WO2019125004A1 - 액정셀 - Google Patents

액정셀 Download PDF

Info

Publication number
WO2019125004A1
WO2019125004A1 PCT/KR2018/016314 KR2018016314W WO2019125004A1 WO 2019125004 A1 WO2019125004 A1 WO 2019125004A1 KR 2018016314 W KR2018016314 W KR 2018016314W WO 2019125004 A1 WO2019125004 A1 WO 2019125004A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal cell
reactive
voltage
current density
Prior art date
Application number
PCT/KR2018/016314
Other languages
English (en)
French (fr)
Inventor
김덕환
이연근
김정두
이준행
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/768,971 priority Critical patent/US11175558B2/en
Priority to JP2020529713A priority patent/JP7125200B2/ja
Priority to CN201880079750.9A priority patent/CN111465892B/zh
Priority to EP18890354.6A priority patent/EP3731006A4/en
Publication of WO2019125004A1 publication Critical patent/WO2019125004A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133769Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers comprising an active, e.g. switchable, alignment layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13743Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on electrohydrodynamic instabilities or domain formation in liquid crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/13Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used used in the technical field of thermotropic switches
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2417Light path control; means to control reflection
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13743Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on electrohydrodynamic instabilities or domain formation in liquid crystals
    • G02F1/1375Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on electrohydrodynamic instabilities or domain formation in liquid crystals using dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13756Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal selectively assuming a light-scattering state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/03Function characteristic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator

Definitions

  • the present application relates to a liquid crystal cell, a method for producing the same, and a use thereof.
  • a normal transmission mode element is a device in which a transmission mode is realized in the absence of an external action, a switching mode is switched to an interrupting mode under an external action, and the transmission mode is switched to a transmission mode again when an external action is removed.
  • Patent Document 1 Korean Patent Laid-Open Publication No. 10-2014-0077861 discloses a normal transmission mode element capable of varying between a transmission mode and a scattering mode.
  • the device of Patent Document 1 is a so-called PDLC (Polymer Dispersed Liquid Crystal) device realized by dispersing a liquid crystal in a polymer matrix. Since the liquid crystal compound is usually not aligned in the PDLC, the scattering state However, a normal transmission mode is realized by applying a vertical alignment film.
  • PDLC Polymer Dispersed Liquid Crystal
  • the present application is to provide a liquid crystal cell which is usually in a transmission mode, excellent in transmittance variation characteristics of a transmission mode and a scattering mode, and excellent in haze characteristics in a scattering mode, a method for producing the same, and its use.
  • Fig. 1 exemplarily shows a liquid crystal cell according to an embodiment of the present application.
  • the liquid crystal cell includes two substrates 100 and 300 disposed opposite to each other; And a liquid crystal layer (200) existing between the two substrates (100, 300).
  • the liquid crystal cell may be a transmissive mode device.
  • " normal transmission mode element " means that a transmission mode is realized in a state in which there is no external action (i.e., an initial state or a normal state) and is switched to a scattering mode under external action. May be referred to as a switching device.
  • the term " external action " in this application means all kinds of actions performed to change the alignment of liquid crystal compounds, and representative examples include the application of a voltage.
  • the concentration of the conductivity adjusting agent should be higher than a certain level, and the concentration of the conductivity adjusting agent may be evaluated by the average current density.
  • the liquid crystal layer 200 may have an average current density of 30 ⁇ A / cm 2 to 60 / / cm 2 .
  • the lower limit of the average current density of the liquid crystal layer 200 may be 33 ⁇ A / cm 2 or more, 36 ⁇ A / cm 2 or more, 39 ⁇ A / cm 2 or 40 ⁇ A / cm 2 or more, 200) may be 59 ⁇ A / cm 2 or less, 58 ⁇ A / cm 2 or less, 57 ⁇ A / cm 2 or 56 ⁇ A / cm 2 or less.
  • the term " current density &quot means the amount of current flowing through a unit area.
  • " average current density &quot refers to a value obtained by applying a voltage of a specific intensity and frequency to a liquid crystal cell, . ≪ / RTI >
  • the term " cycle &quot means a period in which a specific voltage is applied when an AC voltage is applied.
  • the current density may be a value measured in the fifth cycle, which is a point at which it is determined that the current density tends to be measured and is stabilized when the voltage is immediately measured after application of the AC voltage.
  • the average current density of the liquid crystal layer 200 is obtained by applying an AC voltage having a voltage of 40 V and an AC voltage having a frequency of 60 Hz to the liquid crystal cell from 64 ms (millisecond) to 72 ms, May be the average value of the current density measured from 0 ms to 8 ms of the cycle. It is possible to provide a liquid crystal cell in which the liquid crystal layer 200 satisfies the average current density within the above-mentioned range and is usually in the transmission mode, excellent in the transmittance variation characteristics in the transmission mode and the scattering mode, and excellent in the haze characteristic in the scattering mode .
  • the average current density of the liquid crystal layer 200 is too low, the concentration of the conductivity adjusting agent is low, and the vortex of the conductivity adjusting agent is not sufficiently generated, so that the haze characteristic may be deteriorated.
  • the average current density of the liquid crystal layer 200 is too high, the haze characteristic may be excellent.
  • the difference between the initial transmittance and the transmittance at the time of applying the 60 V voltage can be reduced, Lt; / RTI >
  • the average current density of the liquid crystal layer can be controlled according to the composition of the liquid crystal layer and the heating time.
  • the current density can be measured with a semiconductor characterization analyzer, and the current density according to one embodiment is measured using a DSLC cell Keithly 4200 semiconductor characteristic analyzer.
  • the driving waveform of the semiconductor characteristic analyzer may have a period of 0.0010 sec to 0.0300 sec, a pulse width of 0.00500 sec to 0.01000 sec, a rising time of 0.00001 sec to 0.00020 sec, and a falling time of 0.00001 sec to 0.00020 sec. sec, and the basic voltage may be from -60 V to -20 V, and the amplitude may be from 50 V to 100 V.
  • the driving waveform of the semiconductor characteristic analyzer may have a period of 0.0100 sec to 0.0250 sec or 0.0150 sec to 0.0200 sec, and a pulse width of 0.00600 sec to 0.00950 sec, 0.00700 sec to 0.00900 sec, or 0.00800 sec to 0.00850 sec.
  • the rising time may be 0.00004 sec to 0.00016 sec or 0.00008 sec to 0.00012 sec and the falling time may be 0.00004 sec to 0.00016 sec or 0.00008 sec to 0.00012 sec and the basic voltage may be -55 V to -25 V, 50 V to -30 V, or -45 V to -35 V, and the amplitude may be 60 V to 95 V, 70 V to 90 V, or 75 V to 85 V.
  • the period refers to the time taken for a single reciprocating movement around the oscillation center in the oscillation phenomenon or for a single physical oscillation to occur.
  • the pulse width means an interval at a time when the amplitude becomes 1/2 in the rise time and the fall time of the pulse.
  • the rise time means the time between 10% and 90% of the maximum value during the period in which the pulse wave increases from the minimum value to the maximum value.
  • the falling time means the time during which the pulse wave becomes 90% to 10% of the maximum value during the period from the maximum value to the minimum value.
  • the basic voltage means a voltage at 0 second before applying a specific voltage when measuring the current density.
  • the amplitude refers to a distance or displacement that moves maximum from the center of vibration when there is periodic vibration.
  • the liquid crystal layer 200 may include a non-reactive liquid crystal.
  • the non-reactive liquid crystal in the liquid crystal layer 200 can perform a function of varying the transmittance by changing the orientation according to an external action, for example, whether an external voltage is applied.
  • Any kind of liquid crystal compound can be used as the non-reactive liquid crystal so long as the alignment direction can be changed by application of an external action.
  • the liquid crystal compound may be a smectic liquid crystal compound, a nematic liquid crystal compound, or a cholesteric liquid crystal compound.
  • the liquid crystal compound may be a compound which does not have a polymerizable group or a crosslinkable group, for example, so that the orientation direction can be changed by application of an external action.
  • the nonreactive liquid crystal may have a negative dielectric anisotropy.
  • dielectric anisotropy ( ⁇ ) can mean the difference ( ⁇ // - ⁇ ⁇ ) between the horizontal permittivity ( ⁇ //) and the vertical permittivity ( ⁇ ⁇ ) of the liquid crystal.
  • horizontal permittivity ( ⁇ //) means a permittivity value measured along the direction of the electric field in a state where a voltage is applied so that the direction of the electric field due to the director and the applied voltage of the liquid crystal molecule is substantially horizontal
  • a dielectric constant measured along the direction of the electric field in a state where a voltage is applied so that the direction of the electric field due to the director and the applied voltage of the liquid crystal molecule is substantially perpendicular.
  • the absolute value of the dielectric anisotropy [Delta] [epsilon] of the non-reactive liquid crystal may be within a range of, for example, about 1 to 10.
  • the upper limit of the absolute value of the dielectric anisotropy (DELTA epsilon) of the nonreactive liquid crystal is not more than 10
  • the lower limit of the absolute value of the dielectric anisotropy (DELTA epsilon) of the nonreactive liquid crystal may be 1 or more, 2 or more, , 9 or less, 8 or less, 7 or less, 6 or less, or 5 or less.
  • the liquid crystal cell When the dielectric anisotropy of the non-reactive liquid crystal satisfies the above range, the liquid crystal cell can be driven with a low driving voltage, exhibits excellent haze characteristics, and can realize a liquid crystal cell switching between a transparent mode and a scattering mode Do.
  • the refractive index anisotropy of the non-reactive liquid crystal can be appropriately selected in consideration of the objective properties, for example, the haze characteristics of the liquid crystal cell.
  • the term " refractive index anisotropy " in the present application may mean a difference between an ordinary refractive index and an extraordinary refractive index of a non-reactive liquid crystal.
  • the extraordinary refractive index means a refractive index with respect to the optical axis of the non-reactive liquid crystal
  • the normal refractive index can mean a refractive index with respect to a direction perpendicular to the optical axis of the non-reactive liquid crystal.
  • the lower limit of the refractive index anisotropy of the liquid crystal compound may be 0.1 or more, 0.12 or more, 0.14 or more, 0.16 or more, 0.18 or more or 0.19 or more and the upper limit of the refractive index anisotropy of the liquid crystal compound may be 0.3 or less, 0.28 or less, Or less, or 0.22 or less, or 0.2 or less.
  • " optical axis " in the present specification may mean an axis in the long axis direction of the liquid crystal when the liquid crystal has a rod shape, and may mean an axis in the normal direction of the plane of the original plate when the liquid crystal has a discotic shape. have.
  • the liquid crystal layer 200 may further include a conductivity adjusting agent.
  • the liquid crystal layer 200 may be a liquid crystal layer driven in a dynamic scattering mode.
  • the dynamic scattering mode may refer to a liquid crystal mode that causes electrohydrodynamic instability (EHDI).
  • EHDI electrohydrodynamic instability
  • the dynamic scattering mode liquid crystal layer includes non-reactive liquid crystals in a nematic or smectic phase and a conductivity adjuster for inducing EHDI.
  • EHDI electrohydrodynamic instability
  • the conductivity adjusting agent when the conductivity adjusting agent is contained in the liquid crystal layer 200, the conductivity adjusting agent may be included in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the non-reactive liquid crystal. Specifically, the conductivity adjusting agent may be added in an amount of 0.1 to 15 parts by weight, 0.1 to 10 parts by weight, 0.1 to 5.5 parts by weight, 0.1 to 5 parts by weight or 0.1 part by weight, To 2.5 parts by weight.
  • the conductivity adjusting agent in the above-described range ratio in the liquid crystal layer 200, it is possible to exhibit excellent haze characteristics in the scattering mode and to stably maintain the physical properties of the liquid crystal layer.
  • the conductivity modifier for inducing EHDI may include, for example, one or more selected from an anisotropic dye, a reactive monomer, and an ionic compound.
  • the reactive monomer may be a reactive liquid crystal.
  • the liquid crystal cell may include an anisotropic dye, a reactive liquid crystal, and an ionic compound as a conductivity adjusting agent in the liquid crystal layer 200, and in another example, the liquid crystal cell may include an anisotropic dye, As the conductivity adjusting agent, an anisotropic dye, a reactive liquid crystal, and an ionic compound may be included.
  • the anisotropic dye improves the light shielding ratio of the liquid crystal cell and can contribute to varying the transmittance.
  • the term " dye &quot may refer to a material that is capable of intensively absorbing and / or modifying light within a visible light region, for example, within a wavelength range of 400 nm to 700 nm, at least partially or entirely.
  • the term " anisotropic dye &quot may mean a material capable of anisotropic absorption of light in at least a part or the entire range of the visible light region.
  • the anisotropic dye for example, a known dye known to have a property of being aligned according to the alignment state of the liquid crystal can be selected and used. For example, a black dye can be used.
  • an azo dye or an anthraquinone dye can be used.
  • the anisotropic dye may be included in an amount of 0.1 to 2 parts by weight based on 100 parts by weight of the non-reactive liquid crystal. Specifically, the anisotropic dye may be used in an amount of 0.1 to 1.8 parts by weight, 0.1 to 1.6 parts by weight, 0.1 to 1.4 parts by weight, 0.1 to 1.2 parts by weight, 0.1 part by weight To 1.0 part by weight or from 0.1 part by weight to 0.8 part by weight.
  • anisotropic dyes in the liquid crystal layer 200 within the above-described range, it is possible to improve the light shielding ratio of the liquid crystal cell, thereby contributing to varying the transmittance.
  • the reactive monomer a reactive liquid crystal having good mixing property with liquid crystal can be used as described above, and the reactive liquid crystal can be referred to as a reactive mesogen.
  • the reactive mesogen may refer to a compound that contains moieties capable of exhibiting liquid crystallinity, for example, a mesogen skeleton, and also includes at least one reactive functional group.
  • the reactive functional group for example, a polymerizable functional group or a crosslinkable functional group can be exemplified.
  • the reactive group examples include an acryloyl group, an acryloyloxy group, a methacryloyl group, a methacryloyloxy group, a carboxyl group, a hydroxy group, a vinyl group, and an epoxy group, but not limited thereto, A known functional group may be included.
  • the reactive mesogens may comprise polyfunctional reactive mesogens or monofunctional reactive mesogens.
  • the term " multifunctional reactive mesogens " may refer to compounds containing two or more reactive functional groups in the mesogens.
  • the polyfunctional reactive mesogen comprises 2 to 10, 2 to 8, 2 to 6, 2 to 5, 2 to 4, 2 to 3 or 2 reactive functional groups Can be included.
  • the term " monofunctional reactive mesogens &quot may refer to compounds containing one reactive functional group in the mesogens.
  • the reactive monomer When the reactive monomer is contained in the liquid crystal layer 200, the reactive monomer may be included in an amount of 0.5 to 15 parts by weight based on 100 parts by weight of the non-reactive liquid crystal. Specifically, the reactive monomer may be used in an amount of 0.5 to 12 parts by weight, 0.5 to 10 parts by weight, 0.5 to 5 parts by weight, 0.5 to 2.5 parts by weight, or 0.5 part by weight based on 100 parts by weight of the non- To 1 part by weight.
  • the reactive monomer By including the reactive monomer in the liquid crystal layer 200 within the above-described range, it is possible to form a liquid crystal layer having excellent physical properties while effectively ensuring conductivity.
  • an ionic compound may mean a salt-type compound in which ions having opposite charges, for example, cation and anion are formed by ionic bonding.
  • the ionic compound may be electrically neutral. Examples of such ionic compounds include, but are not limited to, a nitrogen-containing onium salt, a sulfur-containing onium salt, or a phosphorus-containing onium salt.
  • the ionic compound may be an ionic impurity, an ionic liquid, or a salt.
  • the ionic impurities include 2,2,6,6-Tetramethylpiperidine-1- Oxyl Free radical can be used and TMAPF 6 or BMIN-BF 4 (1-butyl-3-methylimidazolium BF 4 ) can be used as the ionic liquid.
  • CTAB Chemicaltrimonium bromide
  • CTAI Cetrimonium Iodide
  • CTAI 3 Cetrimonium triiodide
  • the ionic compound When the ionic compound is contained in the liquid crystal layer 200, the ionic compound may be contained in an amount of 0.1 to 2 parts by weight based on 100 parts by weight of the non-reactive liquid crystal. Specifically, the ionic compound is contained in a ratio of 0.1 to 1.5 parts by weight, 0.1 to 1.2 parts by weight, 0.1 to 1.0 parts by weight, or 0.1 to 0.5 parts by weight based on 100 parts by weight of the non-reactive liquid crystal .
  • the conductivity of the liquid crystal layer can be effectively ensured.
  • the ionic compound contains a small amount of the above-mentioned range in consideration of solubility in the liquid crystal compound can do.
  • the weight ratio of the reactive monomer to the ionic compound may be from 2.5: 1 to 150: 1.
  • the weight ratio of the reactive monomer to the ionic compound may range from 2.5: 1 to 130: 1, 2.5: 1 to 100: 1, 2.5: 1 to 80: 1, 2.5: 1 to 50: 30: 1 or 2.5: 1 to 10: 1.
  • the liquid crystal cell can switch between the transmission mode and the scattering mode by adjusting the initial alignment state of the non-reactive liquid crystal and applying an external action such as a voltage. For example, when the nonreactive liquid crystal is present in a vertically aligned state, the liquid crystal cell may exhibit a transparent mode, and when the nonreactive liquid crystal is present in an irregularly arranged state, the liquid crystal cell may exhibit a scattering mode.
  • " scattering mode " means a mode in which a liquid crystal cell exhibits haze over a predetermined level
  • " transmissive mode &quot means a mode in which light is transmissive or a mode exhibiting haze below a predetermined level
  • the liquid crystal cell in the scattering mode, may have a haze of 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, , At least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95%.
  • the liquid crystal cell in the transparent mode, for example, may have a haze of less than 10%, less than 8%, less than 6%, or less than 5%.
  • the haze may be a percentage of the transmittance of the diffused light to the transmittance of the total transmitted light passing through the object to be measured.
  • the haze can be evaluated using a hazemeter (NDH-5000SP).
  • the haze can be evaluated in the following manner using the haze meter. That is, light is transmitted through the object to be measured and is incident into the integrating sphere. In this process, light is separated into diffused light (DT) and parallel light (PT) by the object to be measured. The light is reflected in the integrating sphere and condensed on the light receiving element, and the haze can be measured through the condensed light Do.
  • the liquid crystal cell may be in a transparent mode in a state in which no external action is applied, and may be switched to a scatter mode in the case where external action is applied.
  • the liquid crystal layer 200 may exist in a vertically aligned state in a state where no external action is applied to the liquid crystal cell.
  • Figs. 2 and 3 illustrate, by way of example, the transmission mode and the scattering mode driving of the liquid crystal cell of the present application.
  • the non-reactive liquid crystal in an initial state, that is, in a state in which no external action is applied, can exist in a state of being vertically oriented with respect to the plane of the liquid crystal layer 200, and can realize a transparent mode (A) have.
  • the non-reactive liquid crystal has an irregular arrangement state by the EHDI induced by the conductivity adjusting agent, Can be switched.
  • the transparent mode can be switched to the initial state.
  • the transition from the transparent mode to the scattering mode can be performed, for example, by applying a vertical electric field of about 1 to 500 Hz, about 1 to 100 Hz, which can, for example, May be appropriately changed in consideration of the haze characteristic.
  • the liquid crystal layer 200 may have a difference in transmittance between an initial state and a 60V voltage application of 40% or more.
  • the &quot difference between the transmittance in the initial state and the transmittance in the application of 60V voltage " is defined as the transmittance variable width.
  • the transmittance variation width of the liquid crystal layer 200 may be 41% or more or 42% or more, and the upper limit of the transmittance variation width of the liquid crystal layer 200 may be 45%. Since the liquid crystal layer 200 has excellent transmittance variation width within the above-mentioned range, the driving characteristic of the liquid crystal cell can be excellent.
  • the initial transmittance of the liquid crystal layer 200 may be 60% to 95%. Specifically, the initial transmittance of the liquid crystal layer 200 may be 60% to 90%, 60% to 80% % Or 60% to 70%. In addition, the transmittance of the liquid crystal layer 200 when the 60 V voltage is applied may be 15% to 50%. Specifically, the transmittance of the liquid crystal layer 200 when the 60 V voltage is applied may be 15% to 45% 15% to 35% or 15% to 26%.
  • the liquid crystal layer 200 can exhibit haze by the refractive index difference between the domains of the non-reactive liquid crystals existing in the liquid crystal layer 200 when a voltage of 60 V is applied.
  • the refractive index means a refractive index for light having a wavelength of about 550 nm unless otherwise specified.
  • the liquid crystal layer 200 may have a haze of 90% or more when a voltage of 60 V is applied.
  • the haze of the liquid crystal layer 200 when applied with a voltage of 60 V may be 91% or more, 92% or more, 93% or 94% or more, and the haze May be 98% or less.
  • the liquid crystal layer 200 has a haze within the above-described range when a voltage of 60 V is applied, so that the liquid crystal cell can have excellent light shielding characteristics in the scattering mode.
  • the liquid crystal layer 200 may have a haze of 9% or less in the initial state. Specifically, the haze in the initial state of the liquid crystal layer 200 may be 8% or less, 6% or less, or 5% or less, and the lower limit of the haze in the initial state of the liquid crystal layer 200 may be 0.4% . Since the liquid crystal layer 200 has a haze in the above-described range in the initial state, the liquid crystal cell can have excellent transmission characteristics in the normal transmission mode.
  • the two substrates 100 and 300 may include electrode layers 120 and 320 and vertical alignment layers 130 and 330, respectively.
  • the two substrates 100 and 300 include the substrates 110 and 310, respectively, and the electrode layers 120 and 320 and the vertical alignment layers 130 and 330 sequentially on the substrates 110 and 310 .
  • the plastic film or sheet may be a cellulose film or sheet such as DAC (diacetyl cellulose) or TAC (triacetyl cellulose) film or sheet; A cycloolefin copolymer (COP) film or sheet such as a norbornene derivative resin film or sheet; An acrylic film or sheet such as PMMA (poly (methyl methacrylate) film or sheet; a polycarbonate film or sheet; an olefin film or sheet such as PE (polyethylene) or PP (polypropylene) film or sheet; A polyetheretherketone (PEEK) film or sheet, a polyetherimide (PEI) film or sheet, a polyethylenenaphthatate (PEN) film or sheet, a polyester film such as a PET (polyethyleneterephtalate) film or sheet, A polyetheretherketone (PEEK) film or sheet, a polyetherimide (PEI) film or sheet, a polyethylenenaphthatate (PEN) film or sheet
  • the electrode layers 120 and 320 may apply an electric field to the liquid crystal layer 200 so that the alignment state of the liquid crystal layer 200 can be switched.
  • a transparent conductive layer may be used.
  • the electrode layers 120 and 320 may be formed by depositing a conductive polymer, a conductive metal, a conductive nanowire, or a metal oxide such as ITO (Indium Tin Oxide).
  • ITO Indium Tin Oxide
  • ITO indium tin oxide
  • an alignment layer having a vertical alignment capability with respect to an adjacent liquid crystal layer can be used without any particular limitation.
  • an alignment film known to be capable of exhibiting alignment characteristics by a non-contact method such as irradiation of linear polarized light including a contact alignment film or a photo alignment film compound such as a rubbing alignment film can be used.
  • the present application also relates to a method of manufacturing a liquid crystal cell.
  • the manufacturing method of the liquid crystal cell is, for example, a manufacturing method for manufacturing the above-described liquid crystal cell. Accordingly, details of the manufacturing method of the liquid crystal cell described later may be applied to the same contents described in the liquid crystal cell.
  • the liquid crystal cell manufactured by the above method is excellent in the transmittance in the initial transmission mode and the transmittance in the scattering mode when voltage is applied, and can exhibit excellent haze in the scattering mode.
  • the method of manufacturing a liquid crystal cell of the present application relates to a liquid crystal cell including two substrates arranged opposite to each other and a liquid crystal layer existing between the two substrates.
  • the method of manufacturing the liquid crystal cell may be the method of manufacturing the liquid crystal cell described above.
  • the method of manufacturing the liquid crystal cell may include adjusting the average current density of the liquid crystal layer to 30 ⁇ A / cm 2 to 60 ⁇ A / cm 2 (note that the average current density is 40 V and 60 Hz Is an average value of the current density measured from 0 ms to 8 ms in the fifth cycle after the AC voltage of the frequency is applied to the liquid crystal cell).
  • the average current density of the liquid crystal cell By adjusting the average current density of the liquid crystal cell within the above-described range, the liquid crystal cell can exhibit excellent transmittance in the initial transmission mode and transmittance difference in the scattering mode upon voltage application, and exhibit excellent haze in the scattering mode.
  • the liquid crystal cell may be manufactured by a known method without any limitation, including the step of adjusting the average current density of the liquid crystal layer described above.
  • the liquid crystal cell may include a liquid crystal composition heated between two substrates Injecting, and sealing the edges.
  • the average current density of the liquid crystal layer may be controlled by appropriately selecting the composition and content of the liquid crystal composition and adjusting the heating conditions.
  • the liquid crystal composition comprises an anisotropic dye, a reactive liquid crystal, and an ionic compound as a non-reactive liquid crystal and a conductivity adjusting agent
  • the reactive liquid crystal contains 8 wt% to 12 wt%
  • the liquid crystal cell By adjusting the average current density of the liquid crystal layer within the above-described range under the above-described conditions, the liquid crystal cell exhibits excellent transmittance in the initial transmission mode and transmittance difference in the scattering mode upon voltage application, and exhibits excellent haze in the scattering mode can do.
  • the liquid crystal composition contains an anisotropic dye, a reactive liquid crystal, and an ionic compound as a non-reactive liquid crystal and a conductivity adjusting agent
  • the reactive liquid crystal contains 1 wt% to 5 wt%
  • the average current density of the liquid crystal layer can be controlled within the above-mentioned range by heating at a temperature of 110 ⁇ to 130 ⁇ for 1 hour to 7 hours.
  • the liquid crystal composition when the reactive liquid crystal is contained at 1 wt% to 5 wt%, the liquid crystal composition is heated at a temperature of 113 ⁇ to 127 ⁇ , 116 ⁇ to 124 ⁇ , or 119 ⁇ to 121 ⁇ for 1 hour to 6 hours or 2 hours to 6 hours, the average current density of the liquid crystal layer can be controlled within the above-mentioned range.
  • the liquid crystal cell By adjusting the average current density of the liquid crystal layer within the above-described range under the above-described conditions, the liquid crystal cell exhibits excellent transmittance in the initial transmission mode and transmittance difference in the scattering mode upon voltage application, and exhibits excellent haze in the scattering mode can do.
  • the present application also relates to the use of a liquid crystal cell.
  • the exemplary liquid crystal cell is excellent in the transmittance in the initial transmission mode and the transmittance in the scattering mode when voltage is applied, and can exhibit excellent haze in the scattering mode.
  • Such a liquid crystal cell can be applied to various optical modulation devices such as a smart window, a window protective film, a flexible display device, a transparent display shading plate, an active retarder for 3D image display, or a viewing angle adjusting film.
  • the present application can provide a liquid crystal cell and a method of manufacturing a liquid crystal cell, which are usually in a transmission mode, excellent in transmittance variation characteristics of a transmission mode and a scattering mode, and excellent in haze characteristics in a scattering mode.
  • a liquid crystal cell can be applied to various optical modulation devices such as a smart window, a window protective film, a flexible display device, a transparent display shading plate, an active retarder for 3D image display, or a viewing angle adjusting film.
  • Fig. 1 is a diagram illustrating a liquid crystal cell according to an embodiment of the present application.
  • FIG. 2 is an exemplary view illustrating a liquid crystal cell implementing a transmission mode in an initial state according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a liquid crystal cell implementing a scattering mode upon voltage application according to an embodiment of the present application.
  • FIG. 5 is a graph showing the average current density, transmittance variable width, and haze in the scattering mode of the liquid crystal cell manufactured in Examples and Comparative Examples.
  • Two glass substrates in which an ITO (Indium Tin Oxide) transparent electrode layer and a vertical alignment film are sequentially formed are spaced apart from each other such that the vertical alignment films face each other and have an interval of about 9 mu m, And the edges were sealed to fabricate a liquid crystal cell having an area of 2.5 cm x 3.0 cm and an interval of 9 m.
  • ITO Indium Tin Oxide
  • the vertical alignment layer was formed by coating a vertical alignment composition (Nissan 5661) on the ITO transparent electrode layer and firing at a temperature of 100 ° C for 10 minutes.
  • the liquid crystal composition was a commercially available liquid crystal LC (HCCH 7262, manufactured by HCCH) having an anisotropy of dielectric constant of -5.0 and a refractive index anisotropy of 0.1995, an anisotropic dye (X12, manufactured by BASF) (Cetyltrimethylammonium bromide) as an ionic compound in a ratio of 90: 1.6: 10: 1 ((meth) acryloyloxy) benzoate (HCM- LC: anisotropic dye: RM: CTAB).
  • a liquid crystal cell was prepared in the same manner as in Example 1, except that the composition and heating conditions of the liquid crystal composition shown in Table 1 below were used.
  • Liquid crystal composition (weight ratio) Non-reactive liquid crystal Conductivity adjusting agent Heating condition LC
  • Anisotropic dye RM CTAB Example 1 90 1.6 10 One 100 ⁇ , 24 hours
  • Example 2 90 1.4 2.5 One 120 ° C, 2 hours
  • Example 3 90 1.4 2.5 One 120 ° C, 3 hours
  • Example 4 90 1.4 2.5 One 120 ° C, 4 hours
  • Example 5 90 1.4 2.5 One 120 ° C, 6 hours
  • LC Commercial liquid crystal (HCCH 7262, manufactured by HCCH)
  • Anisotropic dye X12, RM (reactive liquid crystal) manufactured by BASF: 4-methoxyphenyl 4 - ((6- (acryloyloxy) hexyl) oxy) benzoate
  • Evaluation Example 1 Current density evaluation The liquid crystal cell manufactured in Examples and Comparative Examples was measured for an instantaneous current-voltage (IV) using a semiconductor characteristic analyzer, Keithly 4200, having the driving waveforms shown in Table 2 below. Specifically, the currents flowing when an alternating voltage of 40 V and 60 Hz was applied to the two substrates arranged opposite to each other in the liquid crystal cell manufactured in Examples and Comparative Examples were measured and shown in FIG. At this time, the measured current value was taken after the fifth cycle for stabilization. After voltage application, the value obtained by dividing the current at 8 ms by the area is called the final current density, and the average value of the current density measured from 0 ms to 8 ms is defined as the average current density. The average values of the measured current densities are shown in Table 3 below.
  • the haze and the transmittance of the liquid crystal cell prepared in Examples and Comparative Examples were measured by ASTM method using a haze meter, NDH-5000SP. Specifically, an AC power source was connected to two substrates arranged opposite to each other so as to apply a vertical electric field to the liquid crystal cell manufactured in Examples and Comparative Examples, and in a transmission mode at an initial voltage ratio of 60 keV and a voltage of 60 Hz, And the results are shown in Table 3.
  • the transmittance was measured by measuring transmittance in a transmission mode at an initial voltage ratio of 0 V and a transmittance in a scattering mode at a voltage of 60 V and 60 Hz, As shown in Table 3 below.
  • Transmittance variable width T 0 -T 60
  • T 0 is a transmittance at an initial voltage of 0 V
  • T 60 is a transmittance at a voltage of 60 V and 60 Hz.
  • Example 1 41.4 65.4 0.4 21.7 95.8 43.7
  • Example 2 47.5 68.5 0.8 25.1 95 43.4
  • Example 3 52.0 69.0 0.9 25.7 94.8 43.3
  • Example 4 55.5 68.4 0.9 25.6 95.5 42.8
  • Example 5 54.1 68.4 1.3 25.7 95.5 42.7 Comparative Example 1 11.7 63.8 0.9 28.2 36.5 35.6 Comparative Example 2 24.1 64.8 0.8 23.1 85.7 41.7 Comparative Example 3 79.5 68.1 1.4 29.6 94.9 38.5
  • Comparative Example 4 78.7 67.0 1.2 27.4 95 39.6
  • the liquid crystal cell manufactured in Examples 1 to 5 further includes a conductivity adjusting agent in the liquid crystal layer as compared with the liquid crystal cell prepared in Comparative Examples 1 and 2, so that the average current density Respectively.
  • the liquid crystal cell prepared in Examples 1 to 5 including the conductivity adjusting agent in the liquid crystal layer was the same as that of the liquid crystal cell prepared in Comparative Examples 3 and 4 in which the liquid crystal compositions of the liquid crystal cell and the liquid crystal layer prepared in Examples 1 to 5 were the same It has been confirmed that the average current density is lowered by heating for a lower time period, i.e., less than 9 hours, as compared with the cell.
  • liquid crystal cells prepared in Examples 1 to 5 satisfied the average current densities of 30 ⁇ A / cm 2 to 60 ⁇ A / cm 2 , so that in Comparative Examples 1 to 4 in which the above average current density range was not satisfied It was confirmed that the transmittance variable width was superior to the manufactured liquid crystal cell.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Structural Engineering (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Fluid Mechanics (AREA)

Abstract

본 출원은 액정셀, 이의 제조 방법 및 이의 용도에 관한 것으로, 본 출원은 통상 투과 모드이고, 투과 모드와 산란 모드의 투과율 가변 특성이 우수하며, 산란 모드에서 헤이즈 특성이 우수한 액정셀 및 액정셀의 제조 방법을 제공할 수 있다. 이러한 액정셀은, 스마트 윈도우, 윈도우 보호막, 플렉서블 디스플레이 소자, 투명 디스플레이용 차광판, 3D 영상 표시용 액티브 리타더(active retarder) 또는 시야각 조절 필름 등과 같은 다양한 광변조 장치에 적용될 수 있다.

Description

액정셀
본 출원은 액정셀, 이의 제조 방법 및 이의 용도에 관한 것이다.
본 출원은 2017년 12월 22일자 한국 특허 출원 제10-2017-0178107에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
통상 투과 모드 소자는 예를 들어 외부 작용이 없는 상태에서는 투과 모드가 구현되고, 외부 작용 하에 차단 모드로 전환되며, 외부 작용이 제거되면 다시 투과 모드로 전환되는 소자이다.
특허문헌 1(한국공개특허공보 제10-2014-0077861호)에는 투과 모드와 산란 모드 사이의 가변이 가능한 통상 투과 모드 소자가 개시되어 있다. 특허문헌 1의 소자는 고분자 매트릭스 내에 액정을 분산시켜서 구현되는 소위 PDLC(Polymer Dispersed Liquid Crystal) 소자로서, PDLC 내에서 통상 액정 화합물은 배향되어 있지 않은 상태로 존재하므로 전압이 인가되지 않은 상태에서는 산란 상태이나, 수직 배향막을 적용함으로써 통상 투과 모드를 구현하고 있다.
그러나, 특허문헌 1의 PDLC를 이용한 통상 투과 모드 소자는 구동 전압이 높고, 노광 특성에 따른 잔류 헤이즈 수준의 변동 및 헤이즈 특성 저하 등의 문제가 있어서 상기 문제점을 보완할 수 있는 통상 투과 모드 소자의 개발이 필요한 실정이다.
본 출원은 통상 투과 모드이고, 투과 모드와 산란 모드의 투과율 가변 특성이 우수하며, 산란 모드에서 헤이즈 특성이 우수한 액정셀, 이의 제조 방법 및 이의 용도를 제공하는 것이다.
본 출원은 액정셀에 관한 것이다. 이하, 첨부된 도면을 참조로 본 출원의 액정셀을 설명하며, 첨부된 도면은 예시적인 것으로, 본 출원의 액정셀이 첨부된 도면에 제한되는 것은 아니다.
도 1 은 본 출원의 일 실시예에 따른 액정셀을 예시적으로 나타낸다. 도 1에 나타낸 바와 같이, 상기 액정셀은 대향 배치된 2개의 기판(100, 300); 및 상기 2개의 기판(100, 300) 사이에 존재하는 액정층(200)을 포함한다.
상기 액정셀은 통상 투과 모드 소자를 구현할 수 있다. 본 명세서에서 용어 「통상 투과 모드 소자」는 외부 작용이 없는 상태(즉, 초기 상태 또는 통상 상태)에서는 투과 모드가 구현되고, 외부 작용 하에 산란 모드로 전환되며, 외부 작용이 제거되면 다시 투과 모드로 전환되는 소자를 의미할 수 있다. 본 출원에서 용어 「외부 작용」은 액정 화합물의 정렬을 변경시킬 수 있도록 수행되는 모든 종류의 작용을 의미하고, 대표적인 예로는 전압의 인가가 있다.
하나의 예시에서, 액정셀에 일정 전압 이상을 인가하게 되면 인가된 외부 전기장과 액정층(200)에 포함된 전도도 조절제의 분극에 의한 유도 전계 작용으로 인해 비반응성 액정에 회전력이 발생되고, 그로 인해 와류가 발생될 수 있다. 상기 와류가 발생하기 위해서는 전도도 조절제의 농도가 일정 수준 이상이어야 하며, 상기 전도도 조절제의 농도는 평균 전류 밀도로 평가할 수 있다.
예를 들어, 상기 액정층(200)은 평균 전류 밀도가 30 ㎂/cm2 내지 60 ㎂/cm2일 수 있다. 구체적으로, 상기 액정층(200)의 평균 전류 밀도의 하한은 33 ㎂/cm2 이상, 36 ㎂/cm2 이상, 39 ㎂/cm2 이상 또는 40 ㎂/cm2 이상일 수 있고, 상기 액정층(200)의 평균 전류 밀도의 상한은 59 ㎂/cm2 이하, 58 ㎂/cm2 이하, 57 ㎂/cm2 이하 또는 56 ㎂/cm2 이하일 수 있다. 본 명세서에서 「전류 밀도」는 단위 면적을 통해 흐르는 전류의 양을 의미하고, 본 명세서에서 「평균 전류 밀도」는 특정 세기 및 주파수의 전압을 액정셀에 인가한 후, 특정 시간 동안 측정한 전류 밀도의 평균 값을 의미한다. 본 명세서에서 「사이클(cycle)」은 교류 전압 인가 시 특정 전압이 인가되는 주기를 의미한다. 하나의 예시에서, 상기 전류 밀도는 교류 전압 인가 후 바로 측정하는 경우, 과 측정되는 경향이 있어, 안정화되었다고 판단되는 시점인 5 번째 사이클에서 측정된 값일 수 있다. 일 실시예에 따른 상기 액정층(200)의 평균 전류 밀도는 40 V의 전압 및 60 Hz의 주파수의 교류 전압을 액정셀에 인가한 후, 64 ms(millisecond) 부터 72 ms까지, 즉, 5 번째 사이클(Cycle)의 0 ms 부터 8 ms까지 측정된 전류 밀도의 평균 값일 수 있다. 상기 액정층(200)이 전술한 범위 내의 평균 전류 밀도를 만족함으로써, 통상 투과 모드이고, 투과 모드와 산란 모드의 투과율 가변 특성이 우수하며, 산란 모드에서 헤이즈 특성이 우수한 액정셀을 제공할 수 있다. 상기 액정층(200)의 평균 전류 밀도가 너무 낮을 경우, 전도도 조절제의 농도가 낮아 상기 전도도 조절제의 와류가 충분히 발생되지 않으므로, 헤이즈 특성이 저하될 수 있다. 또한, 상기 액정층(200)의 평균 전류 밀도가 너무 높을 경우, 헤이즈 특성은 우수할 수 있으나, 초기 상태의 투과율과 60 V 전압 인가 시의 투과율의 차이가 감소할 수 있고, 액정셀의 대면적화에 불리하게 작용될 수 있다. 상기 액정층의 평균 전류 밀도는 액정층의 조성, 가열 시간에 따라 조절될 수 있다.
상기 전류 밀도는 반도체 특성 분석기로 측정할 수 있으며, 일 구현예에 따른 상기 전류 밀도는 DSLC cell Keithly 4200 반도체 특성 분석기를 이용하여 측정하였다. 상기 반도체 특성 분석기의 구동 파형은 주기가 0.0010 sec 내지 0.0300 sec일 수 있고, 펄스 폭이 0.00500 sec 내지 0.01000 sec일 수 있으며, 상승 시간이 0.00001 sec 내지 0.00020 sec일 수 있고, 하강 시간이 0.00001 sec 내지 0.00020 sec일 수 있으며, 기본 전압이 -60 V 내지 -20 V일 수 있고, 진폭이 50 V 내지 100 V일 수 있다. 구체적으로, 상기 반도체 특성 분석기의 구동 파형은 주기가 0.0100 sec 내지 0.0250 sec 또는 0.0150 sec 내지 0.0200 sec일 수 있고, 펄스 폭이 0.00600 sec 내지 0.00950 sec, 0.00700 sec 내지 0.00900 sec 또는 0.00800 sec 내지 0.00850 sec일 수 있으며, 상승 시간이 0.00004 sec 내지 0.00016 sec 또는 0.00008 sec 내지 0.00012 sec일 수 있고, 하강 시간이 0.00004 sec 내지 0.00016 sec 또는 0.00008 sec 내지 0.00012 sec일 수 있으며, 기본 전압이 -55 V 내지 -25 V, -50 V 내지 -30 V 또는 -45 V 내지 -35 V일 수 있고, 진폭이 60 V 내지 95 V, 70 V 내지 90 V 또는 75 V 내지 85 V일 수 있다.
상기 주기는 진동현상에서 진동 중심 주위로 왕복운동이 한 번 이루어지거나 물리적인 값의 요동이 한 번 일어날 때까지 걸리는 시간을 의미한다. 상기 펄스 폭은 펄스의 상승 시간과 하강 시간에서 진폭이 1/2이 되는 시각에서의 간격을 의미한다. 상기 상승 시간은 펄스파가 최솟값에서 최댓값까지 증대해 가는 기간 중 최댓값의 10%에서 90%가 되는 사이의 시간을 의미한다. 상기 하강 시간은 펄스파가 최댓값에서 최솟값으로 되기까지의 기간 중 최댓값의 90%에서 10%로 되는 동안의 시간을 의미한다. 상기 기본 전압은 전류 밀도 측정 시 특정 전압을 인가하기 전 0초에서의 전압을 의미한다. 상기 진폭은 주기적인 진동이 있을 때 진동의 중심으로부터 최대로 움직인 거리 혹은 변위를 의미한다.
상기 액정층(200)은 비반응성 액정을 포함할 수 있다. 상기 액정층(200) 내의 비반응성 액정은 외부 작용, 예를 들어 외부 전압의 인가 여부에 따라 배향을 변화함으로써 투과도 가변의 기능을 수행할 수 있다. 상기 비반응성 액정으로는 외부 작용의 인가에 의하여 그 배향 방향이 변경될 수 있는 것이라면 모든 종류의 액정 화합물을 사용할 수 있다. 예를 들며, 상기 액정 화합물로는 스멕틱(smectic) 액정 화합물, 네마틱(nematic) 액정 화합물 또는 콜레스테릭(cholesteric) 액정 화합물 등을 사용할 수 있다. 또한, 외부 작용의 인가에 의하여 그 배향 방향이 변경될 수 있도록, 액정 화합물은 예를 들어 중합성기 또는 가교성기를 가지지 않는 화합물일 수 있다.
하나의 예시에서, 상기 비반응성 액정은 유전율 이방성이 음수일 수 있다. 본 명세서에서 용어 「유전율 이방성 (△ε)」은 액정의 수평 유전율 (ε//)과 수직 유전율 (εㅗ)의 차이(ε// - εㅗ)를 의미할 수 있다. 본 명세서에서 용어 「수평 유전율 (ε//)」은 액정 분자의 방향자와 인가전압에 의한 전기장의 방향이 실질적으로 수평하도록 전압을 인가한 상태에서 상기 전기장의 방향을 따라 측정한 유전율 값을 의미하고, 「수직 유전율 (εㅗ)」은 액정 분자의 방향자와 인가전압에 의한 전기장의 방향이 실질적으로 수직하도록 전압을 인가한 상태에서 상기 전기장의 방향을 따라 측정한 유전율 값을 의미한다.
하나의 예시에서, 상기 비반응성 액정의 유전율 이방성 (△ε)의 절대값은 예를 들어 약 1 내지 10 범위 내일 수 있다. 상기 비반응성 액정의 유전율 이방성 (△ε)의 절대값의 하한은 1 이상, 2 이상, 3 이상 또는 4 이상일 수 있고, 상기 비반응성 액정의 유전율 이방성 (△ε)의 절대값의 상한은 10 이하, 9 이하, 8 이하, 7 이하, 6 이하 또는 5 이하일 수 있다. 상기 비반응성 액정의 유전율 이방성이 상기 범위를 만족하는 경우, 낮은 구동 전압으로도 구동이 가능하며, 우수한 헤이즈 특성을 나타낼 수 있어, 투명 모드와 산란 모드의 사이를 스위칭하는 액정셀을 구현하는 데 유리하다.
하나의 예시에서, 상기 비반응성 액정의 굴절률 이방성은 목적 물성, 예를 들어, 액정셀의 헤이즈 특성을 고려하여 적절히 선택될 수 있다. 본 출원에서 용어 「굴절률 이방성」은 비반응성 액정의 정상 굴절률(ordinary refractive index)과 이상 굴절률(extraordinary refractive index)의 차이를 의미할 수 있다. 상기 이상 굴절률은 비반응성 액정의 광축에 대한 굴절률을 의미하고, 상기 정상 굴절률은 비반응성 액정의 광축에 수직한 방향에 대한 굴절률을 의미할 수 있다. 액정 화합물의 굴절률 이방성의 하한은 예를 들어 0.1 이상, 0.12 이상, 0.14 이상, 0.16 이상, 0.18 이상 또는 0.19 이상일 수 있고, 상기 액정 화합물의 굴절률 이방성의 상한은 0.3 이하, 0.28 이하, 0.26 이하, 0.24 이하, 0.22 이하 또는 0.2 이하일 수 있다. 비반응성 액정의 굴절률 이방성이 상기 범위를 만족하는 경우, 예를 들면, 헤이즈 특성이 우수한 통상 투과 모드 소자를 구현할 수 있다. 또한, 본 명세서에서 용어 「광축」은 액정이 막대(rod) 형상인 경우 액정의 장축 방향의 축을 의미할 수 있고, 액정이 원판 (Discotic) 형상인 경우 원판의 평면의 법선 방향의 축을 의미할 수 있다.
상기 액정층(200)은 전도도 조절제를 더 포함할 수 있다. 본 출원의 일 실시예에 의하면, 상기 액정층(200)은 동적 산란(Dynamic Scattering) 모드로 구동하는 액정층일 수 있다. 동적 산란 모드는 전기 유체 역학적 불안정 상태(EHDI; Electro hydro dynamic instability)를 유발하는 액정 모드를 의미할 수 있다. 일반적으로 동적 산란 모드 액정층은 네마틱 또는 스메틱 상의 비반응성 액정 및 EHDI를 유발하는 전도도 조절제를 포함하고, 상기 액정층(200)에 전계가 인가되는 경우 EHDI에 의해서 대류가 발생하며, 전계가 증가하면 잇달아 새로운 대류 구조가 생겨 최종적인 난류로 변화하면서 액정의 광학적 이방성과 유체 운동에 위해 강하게 빛을 산란시킨다.
하나의 예시에서, 상기 액정층(200) 내에 상기 전도도 조절제를 포함하는 경우, 상기 전도도 조절제는 상기 비반응성 액정 100 중량부 대비 0.1 중량부 내지 20 중량부의 비율로 포함될 수 있다. 구체적으로, 상기 전도도 조절제는 상기 비반응성 액정 100 중량부 대비 0.1 중량부 내지 15 중량부, 0.1 중량부 내지 10 중량부, 0.1 중량부 내지 5.5 중량부, 0.1 중량부 내지 5 중량부 또는 0.1 중량부 내지 2.5 중량부의 비율로 포함될 수 있다. 상기 액정층(200) 내에 전술한 범위 비율로 전도도 조절제를 포함함으로써, 산란 모드에서 우수한 헤이즈 특성을 나타낼 수 있고, 액정층의 물성도 안정적으로 유지할 수 있다.
상기 EHDI를 유발하는 전도도 조절제로는 예를 들어, 이방성 염료, 반응성 모노머 및 이온성 화합물로부터 선택되는 하나 이상을 포함할 수 있다. 상기 반응성 모노머는 반응성 액정일 수 있다. 하나의 예시에서, 상기 액정셀은 액정층(200)에 전도도 조절제로서, 이방성 염료, 반응성 액정 및 이온성 화합물을 포함할 수 있고, 다른 하나의 예시에서, 상기 액정셀은 액정층(200)에 전도도 조절제로서, 이방성 염료, 반응성 액정 및 이온성 화합물을 포함할 수 있다.
상기 이방성 염료는 액정셀의 차광율을 개선하여 투과도 가변에 기여할 수 있다. 본 명세서에서 용어 「염료」는 가시광 영역, 예를 들면, 400 nm 내지 700 nm 파장 범위 내에서 적어도 일부 또는 전체 범위 내의 광을 집중적으로 흡수 및/또는 변형시킬 수 있는 물질을 의미할 수 있다. 또한, 본 명세서에서, 용어 「이방성 염료」는 상기 가시광 영역의 적어도 일부 또는 전체 범위에서 광의 이방성 흡수가 가능한 물질을 의미할 수 있다. 상기 이방성 염료로는, 예를 들면, 액정의 정렬 상태에 따라 정렬될 수 있는 특성을 가지는 것으로 알려진 공지의 염료를 선택하여 사용할 수 있으며, 예를 들면, 흑색 염료(black dye)를 사용할 수 있다. 이러한 염료로는, 예를 들면, 아조 염료 또는 안트라퀴논 염료 등을 사용할 수 있다.
상기 액정층(200) 내에 상기 이방성 염료를 포함하는 경우, 상기 이방성 염료는 상기 비반응성 액정 100 중량부 대비 0.1 중량부 내지 2 중량부의 비율로 포함될 수 있다. 구체적으로, 상기 이방성 염료는 상기 비반응성 액정 100 중량부 대비 0.1 중량부 내지 1.8 중량부, 0.1 중량부 내지 1.6 중량부, 0.1 중량부 내지 1.4 중량부, 0.1 중량부 내지 1.2 중량부, 0.1 중량부 내지 1.0 중량부 또는 0.1 중량부 내지 0.8 중량부의 비율로 포함될 수 있다. 상기 액정층(200) 내에 전술한 범위 비율로 이방성 염료를 포함함으로써, 액정셀의 차광율을 개선하여 투과도 가변에 기여할 수 있다.
반응성 모노머로는, 전술한 바와 같이 액정과 혼합성이 좋은 반응성 액정을 사용할 수 있고, 상기 반응성 액정은 반응성 메조겐(Reactive mesogen)으로 호칭될 수 있다. 본 명세서에서 반응성 메조겐은 액정성을 나타낼 수 있는 부위, 예를 들면, 메소겐 골격을 포함하고, 또한 반응성 관능기를 하나 이상 포함하는 화합물을 의미할 수 있다. 상기 반응성 관능기로는, 예를 들어, 중합성 관능기 또는 가교성 관능기가 예시될 수 있다. 상기 반응성기로는, 아크릴로일기, 아크릴로일옥시기, 메타크릴로일기, 메타크릴로일옥시기, 카복실기, 히드록시기, 비닐기, 에폭시기 등이 예시될 수 있으나, 이에 제한되지 않고, 중합성기로서 알려진 공지의 관능기가 포함될 수 있다. 상기 반응성 메소겐은, 다관능성 반응성 메소겐 또는 단관능성 반응성 메소겐을 포함할 수 있다. 본 명세서에서 용어 「다관능성 반응성 메소겐」은, 상기 메소겐 중에서 반응성 관능기를 2개 이상 포함하는 화합물을 의미할 수 있다. 하나의 예시에서 다관능성 반응성 메소겐은 반응성 관능기를 2개 내지 10개, 2개 내지 8개, 2개 내지 6개, 2개 내지 5개, 2개 내지 4개, 2개 내지 3개 또는 2개 포함할 수 있다. 또한, 용어 「단관능성 반응성 메소겐 」은, 상기 메소겐 중에서 하나의 반응성 관능기를 포함하는 화합물을 의미할 수 있다.
상기 액정층(200) 내에 상기 반응성 모노머를 포함하는 경우, 상기 반응성 모노머는 상기 비반응성 액정 100 중량부 대비 0.5 중량부 내지 15 중량부의 비율로 포함될 수 있다. 구체적으로, 상기 반응성 모노머는 상기 비반응성 액정 100 중량부 대비 0.5 중량부 내지 12 중량부, 0.5 중량부 내지 10 중량부, 0.5 중량부 내지 5 중량부, 0.5 중량부 내지 2.5 중량부 또는 0.5 중량부 내지 1 중량부의 비율로 포함될 수 있다. 상기 액정층(200) 내에 전술한 범위 비율로 반응성 모노머를 포함함으로써, 전도도를 효과적으로 확보하면서 우수한 물성의 액정층을 형성할 수 있다.
본 명세서에서 이온성 화합물(Ionic compound)은 서로 반대되는 전하를 가진 이온들이, 예를 들어, 양이온과 음이온이, 이온 결합에 의하여 구성된 염 형태의 화합물을 의미할 수 있다. 상기 이온성 화합물은 전기적으로 중성일 수 있다. 이러한 이온성 화합물로는, 예를 들면, 질소-함유 오늄염, 황-함유 오늄염 또는 인-함유 오늄염 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 상기 이온성 화합물로는 이온 불순물, 이온성 액체(ionic liquid) 또는 염(Salt)을 사용할 수 있으며, 예를 들어, 상기 이온 불순물로는 2,2,6,6-Tetramethylpiperidine-1-Oxyl Free radical을 사용할 수 있고, 상기 이온성 액체로는 TMAPF6(Trimethylaluminum-Hexafluorophosphate) 또는 BMIN-BF4([1-butyl-3-methylimideazolium]BF4)를 사용할 수 있으며, 염으로는 CTAB(Cetrimonium bromide), CTAI(Cetrimonium Iodide), CTAI3(Cetrimonium triiodide)를 사용할 수 있다.
상기 액정층(200) 내에 상기 이온성 화합물을 포함하는 경우, 상기 이온성 화합물은 상기 비반응성 액정 100 중량부 대비 0.1 중량부 내지 2 중량부의 비율로 포함될 수 있다. 구체적으로, 상기 이온성 화합물은 상기 비반응성 액정 100 중량부 대비 0.1 중량부 내지 1.5 중량부, 0.1 중량부 내지 1.2 중량부, 0.1 중량부 내지 1.0 중량부 또는 0.1 중량부 내지 0.5 중량부의 비율로 포함될 수 있다. 상기 액정층(200) 내에 전술한 범위 비율로 이온성 화합물을 포함함으로써, 액정층의 전도도를 효과적으로 확보할 수 있으며, 상기 이온성 화합물은 액정 화합물에 대한 용해도를 고려하여 전술한 범위의 소량을 포함할 수 있다.
하나의 예시에서, 상기 액정층(200)이 반응성 모노머와 이온성 화합물을 모두 포함하는 경우 상기 반응성 모노머와 이온성 화합물의 중량 비율은 2.5:1 내지 150:1일 수 있다. 구체적으로, 상기 반응성 모노머와 이온성 화합물의 중량 비율은 2.5:1 내지 130:1, 2.5:1 내지 100:1, 2.5:1 내지 80:1, 2.5:1 내지 50:1, 2.5:1 내지 30:1 또는 2.5:1 내지 10:1일 수 있다. 상기 액정층(200) 내에 전술한 범위 비율로 이온성 화합물을 포함함으로써, 전도도를 효과적으로 확보하면서 우수한 물성의 액정층을 형성할 수 있다
상기 액정셀은 비반응성 액정의 초기 정렬 상태를 조절하고 전압과 같은 외부 작용의 인가 등을 통해 투과 모드와 산란 모드의 사이를 스위칭할 수 있다. 예를 들면, 비반응성 액정이 수직으로 정렬된 상태로 존재하는 경우 액정셀은 투명 모드를 나타낼 수 있고, 비반응성 액정이 불규칙하게 배열된 상태로 존재하는 경우 액정셀은 산란 모드를 나타낼 수 있다.
본 명세서에서 용어 「산란 모드」는 액정셀이 예정된 일정 수준 이상의 헤이즈를 나타내는 모드를 의미하고, 용어「투과 모드」는 광의 투과가 가능한 상태 또는 예정된 일정 수준 이하의 헤이즈를 나타내는 모드를 의미할 수 있다.
예를 들어, 산란 모드에서 액정셀은 헤이즈가 10% 이상, 15% 이상, 20% 이상, 25% 이상, 30% 이상, 35% 이상, 40% 이상, 45% 이상, 50% 이상, 55% 이상, 60% 이상, 65% 이상, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상 또는 95% 이상일 수 있다. 투명 모드에서 액정셀은, 예를 들어, 헤이즈가 10% 미만, 8% 이하, 6% 이하 또는 5% 이하일 수 있다.
상기 헤이즈는 측정 대상을 투과하는 전체 투과광의 투과율에 대한 확산광의 투과율의 백분율일 수 있다. 상기 헤이즈는 헤이즈미터(hazemeter, NDH-5000SP)를 사용하여 평가할 수 있다. 헤이즈는 상기 헤이즈미터를 사용하여 다음의 방식으로 평가할 수 있다. 즉, 광을 측정 대상을 투과시켜 적분구 내로 입사시킨다. 이 과정에서 광은 측정 대상에 의하여 확산광(DT)과 평행광(PT)으로 분리되는데, 이 광들은 적분구 내에서 반사되어 수광 소자에 집광되고, 집광되는 광을 통해 상기 헤이즈의 측정이 가능하다. 즉, 상기 과정에 의한 전 투과광(TT)는 상기 확산광(DT)과 평행광(PT)의 총합(DT+PT)이고, 헤이즈는 상기 전체 투과광에 대한 확산광의 백분율(Haze(%) = 100ХDT/TT)로 규정될 수 있다.
상기 액정셀은 외부 작용이 인가되지 않은 상태에서 투명 모드이고, 외부 작용이 인가되는 경우 산란 모드로 스위칭될 수 있다. 상기 액정셀은 외부 작용이 인가되지 않은 상태에서, 액정층(200)이 수직 배향된 상태로 존재할 수 있다.
도 2 및 도 3은 각각, 본 출원의 액정셀의 투과 모드 및 산란 모드 구동을 예시적으로 나타낸다. 도 2에 나타낸 바와 같이, 초기 상태, 즉 외부 작용이 인가되지 않은 상태에서, 비반응성 액정은 액정층(200)의 평면에 대하여 수직 배향된 상태로 존재할 수 있고, 투명 모드(A)를 구현할 수 있다. 이러한 초기 상태에서 외부 작용, 예를 들어, 수직 전계를 인가하는 경우, 도 3에 나타낸 바와 같이, 비반응성 액정은 전도도 조절제에 의해 유발되는 EHDI에 의해 불규칙한 배열 상태를 가지면서 산란 모드(B)로 전환될 수 있다. 상기에서 수직 전계를 제거하는 경우 초기 상태의 투명 모드로 전환될 수 있다. 하나의 예시에서, 투명 모드에서 산란 모드로의 전환은 예를 들어, 약 1 내지 500 Hz, 약 1 내지 100 Hz의 수직 전계를 인가함으로써 수행될 수 있고, 이는, 필요에 따라, 예를 들어, 헤이즈 특성을 고려하여 적절히 변경될 수도 있다.
하나의 예시에서, 상기 액정층(200)은 초기 상태의 투과율과 60V 전압 인가 시의 투과율의 차이가 40% 이상일 수 있다. 이하, 본 명세서에서 「초기 상태의 투과율과 60V 전압 인가 시의 투과율의 차이」는 투과도 가변폭으로 정의하였다. 구체적으로, 상기 액정층(200)의 투과도 가변폭은 41% 이상 또는 42% 이상일 수 있고, 상기 액정층(200)의 투과도 가변폭의 상한은 45%일 수 있다. 상기 액정층(200)이 전술한 범위 내의 우수한 투과도 가변폭을 가짐으로써, 액정셀의 구동 특성이 우수할 수 있다.
예를 들어, 상기 액정층(200)의 초기 상태의 투과율은 60% 내지 95%일 수 있고, 구체적으로, 상기 액정층(200)의 초기 상태의 투과율은 60% 내지 90%, 60% 내지 80% 또는 60% 내지 70%일 수 있다. 또한, 상기 액정층(200)의 60 V 전압 인가 시의 투과율은 15% 내지 50%일 수 있으며, 구체적으로, 상기 액정층(200)의 60 V 전압 인가 시의 투과율은 15% 내지 45%, 15% 내지 35% 또는 15% 내지 26%일 수 있다.
상기 액정층(200)은 60V 전압 인가 시 액정층(200) 내에 존재하는 비반응성 액정의 도메인 간의 굴절률 차에 의해 헤이즈를 발현할 수 있다. 상기 굴절률은 특별히 달리 규정하지 않는 한, 약 550 nm 파장의 광에 대한 굴절률을 의미한다.
예를 들어, 상기 액정층(200)은 60V 전압 인가 시 헤이즈가 90% 이상일 수 있다. 구체적으로, 상기 액정층(200)의 60 V 전압 인가 시의 헤이즈는 91% 이상, 92% 이상, 93% 이상 또는 94% 이상일 수 있으며, 상기 액정층(200)의 60 V 전압 인가 시의 헤이즈의 상한은 98% 이하일 수 있다. 상기 액정층(200)은 60V 전압 인가 시 전술한 범위 내의 헤이즈를 가짐으로써, 액정셀이 산란 모드에서 우수한 차광 특성을 가질 수 있다.
또한, 상기 액정층(200)은 초기 상태에서 헤이즈가 9% 이하일 수 있다. 구체적으로, 상기 액정층(200)의 초기 상태에서의 헤이즈는 8% 이하, 6% 이하 또는 5% 이하일 수 있으며, 상기 액정층(200)의 초기 상태에서의 헤이즈의 하한은 0.4% 이상일 수 있다. 상기 액정층(200)이 초기 상태에서 전술한 범위 내의 헤이즈를 가짐으로써, 액정셀이 통상 투과 모드에서 우수한 투과 특성을 가질 수 있다.
상기 2개의 기판(100, 300)은 각각, 전극층(120, 320) 및 수직 배향막(130, 330)을 포함할 수 있다. 구체적으로, 상기 2개의 기판(100, 300)은 각각 기재(110, 310), 및 상기 기재(110, 310) 상에 전극층(120, 320) 및 수직 배향막(130, 330)을 순차로 포함할 수 있다.
상기 기재(110, 310)로는 광학적 투명성을 가지는 것을 사용할 수 있다. 예를 들어, 상기 기재(110, 310)로는 광학적으로 투명한 유리 혹은 플라스틱 필름 또는 시트를 사용할 수 있다. 구체적으로, 상기 플라스틱 필름 또는 시트로는, DAC(diacetyl cellulose) 또는 TAC(triacetyl cellulose) 필름 또는 시트와 같은 셀룰로오스 필름 또는 시트; 노르보르넨 유도체 수지 필름 또는 시트 등의 COP(cyclo olefin copolymer) 필름 또는 시트; PMMA(poly(methyl methacrylate) 필름 또는 시트 등의 아크릴 필름 또는 시트; PC(polycarbonate) 필름 또는 시트; PE(polyethylene) 또는 PP(polypropylene) 필름 또는 시트 등과 같은 올레핀 필름 또는 시트; PVA(polyvinyl alcohol) 필름 또는 시트; PES(poly ether sulfone) 필름 또는 시트; PEEK(polyetheretherketone) 필름 또는 시트; PEI(polyetherimide) 필름 또는 시트; PEN(polyethylenenaphthatlate) 필름 또는 시트; PET(polyethyleneterephtalate) 필름 또는 시트 등과 같은 폴리에스테르 필름 또는 시트; PI(polyimide) 필름 또는 시트; PSF(polysulfone) 필름 또는 시트; PAR(polyarylate) 필름 또는 시트 또는 플루오로수지 필름 또는 시트 등이 예시될 수 있고, 일반적으로는 셀룰로오스 필름 또는 시트, 폴리에스테르 필름 또는 시트 또는 아크릴 필름 또는 시트 등이 사용될 수 있으며, 바람직하게는 TAC 필름 또는 시트가 사용될 수 있으나, 본 출원의 목적을 고려하여 적절히 선택될 수 있다.
상기 전극층(120, 320)은 액정층(200)의 정렬 상태를 전환할 수 있도록 액정층(200)에 전계를 인가할 수 있다. 상기 전극층(120, 320)으로는 투명 전도성층을 사용할 수 있다. 예를 들어, 상기 전극층(120, 320)으로는 전도성 고분자, 전도성 금속, 전도성 나노와이어 또는 ITO(Indium Tin Oxide) 등의 금속 산화물 등을 증착하여 형성한 것을 사용할 수 있다. 하나의 예시에서, 상기 전극층(120, 320)으로는 인듐 주석 산화물(ITO)을 사용할 수 있다.
상기 수직 배향막(130, 330)으로는 인접하는 액정층에 대하여 수직 배향능을 가지는 배향막이라면 특별한 제한없이 선택하여 사용할 수 있다. 예를 들어 러빙 배향막과 같이 접촉식 배향막 또는 광배향막 화합물을 포함하여 직선 편광의 조사 등과 같은 비접촉식 방식에 의해 배향 특성을 나타낼 수 있는 것으로 공지된 배향막을 사용할 수 있다.
본 출원은 또한, 액정셀의 제조 방법에 관한 것이다. 상기 액정셀의 제조 방법은 예를 들어, 전술한 액정셀을 제조하기 위한 제조 방법에 관한 것이다. 따라서, 후술하는 액정셀의 제조 방법에 대한 구체적인 사항은 상기 액정셀에서 기술한 내용이 동일하게 적용될 수 있다. 상기 방법에 의하여 제조된 액정셀은 초기 투과 모드에서의 투과율과 전압 인가 시 산란 모드에서의 투과율의 차이가 우수하고, 산란 모드에서 우수한 헤이즈를 발현할 수 있다.
본 출원의 액정셀의 제조 방법은 대향 배치된 2개의 기판 및 상기 2개의 기판 사이에 존재하는 액정층을 포함하는 액정셀에 관한 것이다. 상기 액정셀의 제조 방법은 전술한 액정셀의 제조 방법일 수 있다.
상기 액정셀의 제조 방법은 상기 액정층의 평균 전류 밀도를 30 ㎂/cm2 내지 60 ㎂/cm2로 조절하는 단계를 포함할 수 있다(단, 상기 평균 전류 밀도는 40 V의 전압 및 60 Hz의 주파수의 교류 전압을 액정셀에 인가한 후, 5 번째 사이클(Cycle)의 0 ms 부터 8 ms까지 측정된 전류 밀도의 평균 값이다.). 상기 액정셀은 액정층의 평균 전류 밀도를 전술한 범위 내로 조절함으로써, 초기 투과 모드에서의 투과율과 전압 인가 시 산란 모드에서의 투과율의 차이가 우수하고, 산란 모드에서 우수한 헤이즈를 발현할 수 있다.
상기 액정셀은 전술한 액정층의 평균 전류 밀도를 조절하는 단계를 포함하면 특별한 제한 없이 공지의 방법으로 제조될 수 있으며, 하나의 예시에서, 상기 액정셀은 2개의 기판 사이에 가열한 액정 조성물을 주입하고, 에지를 실링하는 것에 의해 제조될 수 있다.
상기 액정층의 평균 전류 밀도를 조절하는 방법은 상기 액정 조성물에 포함된 조성 및 함량을 적절히 선택하고, 가열 조건을 조절하는 방법을 적용할 수 있다.
하나의 예시에서, 상기 액정 조성물이 비반응성 액정, 및 전도도 조절제로서 이방성 염료, 반응성 액정 및 이온성 화합물을 포함하고, 상기 반응성 액정을 8 wt% 내지 12 wt%로 포함하는 경우, 액정 조성물을 90℃ 내지 110℃의 온도에서 20 시간 내지 30 시간 동안 가열함으로써, 상기 액정층의 평균 전류 밀도를 전술한 범위 내로 조절할 수 있다. 구체적으로, 상기 반응성 액정을 8 wt% 내지 12 wt%로 포함하는 경우, 액정 조성물을 93℃ 내지 107℃, 95℃ 내지 105℃ 또는 98℃ 내지 102℃의 온도에서 20 시간 내지 30 시간, 21 시간 내지 28 시간, 22 시간 내지 27 시간 또는 23 시간 내지 26 시간 동안 가열함으로써, 상기 액정층의 평균 전류 밀도를 전술한 범위 내로 조절할 수 있다. 상기 액정셀은 전술한 조건으로 액정층의 평균 전류 밀도를 전술한 범위 내로 조절함으로써, 초기 투과 모드에서의 투과율과 전압 인가 시 산란 모드에서의 투과율의 차이가 우수하고, 산란 모드에서 우수한 헤이즈를 발현할 수 있다.
또 하나의 예시에서, 상기 액정 조성물이 비반응성 액정, 및 전도도 조절제로서 이방성 염료, 반응성 액정 및 이온성 화합물을 포함하고, 상기 반응성 액정을 1 wt% 내지 5 wt%로 포함하는 경우, 액정 조성물을 110℃ 내지 130℃의 온도에서 1 시간 내지 7 시간 동안 가열함으로써, 상기 액정층의 평균 전류 밀도를 전술한 범위 내로 조절할 수 있다. 구체적으로, 상기 반응성 액정을 1 wt% 내지 5 wt%로 포함하는 경우, 액정 조성물을 113℃ 내지 127℃, 116℃ 내지 124℃ 또는 119℃ 내지 121℃의 온도에서 1 시간 내지 6 시간 또는 2 시간 내지 6 시간 동안 가열함으로써, 상기 액정층의 평균 전류 밀도를 전술한 범위 내로 조절할 수 있다. 상기 액정셀은 전술한 조건으로 액정층의 평균 전류 밀도를 전술한 범위 내로 조절함으로써, 초기 투과 모드에서의 투과율과 전압 인가 시 산란 모드에서의 투과율의 차이가 우수하고, 산란 모드에서 우수한 헤이즈를 발현할 수 있다.
본 출원은 또한, 액정셀의 용도에 관한 것이다. 예시적인 액정셀은 초기 투과 모드에서의 투과율과 전압 인가 시 산란 모드에서의 투과율의 차이가 우수하고, 산란 모드에서 우수한 헤이즈를 발현할 수 있다. 이러한 액정셀은, 스마트 윈도우, 윈도우 보호막, 플렉서블 디스플레이 소자, 투명 디스플레이용 차광판, 3D 영상 표시용 액티브 리타더(active retarder) 또는 시야각 조절 필름 등과 같은 다양한 광변조 장치에 적용될 수 있다.
본 출원은 통상 투과 모드이고, 투과 모드와 산란 모드의 투과율 가변 특성이 우수하며, 산란 모드에서 헤이즈 특성이 우수한 액정셀 및 액정셀의 제조 방법을 제공할 수 있다. 이러한 액정셀은, 스마트 윈도우, 윈도우 보호막, 플렉서블 디스플레이 소자, 투명 디스플레이용 차광판, 3D 영상 표시용 액티브 리타더(active retarder) 또는 시야각 조절 필름 등과 같은 다양한 광변조 장치에 적용될 수 있다.
도 1은 본 출원의 일 실시예에 따른 액정셀을 예시적으로 나타낸 도면이다.
도 2는 본 출원의 일 실시예에 따른 초기 상태에서 투과 모드를 구현하는 액정셀을 예시적으로 나타낸 도면이다.
도 3은 본 출원의 일 실시예에 따른 전압 인가 시 산란 모드를 구현하는 액정셀을 예시적으로 나타낸 도면이다.
도 4는 실시예 및 비교예에서 제조된 액정셀의 전압 인가 시간에 따른 전류 밀도를 측정한 그래프이다.
도 5는 실시예 및 비교예에서 제조된 액정셀의 평균 전류 밀도, 투과도 가변폭 및 산란 모드에서의 헤이즈를 나타낸 그래프이다.
이하 실시예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
실시예 1
액정셀의 제조
ITO(Indium Tin Oxide) 투명 전극층과 수직 배향막이 순차 형성되어 있는 2장의 유리 기판을 상기 수직 배향막이 서로 대향하고, 간격이 약 9 ㎛ 정도가 되도록 이격 배치시킨 후에 상기 이격 배치된 2장의 유리 기판 사이에 100℃에서 24시간 가열된 액정 조성물을 주입하고, 에지(edge)를 실링하여 면적 2.5cm X 3.0cm 및 간격 9㎛인 액정셀을 제작하였다.
상기에서 수직 배향막은 수직 배향 조성물(Nissan 5661)을 ITO 투명 전극층 상에 코팅하고 100℃의 온도에서 10 분 동안 소성을 진행시켜 형성하였다. 상기 액정 조성물은 하기 표 1에 나타낸 유전율 이방성이 -5.0이고, 굴절률 이방성이 0.1995인 상용 액정 LC(HCCH 7262, HCCH社 제)와 이방성 염료(X12, BASF社 제), 반응성 액정으로, 4-메톡시페닐 4-((6-(아크릴로일옥시)헥실)옥시)벤조에이트(HCM-021, HCCH社 제) 및 이온성 화합물로 CTAB(세틸트리메틸암모늄 브로마이드)를 90:1.6:10:1(LC:이방성 염료:RM:CTAB)의 중량 비율로 혼합하여 제조하였다.
실시예 2 내지 5 및 비교예 1 내지 4
액정셀의 제조
하기 표 1에 나타낸 액정 조성물의 조성 및 가열 조건을 사용한 것을 제외하고, 실시예 1과 동일한 방식으로 액정셀을 제조하였다.
액정 조성물(중량 비율)
비반응성 액정 전도도 조절제 가열 조건
LC 이방성 염료 RM CTAB
실시예 1 90 1.6 10 1 100℃, 24시간
실시예 2 90 1.4 2.5 1 120℃, 2시간
실시예 3 90 1.4 2.5 1 120℃, 3시간
실시예 4 90 1.4 2.5 1 120℃, 4시간
실시예 5 90 1.4 2.5 1 120℃, 6시간
비교예 1 90 1.6 - - 100℃, 24시간
비교예 2 90 1.6 10 - 100℃, 24시간
비교예 3 90 1.4 2.5 1 120℃, 9시간
비교예 4 90 1.4 2.5 1 120℃, 12시간
LC: 상용 액정(HCCH 7262, HCCH社 제)이방성 염료: X12, BASF社 제RM(반응성 액정): 4-메톡시페닐 4-((6-(아크릴로일옥시)헥실)옥시)벤조에이트(HCM-021, HCCH社 제)CTAB: 세틸트리메틸암모늄 브로마이드
평가예 1. 전류 밀도 평가실시예 및 비교예에서 제조된 액정셀에 대하여 하기 표 2의 구동 파형을 가지는 반도체 특성 분석기, Keithly 4200를 이용하여, 순간 전류-전압(I-V)을 측정하였다. 구체적으로, 실시예 및 비교예에서 제조된 액정셀의 대향 배치된 2개의 기판에 40 V, 60Hz의 교류 전압 인가 시 흐르는 전류를 측정하고, 도 4에 나타내었다. 이때, 안정화를 위하여 5 번째 사이클(Cycle) 후에 측정된 전류 값을 취하였다. 전압 인가 후, 8 ms에서의 전류를 면적으로 나눈 값을 최종 전류 밀도라 하고, 0 ms 부터 8 ms까지 측정된 전류 밀도의 평균 값을 평균 전류 밀도로 정하였다. 상기 측정된 전류 밀도의 평균 값을 하기 표 3에 나타내었다.
DSLC cell Keithly 4200 구동 파형 (60 Hz, 40 V, 사각파형)
수치 단위
주기(Period) 0.0167 Sec
펄스 폭(Pulse Width) 0.00833 Sec
상승 시간(Rise Time) 0.0001 Sec
하강 시간(Fall Time) 0.0001 Sec
기본 전압(Base Volatage) -40 Volt
진폭(Amplitude) -80 Volt
평가예 2. 헤이즈 및 투과율 평가
실시예 및 비교예에서 제조된 액정셀에 대하여 헤이즈미터, NDH-5000SP를 이용하여, ASTM 방식으로 헤이즈 및 투과율을 측정하였다. 구체적으로 실시예 및 비교예에서 제조된 액정셀에 수직 전계를 인가하도록 대향 배치된 2개의 기판에 AC 전원을 연결하고, 초기 전압 비인가 시 투과 모드 및 60 V, 60 Hz의 전압을 인가한 산란 모드에서의 헤이즈를 측정하여 하기 표 3에 나타내었다. 또한, 상기 투과율은 초기 전압 비인가 시(0 V) 투과 모드에서의 투과율과 60 V, 60 Hz의 전압을 인가한 산란 모드에서의 투과율을 측정한 후, 이들의 차이를 하기 일반식 1에 나타낸 바와 같이 투과도 가변폭으로 정하고 하기 표 3에 나타내었다.
[일반식 1]
투과도 가변폭 = T0-T60
상기 일반식 1에서 T0은 초기 전압 비인가(0V) 시의 투과율이고, T60은 60 V, 60 Hz의 전압 인가 시 투과율을 의미한다.
평균 전류 밀도(㎂/cm2) 초기(0 V) 60 V 투과도 가변폭(%)
투과율(%) 헤이즈(%) 투과율(%) 헤이즈(%)
실시예 1 41.4 65.4 0.4 21.7 95.8 43.7
실시예 2 47.5 68.5 0.8 25.1 95 43.4
실시예 3 52.0 69.0 0.9 25.7 94.8 43.3
실시예 4 55.5 68.4 0.9 25.6 95.5 42.8
실시예 5 54.1 68.4 1.3 25.7 95.5 42.7
비교예 1 11.7 63.8 0.9 28.2 36.5 35.6
비교예 2 24.1 64.8 0.8 23.1 85.7 41.7
비교예 3 79.5 68.1 1.4 29.6 94.9 38.5
비교예 4 78.7 67.0 1.2 27.4 95 39.6
상기 표 3 및 도 5에 나타낸 바와 같이, 실시예 1 내지 5에서 제조된 액정셀은 비교예 1 및 2에서 제조된 액정셀에 비해 액정층에 전도성 조절제를 더 포함함으로써, 평균 전류 밀도가 높게 나타나는 것을 확인하였다. 또한, 상기 액정층에 전도성 조절제를 포함하는 실시예 1 내지 5에서 제조된 액정셀은 상기 실시예 1 내지 5에서 제조된 액정셀과 액정층의 액정 조성물이 동일한 비교예 3 및 4에서 제조된 액정셀에 비해 낮은 시간 동안, 즉, 9시간 미만 동안 가열함으로써, 평균 전류 밀도가 낮게 나타나는 것을 확인하였다. 즉, 실시예 1 내지 5에서 제조된 액정셀은 전술한 조건을 모두 만족함으로써, 30 ㎂/cm2 내지 60 ㎂/cm2의 평균 전류 밀도를 만족하는 것을 확인하였다.또한, 실시예 1 내지 5에서 제조된 액정셀은 비교예 1 및 2에서 제조된 액정셀에 비해 평균 전류 밀도가 높음으로써, 산란 모드에서 우수한 헤이즈를 발현하는 것을 확인하였다.
또한, 상기 실시예 1 내지 5에서 제조된 액정셀은 30 ㎂/cm2 내지 60 ㎂/cm2의 평균 전류 밀도를 만족함으로써, 상기 전술한 평균 전류 밀도 범위를 만족하지 못하는 비교예 1 내지 4에서 제조된 액정셀에 비해 투과도 가변폭이 우수한 것을 확인하였다.
<부호의 설명>
100, 300: 기판
110, 310: 기재
120, 320: 전극층
130, 330: 수직 배향막
200: 액정층

Claims (14)

  1. 대향 배치된 2개의 기판; 및 상기 2개의 기판 사이에 존재하고,
    평균 전류 밀도가 30 ㎂/cm2 내지 60 ㎂/cm2인 액정층을 포함하는 액정셀(단, 상기 평균 전류 밀도는 40 V의 전압 및 60 Hz의 주파수의 교류 전압을 액정셀에 인가한 후, 5 번째 사이클(Cycle)의 0 ms 부터 8 ms까지 측정된 전류 밀도의 평균 값이다.).
  2. 제 1 항에 있어서, 상기 액정층은 비반응성 액정 및 전도도 조절제를 포함하는 액정셀.
  3. 제 2 항에 있어서, 상기 비반응성 액정은 유전율 이방성이 음수인 액정셀.
  4. 제 2 항에 있어서, 상기 전도도 조절제는 이방성 염료, 반응성 액정 및 이온성 화합물로부터 선택되는 하나 이상을 포함하는 액정셀.
  5. 제 2 항에 있어서, 상기 전도도 조절제는 상기 비반응성 액정 100 중량부 대비 0.1 중량부 내지 20 중량부의 비율로 포함되는 액정셀.
  6. 제 1 항에 있어서, 상기 액정층은 초기 상태에서 투과 모드를 구현하고, 전압 인가 시 산란 모드를 구현하는 액정셀.
  7. 제 6 항에 있어서, 상기 액정층은 초기 상태의 투과율과 60V 전압 인가 시의 투과율의 차이가 40% 이상인 액정셀.
  8. 제 6 항에 있어서, 상기 액정층은 60V 전압 인가 시 헤이즈가 90% 이상인 액정셀.
  9. 제 1 항에 있어서, 상기 2개의 기판은 각각 전극층 및 수직 배향막을 포함하는 액정셀.
  10. 대향 배치된 2개의 기판; 및 상기 2개의 기판 사이에 존재하는 액정층을 포함하는 액정셀의 제조 방법이고, 상기 액정층의 평균 전류 밀도를 30 ㎂/cm2 내지 60 ㎂/cm2로 조절하는 것을 포함하는 액정셀의 제조 방법(단, 상기 평균 전류 밀도는 40 V의 전압 및 60 Hz의 주파수의 교류 전압을 액정셀에 인가한 후, 5 번째 사이클(Cycle)의 0 ms 부터 8 ms까지 측정된 전류 밀도의 평균 값이다.).
  11. 제 10 항에 있어서, 상기 액정셀은 2개의 기판 사이에 가열한 액정 조성물을 주입하고, 에지를 실링하는 것에 의해 제조되는 액정셀의 제조 방법.
  12. 제 11 항에 있어서, 상기 액정 조성물은 비반응성 액정; 및 전도도 조절제로서 이방성 염료, 반응성 액정 및 이온성 화합물을 포함하고, 상기 반응성 액정을 8 wt% 내지 12 wt%로 포함하는 경우, 상기 가열은 90℃ 내지 110℃의 온도에서 20 시간 내지 30 시간 동안 수행하는 액정셀의 제조방법.
  13. 제 11 항에 있어서, 상기 액정 조성물은 비반응성 액정; 및 전도도 조절제로서 이방성 염료, 반응성 액정 및 이온성 화합물을 포함하고, 상기 반응성 액정을 1 wt% 내지 5 wt%로 포함하는 경우, 상기 가열은 110℃ 내지 130℃의 온도에서 1 시간 내지 7 시간 동안 수행하는 액정셀의 제조방법.
  14. 제 1 항의 액정셀을 포함하는 광변조 장치.
PCT/KR2018/016314 2017-12-22 2018-12-20 액정셀 WO2019125004A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/768,971 US11175558B2 (en) 2017-12-22 2018-12-20 Liquid crystal cell
JP2020529713A JP7125200B2 (ja) 2017-12-22 2018-12-20 液晶セル
CN201880079750.9A CN111465892B (zh) 2017-12-22 2018-12-20 液晶单元
EP18890354.6A EP3731006A4 (en) 2017-12-22 2018-12-20 LIQUID CRYSTAL CELL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170178107A KR102166478B1 (ko) 2017-12-22 2017-12-22 액정셀
KR10-2017-0178107 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019125004A1 true WO2019125004A1 (ko) 2019-06-27

Family

ID=66992777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016314 WO2019125004A1 (ko) 2017-12-22 2018-12-20 액정셀

Country Status (6)

Country Link
US (1) US11175558B2 (ko)
EP (1) EP3731006A4 (ko)
JP (1) JP7125200B2 (ko)
KR (1) KR102166478B1 (ko)
CN (1) CN111465892B (ko)
WO (1) WO2019125004A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102184391B1 (ko) * 2017-12-22 2020-11-30 주식회사 엘지화학 액정셀
KR102166478B1 (ko) 2017-12-22 2020-10-16 주식회사 엘지화학 액정셀
US20210064836A1 (en) * 2019-09-03 2021-03-04 Innolux Corporation Electronic device
JP2021086102A (ja) * 2019-11-29 2021-06-03 シャープ株式会社 熱スイッチ、冷却デバイス及びディスプレイデバイス
KR102634119B1 (ko) * 2020-07-31 2024-02-07 주식회사 엘지화학 광변조 디바이스

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150274A (ja) * 1991-11-28 1993-06-18 Sumitomo Chem Co Ltd 液晶デバイス及びその製造方法
JP2003149683A (ja) * 2001-08-31 2003-05-21 Naoki Toshima 液晶相溶性粒子、その製造方法及び液晶表示装置
KR20140077861A (ko) 2012-12-14 2014-06-24 주식회사 엘지화학 액정 소자의 제조 방법
KR20160115428A (ko) * 2015-03-27 2016-10-06 주식회사 엘지화학 액정셀
KR20160117344A (ko) * 2015-03-31 2016-10-10 주식회사 엘지화학 액정 소자
KR20170090236A (ko) * 2016-01-28 2017-08-07 주식회사 엘지화학 액정셀

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005928A (en) 1971-06-01 1977-02-01 Texas Instruments Incorporated Nematic liquid crystal displays for low voltage direct current operation
JPH07104252A (ja) 1993-10-04 1995-04-21 Matsushita Electric Ind Co Ltd 液晶電気光学素子の製造方法
EP1738385A1 (en) 2004-04-15 2007-01-03 Koninklijke Philips Electronics N.V. Electrically controllable color conversion cell
WO2006059895A1 (en) 2004-12-02 2006-06-08 Stichting Dutch Polymer Institute Switchable narrow band reflectors produced in a single curing step
CN101430449B (zh) * 2008-12-17 2010-04-07 河北工业大学 聚合物分散液晶压光效应膜及其制造方法和应用
JP5699786B2 (ja) * 2011-04-28 2015-04-15 ソニー株式会社 表示装置および照明装置
US9719905B2 (en) 2013-05-09 2017-08-01 Lg Chem, Ltd. Methods of measuring electrode density and electrode porosity
EP3215587B1 (en) 2014-11-06 2019-12-25 Gauzy Ltd. Bistable liquid crystal dispersion devices comprising metal-organic mesogens and applications thereof
WO2016159671A1 (ko) 2015-03-31 2016-10-06 주식회사 엘지화학 액정 소자
KR102568775B1 (ko) 2015-10-26 2023-08-22 삼성디스플레이 주식회사 플렉서블 디스플레이 장치
JP6845304B2 (ja) 2016-10-28 2021-03-17 エルジー・ケム・リミテッド 透過度可変フィルム
TWI609213B (zh) 2016-12-14 2017-12-21 國立中山大學 可調式隔熱窗戶
KR102166478B1 (ko) 2017-12-22 2020-10-16 주식회사 엘지화학 액정셀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150274A (ja) * 1991-11-28 1993-06-18 Sumitomo Chem Co Ltd 液晶デバイス及びその製造方法
JP2003149683A (ja) * 2001-08-31 2003-05-21 Naoki Toshima 液晶相溶性粒子、その製造方法及び液晶表示装置
KR20140077861A (ko) 2012-12-14 2014-06-24 주식회사 엘지화학 액정 소자의 제조 방법
KR20160115428A (ko) * 2015-03-27 2016-10-06 주식회사 엘지화학 액정셀
KR20160117344A (ko) * 2015-03-31 2016-10-10 주식회사 엘지화학 액정 소자
KR20170090236A (ko) * 2016-01-28 2017-08-07 주식회사 엘지화학 액정셀

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3731006A4

Also Published As

Publication number Publication date
US11175558B2 (en) 2021-11-16
JP2021505937A (ja) 2021-02-18
EP3731006A1 (en) 2020-10-28
JP7125200B2 (ja) 2022-08-24
CN111465892A (zh) 2020-07-28
KR102166478B1 (ko) 2020-10-16
CN111465892B (zh) 2023-02-17
EP3731006A4 (en) 2020-12-09
KR20190076363A (ko) 2019-07-02
US20210116736A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
WO2019125004A1 (ko) 액정셀
KR101839780B1 (ko) 액정 소자
KR101864927B1 (ko) 액정 소자
WO2015005719A1 (ko) 액정셀
EP3343285B1 (en) Liquid crystal cell
WO2016159671A1 (ko) 액정 소자
WO2016159672A1 (ko) 액정 소자
KR101872719B1 (ko) 액정셀
KR20170090236A (ko) 액정셀
KR102271846B1 (ko) 광변조 소자
WO2019125005A1 (ko) 액정셀
KR102466774B1 (ko) 광학 디바이스
KR102041809B1 (ko) 액정셀
KR20170024358A (ko) 액정셀
KR20200050719A (ko) 광학 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018890354

Country of ref document: EP

Effective date: 20200722