WO2019125382A1 - Oscillateur à transductions magnétoélectriques et d'orbite de spin - Google Patents
Oscillateur à transductions magnétoélectriques et d'orbite de spin Download PDFInfo
- Publication number
- WO2019125382A1 WO2019125382A1 PCT/US2017/067084 US2017067084W WO2019125382A1 WO 2019125382 A1 WO2019125382 A1 WO 2019125382A1 US 2017067084 W US2017067084 W US 2017067084W WO 2019125382 A1 WO2019125382 A1 WO 2019125382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnet
- forming
- spin
- conductor
- adjacent
- Prior art date
Links
- 230000026683 transduction Effects 0.000 title description 3
- 238000010361 transduction Methods 0.000 title description 3
- 239000004020 conductor Substances 0.000 claims abstract description 58
- 230000001808 coupling effect Effects 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 81
- 238000000034 method Methods 0.000 claims description 48
- 230000005291 magnetic effect Effects 0.000 claims description 38
- 229910052721 tungsten Inorganic materials 0.000 claims description 32
- 230000000694 effects Effects 0.000 claims description 24
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 229910001291 heusler alloy Inorganic materials 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 229910052709 silver Inorganic materials 0.000 claims description 16
- 229910052797 bismuth Inorganic materials 0.000 claims description 15
- 230000008878 coupling Effects 0.000 claims description 15
- 238000010168 coupling process Methods 0.000 claims description 15
- 238000005859 coupling reaction Methods 0.000 claims description 15
- 229910052742 iron Inorganic materials 0.000 claims description 15
- 229910052715 tantalum Inorganic materials 0.000 claims description 15
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 229910052733 gallium Inorganic materials 0.000 claims description 12
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052697 platinum Inorganic materials 0.000 claims description 11
- 229910052787 antimony Inorganic materials 0.000 claims description 9
- 229910052691 Erbium Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 7
- 229910052765 Lutetium Inorganic materials 0.000 claims description 6
- 229910052779 Neodymium Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 229910052741 iridium Inorganic materials 0.000 claims description 6
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 6
- 229910052684 Cerium Inorganic materials 0.000 claims description 5
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 5
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 5
- 229910052771 Terbium Inorganic materials 0.000 claims description 5
- 229910052775 Thulium Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052693 Europium Inorganic materials 0.000 claims description 4
- 229910052772 Samarium Inorganic materials 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 230000005415 magnetization Effects 0.000 description 66
- 239000003990 capacitor Substances 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000001514 detection method Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 230000010355 oscillation Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 230000005690 magnetoelectric effect Effects 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000002595 magnetic resonance imaging Methods 0.000 description 7
- 230000010287 polarization Effects 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 239000011651 chromium Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 230000005355 Hall effect Effects 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000003032 molecular docking Methods 0.000 description 3
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 3
- 230000003534 oscillatory effect Effects 0.000 description 3
- XXQBEVHPUKOQEO-UHFFFAOYSA-N potassium peroxide Inorganic materials [K+].[K+].[O-][O-] XXQBEVHPUKOQEO-UHFFFAOYSA-N 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- ZIKATJAYWZUJPY-UHFFFAOYSA-N thulium (III) oxide Inorganic materials [O-2].[O-2].[O-2].[Tm+3].[Tm+3] ZIKATJAYWZUJPY-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- -1 M0S2 Inorganic materials 0.000 description 2
- 229910016583 MnAl Inorganic materials 0.000 description 2
- 229910017034 MnSn Inorganic materials 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(iii) oxide Chemical compound O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 description 2
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000005408 paramagnetism Effects 0.000 description 2
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910003396 Co2FeSi Inorganic materials 0.000 description 1
- 229910018301 Cu2MnAl Inorganic materials 0.000 description 1
- 229910015372 FeAl Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910016964 MnSb Inorganic materials 0.000 description 1
- 229910017028 MnSi Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229910003090 WSe2 Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005303 antiferromagnetism Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 229910003440 dysprosium oxide Inorganic materials 0.000 description 1
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(iii) oxide Chemical compound O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 229910001940 europium oxide Inorganic materials 0.000 description 1
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910001938 gadolinium oxide Inorganic materials 0.000 description 1
- 229940075613 gadolinium oxide Drugs 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000005404 monopole Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910001954 samarium oxide Inorganic materials 0.000 description 1
- 229940075630 samarium oxide Drugs 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000005418 spin wave Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 229910003451 terbium oxide Inorganic materials 0.000 description 1
- SCRZPWWVSXWCMC-UHFFFAOYSA-N terbium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tb+3].[Tb+3] SCRZPWWVSXWCMC-UHFFFAOYSA-N 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B15/00—Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects
- H03B15/006—Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects using spin transfer effects or giant magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/18—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
- H01F10/193—Magnetic semiconductor compounds
- H01F10/1936—Half-metallic, e.g. epitaxial CrO2 or NiMnSb films
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/329—Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/30—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
- H01F41/302—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/20—Spin-polarised current-controlled devices
Definitions
- Fig. IB illustrates magnetization response to applied magnetic field for a paramagnet.
- FIG. 8 illustrates an RF detection apparatus for Magnetic Resonance Imaging
- Spin polarized current is generally conducted between nanomagnets to switch magnetization by spin torque effect.
- the signal is sent from one node to the other as a spin quantity (e.g., spin polarized current, a domain wall, or a spin wave).
- spin quantity e.g., spin polarized current, a domain wall, or a spin wave.
- These signals are slow (e.g., 1000 m/s) and exponentially attenuate over the length of the interconnect (e.g., 1 pm).
- Various embodiments describe a device in which an oscillating signal is sent over an electrical interconnect. The charge current through the interconnect does not attenuate and the communication is much faster (e.g., limited by the RC delay of the interconnect).
- the oscillations produced by the MESO device (also referred to as the spin orbitronic oscillator) generates an oscillating current which can be used for mixing another signal (e.g., in an RF frontend).
- the oscillating frequency can be adjusted by changing a bias provided to the SOC structure of the spin orbitronic oscillator.
- the oscillating frequency can be turned by changing a thickness of the magnetoelectric structure of the spin orbitronic oscillator.
- the spin orbitronic oscillator of various embodiments is much smaller in size and uses a fraction of current (e.g., 500 mA versus 3 mA).
- power consumption of the spin orbitronic oscillator of various embodiments is 3 orders of magnitude smaller than the power consumption of SOT based oscillators.
- a much smaller supply voltage can be used for generating an oscillating output.
- the plot shows magnetization response to an applied magnetic field for ferromagnet 101.
- the x-axis of plot 100 is magnetic field ⁇ ’ while the y-axis is magnetization‘m’.
- the relationship between ⁇ ’ and‘m’ is not linear and results in a hysteresis loop as shown by curves 102 and 103.
- the maximum and minimum magnetic field regions of the hysteresis loop correspond to saturated magnetization configurations 104 and 106, respectively.
- saturated magnetization configurations 104 and 106 FM 101 has stable magnetizations.
- FM 101 does not have a definite value of magnetization, but rather depends on the history of applied magnetic fields.
- the magnetization of FM 101 in configuration 105 can be either in the +X direction or the -x direction for an in-plane FM.
- changing or switching the state of FM 101 from one magnetization direction (e.g., configuration 104) to another magnetization direction (e.g., configuration 106) is time consuming resulting in slower nanomagnets response time. It is associated with the intrinsic energy of switching proportional to the area in the graph contained between curves 102 and 103.
- Fig. 1C illustrates plot 130 showing magnetization response to applied voltage field for a paramagnet 131 connected to a magnetoelectric layer 132.
- the x-axis is voltage‘V’ applied across ME layer 132 and y-axis is magnetization‘m’.
- Ferroelectric polarization‘PEE’ is in ME layer 132 is indicated by an arrow.
- spin orbitronic oscillator 200 comprises a magnet 201, a stack of layers (e.g., layers 202, 203, and 204) a portion of which is/are adjacent to magnet 201, feedback conductor(s) 205 (e.g., a non-magnetic charge conductors 205a, 205b, 205c, and 205d), and magnetoelectric (ME) structure 206 (206a/b).
- a current source 207 is provided to provide initial input charge current I C har g e(iN).
- conductor 205 d is an output conductor which provides the oscillating output current I C har g e(ouT).
- paramagnet 201 comprises material which includes one or more of: Platinum(Pt), Palladium (Pd), Tungsten (W), Cerium (Ce), Aluminum (Al), Lithium (Li), Magnesium (Mg), Sodium (Na), CnCT (chromium oxide), CoO (cobalt oxide), Dysprosium (Dy), Dy 2 0 (dysprosium oxide), Erbium (Er), EnCT (Erbium oxide), Europium (Eu), EU2O3 (Europium oxide), Gadolinium (Gd), Gadolinium oxide (Gd 2 03), FeO and Fe 2 03 (Iron oxide), Neodymium (Nd), Nd 2 0 3 (Neodymium oxide), K0 2 (potassium superoxide), praseodymium (Pr), Samarium (Sm), Sm 2 0 3 (samarium oxide), Terbium (Tb), Tb 2 0 3 (Terbium
- magnet 201 is a ferromagnet.
- magnet 201 is a free ferromagnet that is made from CFGG (e.g., Cobalt (Co), Iron (Fe), Germanium (Ge), or Gallium (Ga) or a combination of them).
- magnet 201 is a free magnet that is formed from Heusler alloy(s).
- Heusler alloy is ferromagnetic metal alloy based on a Heusler phase. Heusler phase is intermetallic with certain
- the direction of the spin polarization is determined by the magnetization direction of magnet 201.
- the magnetization direction of magnet 201 depends on the direction of the strain provided by ME layer 206, which in turn depends on the direction of charge current in conductor 205 a.
- Heusler alloys that form magnet 201 include one of: Cu 2 MnAl, Cu 2 MnIn, Cu 2 MnSn, NEMnAl, NEMnln, NEMnSn, NEMnSb, NEMnGa Co 2 MnAl, Co 2 MnSi, Co 2 MnGa, Co 2 MnGe, Pd 2 MnAl, Pd 2 MnIn, Pd 2 MnSn, Pd 2 MnSb, Co 2 FeSi, Co 2 FeAl, Fe 2 VAl, Mn 2 VGa, Co 2 FeGe, MnGa, or MnGaRu.
- input charge current I C har g e(iN) is provided on interconnect 205a by current source 207.
- interconnect 205a is coupled to magnet 201 via ME structure 206.
- interconnect 205a is orthogonal to magnet 201.
- interconnect 205a extends in the +y direction while magnet 201 extends in the +x direction.
- I C har g e(iN) is converted to corresponding magnetic polarization of 201 by ME layer 206.
- an output interconnect 205 d is provided to transfer output charge current I C har ge (ouT) to another logic or stage (e.g., an RF mixer).
- ME structure 206 forms the magnetoelectric capacitor to switch the magnet 201.
- conductor 205a forms one plate of the capacitor
- magnet 201 forms the other plate of the capacitor
- layer 206 is the magnetic-electric oxide that provides exchange bias to magnet 201.
- the direction of the exchange bias depends on the polarity of the charge stored in the capacitor.
- switching of magnet 201 occurs because the magnetoelectric oxide exerts exchange bias originating from partially compensated anti-ferromagnetism in the magneto-electric oxide.
- the 2D materials include one or more of: Mo, S, W, Se,
- the 2D materials include an absorbent which includes one or more of: Cu, Ag, Pt, Bi, Fr, or H absorbents.
- the SHE interconnect 222 comprises a spin orbit material which includes materials that exhibit Rashba-Bychkov effect.
- material which includes materials that exhibit Rashba-Bychkov effect comprises materials ROCI12, where‘R’ includes one or more of: La, Ce, Pr, Nd, Sr, Sc, Ga, Al, or In, and where“Ch” is a chalcogenide which includes one or more of: S, Se, or Te.
- Table 1 summarizes transduction mechanisms for converting magnetization to charge current and charge current to magnetization for bulk materials and interfaces.
- Table 1 Transduction mechanisms for Spin to Charge and Charge to Spin Conversion
- the spin-orbit mechanism responsible for spin-to-charge conversion is described by the inverse Rashba-Edelstein effect in 2D electron gases.
- the Hamiltonian (energy) of spin-orbit coupling electrons in a 2D electron gas is:
- Fig. 9 illustrates an RF detection apparatus 900 for a wireless receiver having the spin orbitronic oscillator, according to some embodiments of the disclosure.
- RF Rx coil 801 and Balun 802 are removed and replaced with Antenna 901.
- the output of Bias-T 1002i is received by Isolator 10031 and then filtered by filter 1004i.
- the output of filter 1004i is then processed by a DSP logic.
- One reason for being able to form a parallel sensing apparatus 1000 is the small size of spin orbitronic oscillator compared to transitional mixers with local oscillating clock sources. As such, many antennas with RF detection circuits (with spin orbitronic oscillators) can be used in a small form factor to detect and process data in parallel.
- filters are used to detect the respective RF signal.
- filters 1102 I-N are centered at co k , 2o3 ⁇ 4, 3o3 ⁇ 4, . . NtO k , where‘N’ is an integer greater than three.
- filter H02 2 is used to detect RF signal having frequency co 2
- w 2 cor- 2o3 ⁇ 4
- Fig. 12 illustrates a sensing array 1200 formed with the apparatus of Fig. 10, according to some embodiments of the disclosure.
- Sensing array 1200 applies the parallel sensing scheme of apparatus 1000.
- an MxN array is formed with antennas of RF Rx coils 1201NM and spin orbitronic oscillators 807NM tuned to a single frequency co, where‘M’ is the number of columns (e.g., 4) and‘N’ is the number of rows (e.g., 5).
- each column of sensing array 1200 results in‘N’ number of wires that carry respective down converted RF (IF) signals for further processing.
- IF down converted RF
- sensing array 1200 generates MxN wires with MxN down converted IF signals for DSP logic 806 to process.
- the size of sensing array 1200 is small enough that it can fit in modem hand-held devices without having varactors and inductors, in accordance with some embodiments.
- Fig. 13 illustrates a sensing array 1300 formed with the apparatus of Fig. 10, according to some embodiments of the disclosure. Sensing array 1300 applies the parallel sensing scheme of apparatus 1200.
- RF signal can be collected via‘M’ wires where each column is a frequency multiplexed arrangement of RF receivers.
- Spin orbitronic oscillator based RF detection described with reference to various embodiments allows for massively parallel RF detection comprising of detecting elements in excess of 1000 detectors. In comparison, the RF detection schemes used in the state of the art MRI is only limited to 24 channels.
- the spin orbitronic oscillator based RF detection of the various embodiments also improves signal collection times for sensing. Sensing time is approximately proportional to l/(number of channels).
- the spin orbitronic oscillator based RF detection of the various embodiments has a capability of being turned on the fly as required by the application or electromagnetic environment.
- computing device 1600 includes first processor 1610 with one or more spin orbitronic oscillators, according to some embodiments discussed.
- Other blocks of the computing device 1600 may also include one or more spin orbitronic oscillators, according to some embodiments.
- the various embodiments of the present disclosure may also comprise a network interface within 1670 such as a wireless interface so that a system embodiment may be incorporated into a wireless device, for example, cell phone or personal digital assistant.
- processor 1610 can include one or more physical devices, such as microprocessors, application processors, microcontrollers, programmable logic devices, or other processing means.
- the processing operations performed by processor 1610 include the execution of an operating platform or operating system on which applications and/or device functions are executed.
- the processing operations include operations related to I/O (input/output) with a human user or with other devices, operations related to power management, and/or operations related to connecting the computing device 1600 to another device.
- the processing operations may also include operations related to audio I/O and/or display I/O.
- computing device 1600 comprises display subsystem 1630.
- Display subsystem 1630 represents hardware (e.g., display devices) and software (e.g., drivers) components that provide a visual and/or tactile display for a user to interact with the computing device 1600.
- Display subsystem 1630 includes display interface 1632, which includes the particular screen or hardware device used to provide a display to a user.
- display interface 1632 includes logic separate from processor 1610 to perform at least some processing related to the display.
- display subsystem 1630 includes a touch screen (or touch pad) device that provides both output and input to a user.
- computing device 1600 comprises I/O controller 1640.
- I/O controller 1640 manages devices such as accelerometers, cameras, light sensors or other environmental sensors, or other hardware that can be included in the computing device 1600.
- the input can be part of direct user interaction, as well as providing environmental input to the system to influence its operations (such as filtering for noise, adjusting displays for brightness detection, applying a flash for a camera, or other features).
- computing device 1600 includes power management 1650 that manages battery power usage, charging of the battery, and features related to power saving operation.
- Memory subsystem 1660 includes memory devices for storing information in computing device 1600. Memory can include nonvolatile (state does not change if power to the memory device is interrupted) and/or volatile (state is indeterminate if power to the memory device is interrupted) memory devices. Memory subsystem 1660 can store application data, user data, music, photos, documents, or other data, as well as system data (whether long-term or temporary) related to the execution of the applications and functions of the computing device 1600.
- embodiments of the disclosure may be downloaded as a computer program (e.g., BIOS) which may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals via a communication link (e.g., a modem or network connection).
- BIOS a computer program
- a remote computer e.g., a server
- a requesting computer e.g., a client
- a communication link e.g., a modem or network connection
- computing device 1600 comprises connectivity 1670.
- Connectivity 1670 includes hardware devices (e.g., wireless and/or wired connectors and communication hardware) and software components (e.g., drivers, protocol stacks) to enable the computing device 1600 to communicate with external devices.
- the computing device 1600 could be separate devices, such as other computing devices, wireless access points or base stations, as well as peripherals such as headsets, printers, or other devices.
- Connectivity 1670 can include multiple different types of connectivity.
- the computing device 1600 is illustrated with cellular connectivity 1672 and wireless connectivity 1674.
- Cellular connectivity 1672 refers generally to cellular network connectivity provided by wireless carriers, such as provided via GSM (global system for mobile communications) or variations or derivatives, CDMA (code division multiple access) or variations or derivatives, TDM (time division multiplexing) or variations or derivatives, or other cellular service standards.
- Wireless connectivity (or wireless interface) 1674 refers to wireless connectivity that is not cellular, and can include personal area networks (such as Bluetooth, Near Field, etc.), local area networks (such as Wi-Fi), and/or wide area networks (such as WiMAX), or other wireless communication.
- computing device 1600 comprises peripheral connections 1680.
- Peripheral connections 1680 include hardware interfaces and connectors, as well as software components (e.g., drivers, protocol stacks) to make peripheral connections.
- the computing device 1600 could both be a peripheral device ("to" 1682) to other computing devices, as well as have peripheral devices ("from” 1684) connected to it.
- the computing device 1600 commonly has a "docking" connector to connect to other computing devices for purposes such as managing (e.g., downloading and/or uploading, changing, synchronizing) content on computing device 1600.
- a docking connector can allow computing device 1600 to connect to certain peripherals that allow the computing device 1600 to control content output, for example, to audiovisual or other systems.
- the computing device 1600 can make peripheral connections 1680 via common or standards-based connectors.
- Common types can include a Universal Serial Bus (USB) connector (which can include any of a number of different hardware interfaces), DisplayPort including MiniDisplayPort (MDP), High Definition Multimedia Interface (HDMI), Firewire, or other types.
- USB Universal Serial Bus
- MDP MiniDisplayPort
- HDMI High Definition Multimedia Interface
- Firewire or other types.
- Example 1 An apparatus comprising: a magnet; a magnetoelectric structure adjacent to the magnet; a structure adjacent to the magnet, wherein the structure is to provide a spin orbit coupling effect; a first conductor adjacent to the magnetoelectric structure; a second conductor coupled to at least a portion of the structure; and a third conductor adjacent to a portion of the first conductor and adjacent to a portion of the second conductor.
- Example 2 The apparatus of example 1, wherein the structure comprises a stack of materials.
- Example 3 The apparatus of example 1, wherein the magnetoelectric structure comprises a material which includes one of: Cr, O, B, or multiferroic material.
- Example 4 The apparatus of claim 3 wherein the multiferroic material comprises: Bi, Fe, O, Lu, or La.
- Example 6 The apparatus of example 2, wherein a portion of the stack of the materials is coupled to ground.
- Example 7 The apparatus according to any one of examples 1 to 4, wherein a portion of the magnet near the structure is coupled to a power supply.
- Example 8 The apparatus of example 1, wherein the first, second, or conductors comprise a material which includes one or more of: Cu, Ag, Al, Au, Co, W, Ta, or Ni.
- Example 9 The apparatus according to any one of preceding examples, wherein the magnet has in-plane magnetic anisotropy.
- Example 10 The apparatus of example 1, wherein the magnet comprises one of Heusler alloy, Co, Fe, Ni, Gd, B, Ge, Ga, or a combination of them, and wherein the Heusler alloy includes one of: Cu, Mn, Al, In, Sn, Ni, Sb, Ga, Co, Ge, Pd disturb Sb, Si, V, or Ru.
- Example 11 The apparatus of example 2, wherein the stack of materials comprises: a first structure comprising Ag, wherein the first structure is adjacent to the magnet; and a second structure comprising Bi or W, wherein the second structure is adjacent to the first structure and to the second conductor.
- Example 13 The apparatus of example 1, wherein the magnet is a paramagnet, and wherein the paramagnet includes one or more of: Pt, Pd, W, Ce, Al, Li, Mg, Na, Cr, O, Co, Dy, Er, Er, Eu, Gd, Fe, Nd, K, Pr, Sm, Tb, Tm, or V.
- Example 14 An apparatus comprising: an array of antennas; and an array of oscillators, wherein each antenna of the array of antennas is coupled to an oscillator forming a pair, wherein an individual oscillator of the array comprises an apparatus according to any one of examples 1 to 13.
- Example 16 The apparatus of example 15 comprises an array of filters, wherein an individual filter of the array of filters is coupled to the individual isolator of the array of isolators.
- Example 22 The method of example 20, wherein forming the
- Example 23 The method of example 22 wherein the multiferroic material comprises: Bi, Fe, O, Lu, or La.
- Example 28 The method according to any one of preceding method examples, wherein the magnet has in-plane magnetic anisotropy.
- Example 29 The method of example 20, wherein the magnet comprises one of Heusler alloy, Co, Fe, Ni, Gd, B, Ge, Ga, or a combination of them, and wherein the Heusler alloy includes one of: Cu, Mn, Al, In, Sn, Ni, Sb, Ga, Co, Ge, Pd disturb Sb, Si, V, or Ru.
- Example 31 The method of example 21, wherein forming the stack of materials comprises forming one or more of: b-Ta, b-W, W, Pt, Cu doped with Iridium, Cu doped with Bismuth, Cu doped an element of 3d, 4d, 5d, 4f, or 5f of periodic table groups,
- Example 32 The method of example 20, wherein the magnet is a paramagnet, and wherein the paramagnet includes one or more of: Pt, Pd, W, Ce, Al, Li, Mg, Na, Cr, O, Co, Dy, Er, Er, Eu, Gd, Fe, Nd, K, Pr, Sm, Tb, Tm, or V.
- the paramagnet includes one or more of: Pt, Pd, W, Ce, Al, Li, Mg, Na, Cr, O, Co, Dy, Er, Er, Eu, Gd, Fe, Nd, K, Pr, Sm, Tb, Tm, or V.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
Abstract
L'invention concerne un appareil qui comprend : un aimant ; une structure magnétoélectrique adjacente à l'aimant ; une structure adjacente à l'aimant destinée à fournir un effet de couplage d'orbite de spin ; un premier conducteur adjacent à la structure magnétoélectrique ; un deuxième conducteur couplé à au moins une partie de la structure ; et un troisième conducteur adjacent à une partie du premier conducteur et à une partie du deuxième conducteur.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2017/067084 WO2019125382A1 (fr) | 2017-12-18 | 2017-12-18 | Oscillateur à transductions magnétoélectriques et d'orbite de spin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2017/067084 WO2019125382A1 (fr) | 2017-12-18 | 2017-12-18 | Oscillateur à transductions magnétoélectriques et d'orbite de spin |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019125382A1 true WO2019125382A1 (fr) | 2019-06-27 |
Family
ID=66994250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/067084 WO2019125382A1 (fr) | 2017-12-18 | 2017-12-18 | Oscillateur à transductions magnétoélectriques et d'orbite de spin |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019125382A1 (fr) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150041934A1 (en) * | 2013-08-08 | 2015-02-12 | Samsung Electronics Co., Ltd. | Method and system for providing magnetic memories switchable using spin accumulation and selectable using magnetoelectric devices |
WO2017048229A1 (fr) * | 2015-09-14 | 2017-03-23 | Intel Corporation | Mémoire à deux transistors à signal puissant doté de dispositif spin-orbite magnéto-électrique |
US20170243917A1 (en) * | 2014-12-26 | 2017-08-24 | Intel Corporation | Spin-orbit logic with charge interconnects and magnetoelectric nodes |
US20170249550A1 (en) * | 2016-02-28 | 2017-08-31 | Purdue Research Foundation | Electronic synapse having spin-orbit torque induced spiketiming dependent plasticity |
US20170346149A1 (en) * | 2016-05-24 | 2017-11-30 | Imec Vzw | Tunable Magnonic Crystal Device and Filtering Method |
-
2017
- 2017-12-18 WO PCT/US2017/067084 patent/WO2019125382A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150041934A1 (en) * | 2013-08-08 | 2015-02-12 | Samsung Electronics Co., Ltd. | Method and system for providing magnetic memories switchable using spin accumulation and selectable using magnetoelectric devices |
US20170243917A1 (en) * | 2014-12-26 | 2017-08-24 | Intel Corporation | Spin-orbit logic with charge interconnects and magnetoelectric nodes |
WO2017048229A1 (fr) * | 2015-09-14 | 2017-03-23 | Intel Corporation | Mémoire à deux transistors à signal puissant doté de dispositif spin-orbite magnéto-électrique |
US20170249550A1 (en) * | 2016-02-28 | 2017-08-31 | Purdue Research Foundation | Electronic synapse having spin-orbit torque induced spiketiming dependent plasticity |
US20170346149A1 (en) * | 2016-05-24 | 2017-11-30 | Imec Vzw | Tunable Magnonic Crystal Device and Filtering Method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019125388A1 (fr) | Oscillateur basé sur un couplage d'orbite de spin faisant appel à une polarisation d'échange | |
CN108055872B (zh) | 具有自旋霍尔电极和电荷互连的自旋逻辑 | |
US11502188B2 (en) | Apparatus and method for boosting signal in magnetoelectric spin orbit logic | |
US11411172B2 (en) | Magnetoelectric spin orbit logic based full adder | |
US10608167B2 (en) | Spin logic with magnetic insulators switched by spin orbit coupling | |
US10320404B2 (en) | Coupled spin hall nano oscillators with tunable strength | |
WO2019005175A1 (fr) | Logique de spin-orbite magnétoélectrique à charge de déplacement | |
CN110349608A (zh) | 用于改进磁存储器中的基于自旋轨道耦合的切换的设备 | |
WO2017105396A1 (fr) | Appareil à réseau neuronal cellulaire oscillant magnétoélectrique et procédé | |
WO2019125381A1 (fr) | Mémoire à base de couplage spin-orbite avec couple de spin de sous-réseau | |
WO2019125383A1 (fr) | Mémoire à base de couplage spin-orbite perpendiculaire avec couche libre composite | |
WO2017222521A1 (fr) | Mémoire à effet hall de spin à base d'anisotropie magnétique perpendiculaire, utilisant l'effet spin-orbite | |
CN109937483B (zh) | 垂直磁电自旋轨道逻辑 | |
WO2019066820A1 (fr) | Logique spin-orbite magnétoélectrique en cascade | |
WO2019125384A1 (fr) | Mémoire basée sur un couplage spin-orbite avec aimant isolant | |
WO2019190550A1 (fr) | Appareil de génération térahertz à ondes guidées et procédé utilisant un effet spin-orbite | |
WO2018125105A1 (fr) | Mise en forme d'un gabarit d'oxydes complexes en vue d'une intégration ferroélectrique et magnétoélectrique | |
WO2018004549A1 (fr) | Nanolaser pour conversion spin-optique et optique-spin | |
WO2019125382A1 (fr) | Oscillateur à transductions magnétoélectriques et d'orbite de spin | |
WO2019005146A1 (fr) | Logique de spin-orbite magnétoélectrique à aimant semi-isolant | |
WO2017111895A1 (fr) | Appareil et procédé de commutation d'onde de spin | |
US11114144B2 (en) | Magnetoelectric spin orbit logic with paramagnets | |
WO2019132862A1 (fr) | Logique de spin-orbite magnétoélectrique ayant un aimant semi-isolant ou isolant | |
WO2019190552A1 (fr) | Logique spin-orbite avec matériau de couplage spin-orbite de néel | |
WO2017052655A1 (fr) | Oscillateur à transfert de spin à mélangeur intégré |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17935704 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17935704 Country of ref document: EP Kind code of ref document: A1 |