂直的方向,Z轴为同时垂直于X轴和Y轴的方向。
具体地,角度感应器160包括二轴加速计和一轴陀螺仪。二轴加速计设置在地球仿形壳体110的赤道平面1101或与赤道平面1101平行的平面上。二轴加速计测量地球仿形壳体110的重力加速度G在XY平面上的投影分量G1。投影分量G1与X轴之间的夹角为第一角度r1。当实体地球仪100静止时,第一角度r1与实体地球仪100本身的方向角r0相等。也就是说,第一角度r1就是实体地球仪100的方向角r0。但是,二轴加速计无法刚好放置在实体地球仪100的Z轴上,因此,实体地球仪100在旋转的过程中,二轴加速计还产生向心加速度,向心加速度影响实体地球仪100的方向角r0的测量,二轴加速计实际测得的第一角度r1与实体地球仪100本身的方向角r0不相等。
一轴陀螺仪设置在地球仿形壳体110的赤道平面1101或与赤道平面1101平行的平面上并与二轴加速计设置在同一位置上。一轴陀螺仪测量地球仿形壳体110绕Z轴的旋转角度。具体地,一轴陀螺仪根据其旋转角速度在时钟周期内的累计角度而测得的旋转角度为第二角度r2。从原理上说,通过不断累加的第二角度r2与初始状态的方向角r0之和也可以计算出当前的方向角r0的,但是一轴陀螺仪存在误差,虽然一轴陀螺仪在每个时钟周期内的误差很小,但是在第二角度r2不断累加的过程中,误差会越来越大,故,不能只通过一轴陀螺仪的值计算方向角r0。
因此,采用二轴加速计和一轴陀螺仪的结合确定方向角r0。当一轴陀螺仪测得的 第二角度r2大于预设阈值R时,表明实体地球仪100在转动且转动速度比较快,此时,方向角r0等于静止状态的第一角度r1与一轴陀螺仪测得的第二角度r2之和。当一轴陀螺仪测得的第二角度r2小于或等于预设阈值R时,表明实体地球仪100转动的较慢或没有转动,则更依赖二轴加速计的测量结果,但是为了让显示终端200显示的地图信息在显示内容改变的过程中平滑过渡,设置可调参数k,0<k<1,方向角r0=k*r0+(1-k)*r1,使当前的方向角r0的值不断逼近第一角度r1。其中,r0是实体地球仪100在上一时刻的方向角r0,第一角度r1是二轴加速计当前测得的角度,在预设时间段内,k值由大变小,即可使得方向角r0由上一时刻的方向角r0平滑的过渡到当前时刻的第一角度r1。
显示终端200端:
显示终端200接收由实体地球仪100发送的触控手势。处理器210根据触控手势以及虚拟地球仪250当前的显示模式控制虚拟地球仪250显示对应的地图信息。
请一并参考图2,处理器210控制显示单元230显示的虚拟地球仪250具有地球模式和地图模式。其中,地球模式方便用户宏观上观察完整的地球地理模型。地图模式让用户操作虚拟地球仪250如同操作普通电子地图一样,可以观看各个地图区域的细节信息。
具体地,虚拟地球仪250在地球模式下,通讯单元240接收由实体地球仪100发送的触控手势,且触控手势为单指单击的触控手势时,处理器210控制虚拟地球仪250进入地图模式,并在进入地图模式后,显示邻近单指单击的触控手势的一级城市的区域版图。具体地,处理器210用于根据预先录入的一级城市和触摸坐标对应关系,找到与触控手势的中心触摸坐标最近的城市,并显示以该城市为中心的区域地图。
处理器210控制显示单元230显示以该城市为中心的区域地图时,通讯单元240接收由实体地球仪100发送的触控手势,且触控手势为单指单击的触控手势时,处理器210控制虚拟地球仪250切换显示邻近所述触控手势的一级城市的区域版图。
虚拟地球仪250在地图模式下,通讯单元240接收由实体地球仪100发送的触控手势,且触控手势为双指向外扩张的触控手势时,处理器210根据触控手势的放大倍率,以触控手势的中心为中心按照放大倍率放大地图以显示更详细的地图信息。
虚拟地球仪250在地图模式下,通讯单元240接收由实体地球仪100发送的触控手势,且触控手势为双指向内收缩的触控手势时,处理器210根据触控手势的缩小倍 率,以触控手势的中心为中心按照缩小倍率缩小地图以显示更粗略的地图信息。
虚拟地球仪250在地图模式下,通讯单元240接收由实体地球仪发送的触控手势,且触控手势为单指滑动的触控手势时,处理器210按照触控手势的滑动距离和滑动方向移动显示区域。
虚拟地球仪250在地图模式下,通讯单元240接收由实体地球仪发送的触控手势,且触控手势为多指触摸的触控手势时,处理器210控制虚拟地球仪250进入地球模式,并在进入地球模式后,控制通讯单元240接收由实体地球仪100发送的实体地球仪的方向角r0,并根据方向角r0控制虚拟地球仪250按照方向角r0显示地图信息。
请一并参阅图6,图6为本申请一实施例中的地图显示方法的流程图。地图显示方法应用于地图显示系统1000中,执行顺序并不限于图6所示的顺序。地图显示系统1000包括实体地球仪100和显示终端200。实体地球仪100和显示终端200之间通过网络300连接。地图显示方法包括步骤:
步骤600,实体地球仪100与显示终端200通过网络300建立无线网络连接。具体地,实体地球仪100的电源开关被打开时,电源160为实体地球仪100的所有电子元件供电,实体地球仪100因而启动。实体地球仪100的通讯单元140,例如蓝牙,开始扫描周边打开无线连接功能的电子设备。显示终端200的通讯单元240,例如蓝牙,打开时,便可与实体地球仪100建立无线网络连接。
步骤610,实体地球仪100的柔性触控屏150响应用户在其上的触控操作而产生相应的触控信号。具体地,当用户在实体地球仪100的柔性触控屏150上通过手指执行触控操作时,柔性触控屏150以中断的方式响应手指抬起时产生触控信号。
步骤620,处理器120响应触控信号识别触控操作的触摸坐标序列,根据触摸坐标序列识别对应的触控手势,并将触控手势发送至显示终端200。
具体地,处理器120根据触摸坐标序列从一预设触摸坐标与经纬度的对应关系中获取每个触摸坐标对应的经纬度,并采用经纬度替代并更新触摸坐标,从而形成由经纬度表示的触摸坐标序列。
具体地,存储器130存储对应关系,通讯单元140被处理器120控制而将触控手势发送至显示终端200。
具体地,触控手势是单指单击、单指滑动、双指向外扩张、双指向内收缩、多指触摸中的至少一种。
具体地,处理器120在确定触控操作为单手指滑动的触控操作时,根据触控操作 的触摸坐标序列的起始点和末位点,确定触控操作的滑动距离和滑动方向,并根据滑动距离和滑动方向确定触控手势为具有滑动距离和滑动方向的单指滑动的触控手势。
具体地,处理器120在确定触控操作为双指同时滑动的触控操作时,根据每个手指对应的触控操作的触摸坐标序列的起始点和末位点,计算两个起始点之间的第一距离,以及计算两个末位点之间的第二距离,并在第一距离大于第二距离时,确定触控手势为双指向内收缩的触控手势。处理器120在确定触控手势为双指向内收缩的触控手势时,根据第一距离与第二距离之间的差值大小确定缩小地图的倍率。
具体地,处理器120在确定触控操作为双指同时滑动的触控操作时,根据每个手指对应的触控操作的触摸坐标序列的起始点和末位点,计算两个起始点之间的第一距离,以及计算两个末位点之间的第二距离,并在第一距离大于第二距离时,确定触控手势为双指向外扩张的触控手势。处理器120在确定触控手势为双指向外扩张的触控手势时,根据第一距离和第二距离之间的差值确定放大地图的倍率。
具体地,处理器120在确定触控操作的触摸坐标序列中的相邻两个触摸坐标的经度的差值大于一预设阈值,例如,大于300,且当前触摸坐标的经度小于下一触摸坐标的经度时,将该下一个触摸坐标和该下一个触摸坐标之后的所有触摸坐标的纬度都减去360再进行距离计算。
具体地,处理器120在确定触控操作的触摸坐标序列中的相邻两个触摸坐标的经度的差值大于一预设阈值,例如,大于300,且当前触摸坐标的经度大于下一个触摸坐标的经度时,将该下一个触摸坐标和之后的所有触摸坐标的纬度都加上360再进行距离计算。
可选择地,处理器120控制通讯单元140将方向角r0发送至显示终端200,以允许显示终端200根据方向角r0显示对应的地图信息。
步骤630,显示终端200接收由实体地球仪100发送的触控手势。处理器210根据触控手势以及虚拟地球仪250当前的显示模式控制虚拟地球仪250显示对应的地图信息。
具体地,处理器210控制显示单元230显示的虚拟地球仪250具有地球模式和地图模式。其中,地球模式方便用户宏观上观察完整的地球地理模型。地图模式让用户操作虚拟地球仪250如同操作普通电子地图一样,可以观看各个地图区域的细节信息。
请一并参阅图7,图7为图6中步骤630的子流程示意图。执行顺序并不限于图7所示的顺序。地图显示方法包括步骤:
步骤710,控制虚拟地球仪250进入地图模式。
具体地,虚拟地球仪250在地球模式下,通讯单元240接收由实体地球仪100发送的触控手势,且触控手势为单指单击的触控手势时,处理器210控制虚拟地球仪250进入地图模式。
步骤720,虚拟地球仪250进入地图模式后,显示邻近该单指单击的触控手势的一级城市的区域版图。具体地,处理器210用于根据预先录入的一级城市和触摸坐标对应关系,找到与所述触控手势的中心触摸坐标最近的城市,并显示以该城市为中心的区域地图。
步骤730,当接收双指向外扩张的触控手势时,显示更细节的地图信息。当接收双指向内收缩的触控手势时,显示更粗略的地图信息。
具体地,通讯单元240接收由实体地球仪100发送的触控手势,且触控手势为双指向外扩张的触控手势时,处理器210根据触控手势的放大倍率,以触控手势的中心为中心按照放大倍率放大地图以显示更详细的地图信息。通讯单元240接收由实体地球仪100发送的触控手势,且触控手势为双指向内收缩的触控手势时,处理器210根据触控手势的缩小倍率,以触控手势的中心为中心按照缩小倍率缩小地图以显示更粗略的地图信息。
步骤740,当接收单指滑动的触控手势时,根据滑动距离和滑动方向移动显示区域。
具体地,虚拟地球仪250在地图模式下,通讯单元240接收由实体地球仪发送的触控手势,且触控手势为单指滑动的触控手势时,处理器210按照触控手势的滑动距离和滑动方向移动显示区域。
步骤750,当接收单指单击的触控手势时,切换城市显示。
具体地,处理器210控制显示单元230显示以该城市为中心的区域地图时,通讯单元240接收由实体地球仪100发送的触控手势,且触控手势为单指单击的触控手势时,处理器210控制虚拟地球仪250切换显示邻近所述触控手势的一级城市的区域版图。
步骤760,当接收多指触摸的触控手势时,退出地图模式,进入地球模式。
虚拟地球仪250在地图模式下,通讯单元240接收由实体地球仪发送的触控手势,且触控手势为多指触摸的触控手势时,处理器210控制虚拟地球仪250进入地球模式。
请一并参阅图8,图8为图6中步骤630的子流程示意图。执行顺序并不限于图8所示的顺序。地图显示方法包括步骤:
步骤810,控制虚拟地球仪250进入地球模式。
步骤820,接收实体地球仪100发送的实体地球仪的方向角r0。具体地,处理器210控制通讯单元240接收由实体地球仪100发送的实体地球仪的方向角r0。
步骤830,根据方向角r0控制虚拟地球仪250按照方向角r0显示地图信息。
步骤840,当接收单指单击的触控手势时,退出地球模式,进入地图模式。
请一并参考图9,图9为本申请一实施例中的地图显示方法中进入地球模式后的方向角的计算流程示意图。具体步骤如下:
步骤910:根据二轴加速计的测量计算第一角度r1。具体地,二轴加速计测量地球仿形壳体110的重力加速度G在XY平面上的投影分量G1,计算二轴加速计测量的投影分量G1与X轴之间的夹角为第一角度r1。
步骤920:一轴陀螺仪获取第二角度度r2。具体地,一轴陀螺仪根据其旋转角速度在时钟周期内的累计角度而测得的旋转角度为第二角度r2。
步骤930:当前初始方向角r0为空时,初始化r0=r1。
步骤940:判断第二角度r2是否大于预设阈值R。如果是,则进入步骤950,否则,进入步骤960。
步骤950:方向角r0=r0+r2。由于此时方向角r0是上述第一角度r1初始化后的值,因此,方向角r0实际上是第一角度r1和第二角度r2之和。
步骤960:方向角r0=k*r0+(1-k)*r1。k为可调参数。0<k<1。其中,r0是实体地球仪100在上一时刻的方向角r0,第一角度r1是二轴加速计当前测得的角度,在预设时间段内,k值由大变小,即可使得方向角r0由上一时刻的方向角r0平滑的过渡到当前时刻的第一角度r1。
本申请的具有触控功能的实体地球仪、显示终端和地图显示方法,在实体地球仪的地球仿形壳体上设置有柔性触控屏,柔性触控屏响应用户在其上的触控操作而产生相应的触控信号,处理器响应触控信号识别触控操作的触摸坐标序列,根据触摸坐标序列识别对应的触控手势,并将触控手势发送至显示终端,显示终端根据触控手势以及虚拟地球仪当前的显示模式控制虚拟地球仪显示对应的地图信息,从而能够通过实体地球仪的柔性触控屏上的触控操作进而控制显示终端的虚拟地球仪的显示内容,具有更好的用户体验。
以上是本申请的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种具有触控功能的实体地球仪,包括地球仿形壳体,其特征在于,所述实体地球仪还包括:处理器和与所述处理器电性连接的柔性触控屏,所述柔性触控屏设置在所述地球仿形壳体的壳面上,所述柔性触控屏响应用户的触控操作而产生相应的触控信号,所述处理器用于:响应所述触控信号识别所述触控操作的触摸坐标序列,根据所述触摸坐标序列识别对应的触控手势,并将所述触控手势发送至一显示终端,以允许所述显示终端响应所述触控手势而显示对应的地图信息。
  2. 如权利要求1所述的实体地球仪,其特征在于,所述处理器用于:根据所述触摸坐标序列从一预设触摸坐标与经纬度的对应关系中获取每个所述触摸坐标对应的经纬度,并采用所述经纬度替代并更新所述触摸坐标,从而形成由经纬度表示的触摸坐标序列。
  3. 如权利要求2所述的实体地球仪,其特征在于,所述处理器设置在所述地球仿形壳体内部,所述实体地球仪还包括存储器和通讯单元,所述存储器和所述通讯单元均设置在所述地球仿形壳体内部且分别与所述处理器电性连接,所述存储器存储所述对应关系,所述通讯单元被所述处理器控制而将所述触控手势发送至所述显示终端。
  4. 如权利要求2所述的实体地球仪,其特征在于,所述触控手势是单指单击、单指滑动、双指向外扩张、双指向内收缩、多指触摸中的至少一种。
  5. 如权利要求4所述的实体地球仪,其特征在于,所述处理器用于:在确定所述触控操作为单手指滑动的触控操作时,根据所述触控操作的触摸坐标序列的起始点和末位点,确定所述触控操作的滑动距离和滑动方向,并根据所述滑动距离和滑动方向确定所述触控手势为具有所述滑动距离和所述滑动方向的单指滑动的触控手势。
  6. 如权利要求4所述的实体地球仪,其特征在于,所述处理器用于:在确定所述触控操作为双指同时滑动的触控操作时,根据每个手指对应的触控操作的触摸坐标序列的起始点和末位点,计算两个所述起始点之间的第一距离,以及计算两个所述末位点 之间的第二距离,并在所述第一距离大于所述第二距离时,确定所述触控手势为双指向内收缩的触控手势,在所述第一距离小于所述第二距离时,确定所述触控手势为双指向外扩张的触控手势;在确定所述触控手势为双指向内收缩的触控手势时,根据所述第一距离与所述第二距离之间的差值大小确定缩小地图的倍率;在确定所述触控手势为双指向外扩张的触控手势时,根据所述第一距离和所述第二距离之间的差值确定放大地图的倍率。
  7. 如权利要求5-6任一项所述的实体地球仪,其特征在于,所述处理器用于:
    在确定所述触控操作的触摸坐标序列中的相邻两个触摸坐标的经度的差值大于一预设阈值,且当前触摸坐标的经度小于下一触摸坐标的经度时,将该下一个触摸坐标和该下一个触摸坐标之后的所有触摸坐标的纬度都减去360再进行距离计算;及
    在确定所述触控操作的触摸坐标序列中的相邻两个触摸坐标的经度的差值大于一预设阈值,且当前触摸坐标的经度大于下一个触摸坐标的经度时,将该下一个触摸坐标和之后的所有触摸坐标的纬度都加上360再进行距离计算。
  8. 如权利要求1所述的实体地球仪,其特征在于,所述实体地球仪还包括:角度感应器,所述角度传感器设置在所述地球仿形壳体内的赤道平面或与所述赤道平面相平行的面上,所述角度传感器实时感测所述实体地球仪的方向角,所述方向角是所述地球仿形壳体绕自身转轴转动的过程中某一参考点相对基准面转过的角度,所述处理器用于:控制将所述方向角发送至所述显示终端,以允许所述显示终端根据所述方向角显示对应的地图信息。
  9. 如权利要求8所述的实体地球仪,其特征在于,所述角度传感器包括二轴加速计和一轴陀螺仪,所述二轴加速计感测所述地球仿形壳体的重力加速度在一坐标系的XY平面上的投影分量,所述投影分量与所述坐标系的X轴之间的夹角为第一角度,所述一轴陀螺仪感测第二角度,所述第二角度为所述地球仿形壳体在时钟周期内的累计角度,所述处理器用于:根据所述第一角度和所述第二角度计算出所述方向角。
  10. 如权利要求9所述的实体地球仪,其特征在于,所述处理器用于:当所述一轴 陀螺仪测得的所述第二角度大于预设阈值时,确定所述方向角为所述第一角度与所述第二角度之和;当所述一轴陀螺仪测得的第二角度小于或等于所述预设阈值时,确定所述方向角r0=k*r0+(1-k)*r1,其中,k是可调参数,r0是所述实体地球仪在上一时刻的方向角,r1是所述二轴加速计当前测得的第一角度。
  11. 一种显示终端,用于与一实体地球仪无线连接,所述显示终端包括处理器、显示单元和通讯单元,所述处理器控制所述显示单元显示一虚拟地球仪,所述通讯单元接收由所述实体地球仪发送的触控手势,所述处理器根据所述触控手势以及所述虚拟地球仪当前的显示模式控制所述虚拟地球仪显示对应的地图信息。
  12. 如权利要求11所述的显示终端,其特征在于,所述虚拟地球仪具有两种显示模式,分别是地球模式和地图模式,所述虚拟地球仪在地球模式下,所述处理器用于:确定所述触控手势为单指单击的触控手势时,控制所述虚拟地球仪进入地图模式,并在进入地图模式后,显示邻近所述触控手势的一级城市的区域版图。
  13. 如权利要求12所述的显示终端,其特征在于,所述虚拟地球仪在地图模式下,所述通讯单元接收由所述实体地球仪发送的触控手势,且所述触控手势为单指单击的触控手势时,所述处理器用于:响应所述触控手势并切换显示邻近所述触控手势的另一一级城市的区域版图。
  14. 如权利要求12所述的显示终端,其特征在于,所述虚拟地球仪在地图模式下,所述通讯单元接收由所述实体地球仪发送的触控手势,且所述触控手势为双指向外扩张时,所述处理器用于:根据所述触控手势的放大倍率,以所述触控手势的中心为中心按照所述放大倍率放大地图以显示更详细的地图信息;所述通讯单元接收由所述实体地球仪发送的触控手势,且所述触控手势为双指向内收缩时,所述处理器用于:根据所述触控手势的缩小倍率,以所述触控手势的中心为中心按照所述缩小倍率缩小地图以显示更粗略的地图信息。
  15. 如权利要求12所述的显示终端,其特征在于,所述虚拟地球仪在地图模式下, 所述通讯单元接收由所述实体地球仪发送的触控手势,且所述触控手势为单指单击的单指滑动的触控手势时,所述处理器用于:按照所述触控手势的滑动距离和滑动方向移动显示区域。
  16. 如权利要求12所述的显示终端,其特征在于,所述虚拟地球仪在地图模式下,所述处理器用于:确定所述触控手势为多指触摸的触控手势时,控制所述虚拟地球仪进入地球模式,并在进入地球模式后,控制所述通讯单元接收由所述实体地球仪发送的所述实体地球仪的方向角,并根据所述方向角控制所述虚拟地球仪按照所述方向角显示地图信息。
  17. 一种地图显示方法,应用于实体地球仪和显示终端上,所述实体地球仪还包括地球仿形壳体和设置在所述地球仿形壳体壳面上的柔性触控屏,所述柔性触控屏响应用户的触控操作而产生相应的触控信号,所述显示终端显示一虚拟地球仪,所述地图显示方法包括:
    响应所述触控信号识别所述触控操作的触摸坐标序列,根据所述触摸坐标序列识别对应的触控手势,并将所述触控手势发送至所述显示终端;
    所述显示终端接收由所述触控手势,并根据所述触控手势以及所述虚拟地球仪当前的显示模式控制所述虚拟地球仪显示对应的地图信息。
  18. 如权利要求17所述的地图显示方法,其特征在于,所述虚拟地球仪具有两种显示模式,分别是地球模式和地图模式,所述地图显示方法还包括:
    所述虚拟地球仪在地球模式下,确定所述触控手势为单指单击的触控手势时,控制所述虚拟地球仪进入地图模式;
    在进入地图模式后,显示邻近所述触控手势的一级城市的区域版图。
  19. 如权利要求18所述的地图显示方法,其特征在于,所述虚拟地球仪在地图模式下,所述地图显示方法还包括:
    接收由所述实体地球仪发送的触控手势;
    所述触控手势为单指单击的触控手势时,响应所述触控手势并切换显示邻近所述 触控手势的另一一级城市的区域版图;或
    所述触控手势为双指向外扩张的触控手势时,确定所述触控手势的放大倍率,并根据所述触控手势的放大倍率,以所述触控手势的中心为中心按照所述放大倍率放大地图以显示更详细的地图信息;或
    所述触控手势为双指向内收缩的触控手势时,确定所述触控手势的缩小倍率,并根据所述触控手势的缩小倍率,以所述触控手势的中心为中心按照所述缩小倍率缩小地图以显示更粗略的地图信息;或
    所述触控手势为单指单击的单指滑动的触控手势时,按照所述触控手势的滑动距离和滑动方向移动显示区域。
  20. 如权利要求18所述的地图显示方法,其特征在于,所述虚拟地球仪在地图模式下,所述地图显示方法还包括:
    接收由所述实体地球仪发送的触控手势;
    所述触控手势为多指触摸的触控手势时,控制所述虚拟地球仪进入地球模式;
    在进入地球模式后,接收由所述实体地球仪发送的所述实体地球仪的方向角;及根据所述方向角控制所述虚拟地球仪按照所述方向角显示地图信息。
PCT/CN2017/120238 2017-12-29 2017-12-29 具有触控功能的实体地球仪、显示终端和地图显示方法 WO2019127509A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780097404.9A CN111433832B (zh) 2017-12-29 2017-12-29 具有触控功能的实体地球仪、显示终端和地图显示方法
PCT/CN2017/120238 WO2019127509A1 (zh) 2017-12-29 2017-12-29 具有触控功能的实体地球仪、显示终端和地图显示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/120238 WO2019127509A1 (zh) 2017-12-29 2017-12-29 具有触控功能的实体地球仪、显示终端和地图显示方法

Publications (1)

Publication Number Publication Date
WO2019127509A1 true WO2019127509A1 (zh) 2019-07-04

Family

ID=67064479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120238 WO2019127509A1 (zh) 2017-12-29 2017-12-29 具有触控功能的实体地球仪、显示终端和地图显示方法

Country Status (2)

Country Link
CN (1) CN111433832B (zh)
WO (1) WO2019127509A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113778310A (zh) * 2021-08-05 2021-12-10 阿里巴巴新加坡控股有限公司 跨设备控制方法及计算机程序产品
CN116625367B (zh) * 2023-05-04 2024-02-06 中远海运散货运输有限公司 基于pays的航线跨越东西经180°的海图选图方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120320425A1 (en) * 2010-01-06 2012-12-20 Kenji Yoshida Curvilinear solid for information input, map for information input, drawing for information input
CN203179400U (zh) * 2013-05-03 2013-09-04 张乃洪 一种多媒体地球仪
CN106960629A (zh) * 2017-05-24 2017-07-18 李良杰 智能地球仪
CN206628205U (zh) * 2017-03-17 2017-11-10 于平 可触摸显示的地球仪教学模型

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182555A (ja) * 2000-12-15 2002-06-26 Genichiro Ishigooka 情報出力装置を備える地球儀
GB2378305A (en) * 2001-07-31 2003-02-05 Hewlett Packard Co Interactive map or globe for delivering geographically specific data.
CN200944271Y (zh) * 2006-09-13 2007-09-05 季含宇 触摸式电子地球仪
CN201576400U (zh) * 2010-01-12 2010-09-08 于廷荣 一种智能型地球仪
CN104637393B (zh) * 2015-02-13 2017-08-29 广西科技大学鹿山学院 人机交互智能地球仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120320425A1 (en) * 2010-01-06 2012-12-20 Kenji Yoshida Curvilinear solid for information input, map for information input, drawing for information input
CN203179400U (zh) * 2013-05-03 2013-09-04 张乃洪 一种多媒体地球仪
CN206628205U (zh) * 2017-03-17 2017-11-10 于平 可触摸显示的地球仪教学模型
CN106960629A (zh) * 2017-05-24 2017-07-18 李良杰 智能地球仪

Also Published As

Publication number Publication date
CN111433832B (zh) 2022-03-29
CN111433832A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
US9013368B1 (en) Foldable mobile device and method of controlling the same
CN107801413B (zh) 对电子设备进行控制的终端及其处理方法
CN105335001B (zh) 具有弯曲显示器的电子设备以及用于控制其的方法
US8648877B2 (en) Mobile terminal and operation method thereof
CN110476189B (zh) 用于在电子装置中提供增强现实功能的方法和设备
US9881287B1 (en) Dual interface mobile payment register
US20110273575A1 (en) Mobile terminal and operating method thereof
US11941181B2 (en) Mechanism to provide visual feedback regarding computing system command gestures
CN111324250B (zh) 三维形象的调整方法、装置、设备及可读存储介质
JP6658518B2 (ja) 情報処理装置、情報処理方法及びプログラム
US20150378557A1 (en) Foldable electronic apparatus and interfacing method thereof
US8761590B2 (en) Mobile terminal capable of providing multiplayer game and operating method thereof
CN104932809B (zh) 用于控制显示面板的装置和方法
JP6048898B2 (ja) 情報表示装置、情報表示方法および情報表示プログラム
CN113424142A (zh) 用于提供增强现实用户界面的电子装置及其操作方法
KR20180031373A (ko) 전자 장치 및 그의 동작 방법
CN107407945A (zh) 从锁屏捕获图像的系统和方法
CN108549487A (zh) 虚拟现实交互方法与装置
KR20150092962A (ko) 입력 처리 방법 및 그 전자 장치
WO2019127509A1 (zh) 具有触控功能的实体地球仪、显示终端和地图显示方法
CN110052030B (zh) 虚拟角色的形象设置方法、装置及存储介质
CN111597285B (zh) 路网拼接方法、装置、电子设备及存储介质
WO2021004413A1 (zh) 一种手持输入设备及其指示图标的消隐控制方法和装置
KR20180045668A (ko) 터치 유저 인터페이스를 이용한 카메라의 이동경로와 이동시간의 동기화를 위한 사용자 단말장치 및 컴퓨터 구현 방법
US20190212834A1 (en) Software gyroscope apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936787

Country of ref document: EP

Kind code of ref document: A1