WO2019124947A1 - 유량측정장치 및 이를 이용한 유량측정방법 - Google Patents

유량측정장치 및 이를 이용한 유량측정방법 Download PDF

Info

Publication number
WO2019124947A1
WO2019124947A1 PCT/KR2018/016160 KR2018016160W WO2019124947A1 WO 2019124947 A1 WO2019124947 A1 WO 2019124947A1 KR 2018016160 W KR2018016160 W KR 2018016160W WO 2019124947 A1 WO2019124947 A1 WO 2019124947A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
light
unit
light emitting
housing
Prior art date
Application number
PCT/KR2018/016160
Other languages
English (en)
French (fr)
Inventor
박준영
박조안
Original Assignee
박준영
박조안
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박준영, 박조안 filed Critical 박준영
Priority to EP18891818.9A priority Critical patent/EP3730904B1/en
Priority to CN201880081652.9A priority patent/CN111492207B/zh
Publication of WO2019124947A1 publication Critical patent/WO2019124947A1/ko
Priority to US16/903,733 priority patent/US11287295B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/06Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission
    • G01F1/065Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission with radiation as transfer means to the indicating device, e.g. light transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/06Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission
    • G01F1/08Adjusting, correcting or compensating means therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/14Casings, e.g. of special material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/18Supports or connecting means for meters

Definitions

  • the present invention relates to a flow rate measuring apparatus, and more particularly, to a flow rate measuring apparatus and a flow rate measuring method for measuring a flow rate by detecting rotation in accordance with a flow of a fluid.
  • a water meter is a device for measuring the amount of water supplied from a water supply source to a use place such as a home or a company. Since the amount of water used is converted into a water rate and charged to the user, accurate measurement of water usage must be preceded and a precise flow measuring device is required.
  • Patent Literatures 1 and 2 disclose a device for measuring the flow rate by checking the number of revolutions through a configuration for selectively intercepting signals from sensors and sensors in order to solve such a problem.
  • Patent Documents 1 and 2 disclose a configuration in which a sensor portion for detecting the rotation of a rotating portion with respect to a rotating portion composed of a rotating shaft and an impeller is formed on one side of the impeller in the longitudinal direction of the rotating shaft.
  • Patent Documents 1 and 2 as the rotating portion and the sensor portion are sequentially disposed in the rotational axis direction and the fluid presses the rotational shaft in the direction perpendicular to the rotational axis, an imbalance occurs in the bearing force at one end and the other end in the longitudinal direction of the rotational shaft.
  • the lifetime is shortened due to the wear of the rotating shaft due to the unbalance of the supporting force against the rotating shaft and the vibration of the rotating part including the rotating shaft, and the flow rate can not be smoothly detected due to partial breakage of the rotating part.
  • Patent Document 1 KR10-1112224 B1
  • Patent Document 2 KR10-1729261 B1
  • the present invention has been made to achieve the above-mentioned object of the present invention, and it is an object of the present invention to provide an apparatus and a method for manufacturing the same, which comprises a housing 100 in which a fluid inlet 111 and an outlet 112 are formed facing each other; A rotating shaft 210 disposed perpendicularly to an imaginary line C connecting the inlet 111 and the outlet 112 in the housing 100 and a rotating shaft 210 vertically disposed on the rotating shaft 210 A rotating part 200 including a rotating blade 220; A sensor unit disposed in a radial direction of the rotation shaft 210 with respect to the rotation shaft 210 to sense a rotation speed of the rotation unit 200; And a controller (330) for measuring a flow rate of the fluid from the rotation number of the rotation part (200) sensed by the sensor part.
  • the sensor unit includes a first sensing unit 310 spaced apart from the rotation shaft 210 in a radial direction of the rotation shaft 210; And an interaction unit 320 coupled to the blade 220 in a radial direction so that the rotation of the rotation unit 200 is recognized by interaction with the first sensing unit 310.
  • the first sensing unit 310 includes a first light emitting unit 311 for generating light in the axial direction of the rotary shaft 210 and a second light emitting unit 311 for emitting light in the axial direction of the first light emitting unit 311 and the rotary shaft 210. [ And a first light receiving portion 312 spaced apart from the first light emitting portion 311 and receiving light emitted from the first light emitting portion 311.
  • the sensor unit includes a second light emitting unit 351 disposed to have a predetermined angle difference with the first sensing unit 310 around the rotation axis 210 and generating light in the axial direction of the rotation axis 210, And a second light receiving portion 352 disposed in the axial direction of the rotary shaft 210 and spaced apart from the second light emitting portion 351 to receive light emitted from the second light emitting portion 351.
  • the control unit 330 may determine the rotation direction of the rotation unit 200 according to whether the first light receiving unit 312 and the second light receiving unit 352 block light have.
  • the interaction unit 320 can alternately block and unblock the optical path between the first light emitting unit 311 and the first light receiving unit 312 by rotating the rotation shaft 210 (N is a natural number equal to or greater than 1) so that the angle?
  • the blocking portion 321 may be formed of a circular arc plate having an angle of 180 ° / N (N is a natural number equal to or larger than 1) around the rotation axis 210.
  • the blocking portion 321 may be divided into a plurality of portions around the rotation axis 210.
  • the blocking portion 321 may be integrally formed around the rotation axis 210 in the circumferential direction.
  • the blade 220 has a rectangular shape disposed in the longitudinal direction of the rotary shaft 210 and has one end coupled to the rotary shaft 210 and the blocking portion 321 is connected to the blade 220, As shown in FIG.
  • the blocking portion 321 may be formed of a transparent material and an opaque material, and may be a circular plate coupled to the blade 220.
  • the blocking portion 321 may be disposed at the center of the blade 220 in the longitudinal direction of the rotating shaft 210.
  • the cut-off portion 321 is formed of an arc-shaped plate having an angle of 180 ° around the rotation axis 210.
  • the cut-off portion 321 is provided at both ends of the cut-off portion 321 along the circumferential direction about the rotation axis 210 And a semicircular connection portion 322 for connecting the semicircular connection portions 322 to each other.
  • the blade 220 may be formed as a double injection or insert injection on the rotary shaft 210, and the blocking portion 321 may be integrally formed with the blade 220.
  • the blocking portion 321 may be formed by interaction with the sensing portions 310 and 350 when the mutual action portion 320 is disposed at the center of the blade 220 in the longitudinal direction of the rotary shaft 210 It may be formed using a material which can not transmit light at the corresponding position, for example, a black-based material so that the light path can be blocked and released.
  • the blocking portion 321 may be formed by injecting the blade 220 and the arc plate portion of the interacting portion 320, which are radially coupled to the blade 220, integrally with black plastic.
  • the housing 100 includes a lower housing 110 formed with the inlet 111 and the outlet 112 facing each other and having an upper opening; And an upper housing 150 coupled to the lower housing 110 to cover the opening of the lower housing 110 and exposing the display unit 340 of the controller 330 to the outside.
  • the housing 100 includes a guide passage formed inside the lower housing 110 for supporting the rotary part 200 and guiding the fluid introduced through the inlet 111 to the outlet 112, A sub-housing 130 having an upper side opened; And a cover member (140) having a first transparent guide groove (141) protruding upward to cover the opening of the sub housing (130) and guide the rotation of the interaction part (320)
  • the first light receiving portion 312 and the first light receiving portion 311 may be disposed to face each other with respect to the first transparent guide groove 141.
  • the second light emitting portion 351 and the first light receiving portion 352 may be installed to face each other around the first transparent guide groove 141 .
  • the sub housing 130 has a pair of rotation axis guide grooves 136 formed on an inner circumferential surface thereof so that the rotation axis 210 can be inserted from above, Is inserted along a second guide groove (117) formed on an inner circumferential surface of the lower housing (110) so as to be perpendicular to an imaginary line (C) connecting the inlet (111) and the outlet (112) 137 may be formed on the outer circumferential surface.
  • the sub housing 130 includes an inlet port 131 formed to face the rotary shaft 210 so as to form a guide passage for guiding the fluid introduced through the inlet 111 to the outlet 112, And an exhaust port 132 may be formed.
  • the sub-housing 130 and the cover member 140 form a cylindrical inner space corresponding to the rotation of the blade 220.
  • the sub-housing 130 and the cover member 140 form a blocking portion 321 extending in the radial direction of the rotation axis 210,
  • a rotation guide portion 139 and 149 protruding from the inner circumferential surface of the cylindrical inner space in the radial direction of the rotation shaft 210 may be formed.
  • the interaction portion 320 is formed between the first light emitting portion 311 and the first light receiving portion 312 and between the second light emitting portion 351 and the second light receiving portion 312, (P is an odd number of 1 or more) angular difference so as to alternately perform blocking and unblocking of the optical path between the first and second optical paths 352 and 352.
  • the rotation guide part 139 is disposed on the sub housing 130 so that the center of each side surface of the sub housing 130 formed with the inflow port 131 and the discharge port 132 continuously crosses vertically. As shown in Fig.
  • the inlet port 131 and the outlet port 132 may be a plurality of openings symmetrically formed around the rotation guide section 139, respectively.
  • the inlet port 131 and the outlet port 132 are formed in such a manner that the blade 220 guides the fluid from the inlet port 131 side to the outlet port 132 side below the rotary shaft 210 And may be formed radially on the side perpendicular to the rotation axis 210 of the sub housing 130.
  • the cover member 140 is inserted with a plurality of screws 335 passing through the plurality of through holes 337 formed in the control unit 330 so as to be separated from the control unit 330 by a predetermined distance
  • a plurality of engaging members 147 on which the bolt holes 148 to be bolted are formed may be provided on the upper surface.
  • the present invention is also a flow rate measuring method using the above-described flow rate measuring apparatus, comprising: a light emitting step (S1) in which the first light emitting part (311) emits light toward the first light receiving part (312); (S2) for determining whether or not the first light receiving unit (312) receives light through the controller (330) and storing a resultant value according to the received light; (S3) for turning off the light emission of the first light emitting portion (311), wherein the light emitting step (S1), the storing step (S2) And the flow rate is measured by counting the number of revolutions of the rotation unit 200 through the number of times the result value changes depending on whether the light is received or not in the storing step S2.
  • a holding time at which a result value according to whether light is received by the first light receiving unit (312) is calculated, and compared with a holding time at which a previous result value remains the same,
  • the flow rate can be measured corresponding to the rotation speed of the rotation unit 200 by increasing or decreasing the set period t.
  • the present invention further provides a flow rate measuring method using the flow measuring apparatus having the above-described configuration, comprising: a light emitting step (S1) in which the first light emitting part (311) emits light toward the first light receiving part (312); (S2) for determining whether or not the first light receiving unit (312) receives light through the controller (330) and storing a resultant value according to the received light; (S3) for turning off the light emission of the first light emitting portion (311), wherein the light emitting step (S1), the storing step (S2) And the flow rate is measured by counting the number of rotations of the rotary part 200 through the number of times the result value varies depending on whether the light is received or not in the storing step S2, The time when the blocking unit 321 passes through the first sensing unit 310 and the remaining time excluding the blocking unit 321 are shorter than the time when the blocking unit 321 passes through the first sensing unit 310 When the first sensing unit 31 and the second sensing unit 350 are both used, the time of passing through the first
  • the present invention also includes a housing 100 in which an inlet 111 and an outlet 112 of the fluid are formed facing each other;
  • a rotating unit 200 including a rotating shaft 210 disposed inside the housing 100 and a blade 220 rotated by the flow of the fluid around the rotating shaft 210;
  • a first light emitting unit (not shown) which is disposed in a radial direction of the rotation shaft 210 with respect to the rotation shaft 210 to sense the rotation speed of the rotation unit 200 and generates light in the axial direction of the rotation shaft 210 311) and a first light receiving portion (312) spaced in the axial direction of the first light emitting portion (311) and the rotation axis (210) and receiving light emitted from the first light emitting portion (311) (300);
  • a control unit (330) coupled to the housing (100) and measuring the flow rate of the fluid from the rotation number of the rotation unit (200) sensed by the sensor unit (300)
  • a light emitting step (S1) in which the light emitting part (311) emits
  • the flow rate measuring apparatus and the flow rate measuring method using the same according to the present invention can greatly improve the durability by arranging the position of the sensor for flow measurement in the radial direction with respect to the rotation axis, There is an advantage.
  • the flow rate measuring apparatus and the flow rate measuring method using the same according to the present invention can greatly improve the durability by arranging the position of the sensor for flow measurement in the radial direction with respect to the rotation axis, And it has a structure that prevents the shaking of the rotating shaft due to the fluid and minimizes the uneven wear, which is advantageous over the long term.
  • the flow rate measuring apparatus and the flow rate measuring method using the same according to the present invention can accurately grasp the flow rate by a relatively simple method.
  • the flow rate of the sensor can be precisely controlled by changing the light emission period of the sensor corresponding to the rotation period according to the flow rate. If the flow rate is low and the rotation speed is low, There is an economic advantage in that power consumption can be prevented by lengthening the time.
  • FIG. 1 is a perspective view showing a flow rate measuring apparatus according to the present invention.
  • FIG. 2 is an exploded perspective view showing the structure of the flow rate measuring apparatus of FIG.
  • FIG. 3 is a front view showing a state in which the case of the flowmeter of FIG. 1 is removed.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in Fig.
  • FIG. 5 is a cross-sectional view taken along the line V-V in Fig.
  • 6A and 6B are vertical cross-sectional views illustrating the operation of the rotation unit and the sensor unit in FIG.
  • FIG. 7A and 7B are vertical sectional views showing the arrangement and operation of the rotation unit and the sensor unit in FIG.
  • Fig. 8 is a perspective view of the sub housing of the flow measuring apparatus of Fig. 1;
  • FIG. 9 is an exploded perspective view showing a cover member and a control unit in the flow rate measuring apparatus of FIG.
  • 10A and 10B are a perspective view and a side view showing an example of a blade and a blocking portion in the flow measuring device of FIG.
  • Figs. 11A and 11B are a perspective view and a side view showing an example of a case where three blocking portions among the flow rate measuring apparatus of Fig. 1 are used.
  • FIG. 11C is a side view showing an example in which the blocking portion of the flow rate measuring apparatus of FIG. 1 is manufactured by double injection using an opaque material and a transparent material.
  • FIG. 12 is a circuit diagram showing the signal transmission between the control unit and the sensing unit in the flowmeter of FIG.
  • FIG. 13 is a main routine flowchart for setting initial values such as various variables and standby mode time settings after power-on, reading the sensor value for the first time, entering the standby mode after storing the sensor value for the first time.
  • FIG. 14 is a flowchart showing an example of a flow rate measurement process by the flow rate measuring apparatus of FIG.
  • 15A is a flowchart showing an example of the process A in FIG.
  • FIG. 15B is a flowchart showing an example of the process B in FIG.
  • FIG. 16A is a flowchart showing an example of a process C in FIG.
  • FIG. 16B is a flowchart showing an example of a process D in FIG.
  • 17A is a flow chart showing another example of the A process in the flow measurement process by the flow measuring apparatus of FIG.
  • 17B is a flow chart showing another example of the process B in the process of measuring the flow rate by the flow rate measuring device of FIG.
  • FIG. 18A is a flow chart showing an example of a fluid flow direction judging process by the flow measuring apparatus of FIG. 1, with an example of the process E of FIG. 17A being a flowchart.
  • FIG. 18B is a flowchart showing an example of process F in FIG. 17B, and is a flowchart showing an example of a process of determining a direction of a fluid flow by the flow measuring device of FIG.
  • FIG. 19 is an exploded perspective view showing a flow measuring apparatus according to a second embodiment of the present invention.
  • Fig. 20 is an exploded perspective view showing a coupling relationship between the cover member and the control unit in the flow rate measuring apparatus of Fig. 19;
  • Fig. 21 is an exploded perspective view showing a coupling relationship between the rotating part and the sub housing in the flow measuring device of Fig. 19;
  • Fig. 22 is a side view showing the sub housing of the flow measuring device of Fig. 21; Fig.
  • Fig. 23 is a sectional view in the I-I direction showing the sub housing of the flow measuring apparatus of Fig. 19;
  • FIG. 24 is a vertical sectional view showing the arrangement and operation of the rotation part and the sensor part in the flow measuring device of FIG. 19;
  • a flow rate measuring apparatus includes: a housing 100 having a fluid inlet 111 and a discharge port 112 facing each other; A rotating shaft 210 disposed vertically to an imaginary line C connecting the inlet 111 and the outlet 112 inside the housing 100 and a blade 210 rotated by the flow of fluid around the rotating shaft 210 220; A sensor unit disposed in a radial direction of the rotating shaft 210 with respect to the rotating shaft 210 to sense the rotating speed of the rotating unit 200; And a control unit 330 for measuring the flow rate of the fluid from the rotation number of the rotation unit 200 sensed by the sensor unit.
  • the flow rate measuring apparatus is an apparatus for measuring the flow amount of a fluid by connecting piping or the like capable of flowing a fluid.
  • the flow rate measuring apparatus is installed in a water pipe or the like to measure a user's water usage amount, For measuring the flow rate of the fluid.
  • the housing 100 has a structure in which the fluid inlet 111 and the outlet 112 are formed to face each other, for example, in the X-axis direction, so that the fluid can flow from the outside and be discharged to the outside And may be of various configurations.
  • the housing 100 may be connected to a pipe of a supply source so that the fluid supplied from the inlet 111 may be introduced from the inlet 111.
  • the outlet 112 may be connected to the outlet 112, It can be connected with piping.
  • the housing 100 is installed in a part of the water pipe, and a pipe connected to a supply source is connected to the inlet port 111, and a pipe connected to a use destination is connected to the discharge port 112.
  • the housing 100 is made of a material which does not easily cause corrosion, etc., in which a fluid, particularly water, passes through the housing 100, and more specifically, a material such as copper, engineering plastic, or stainless steel may be used.
  • the housing 100 includes a lower housing 110 having an inlet 111 and an outlet 112 facing each other and having an upper opening; And an upper housing 150 coupled to the lower housing 110 to cover the opening of the lower housing 110 and exposing the display unit 340 of the controller 330 to the outside.
  • the lower housing 110 may have a variety of configurations in which the inlet 111 and the outlet 112 are formed facing each other and the upper side is opened.
  • the lower housing 110 is detachably coupled with the upper housing 150 to be described later to form an internal space for the rotation unit 200 and the like to be installed therein.
  • the lower housing 110 is made of copper, engineering plastic, Stainless steel or the like can be used.
  • the inlet 111 is connected to a pipe connected to a supply source.
  • a thread may be formed on the outer circumferential surface.
  • the discharge port 112 has a structure in which a piping connected to a place of use is coupled, and various configurations are possible, and in particular, a thread may be formed on the outer peripheral surface.
  • the upper housing 150 is detachably coupled to the lower housing 110 to cover the opening of the lower housing 110 and exposes the display unit 340 of the controller 330 to the outside, Do.
  • the upper housing 150 may be made of a transparent material so that the display unit 340 of the controller 330 is exposed to the outside or only a portion of the display unit 340 that needs to be exposed to the outside may be combined with the transparent member, So that various configurations are possible.
  • the upper housing 150 has bolt holes corresponding to the bolt holes formed in the lower housing 110 at the edge thereof to be coupled with the lower housing 110 and may be coupled by bolt connection.
  • a flange 143 of the cover member 140 may be interposed between the upper housing 150 and the lower housing 110.
  • a bolt for coupling the upper housing 150 and the lower housing 110 may be inserted
  • a bolt hole may be formed so as to be installed.
  • the upper housing 150 and the lower housing 110 are coupled to each other by a cover plate 140.
  • An opening 621 is formed between the upper housing 150 and the cover member 140 to allow the cover member 140 to protrude upward to stably engage the upper housing 150 and the lower housing 110, A branch 620 can be installed.
  • the coupling flange 620 is installed between the upper housing 150 and the cover member 140 so as to project the cover member 140 upward in order to stably engage the upper housing 150 and the lower housing 110 Various configurations are possible as the configuration in which the opening 621 is formed.
  • the upper housing 150 and the lower housing 110 may have flange portions 113 and 143 extended from the edges for mutual coupling by bolts or the like.
  • sealing members 612 and 613 are provided between the upper housing 150 and the coupling flange 620, 110 and at least one of the sub-housings 130.
  • the sealing members 612 and 613 are provided between the upper housing 150 and the coupling flange portion 620 and between the coupling flange portion 620 and the cover member 140 to prevent leakage of the fluid , Silicone O-ring, etc. may be used.
  • the housing 100 is provided inside the lower housing 110 and has a guide channel for supporting the rotating part 200 and guiding the fluid introduced through the inlet 111 to the outlet 112, A sub housing (130) to be opened; And a cover member 140 having a first transparent guide groove 141 protruding upward to cover the opening of the sub-housing 130 and guide the rotation of the interaction unit 320.
  • the first light emitting portion 311 and the first light receiving portion 312, which will be described later, are preferably disposed to face each other with respect to the first transparent guide groove 141 as shown in FIGS. 6A and 6B.
  • the sub housing 130 is provided at the inner side of the lower housing 110 and has a guide flow path for guiding the fluid introduced through the inlet 111 to the outlet 112 by supporting the rotary part 200, Various configurations are possible as the constitution to be opened.
  • the sub housing 130 and the cover member 140 may form a cylindrical inner space corresponding to the rotation of the blade 220. As shown in FIG.
  • the sub-housing 130 and the cover member 140 are formed with cylindrical portions 135 and 145.
  • the sub housing 130 is formed to have an outer shape corresponding to the inner shape of the lower housing 110, considering that the sub housing 130 is installed inside the lower housing 110 described above.
  • the sub housing 130 includes an inlet port 131 formed to face the rotary shaft 210 so as to form a guide flow path for guiding the fluid introduced through the inlet port 111 to the outlet port 112, A port 132 may be formed.
  • the inlet port 131 may be formed as one or more openings to allow the fluid introduced through the inlet port 111 to flow into the interior of the sub-housing 130.
  • the inlet port 131 may be formed to face the blade 220 of the rotary unit 200 from the outside of the sub-housing 130.
  • the inflow port 131 is formed such that the fluid passing through the inflow port 131 is directed from one end to the other end of the blade 220 coupled to the rotary shaft 210.
  • the inlet port 131 When the inlet port 131 is formed as described above, the resistance of the flow of the fluid due to the formation of the inlet port 131 can be minimized.
  • the discharge port 132 is formed such that the fluid introduced into the sub housing 130 is directed toward the discharge port 112 after rotating the blade 220 of the rotary part 200 and may be formed as one or more openings have.
  • the discharge port 132 may be formed along the rotation direction of the blade 220 of the rotation unit 200 when viewed from the inside of the sub-housing 130. As shown in FIG.
  • the discharge port 132 When the discharge port 132 is formed along the rotating direction of the blade 220 of the rotary part 200, the fluid introduced into the sub-housing 130 rotates the blade 220 of the rotary part 200, The resistance of the flow of the fluid due to the formation of the discharge port 132 can be minimized when discharged toward the discharge port 112.
  • the upper end of the sub housing 130 is formed with a flange 133 so as to be stably supported by the lower housing 110 described above.
  • the cover member 140 is configured to cover the opening of the sub housing 130 to form a space in which the rotation unit 200 including the blade 220 rotates and is formed to have a cylindrical shape as a whole .
  • the cover member 140 may be configured to detect the number of rotations of the rotation unit 200 by the sensor unit, and the cover member 140 may be mounted on the sub- 130 and the first transparent guide groove 141 for guiding the rotation of the interacting part 320 are protruded upward.
  • the first transparent guide groove 141 protrudes upward from the cover member 140 so as to guide the rotation of the interaction portion 320 while allowing the rotation of the sensor portion to be sensed. It is possible.
  • the first transparent guide groove 141 is formed in a portion having a transparent material capable of transmitting light so as to be sensed by a sensor unit using light emission and light receiving means.
  • the entire cover member 140 is transparent It can have a material.
  • the first transparent guide groove 141 has a function of eliminating the interference with the cover member 140 when the interacting portion 320 described later rotates and the optical path for allowing the rotation of the rotation portion 200 to be recognized by the sensor portion is vertical Lt; / RTI >
  • the first transparent guide groove 141 may be made of a transparent material capable of forming an optical path so that the rotation of the rotation unit 200 is recognized by the sensor unit, and more specifically, a material capable of transmitting light .
  • the cover member 140 is coupled to the upper surface of the sub-housing 130, and may be specifically bolted to a plurality of bolt holes formed along the top edge.
  • a sealing member 611 is provided between at least any one of the lower housing 110 and the sub housing 130 to prevent leakage of fluid, Can be installed.
  • the sealing member 611 is a member provided between the cover member 140 and at least one of the lower housing 110 and the sub housing 130 to prevent leakage of fluid, Can be used.
  • the sub housing 130 and the cover member 140 are coupled to each other to form a cylindrical inner space for rotation of the rotation part 200.
  • the sub housing 130 and the cover member 140 are formed by extending in the radial direction of the rotation shaft 210
  • Rotation guide portions 139 and 149 protruding from the inner circumferential surface of the cylindrical inner space in the radial direction of the rotary shaft 210 may be formed to allow rotation of the blocking portion 321 and the interaction portion 320 have.
  • the rotation guide portions 139 and 149 are formed from the inner circumferential surface of the cylindrical inner space to allow the rotation of the blocking portion 321 and the interaction portion 320 formed in the radial direction of the rotary shaft 210, And may extend in the radial direction of the rotary shaft 210 from the sub housing 130 and the cover member 140, respectively.
  • the sub housing 130 may have a pair of rotation axis guide grooves 136 formed on the inner circumferential surface thereof so that the rotation axis 210 can be inserted from above.
  • the rotation shaft guide groove 136 may be formed to extend from the upper side to the lower side and have a concave shape corresponding to the rotation axis 210 and the bearing 211 coupled thereto so that the rotation axis 210 can be inserted from above.
  • the rotation shaft 210 coupled with the bearing 211 may be pushed upward by the pressure of the fluid after the rotation shaft 210 is inserted into the rotation shaft guide groove 136 from the upper side to the lower side. And a pressing portion 381 for pressing the bearing 211 downward after the rotational shaft 210 is inserted into the rotational shaft guide groove 136 from the upper side to the lower side.
  • the pressing portion 381 has a shape corresponding to the rotation axis guide groove 136 and may be formed as an independent member or protruded downward from the bottom surface of the cover member 140.
  • the pressing portion 381 may be formed integrally with the cover member 140 so as to protrude downward from the bottom surface of the cover member 140.
  • the sub housing 130 corresponds to the rotation shaft guide groove 136 and is connected to the lower housing 110 such that the rotation axis 210 is perpendicular to the imaginary line C connecting the inlet 111 and the outlet 112.
  • a protrusion guide portion 137 inserted along the second guide groove 117 formed on the inner circumferential surface of the second guide groove 117 may be formed on the outer circumferential surface.
  • the protrusion guide portion 137 corresponds to the rotation axis guide groove 136 and is formed so that the rotation axis 210 is perpendicular to the imaginary line C connecting the inlet port 111 and the outlet port 112,
  • the protrusion guide portion 137 may be formed with a recess in which the center portion is concave when viewed from the side of the sub housing 130, and the rotation shaft 210 and the bearing 211 are in close contact with each other .
  • the rotation unit 200 includes a rotation axis 210 disposed perpendicularly to an imaginary line C connecting the inlet 111 and the discharge port 112 in the housing 100, Various configurations are possible as the configuration including the blade 220 rotated by the flow.
  • the rotary shaft 210 may have a variety of configurations as a rotary shaft that forms a rotary shaft of the plurality of blades 220 by a hydraulic pressure of the fluid, that is, a hydraulic pressure of water, to which the plurality of blades 220 are connected.
  • the rotation shaft 210 is connected to the inlet port 111 and the outlet port 112 in the housing 100 for stable rotation of the blade 220 and stable support by the housing 100, It is preferable to be arranged perpendicular to the virtual line C.
  • the material of the rotating shaft 210 is preferably made of artificial zirconia, artificial sapphire, ceramics or the like, which is light in weight and high in abrasion resistance, for a long life.
  • both ends of the rotary shaft 210 are preferably provided with a cylindrical bearing 211 made of artificial zirconia, artificial sapphire, ceramics or the like so as to be rotatably supported on the housing 100, particularly the sub- Do.
  • the bearing 211 is installed in the housing 100, particularly, the sub housing 130, and rotatably supports both ends of the rotation shaft 210, and various configurations are possible.
  • the bearing 211 may be installed such that the rotating shaft 210 is not penetrated, but only a part of the bearing is inserted.
  • the end of the rotation shaft 210 may be formed as a curved surface such as a hemispherical surface and the bearing 211 may be recessed in a shape corresponding to the shape of the end of the rotation shaft 210.
  • the rotary shaft 210 is preferably installed in the housing 100, particularly the sub-housing 130, such that the flow path of the fluid connecting the inlet 111 and the outlet 112 is located at one side of the rotary shaft 210 .
  • the blade 220 may be integrally formed with or separately formed from the rotating shaft 210 by rotating the rotating shaft 210 by the flow of the fluid around the rotating shaft 210.
  • the rotating shaft 210 may include a plurality of .
  • the blades 210 may be formed as a plurality of the blades 210 as a whole, and an insertion hole may be formed at the center so that the rotation axis 210 can be vertically inserted.
  • the end of the blade 220 may have a cross-sectional shape in a direction perpendicular to the rotation axis 210, which is flat on the front side and streamlined on the rear side with respect to the rotation direction of the rotation axis 210.
  • the blade 220 may have a rectangular shape with the rotation axis 210 in the longitudinal direction.
  • the controller 330 may be configured to measure the flow rate of the fluid from the number of rotations of the rotation unit 200 sensed by the sensor unit.
  • the controller 330 measures the flow rate of the fluid from the rotational speed of the rotation unit 200 sensed by the sensor unit.
  • the controller 330 is configured for signal transmission and numerical calculation rather than physical configuration.
  • a PCB 331 a PCB 331.
  • the PCB 331 may be provided with one or more supporting portions 332 for connection and support with a sensor portion to be described later.
  • the PCB 331 may have a support portion 333 for supporting the display portion 340 described above on the upper side.
  • the controller 330 senses the number of revolutions of the rotary part 200 and further the direction of rotation based on the sensed result using the sensor part, using a flow measurement method and a fluid flow direction determination method to be described later, Can be measured.
  • the sensor unit may be arranged in a radial direction of the rotation shaft 210 with respect to the rotation shaft 210 to sense the rotation speed of the rotation unit 200 and may have various configurations.
  • the sensor unit may include a first sensing unit 310 spaced apart from the rotation axis 210 in a radial direction of the rotation axis 210; And an interaction unit 320 coupled to the blade 220 in a radial direction so that the rotation of the rotation unit 200 is recognized by interaction with the first sensing unit 310.
  • the first sensing unit 310 is installed in the radial direction of the rotating shaft 210 with respect to the rotating shaft 210 to sense the rotating speed of the rotating unit 200, Thus, various configurations are possible.
  • the first sensing unit 310 senses the rotation speed of the rotation unit 200 through light emission and light reception.
  • the rotation sensing unit 310 includes a rotation shaft 210, A first light emitting portion 311 which emits light in the axial direction of the rotary shaft 210 and a second light emitting portion 311 which is disposed apart from the first light emitting portion 311 in the axial direction of the rotary shaft 210 to receive light emitted from the first light emitting portion 311
  • the first light receiving portion 312 may include a first light receiving portion 312 and a second light receiving portion 312.
  • the first light emitting unit 311 may be configured to generate light in the axial direction of the rotating shaft 210 and may have various configurations.
  • the first light receiving section 312 is arranged to be spaced apart from the first light emitting section 311 in the axial direction of the rotating shaft 210 and configured to receive light emitted from the first light emitting section 311, Do.
  • the method of detecting the number of rotations by the first sensing unit 210 will be described in detail in a flow measuring process to be described later.
  • the sensor unit may sense the rotation number of the rotation unit 200 and measure the rotation direction of the rotation unit 200.
  • the sensor unit 310 includes a first sensing unit 310, And a second sensing unit 350 arranged to have a predetermined angle difference, preferably an angle difference of 90 degrees, to sense the rotation direction of the rotation unit 200 together with the first sensing unit 310 .
  • the second sensing unit 350 includes a first sensing unit 310 and a second sensing unit 310 arranged to have a predetermined angular difference with respect to the first sensing unit 310, And the rotation direction of the rotation unit 200 is detected.
  • the second sensing unit 350 may include a second light emitting unit 351 that generates light in the axial direction of the rotating shaft 210 and a second light emitting unit 351 in the axial direction of the rotating shaft 210. [ And a second light receiving portion 352 spaced apart from the first light receiving portion 351 and receiving light emitted from the second light emitting portion 351.
  • the control unit 330 determines the rotation direction of the rotation unit 200 according to whether the first light receiving unit 312 and the second light receiving unit 352 block light.
  • the interaction unit 320 may be configured to be coupled to the blade 220 in the radial direction such that the rotation of the rotation unit 200 is recognized by interaction with the first sensing unit 310.
  • the interaction portion 320 can alternately block and unblock the optical path between the first light emitting portion 311 and the first light receiving portion 312 by rotation of the rotation shaft 210 (N is a natural number equal to or greater than 1) so that the angle?
  • the blocking portion 321 may be disposed at one or more angular intervals of 180 ° / N (N is a natural number equal to or greater than 1) around the rotation axis 210, and the rotation of the rotation axis 210 causes the first light emitting portion 311, And the first light receiving section 312, as shown in FIG.
  • the blocking portion 321 may be formed of an arc-shaped plate having an angle of 180 ° / N (N is a natural number of 1 or more) around the rotation axis 210.
  • the first sensing unit 310 and the second sensing unit 320 are both used when the flow measuring process (measuring the number of revolutions) and the rotating direction determining process (determining the rotating direction) are performed at the same time.
  • the rotation of the rotary part 200 is recognized by the interaction with the first sensing part 310 and the rotation direction of the blade 220 is determined by the interaction with the second sensing part 350. [ So that various configurations are possible.
  • the interaction unit 320 may rotate between the first light emitting unit 311 and the first light receiving unit 312 and the second light emitting unit 351 and the second light receiving unit 352 (P is an odd number equal to or greater than 1) so as to alternately perform blocking and unblocking of the optical path between the optical path between the light source and the light source.
  • the blocking portion 321 is disposed at one or more angular difference of 180 degrees / P (P is an odd number of 1 or more) around the rotation axis 210 and is rotated by the rotation of the rotation axis 210 to rotate the first light emitting portion 311, And the first light receiving section 312 and between the second light emitting section 351 and the second light receiving section 352.
  • P is an odd number of 1 or more
  • the blocking portion 321 may be formed of an arc-shaped plate having an angle of 180 ° / P (P is an odd number of 1 or more) around the rotation axis 210.
  • the blocking portion 321 may be integrally formed around the rotation axis 210 in the circumferential direction, as shown in FIGS. 10A and 10B and FIGS. 11A to 11C.
  • the blade 220 has a rectangular shape arranged in the longitudinal direction of the rotary shaft 210, and one end of the blade 220 is coupled to the rotary shaft 210
  • the blocking portion 321 may be integrally formed with the blade 220 and an opaque material.
  • the blocking portion 321 may be formed as a double injection using a transparent material and an opaque material.
  • the double injection method using the transparent material and the opaque material can be formed by applying the same method to the case of one blocking part (Figs. 10A and 10B).
  • the blocking portion 321 is formed of an arc-shaped plate having an angle of 180 degrees around the rotation axis 210, And a semicircular connecting portion 322 connecting both ends of the blocking portion 321 along the circumferential direction.
  • the blocking portion 321 is preferably formed by cutting away a portion of the plate portion except for the light shielding portion in order to minimize rotational inertia.
  • the blocking portion 321 may be divided into a plurality of portions around the rotation axis 210.
  • the blocking portion 321 is preferably disposed at the center of the blade 220 in the longitudinal direction of the rotating shaft 210.
  • the blocking portion 321 may be disposed at 180 ° / N (N is a natural number equal to or greater than 1) along the circumferential direction when only the flow rate sensing is applied.
  • 180 ° / N (N is a natural number of 1 or more)
  • 180 DEG / N (N is a natural number of 1 or more).
  • the blocking portion 321 may be disposed at an angle of 180 ° / P (P is an odd number of 1 or more) along the circumferential direction when the flow rate sensing and the rotation direction sensing are applied together. In this case, 180 ° / (An odd number of 1 or more) and an angle difference of 180 DEG / P (P is an odd number of 1 or more).
  • the blocking unit 321 may be installed at least one when the first sensing unit 310 for detecting the flow rate is installed. In addition to the first sensing unit 310 for sensing the flow rate, It is preferable that the second sensing unit 350 is provided in an odd number.
  • the control unit 330 includes a first switch 371 selectively turned on / off to command a signal transmission to the first light emitting unit 311, A central controller 339 for outputting a signal for on / off operation of the first and second switches 371 and 372; and a second switch 372 for selectively turning on / A memory 373 for storing status information of the first sensing unit 310 and the second sensing unit 350 and a first comparison unit comparing the output signal of the first light receiving unit 312 with a reference signal and outputting the corresponding signal, And a second comparing unit 375 configured to compare the output signals of the first and second light receiving units 374 and 352 with the reference signal and output the corresponding signal.
  • the configuration and operation of the second sensing unit 350 may be omitted when the flow measuring apparatus according to the present invention includes only the first sensing unit 310.
  • the first sensing unit 310 and the second sensing unit 350 may have a predetermined angle difference with respect to the first sensing unit 310 about the rotation axis 210 as described above, Are arranged so as to have an angle difference of 90 [deg.].
  • the central control unit 339 outputs a signal for on / off operation of the first and second switches 371 and 372 and controls the first and second switches 371 and 372 to be turned on /
  • the light emission of the first light emitting portion 311 and the second light emitting portion 351 can be turned on / off.
  • the first light receiving portion 312 and the second light receiving portion 352 are turned OFF when the light of the first light emitting portion 311 and the second light emitting portion 351 is cut off by the blocking portion 321,
  • Each of the voltages input to the first comparator 374 and the second comparator 375 is higher than the reference voltages 364 and 365 of the reference terminals of the first comparator 374 and the second comparator 375,
  • the outputs 310 and 350 of the second comparator 374 and the second comparator 375 are Hi, respectively.
  • the light from the first light emitting portion 311 and the light from the second light emitting portion 351 are received by the first light receiving portion 312 and the second light receiving portion 352, 312 and the second light receiving portion 352 are turned on so that the respective voltages input to the first comparing portion 374 and the second comparing portion 375 are supplied to the first comparing portion 374 and the second comparing portion 375,
  • the reference voltages 374 and 365 of the reference comparators 375 and 375 become lower than the reference voltages 364 and 365 of the reference terminals 375 and 375 so that the outputs 31 and 350 of the first comparator 374 and the second comparator 375 are respectively Low.
  • the comparators 374 and 375 receive the signals of the first light receiving section 312 and the second light receiving section 352, which are received, as input terminals, and the signals inputted to the input terminals of the comparator are input to the respective reference terminals A high signal is output when the input signal is higher than the reference voltages 364 and 365 and a low signal when the signal inputted to the input terminal is lower than the reference voltage or vice versa.
  • the comparators 374 and 375 constitute Schmitt trigger circuits, respectively, so as to have hysteresis, thereby eliminating errors that may occur in the intermediate stage between the cutoff part and the opening part.
  • the present invention provides a fluid treatment device comprising: a housing (100) having a fluid inlet (111) and an outlet (112) facing each other;
  • a rotation unit 200 including a rotation shaft 210 disposed inside the housing 100 and a blade 220 rotated by the flow of the fluid around the rotation axis 210;
  • a first light emitting portion 311 which is arranged in a radial direction of the rotation axis 210 with respect to the rotation axis 210 to sense the rotation speed of the rotation portion 200 and generate light in the axial direction of the rotation axis 210,
  • a sensor unit including a first light receiving unit 311 and a first light receiving unit 312 spaced in the axial direction of the rotating shaft 210 and receiving light emitted from the first light emitting unit 311;
  • a control unit 330 for measuring the flow rate of the fluid from the rotation number of the rotation unit 200 sensed by the sensor unit.
  • the first light emission unit 311 includes the first light reception unit 312, A light emitting step for emitting light toward the light emitting element; A storing step of determining whether or not the first light receiving unit 312 receives light through the control unit 330 and storing the resultant value according to the received light; And an off step of turning off the light emission of the first light emitting unit 311.
  • the number of times the result of the light emitting step, the storing step and the off step are repeated at the set interval t, And the flow rate is measured by counting the number of revolutions of the rotary part (200) through the flow rate measuring part.
  • the flow rate measuring apparatus Since the configuration and detailed description of the flow rate measuring apparatus using the flow rate measuring method have been described above, the flow rate measuring apparatus will be omitted. However, it goes without saying that the flow rate measuring method according to the present invention can be applied to the flow rate measuring apparatus shown in FIGS. 1 to 12 as well as to the arrangement of the rotating shaft 210 of the rotating unit 200.
  • the flow rate measuring method using the flow rate measuring apparatus may include an initializing step of initializing various variable values, and may include a state value of the first light receiving unit 312 of the first sensing unit 310, 2, the state value of the second light-receiving unit 352 of the light-receiving unit 350, the setting period t, and the like, and initializing the entire activation of the apparatus.
  • the light emitting step is performed when the central control unit 339 is kept in the standby mode and wakes up to the active mode by an interrupt after the set period t to transmit a signal to the first switch 271,
  • the first light emitting portion 311 can be activated.
  • the set period t may be set such that the time that the blocking unit 321 passes the first sensing unit 310 and the portion excluding the blocking unit 321,
  • the first sensing unit 311 and the second sensing unit 350 may be both shorter than the shortest time of the sensing unit 310.
  • a portion excluding the blocking portion 321 is set shorter than a half of a short time passing through the first sensing unit 310.
  • the storing step may transmit different signals to the central control unit 339 depending on whether the first light receiving unit 312 receives light or not, and store the resultant values in the memory 273.
  • the state of the first light receiving portion 312 does not receive light by blocking the light path between the first light emitting portion 311 and the first light receiving portion 312, Hi is outputted and the blocking of the optical path is canceled by the rotation of the blocking portion 321, the state of the first light receiving portion 312 is in the light receiving state and Low can be outputted.
  • the first light receiving portion 312 when Hi is output from the first light receiving portion 312, the first light receiving portion 312 is not receiving light due to the interruption of the blocking portion 321, and Low is outputted from the first light receiving portion 312 It means that the first light receiving section 312 receives light by opening the light path.
  • the off step refers to the step of releasing the light emission of the first light emitting part 311.
  • the first switch 371 in the on state changes to the off state, and the light emission of the first light emitting unit 311 is released, so that the control unit 330 can switch to the standby mode.
  • the number of revolutions of the rotating part 200 means the flow rate, and thus the flow rate can be measured.
  • the first light emitting unit 311 when the control unit in the standby mode is activated in the active mode by the interruption after the set period t, the first light emitting unit 311 is turned ON The state of the first light receiving unit 312 at this time is read and stored in the memory 373, and the first light emitting unit 311 changes to the OFF state.
  • the input of the first light receiving section 312 is in the OFF state, it is checked whether the past first light receiving section 312 is in the ON state according to FIG. 14B. If the input state of the first light receiving section 312 is ON, The number of revolutions can be counted in accordance with one rotation of the rotation unit 200.
  • the rotational number is increased by 1,
  • the number of revolutions is increased by 1, and when the input of the first light receiving section 312 is ON
  • the rotation number can be counted in accordance with one rotation of the rotation unit 200 when the blocking unit is one.
  • the number of the blocking portions 321 is N (N is a natural number equal to or greater than 1)
  • the number of state changes of the first light receiving portion 312 is counted as 1 / (2N)
  • the number of times of the state change of the first light receiving unit 312 may be counted in a normal process and the value may be used as it is.
  • the number of the blocking units 321 is N, It is needless to say that it can be calculated and converted.
  • the rotation number counting method using the fixed period sets a fixed period of a short cycle in preparation for relatively fast rotation, and there is a disadvantage in that the number of times of light emission is large and energy consumption is large.
  • the flow rate measuring method for adjusting the light emission period corresponding to the rotational speed of the rotating part will be described below.
  • the flow rate measuring method for adjusting the light emission period corresponding to the rotational speed calculates a holding time at which the result value according to whether or not the first light receiving section 312 receives light is maintained to be the same .
  • the flow rate can be measured corresponding to the rotation speed of the rotation unit 200 by increasing or decreasing the setting period t in accordance with the increase or decrease in comparison with the holding time at which the previous result value remains the same.
  • the time from the time when the first Low input is converted to the Hi input to the time when the Hi input is converted to the Low input And calculates the holding time at which the Hi input value lasts.
  • the holding time may be calculated by multiplying the counted number of Hi input values stored while the Hi input value is held in the setting period (t).
  • the counted number of Hi input values is calculated by counting the number of Hi times when the input value of the first light receiving section 312 is derived in the cycle of the set period (t) and storing it in the memory 373 .
  • the first light receiving section 312 when the first light receiving section 312 is in the OFF state, it is determined whether the state of the immediately preceding first light receiving section 312 is ON or OFF. When the state of the immediately preceding first light receiving section 312 is OFF, The count value of the OFF state of the first light receiving section 312 is incremented by one.
  • the state of the first light receiving section 312 changes from the OFF state to the ON state
  • the number of ON state counting of the first light receiving section 312 is made to be zero, and at the same time, the OFF state of the first light receiving section 312
  • the count value is multiplied by the set period (t) to calculate the OFF state time of the first light receiving section 312.
  • the OFF state time of the first light receiving section 312 is decreased from the OFF state time of the first light receiving section 312 calculated above to the previously set offset value, it means that the rotational speed of the rotation section 200 is increased,
  • the period t can be reduced according to the amount of decrease.
  • the OFF state time of the first light receiving section 312 is increased from the calculated OFF state time of the first light receiving section 312 to the previously set offset value, it means that the rotation speed of the rotation section 200 is slowed down
  • the setting period t can be increased in accordance with the increase amount.
  • the minimum value may be limited to a minimum value when it is smaller than a predetermined minimum value for smooth flow measurement, and may be limited to a maximum value when it is larger than a preset maximum value.
  • 17A to 18B are views illustrating a state in which the first sensing unit 310 and the second sensing unit 310 are disposed to have a predetermined angle difference with respect to the rotation axis 210 and generate light in the axial direction of the rotation axis 210, And a second light receiving portion 352 disposed apart from the second light emitting portion 351 in the axial direction of the rotary shaft 210 to receive light emitted from the second light emitting portion 351
  • the control unit 330 may determine the rotation direction of the rotation unit 200 according to whether the first light receiving unit 312 and the second light receiving unit 352 block light.
  • an odd number of blocking portions 231 are preferably formed for smooth and accurate determination of the rotating direction.
  • the rotation direction of the rotation unit 200 can be determined according to the relative determination of the blocking / release of the optical path due to the interaction with the interaction unit 320 of the first sensing unit 310 and the second sensing unit 350, This allows the flow direction of the fluid to be determined.
  • the first sensing unit 310 and the second sensing unit 350 form an angle of 90 ° around the rotation axis 210, and one blocking unit 321 is formed to form 180 °
  • one blocking unit 321 is formed to form 180 °
  • the rotation unit 200 rotates in the clockwise direction, the state of the light path blocking / release of the second sensing unit 350 is detected based on the first sensing unit 310, When the optical path changes from the released state to the cutoff state, the optical path of the second sensing unit 350 is maintained in the cutoff state.
  • the first sensing unit 310 and the second sensing unit 350 may be mounted on the first sensing unit 310 with the rotation axis 210 as the center, It is preferable to arrange the fluid flow path 310 at an angle of 90 degrees with respect to the direction of flow of the fluid as described above.
  • the housing 100 includes a dark cover 160 which is coupled to the outside of the upper housing 150 and provides a dark operating environment of the sensor unit for measuring a flow rate using an optical sensor .
  • the black cover 160 may have any structure as long as it is coupled to the outside of the upper housing 150 to provide a dark environment inside the upper housing 150.
  • the black cover 160 may include a side cover portion 161 that surrounds and connects the flange portion 153 of the upper housing 150, and a top cover portion 160 that is coupled to the top of the side cover portion 161, (Not shown).
  • the top cover part 162 may be formed with an opening to expose the display part 340 to the outside, thereby providing information such as a flow rate to the user.
  • the black cover 160 may be coupled to the upper housing 150 through various methods, and more preferably, it may be a bolt coupling or the like.
  • cover member 140 may be coupled to the controller 330 by various methods, for example, a bolt coupling.
  • a plurality of engaging members 147 formed with bolt holes 148 may be provided at positions corresponding to the plurality of through holes 337 in the upper surface.
  • the plurality of coupling members 147 may be provided to have a predetermined height so that the controller 330 and the cover member 140 are separated from each other by a predetermined distance.
  • a screw 335 passing through the through hole 337 formed in the control unit 330 can be bolted.
  • the sub housing 130 includes a cutout portion 321 extending in the radial direction of the rotary shaft 210 from the inner circumferential surface of the inner space to the rotary shaft 210 And a rotation guide part 139 protruding in the radial direction of the rotation guide part 139 may be respectively formed.
  • the rotation guide portion 139 is configured to protrude from the inner circumferential surface at each side surface of the sub housing 130 where the inlet port 131 and the discharge port 132 are formed, and various configurations are possible.
  • the rotation guide portion 139 may be formed in the sub housing 130 so that the center of each side surface on which the inlet port 131 and the discharge port 132 of the sub housing 130 are formed, As shown in Fig.
  • the rotation guide part 139 may be formed continuously without interruption and may extend vertically across the center of the side surface on which the inlet port 131 is formed. Similarly, Can be formed so as to continuously cross the upper and lower portions without interruption.
  • the sub housing 130 since the sub housing 130 has a relatively simple structure, it is advantageous in that it is simple to manufacture and inexpensive in injection molding.
  • the inlet port 131 and the outlet port 132 may be a plurality of openings symmetrically formed around the rotation guide portion 139, respectively.
  • the inlet port 131 is provided with three openings on the left side from the upper side to the lower side with respect to the rotation guide portion 139, and three openings symmetrical to the right side around the rotation guide portion 139, A total of six openings can be formed.
  • the inflow port 131 of the sub- May be formed to have a portion of a radial shape when viewed from the side perpendicular to the base 210.
  • the inflow port 131 may have an opening corresponding to the shape of the inflow port so as to move the inflow fluid to the lower side of the rotation axis 210.
  • the inflow port 131 may be formed with a bent portion 138 as shown in FIG.
  • the bent portion 138 is formed in the lower portion of the blade 220 and the sub housing 130 so that fluid can flow smoothly through the inlet port 131 from the inlet port 111 positioned higher than the lowest height inside the blade 220 and the sub- (131) is bent toward the inlet (111).
  • bent portion 138 can be formed in the discharge port 132 like the inflow port 131.
  • the inflow port 131 and the discharge port 132 may be formed with a slope in a curved shape on the side rather than the bent portion 138.
  • the outlet port 132 may also be formed.
  • the outlet port 132 may be formed as one opening on each of the left and right sides of the rotation guide section 139.
  • the outlet port 132 is different from the inlet port 131 for providing the pressure of the fluid through the plurality of openings so that the blade 220 is able to overcome the stop inertia and rotate, It is preferable that the opening is formed by minimizing the opening for discharging.
  • the discharge port 132 may be formed as a plurality of openings.
  • the discharge port 132 is also connected to the sub-housing 130 to guide the fluid so that the blade 220 rotates from the inlet port 131 side to the outlet port 132 side at the lower side of the rotating shaft 210
  • the height of the outer side may be formed to have a higher radial part.
  • the semicircular connecting portion 322 and the blocking portion 321 may have different thicknesses, more preferably, the blocking portion 321 having a large radius so that the moment of inertia due to the rotation is constant, May be formed so that the mass thereof is smaller than the mass of the semicircular coupling portion 322 whose radius is smaller than that of the blocking portion 321.
  • the semicircular connecting portion 322 and the blocking portion 321 are formed to have a thickness smaller than that of the semicircular connecting portion 322 having a relatively small radius, so that the blocking portion 321, The inertia moment of the connecting portion 322 can be made the same, and the weight variation of the mutual action portion 320 can be eliminated.
  • the semicircular connecting portion 322 and the blocking portion 321 may have a thickness of 2 mm in order to increase the mass of the semicircular connecting portion 322, and the thickness of the blocking portion 321 may be a semicircular connecting portion 322, The mass can be reduced to 1 mm.
  • the weight deviation according to the position of the interaction portion 320 is eliminated, and the moment of inertia is made constant, so that it can rotate at a smooth and constant speed and can be stably rotated without rotating vibration.
  • rotation shaft 210 may be inserted into the blade 220 as described above, but may be manufactured through insert injection so as to be integrally formed.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

본 발명은, 유량측정장치에 관한 것으로서, 보다 상세하게는 유체의 흐름에 따른 회전을 감지하여 유량을 측정하는 유량측정장치 및 유량측정방법에 관한 것이다. 본 발명은, 유체의 유입구(111)와 배출구(112)가 서로 대향되어 형성되는 하우징(100)과; 상기 하우징(100) 내부에서 상기 유입구(111) 및 상기 배출구(112)를 잇는 가상선(C)에 수직을 이루어 배치되는 회전축(210)과, 상기 회전축(210)을 중심으로 유체의 흐름에 의해 회전되는 블레이드(220)를 포함하는 회전부(200)와; 상기 회전축(210)에 대하여 상기 회전축(210)의 반경방향으로 이격되어 배치되어 상기 회전부(200)의 회전수를 감지하는 센서부와; 상기 센서부에 감지된 상기 회전부(200)의 회전수로부터 상기 유체의 유량을 측정하는 제어부(330)를 포함하는 것을 특징으로 하는 유량측정장치를 개시한다.

Description

유량측정장치 및 이를 이용한 유량측정방법
본 발명은, 유량측정장치에 관한 것으로서, 보다 상세하게는 유체의 흐름에 따른 회전을 감지하여 유량을 측정하는 유량측정장치 및 유량측정방법에 관한 것이다.
일반적으로, 수도 계량기는 수도 공급원으로부터 가정이나 회사와 같은 사용처로 공급되는 물의 양을 측정하기 위한 기기이다. 사용처의 물 사용량은 수도요금으로 환산되어 상기 사용처에 부과되므로 정확한 물 사용량 측정이 선행되어야 하고, 이를 위해 정밀한 유량측정장치가 요구된다.
종래에는, 물 사용량을 측정하기 위한 장치로서 영구자석 및 리드 스위치가 사용되었으나, 리드 스위치가 자기력에 의하여 작동되므로, 리드 스위치의 주변에 또 다른 자기력을 가진 물체가 존재하는 경우 리드 스위치의 온/오프 작용이 원활하게 작용하지 않게 되는 문제점이 있다.
그리고 특허문헌 1 및 2는, 이와 같은 문제점을 해결하기 위하여 센서와 센서의 신호를 선택적으로 차단하는 구성을 통해 회전수를 체크하여 유량을 측정하는 장치를 개시하고 있다.
한편 특허문헌 1 및 2는, 회전축 및 임펠러로 구성된 회전부에 대하여 회전부의 회전을 감지하기 위한 센서부분이 회전축의 길이방향으로 임펠러의 일측에 형성되는 구성을 개시한다.
그런데 특허문헌 1 및 2는, 회전부 및 센서부분이 회전축 방향으로 순차적으로 배치되어 회전축과 수직인 방향으로 유체가 회전축을 가압함에 따라서 회전축의 길이방향으로 일단 및 타단에서의 지지력의 불균형이 발생된다.
그리고 회전축에 대한 지지력의 불균형으로 회전축의 마모, 회전축을 포함한 회전부의 진동 등으로 인하여 수명이 단축되며, 회전부의 부분적 파손으로 유량의 감지를 원활하게 수행하지 못하는 문제점이 있다.
(특허문헌 1) KR10-1112224 B1
(특허문헌 2) KR10-1729261 B1
본 발명의 목적은, 상기와 같은 문제점을 해결하기 위하여, 내구성을 크게 향상시켜 교체주기를 현저히 증가시킬 수 있으며, 정밀한 유량측정이 가능한 유량측정장치 및 이를 이용한 유량측정방법을 제공하는데 있다.
본 발명은, 상기와 같은 본 발명의 목적을 달성하기 위하여 창출된 것으로서, 본 발명은, 유체의 유입구(111)와 배출구(112)가 서로 대향되어 형성되는 하우징(100)과; 상기 하우징(100) 내부에서 상기 유입구(111) 및 상기 배출구(112)를 잇는 가상선(C)에 수직을 이루어 배치되는 회전축(210)과, 상기 회전축(210)을 중심으로 유체의 흐름에 의해 회전되는 블레이드(220)를 포함하는 회전부(200)와; 상기 회전축(210)에 대하여 상기 회전축(210)의 반경방향으로 이격되어 배치되어 상기 회전부(200)의 회전수를 감지하는 센서부와; 상기 센서부에 감지된 상기 회전부(200)의 회전수로부터 상기 유체의 유량을 측정하는 제어부(330)를 포함하는 것을 특징으로 하는 유량측정장치를 개시한다.
상기 센서부는, 상기 회전축(210)에 대하여 상기 회전축(210)의 반경방향으로 이격되어 설치된 제1감지부(310)와; 상기 제1감지부(310)와의 상호작용에 의해 상기 회전부(200)의 회전이 인식되도록, 상기 블레이드(220)에 반경방향으로 결합되는 상호작용부(320)를 포함할 수 있다.
상기 제1감지부(310)는, 상기 회전축(210)의 축방향으로 광을 발생시키는 제1발광부(311)와, 상기 제1발광부(311)와 상기 회전축(210)의 축방향으로 이격되어 상기 제1발광부(311)에서 발광된 광을 수광하는 제1수광부(312)를 포함할 수 있다.
상기 센서부는, 상기 회전축(210)을 중심으로 상기 제1감지부(310)와 미리 설정된 각도차를 가지도록 배치되며, 상기 회전축(210)의 축방향으로 광을 발생시키는 제2발광부(351)와, 상기 회전축(210)의 축방향으로 상기 제2발광부(351)와 이격되어 배치되어 상기 제2발광부(351)에서 발광된 광을 수광하는 제2수광부(352)를 포함하는 제2감지부(350)를 더 포함하고, 상기 제어부(330)는, 상기 제1수광부(312) 및 상기 제2수광부(352)의 광 차단여부에 따라 상기 회전부(200)의 회전방향을 결정할 수 있다.
상기 상호작용부(320)는, 상기 회전축(210)의 회전에 의하여, 상기 제1발광부(311) 및 상기 제1수광부(312) 사이의 광경로의 차단 및 차단해제를 교대로 수행할 수 있도록 180°/N(N은 1 이상의 자연수)의 각도차로 배치되는 하나 이상의 차단부(321)를 포함할 수 있다.
상기 차단부(321)는, 상기 회전축(210)을 중심으로 180°/N(N은 1 이상의 자연수)의 각도를 가지는 호 형상의 플레이트로 이루어 수 있다.
상기 차단부(321)는, 상기 회전축(210)을 중심으로 복수로 분할될 수 있다.
상기 차단부(321)는, 상기 회전축(210)을 중심으로 원주방향을 따라서 연결되어 일체로 형성될 수 있다.
상기 블레이드(220)는, 상기 회전축(210)의 길이방향으로 배치되는 직사각형 형상을 가지며, 일단이 상기 회전축(210)에 결합되며, 상기 차단부(321)는, 상기 블레이드(220)와 일체형 사출로 형성될 수 있다.
상기 차단부(321)는, 투명 재질과 불투명재질로 이용하여 이중 사출로 형성되며 상기 블레이드(220)에 결합되는 원형플레이트가 사용될 수 있다.
상기 차단부(321)는, 상기 회전축(210)의 길이방향의 상기 블레이드(220)의 중심에 배치될 수 있다.
상기 차단부(321)는, 상기 회전축(210)을 중심으로 180°의 각도를 가지는 호 형상의 플레이트로 이루어지며, 상기 회전축(210)을 중심으로 원주방향을 따라서 상기 차단부(321)의 양단을 서로 연결하는 반원연결부(322)를 추가로 포함할 수 있다.
예로서 상기 블레이드(220)는, 상기 회전축(210)에 이중사출 또는 인서트사출로서 형성될 수 있고, 상기 차단부(321)는, 상기 블레이드(220)와 일체형 사출로 형성될 수 있다.
또한 상기 차단부(321)는, 상기 상호작용부(320)가 상기 회전축(210)의 길이방향의 상기 블레이드(220)의 중심에 배치될 때, 전술한 상기 감지부(310,350)와의 상호작용으로 광경로의 차단 및 해제가 가능하도록, 해당 위치에 광투과가 불가능한 재질, 예를 들면 흑색계통의 재질을 사용하여 형성될 수 있다.
예로서, 상기 블레이드(220)와 이의 반경방향으로 결합되는 상기 상호작용부(320)의 호 플레이트 부분을 모두 흑색계통의 플라스틱으로 일체형으로 사출하여 상기 차단부(321)를 형성할 수 있다.
상기 하우징(100)은, 상기 유입구(111) 및 상기 배출구(112)가 서로 대향되어 형성되며 상측이 개구된 하부하우징(110)과; 상기 하부하우징(110)의 개구를 복개하도록 상기 하부하우징(110)과 결합되며 상기 제어부(330)의 디스플레이부(340)를 외부로 노출시키는 상부하우징(150)을 포함할 수 있다.
상기 하우징(100)은, 상기 하부하우징(110)의 내측에 설치되며 상기 회전부(200)를 지지하며 상기 유입구(111)를 통하여 유입된 유체를 상기 배출구(112)로 가이드하는 가이드유로가 형성됨과 아울러 상측이 개구되는 서브하우징(130)과; 상기 서브하우징(130)의 개구를 복개하며 상기 상호작용부(320)의 회전을 가이드하는 제1투명가이드홈(141)이 상측으로 돌출 형성되는 커버부재(140)를 포함하며, 상기 제1발광부(311) 및 상기 제1수광부(312)는, 상기 제1투명가이드홈(141)을 중심으로 서로 대향되어 설치될 수 있다.
또한 상기 제2감지부(350)를 구비한 경우, 상기 제2발광부(351) 및 상기 제1수광부(352) 또한 상기 제1투명가이드홈(141)을 중심으로 서로 대향되어 설치될 수 있다.
상기 서브하우징(130)은, 상기 회전축(210)이 상측에서 삽입될 수 있도록 한 쌍의 회전축가이드홈(136)이 내주면에 형성되고, 상기 회전축가이드홈(136)에 대응되며 상기 회전축(210)이 상기 유입구(111) 및 상기 배출구(112)를 잇는 가상선(C)과 수직을 이루어 배치되도록 상기 하부하우징(110)의 내주면에 형성된 제2가이드홈(117)을 따라서 삽입되는 돌출가이드부(137)가 외주면에 형성될 수 있다.
상기 서브하우징(130)은, 상기 유입구(111)를 통하여 유입된 유체를 상기 배출구(112)로 가이드하는 가이드유로가 형성하도록 상기 회전축(210)을 중심으로 서로 대향되어 형성되는 유입포트(131) 및 배출포트(132)가 형성될 수 있다.
상기 서브하우징(130) 및 상기 커버부재(140)는, 상기 블레이드(220)의 회전에 대응되는 원통형의 내부공간을 형성하며, 상기 회전축(210)의 반경방향으로 연장되어 형성된 차단부(321)의 회전을 허용하기 위하여 상기 원통형의 내부공간의 내주면으로부터 상기 회전축(210)의 반경방향으로 연장되어 돌출된 회전가이드부(139, 149)가 형성될 수 있다.
상기 상호작용부(320)는, 상기 회전축(210)의 회전에 의하여, 상기 제1발광부(311) 및 상기 제1수광부(312) 사이와 상기 제2발광부(351) 및 상기 제2수광부(352) 사이의 광경로의 차단 및 차단해제를 교대로 수행할 수 있도록 180°/P (P는 1 이상의 홀수)의 각도차로 배치되는 하나 이상의 차단부(321)를 포함할 수 있다.
상기 회전가이드부(139)는, 상기 서브하우징(130)의 상기 유입포트(131) 및 상기 배출포트(132)가 형성되는 각 측면의 중심을 상하로 연속하여 가로지르도록 상기 서브하우징(130)의 내부공간의 각 내주면으로부터 돌출되어 형성될 수 있다.
상기 유입포트(131) 및 상기 배출포트(132)는, 각각 상기 회전가이드부(139)를 중심으로 대칭되어 형성되는 복수의 개구일 수 있다.
상기 유입포트(131) 및 상기 배출포트(132)는, 상기 블레이드(220)가 상기 회전축(210)의 하측에서 상기 유입포트(131) 측으로부터 상기 배출포트(132) 측으로 회전하도록 상기 유체를 가이드하기 위하여, 상기 서브하우징(130)의 회전축(210)에 수직인 측면 상 방사형으로 형성될 수 있다.
상기 커버부재(140)는, 상기 제어부(330)와 미리 설정된 거리만큼 이격되어 결합되도록, 상기 제어부(330)에 형성되는 복수의 관통공(337)을 관통하는 복수의 나사(335)들이 삽입되어 볼트결합되는 볼트공(148)이 형성되는 복수의 결합부재(147)들이 상부면에 설치될 수 있다.
본 발명은 또한 상기와 같은 유량측정장치를 이용한 유량측정방법으로서, 상기 제1발광부(311)가 상기 제1수광부(312)를 향해 발광하는 발광단계(S1)와; 상기 제어부(330)를 통해 상기 제1수광부(312)의 수광여부를 판단하고, 그에 따른 결과값을 저장하는 저장단계(S2)와; 상기 제1발광부(311)의 발광을 오프하는 오프단계(S3)를 포함하고, 상기 발광단계(S1), 상기 저장단계(S2) 및 상기 오프단계(S3)를 설정주기(t) 간격으로 반복하고, 상기 저장단계(S2)의 수광여부에 따른 결과값이 변화하는 횟수를 통해 상기 회전부(200)의 회전수를 카운팅하여 유량을 측정하는 것을 특징으로 하는 유량측정방법을 개시한다.
상기 유량측정방법에 있어서, 상기 제1수광부(312)의 수광여부에 따른 결과값이 동일하게 유지되는 유지시간을 연산하고, 종전 결과값이 동일하게 유지되는 유지시간과 비교하여 그 증감에 따라 상기 설정주기(t)를 증감시켜, 상기 회전부(200)의 회전속도에 대응하여 유량을 측정할 수 있다.
본 발명은 또한 상기와 같은 구성을 가지는 유량측정장치를 이용한 유량측정방법으로서, 상기 제1발광부(311)가 상기 제1수광부(312)를 향해 발광하는 발광단계(S1)와; 상기 제어부(330)를 통해 상기 제1수광부(312)의 수광여부를 판단하고, 그에 따른 결과값을 저장하는 저장단계(S2)와; 상기 제1발광부(311)의 발광을 오프하는 오프단계(S3)를 포함하고, 상기 발광단계(S1), 상기 저장단계(S2) 및 상기 오프단계(S3)를 설정주기(t) 간격으로 반복하고, 상기 저장단계(S2)의 수광여부에 따른 결과값이 변화하는 횟수를 통해 상기 회전부(200)의 회전수를 카운팅하여 유량을 측정하며, 상기 설정주기(t)는, 상기 제1감지부(310) 만 사용할 경우 상기 차단부(321)가 상기 제1감지부(310)를 지나는 시간과 상기 차단부(321)를 제외한 나머지부분이 상기 제1감지부(310)를 지나는 시간 중 짧은 시간보다 짧게 설정되며, 상기 제1감지부(31)와 상기 제2감지부(350)를 모두 사용할 경우 상기 차단부(321)가 상기 제1감지부(310)를 지나는 시간과 상기 차단부(321)를 제외한 나머지부분이 상기 제1감지부(310)를 지나는 시간 중 짧은 시간의 1/2 보다 짧게 설정되는 것을 특징으로 하는 유량측정방법을 개시한다.
본 발명은 또한, 유체의 유입구(111)와 배출구(112)가 서로 대향되어 형성되는 하우징(100)과; 상기 하우징(100) 내부에 배치되는 회전축(210)과, 상기 회전축(210)을 중심으로 유체의 흐름에 의해 회전되는 블레이드(220)를 포함하는 회전부(200)와; 상기 회전축(210)에 대하여 상기 회전축(210)의 반경방향으로 이격되어 배치되어 상기 회전부(200)의 회전수를 감지하고, 상기 회전축(210)의 축방향으로 광을 발생시키는 제1발광부(311)와, 상기 제1발광부(311)와 상기 회전축(210)의 축방향으로 이격되어 상기 제1발광부(311)에서 발광된 광을 수광하는 제1수광부(312)를 포함하는 센서부(300)와; 상기 하우징(100)에 결합되어 상기 센서부(300)에 감지된 상기 회전부(200)의 회전수로부터 상기 유체의 유량을 측정하는 제어부(330)를 구비하는 유량측정장치에 있어서, 상기 제1발광부(311)가 상기 제1수광부(312)를 향해 발광하는 발광단계(S1)와; 상기 제어부(330)를 통해 상기 제1수광부(312)의 수광여부를 판단하고, 그에 따른 결과값을 저장하는 저장단계(S2)와; 상기 제1발광부(311)의 발광을 오프하는 오프단계(S3)를 포함하고, 상기 발광단계(S1), 상기 저장단계(S2) 및 상기 오프단계(S3)를 설정주기(t) 간격으로 반복하고, 상기 저장단계(S2)의 수광여부에 따른 결과값이 변화하는 횟수를 통해 상기 회전부(200)의 회전수를 카운팅하여 유량을 측정하는 것을 특징으로 하는 유량측정방법을 개시한다.
본 발명에 따른 유량측정장치 및 이를 이용한 유량측정방법은, 유량 측정을 위한 센서의 위치를 회전축에 대하여 반경방향 쪽으로 배치함으로써 내구성을 크게 향상시켜 교체주기를 현저히 증가시킬 수 있으며, 정밀한 유량측정이 가능한 이점이 있다.
본 발명에 따른 유량측정장치 및 이를 이용한 유량측정방법은, 유량 측정을 위한 센서의 위치를 회전축에 대하여 반경방향 쪽으로 배치함으로써 내구성을 크게 향상시켜 교체주기를 현저히 증가시킬 수 있으며, 정밀한 유량측정이 가능하며, 유체에 의한 회전축의 흔들림을 방지하고 편마모를 최소화하는 구조를 이루어 장기적으로 사용가능한 이점이 있다.
본 발명에 따른 유량측정장치 및 이를 이용한 유량측정방법은, 비교적 간단한 방법에 의해 유량을 정확하게 파악할 수 있으며, 단순히 유량 뿐만아니라, 고정주기를 가지는 센서를 통한 유량측정의 경우, 일관되는 센서주기에 따라 정밀한 유량측정 및 전기비용이 과다한 점 등의 단점이 있으나, 유량에 따른 회전주기에 대응되어 센서의 발광주기를 변환함으로써, 정밀한 유량측정이 가능하고, 유량이 적어 회전속도가 느린경우에는 제어부의 대기시간을 길게함으로써 전력소모를 방지할 수 있는바 경제적 이점이 있다.
도 1은, 본 발명에 따른 유량측정장치를 보여주는 사시도이다.
도 2는, 도 1의 유량측정장치의 구조를 보여주는 분해사시도이다.
도 3은, 도 1의 유량측정장치 중 케이스가 제거된 상태를 보여주는 정면도이다.
도 4는, 도 1에서 Ⅳ-Ⅳ방향의 단면도이다.
도 5는, 도 1에서 Ⅴ-Ⅴ방향의 단면도이다.
도 6a 및 도 6b는, 도 5에서 회전부 및 센서부의 작동과정을 보여주는 수직단면도들이다.
도 7a 및 도 7b는, 도 4에서 회전부 및 센서부의 배치 및 작동과정을 보여주는 수직단면도들이다.
도 8은, 도 1의 유량측정장치 중 서브하우징의 사시도이다.
도 9는, 도 1의 유량측정장치 중 커버부재 및 제어부를 보여주는 분해 사시도이다.
도 10a 및 도 10b는, 도 1의 유량측정장치 중 블레이드 및 차단부의 일예를 보여주는 사시도 및 측면도이다.
도 11a 및 도 11b는, 도 1의 유량측정장치 중 차단부가 3개인 경우의 예를 보여주는 사시도 및 측면도이다.
도 11c는, 도 1의 유량측정장치 중 차단부를 불투명 재질과 투명재질로 이중사출하여 제작한 예를 보여주는 측면도이다.
도 12는, 도 1의 유량측정장치 중 제어부와 감지부의 신호전달을 보여주는 회로도이다.
도 13은, 파워 온(ON) 후 각종 변수와 대기모드 시간설정 등 초기값을 설정하고 최초로 센서값을 읽어 저장한 후 대기모드로 진입하는 메인루틴 순서도이다.
도 14는, 도 1의 유량측정장치에 의한 유량측정과정의 일예를 보여주는 순서도이다.
도 15a는, 도 14에서 A과정의 일예를 보여주는 순서도이다.
도 15b는, 도 14에서 B과정의 일예를 보여주는 순서도이다.
도 16a는, 도 14에서 C과정의 일예를 보여주는 순서도이다.
도 16b는, 도 14에서 D과정의 일예를 보여주는 순서도이다.
도 17a는, 도 14의 유량측정장치에 의한 유량측정과정 중 A과정의 다른 예를 보여주는 순서도이다.
도 17b는, 도 14의 유량측정장치에 의한 유량측정과정 중 B과정의 다른 예를 보여주는 순서도이다.
도 18a는, 도 17a에서 E과정의 일예를 순서도로서, 도 1의 유량측정장치에 의한 유체흐름방향 판단과정의 일예를 보여주는 순서도이다.
도 18b는, 도 17b에서 F과정의 일예를 보여주는 순서도로서, 도 1의 유량측정장치에 의한 유체흐름방향 판단과정의 일예를 보여주는 순서도이다.
도 19는, 본 발명의 제2실시예에 따른 유량측정장치의 모습을 보여주는 분해사시도이다.
도 20은, 도 19의 유량측정장치 중 커버부재와 제어부의 결합관계를 보여주는 분해사시도이다.
도 21은, 도 19의 유량측정장치 중 회전부와 서브하우징의 결합관계를 보여주는 분해사시도이다.
도 22는, 도 21의 유량측정장치 중 서브하우징의 모습을 보여주는 측면도이다.
도 23은, 도 19의 유량측정장치 중 서브하우징의 모습을 보여주는 Ⅰ-Ⅰ방향 단면도이다.
도 24는, 도 19의 유량측정장치 중 회전부 및 센서부의 배치 및 작동과정을 보여주는 수직단면도이다.
이하 본 발명에 따른 유량측정장치를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.
본 발명에 따른 유량측정장치는, 도 1 내지 도 11b에 도시된 바와 같이, 유체의 유입구(111)와 배출구(112)가 서로 대향되어 형성되는 하우징(100)과; 하우징(100) 내부에서 유입구(111) 및 배출구(112)를 잇는 가상선(C)에 수직을 이루어 배치되는 회전축(210)과, 회전축(210)을 중심으로 유체의 흐름에 의해 회전되는 블레이드(220)를 포함하는 회전부(200)와; 회전축(210)에 대하여 회전축(210)의 반경방향으로 이격되어 배치되어 회전부(200)의 회전수를 감지하는 센서부와; 센서부에 감지된 회전부(200)의 회전수로부터 유체의 유량을 측정하는 제어부(330)를 포함한다.
여기서 상기 유량측정장치는, 유체의 흐름이 가능한 배관 등을 연결하여 유체의 흐름양을 측정하기 위한 장치로서, 구체적으로 수도관 등에 설치되어 사용자의 물 사용량을 측정하기 위해 사용되는 등 배관을 통하여 흐른 유체의 유량을 측정하기 위한 구성으로 다양한 분야에서 사용될 수 있다.
상기 하우징(100)은, 유체의 유입구(111)와 배출구(112)가 서로 대향되어 형성, 예를 들면 X축방향으로 형성되는 구성으로서, 유체가 외부에서 유입되어 다시 외부로 배출될 수 있도록 하는 다양한 구성일 수 있다.
상기 하우징(100)은, 유입구(111)에서 외부에서 공급되는 유체가 유입되도록 공급처의 배관과 연결될 수 있고, 배출구(112)로 유체가 배출되어 사용처로 공급될 수 있도록 배출구(112)가 사용처의 배관과 연결될 수 있다.
예로서, 상기 하우징(100)은, 수도관의 일부분에 설치되어, 유입구(111)에 공급처와 연결되는 배관이 연결되고, 배출구(112)에 사용처와 연결되는 배관이 연결될 수 있다.
상기 하우징(100)은, 유체 특히 물이 통과되는 구성인바, 부식 등이 잘 되지 않는 재질로 구성되고, 보다 구체적으로 동, 엔지니어링 플라스틱, 스테인리스 등의 재질이 이용될 수 있다.
예로서, 상기 하우징(100)은, 유입구(111) 및 배출구(112)가 서로 대향되어 형성되며 상측이 개구된 하부하우징(110)과; 하부하우징(110)의 개구를 복개하도록 하부하우징(110)과 결합되며 제어부(330)의 디스플레이부(340)를 외부로 노출시키는 상부하우징(150)을 포함할 수 있다.
상기 하부하우징(110)은, 유입구(111) 및 배출구(112)가 서로 대향되어 형성되며 상측이 개구되는 구성으로서 다양한 구성이 가능하다.
예로서, 상기 하부하우징(110)은, 후술하는 상부하우징(150)과 함께 탈착가능하게 결합되어 회전부(200) 등이 내부에 설치될 수 있도록 내부공간을 형성하는 구성으로서, 동, 엔지니어링 플라스틱, 스테인리스 등의 재질이 이용될 수 있다.
상기 유입구(111)는, 공급처와 연결되는 배관이 결합되는 구성으로서, 다양한 구성이 가능하며, 특히 외주면에 나사산이 형성될 수 있다.
상기 배출구(112)는, 사용처와 연결되는 배관이 결합되는 구성으로서, 다양한 구성이 가능하며, 특히 외주면에 나사산이 형성될 수 있다.
상기 상부하우징(150)은, 하부하우징(110)의 개구를 복개하도록 하부하우징(110)과 탈착가능하게 결합되며 제어부(330)의 디스플레이부(340)를 외부로 노출시키는 구성으로서 다양한 구성이 가능하다.
여기서 상기 상부하우징(150)은, 제어부(330)의 디스플레이부(340)가 외부로 노출되도록 전체가 투명한 재질을 가지거나, 디스플레이부(340)의 외부 노출이 필요한 부분만 투명부재가 결합되거나 외부로 개방되어 형성되는 등 다양한 구성이 가능하다.
그리고 상기 상부하우징(150)는, 하부하우징(110)과 결합되기 위하여 가장자리에 하부하우징(110)에 형성되는 볼트구멍에 대응되는 볼트구멍이 형성되고, 볼트 결합에 의해 결합될 수 있다.
이때 상기 상부하우징(150) 및 하부하우징(110) 사이에는, 커버부재(140)의 플렌지부(143)가 개재될 수 있으며 이때 상부하우징(150) 및 하부하우징(110)을 결합시키는 볼트가 관통되어 설치될 수 있도록 볼트구멍이 형성될 수 있다.
한편 상기 상부하우징(150) 및 커버부재(140) 사이에는, 상부하우징(150) 및 하부하우징(110)의 안정적 결합을 위하여 커버부재(140)을 상측으로 돌출시키는 개구(621)가 형성된 결합플렌지부(620)가 설치될 수 있다.
상기 결합플렌지부(620)는, 상부하우징(150) 및 커버부재(140) 사이에 설치되어 상부하우징(150) 및 하부하우징(110)의 안정적 결합을 위하여 커버부재(140)을 상측으로 돌출시키는 개구(621)가 형성되는 구성으로서 다양한 구성이 가능하다.
한편 상기 상부하우징(150) 및 하부하우징(110)은, 볼트 등에 의하여 상호 결합을 위하여 가장자리로부터 연장된 플렌지부(113, 143)가 형성될 수 있다.
그리고 상기 상부하우징(150) 및 결합플렌지부(620) 사이, 결합플렌지부(620) 및 커버부재(140) 사이에는, 유체의 누수 등을 방지하기 위해 실링부재(612, 613)가 하부하우징(110) 및 서브하우징(130) 중 적어도 어느 하나의 사이에 설치될 수 있다.
예로서 상기 실링부재(612, 613)는, 상부하우징(150) 및 결합플렌지부(620) 사이, 결합플렌지부(620) 및 커버부재(140) 사이에 설치되어 유체의 누수를 막기 위한 부재로서, 실리콘 오링 등이 사용될 수 있다.
한편 상기 하우징(100)은, 하부하우징(110)의 내측에 설치되며 회전부(200)를 지지하여 유입구(111)를 통하여 유입된 유체를 배출구(112)로 가이드하는 가이드유로가 형성됨과 아울러 상측이 개구되는 서브하우징(130)과; 서브하우징(130)의 개구를 복개하며 상호작용부(320)의 회전을 가이드하는 제1투명가이드홈(141)이 상측으로 돌출 형성되는 커버부재(140)를 포함할 수 있다.
여기서 후술하는 상기 제1발광부(311) 및 제1수광부(312)는, 도 6a 및 도 6b에 도시된 바와 같이, 제1투명가이드홈(141)을 중심으로 서로 대향되어 설치됨이 바람직하다.
상기 서브하우징(130)은, 하부하우징(110)의 내측에 설치되며 회전부(200)를 지지하여 유입구(111)를 통하여 유입된 유체를 배출구(112)로 가이드하는 가이드유로가 형성됨과 아울러 상측이 개구되는 구성으로서 다양한 구성이 가능하다.
여기서 상기 서브하우징(130) 및 커버부재(140)는, 도 4에 도시된 바와 같이, 블레이드(220)의 회전에 대응되는 원통형의 내부공간을 형성함이 바람직하다.
이를 위하여 상기 서브하우징(130) 및 커버부재(140)는, 원통형상 부분(135, 145)가 형성된다.
상기 서브하우징(130)은, 앞서 설명한 하부하우징(110)의 내부에 설치됨을 고려하여 하부하우징(110)의 내주 형상에 대응되는 외형을 가지도록 형성됨이 바람직하다.
또한 상기 서브하우징(130)은, 유입구(111)를 통하여 유입된 유체를 배출구(112)로 가이드하는 가이드유로가 형성하도록 회전축(210)을 중심으로 서로 대향되어 형성되는 유입포트(131) 및 배출포트(132)가 형성될 수 있다.
상기 유입포트(131)는, 유입구(111)를 통하여 유입된 유체가 서브하우징(130)의 내부로 유입되도록 하나 이상의 개구로서 형성될 수 있다.
특히 상기 유입포트(131)는, 도 2 및 도 4에 도시된 바와 같이, 서브하우징(130)의 외측에서 회전부(200)의 블레이드(220)를 향하도록 형성됨이 바람직하다.
특히 상기 유입포트(131)는, 유입포트(131)를 통과한 유체가 블레이드(220)에서 회전축(210)에 결합된 일단에서 타단 사이로 향하도록 형성됨이 바람직하다.
상기와 같이 유입포트(131)가 형성되면 유입포트(131)의 형성에 따른 유체의 흐름의 저항을 최소화 할 수 있다.
상기 배출포트(132)는, 서브하우징(130)의 내부에 유입된 유체가 회전부(200)의 블레이드(220)를 회전시킨 후 배출구(112)로 향하도록 형성되며, 하나 이상의 개구로서 형성될 수 있다.
특히 상기 배출포트(132)는, 도 2 및 도 4에 도시된 바와 같이, 서브하우징(130)의 내부에서 보았을 때 회전부(200)의 블레이드(220)의 회전방향을 따라서 형성됨이 바람직하다.
여기서 상기 배출포트(132)가 회전부(200)의 블레이드(220)의 회전방향을 따라서 형성되면 서브하우징(130)의 내부에 유입된 유체가 회전부(200)의 블레이드(220)를 회전시킨 후 배출구(112)로 향하여 배출될 때 배출포트(132)의 형성에 따른 유체의 흐름의 저항을 최소화 할 수 있다.
한편 상기 서브하우징(130)의 상단 가장자리는, 앞서 설명한 하부하우징(110)에 의하여 안정적으로 지지될 수 있도록 플렌지부(133)가 형성된다.
상기 커버부재(140)는, 서브하우징(130)의 개구를 복개하여 블레이드(220)를 포함하는 회전부(200)가 회전되는 공간을 형성하는 구성으로서 앞서 설명한 바와 같이 전체로서 원통형상을 가지도록 형성될 수 있다.
한편 상기 커버부재(140)는, 센서부에 의한 회전부(200)의 회전수의 감지가 가능하도록 구성될 필요가 있으며, 이에 커버부재(140)는, 도 5에 도시된 바와 같이, 서브하우징(130)의 개구를 복개하며 상호작용부(320)의 회전을 가이드하는 제1투명가이드홈(141)이 상측으로 돌출 형성되는 구성으로서 다양한 구성이 가능하다.
상기 제1투명가이드홈(141)은, 센서부에 의한 회전수의 감지가 가능하면서 상호작용부(320)의 회전을 가이드하도록 커버부재(140)에서 상측으로 돌출되어 형성되는 구성으로 다양한 구성이 가능하다.
여기서 상기 제1투명가이드홈(141)은, 발광 및 수광원리를 이용하는 센서부에 의한 감지가 가능하도록 빛의 투과가 가능한 투명 재질을 가지는 부분에 형성되며, 이를 위하여 커버부재(140) 전체가 투명 재질을 가질 수 있다.
상기 제1투명가이드홈(141)은, 후술하는 상호작용부(320)의 회전시 커버부재(140)와의 간섭을 없애고, 센서부에 의해 회전부(200)의 회전이 인식되도록 하는 광경로가 수직으로 통과될 수 있다.
따라서 제1투명가이드홈(141)은, 센서부에 의해 회전부(200)의 회전이 인식되도록 광경로를 형성할 수 있는 투명재질로 이루어 질 수 있으며, 보다 구체적으로 광투과가 가능한 재질일 수 있다.
상기 커버부재(140)는, 서브하우징(130)의 상면에 결합되는 구성으로서, 구체적으로 상면 가장자리를 따라 형성되는 복수의 볼트구멍에 볼트결합으로 결합될 수 있다.
상기 커버부재(140)는, 서브하우징(130)과의 결합시, 유체의 누수 등을 방지하기 위해 실링부재(611)가 하부하우징(110) 및 서브하우징(130) 중 적어도 어느 하나의 사이에 설치될 수 있다.
예로서 상기 실링부재(611)는, 커버부재(140)와, 하부하우징(110) 및 서브하우징(130) 중 적어도 어느 하나의 사이에 설치되어 유체의 누수를 막기 위한 부재로서, 실리콘 오링 등이 사용될 수 있다.
한편, 상기 서브하우징(130) 및 커버부재(140)는, 서로 결합되어 회전부(200)의 회전을 위한 원통형의 내부공간을 형성함에 특징이 있으며, 특히 회전축(210)의 반경방향으로 연장되어 형성된 차단부(321)-상호작용부(320)-의 회전을 허용하기 위하여 원통형의 내부공간의 내주면으로부터 회전축(210)의 반경방향으로 연장되어 돌출된 회전가이드부(139, 149)가 형성될 수 있다.
상기 회전가이드부(139, 149)는, 회전축(210)의 반경방향으로 연장되어 형성된 차단부(321)-상호작용부(320)-의 회전을 허용하기 위하여 원통형의 내부공간의 내주면으로부터, 즉 서브하우징(130) 및 커버부재(140) 각각으로부터 회전축(210)의 반경방향으로 연장되어 돌출되는 구성으로서 다양한 구성이 가능하다.
한편 상기 서브하우징(130)은, 회전축(210)이 상측에서 삽입될 수 있도록 한 쌍의 회전축가이드홈(136)이 내주면에 형성될 수 있다.
상기 회전축가이드홈(136)은, 회전축(210)이 상측에서 삽입될 수 있도록 회전축(210) 및 그에 결합되는 베어링(211)에 대응되는 크기로 상측에서 하측으로 연장되어 오목하게 형성될 수 있다.
한편 상기 베어링(211)이 결합된 회전축(210)이 회전축가이드홈(136)에 상측에서 하측으로 삽입된 후 유체의 압력에 의하여 상측으로 밀려 올려질 수 있는바, 이를 방지하기 위하여 베어링(211)이 결합된 회전축(210)이 회전축가이드홈(136)에 상측에서 하측으로 삽입된 후 베어링(211)를 하측으로 가압하는 가압부(381)가 추가로 형성됨이 바람직하다.
상기 가압부(381)는, 회전축가이드홈(136)에 대응되는 형상을 가지며, 독립된 부재 또는 커버부재(140)의 저면에서 하측으로 돌출되어 형성되는 등 다양한 구조가 가능하다.
보다 바람직하게는, 상기 가압부(381)는, 커버부재(140)의 저면에서 하측으로 돌출되도록 커버부재(140)에 일체로 사출되어 형성될 수 있다.
그리고 상기 서브하우징(130)은, 회전축가이드홈(136)에 대응되며 회전축(210)이 유입구(111) 및 배출구(112)를 잇는 가상선(C)과 수직을 이루어 배치되도록 하부하우징(110)의 내주면에 형성된 제2가이드홈(117)을 따라서 삽입되는 돌출가이드부(137)가 외주면에 형성될 수 있다.
상기 돌출가이드부(137)는, 회전축가이드홈(136)에 대응되며 회전축(210)이 유입구(111) 및 배출구(112)를 잇는 가상선(C)과 수직을 이루어 배치되도록 하부하우징(110)의 내주면에 형성된 제2가이드홈(117)을 따라서 삽입되도록 서브하우징(130)의 측면 외주면에 형성되는 구성으로서, 다양한 구성이 가능하다.
예를 들면, 상기 돌출가이드부(137)는, 서브하우징(130)의 측면에서 바라볼 때, 중심부가 오목하게 들어가는 요홈이 형성될 수 있으며, 이를 통해 회전축(210) 및 베어링(211)이 밀착되어 삽입될 수 있다.
상기 회전부(200)는, 하우징(100) 내부에서 유입구(111) 및 배출구(112)를 잇는 가상선(C)에 수직을 이루어 배치되는 회전축(210)과, 회전축(210)을 중심으로 유체의 흐름에 의해 회전되는 블레이드(220)를 포함하는 구성으로서 다양한 구성이 가능하다.
상기 회전축(210)은, 복수의 블레이드(220)들이 결합되며 유체의 유압, 즉 물의 수압에 의하여 복수의 블레이드(220)들의 회전축을 형성하는 회전축으로서 다양한 구성이 가능하다.
여기서 상기 회전축(210)은, 블레이드(220)의 안정적 회전 및 하우징(100), 특히 서브하우징(130)에 의한 안정적 지지를 위하여 하우징(100) 내부에서 유입구(111) 및 배출구(112)를 잇는 가상선(C)에 수직을 이루어 배치됨이 바람직하다.
그리고 상기 회전축(210)의 재질은, 장시간 수명을 위하여, 무게가 가볍고 내모성이 큰 인조지르코니아, 인조사파이어, 세라믹 등의 재질로 형성됨이 바람직하다.
이때 상기 회전축(210)의 양단은, 하우징(100), 특히 서브하우징(130)에 회전가능하게 지지할 수 있도록 인조지르코니아, 인조사파이어, 세라믹 등의 재료로 이루어진 원통형 베어링(211)이 설치됨이 바람직하다.
상기 베어링(211)은, 하우징(100), 특히 서브하우징(130)에 설치되어 회전축(210)의 양단을 회전가능하게 지지하는 구성으로서 다양한 구성이 가능하다.
예로서, 상기 베어링(211)은, 도 5, 도 6a 및 도 6b에 도시된 바와 같이, 회전축(210)이 관통되지 않고 일부만 삽입되도록 설치될 수 있다.
그리고 상기 회전축(210)의 끝단은, 곡면, 예를 들면 반구면으로 형성하고, 베어링(211)은, 회전축(210)의 끝단의 형상에 대응되는 형상으로 오목하게 형성될 수 있다.
한편 상기 회전축(210)은, 유입구(111) 및 배출구(112)를 연결하는 유체의 유동경로가 회전축(210)의 일측에 위치되도록 하우징(100), 특히 서브하우징(130)에 설치됨이 바람직하다.
상기 블레이드(220)는, 회전축(210)을 중심으로 유체의 흐름에 의해 회전되는 구성으로서 회전축(210)과 일체로 형성되거나 별도로 형성될 수 있으며, 회전축(210)을 중심으로 원주방향을 따라서 복수로 배치됨이 바람직하다.
예로서, 상기 블레이드(210)는, 전체로서 복수로 형성되고 중앙부에 회전축(210)이 수직방향으로 삽입될 수 있도록 삽입공이 형성될 수 있다.
아울러, 상기 블레이드(220)의 끝단은, 회전축(210)과 수직인 방향의 단면 형상이 회전축(210)의 회전방향을 기준으로 전방측은 평평하고 후방측은 유선형으로 형성됨이 바람직하다.
한편 상기 블레이드(220)는, 회전축(210)을 길이방향으로 하여 직사각형 형상을 가질 수 있다.
상기 제어부(330)는, 센서부에 감지된 회전부(200)의 회전수로부터 유체의 유량을 측정하는 구성으로서 다양한 구성이 가능하다.
여기서 상기 제어부(330)는, 센서부에 감지된 회전부(200)의 회전수로부터 유체의 유량을 측정하는 구성으로서 물리적 구성보다는 신호전달, 수치계산 등을 위하여 구성되며 칩, 센서 등이 설치된 하나 이상의 PCB(331)로 구성될 수 있다.
그리고 상기 PCB(331)는, 후술하는 센서부와의 연결, 지지를 위하여 하나 이상의 지지부(332)가 설치될 수 있다.
또한 상기 PCB(331)는, 상측에 앞서 설명한 디스플레이부(340)의 지지를 위한 지지부(333)이 상측으로 설치될 수 있다.
한편 상기 제어부(330)는, 센서부를 활용한 감지결과를 토대로 후술하는 유량측정방법 및 유체흐름방향 판단 방법 등을 활용하여 회전부(200)의 회전수, 더 나아가 회전방향을 감지하여 유체의 흐름량을 측정할 수 있다.
상기 센서부는, 회전축(210)에 대하여 회전축(210)의 반경방향으로 이격되어 배치되어 회전부(200)의 회전수를 감지하는 구성으로서 다양한 구성이 가능하다.
예로서, 상기 센서부는, 회전축(210)에 대하여 회전축(210)의 반경방향으로 이격되어 설치된 제1감지부(310)와; 제1감지부(310)와의 상호작용에 의해 회전부(200)의 회전이 인식되도록, 블레이드(220)에 반경방향으로 결합되는 상호작용부(320)를 포함할 수 있다.
상기 제1감지부(310)는, 회전축(210)에 대하여 회전축(210)의 반경방향으로 이격되어 설치되어 회전부(200)의 회전수를 감지하는 구성으로서, 회전부(200)의 회전감지방식에 따라서 다양한 구성이 가능하다.
예로서, 상기 제1감지부(310)는, 광의 발광 및 수광을 통하여 회전부(200)의 회전수를 감지하는 구성으로서, 도 4 내지 도 7b, 도 12에 도시된 바와 같이, 회전축(210)의 축방향으로 광을 발생시키는 제1발광부(311)와, 회전축(210)의 축방향으로 제1발광부(311)와 이격되어 배치되어 제1발광부(311)에서 발광된 광을 수광하는 제1수광부(312)를 포함할 수 있다.
상기 제1발광부(311)는, 회전축(210)의 축방향으로 광을 발생시키는 구성으로서 다양한 구성이 가능하다.
그리고 상기 제1수광부(312)는, 회전축(210)의 축방향으로 제1발광부(311)와 이격되어 배치되어 제1발광부(311)에서 발광된 광을 수광하는 구성으로서 다양한 구성이 가능하다. 여기서 상기 제1감지부(210)에 의한 회전수 감지방식은, 후술하는 유량측정과정에서 자세히 설명하기로 한다.
한편 상기 센서부는, 도시된 바와 같이, 회전부(200)의 회전수의 감지는 물론 회전부(200)의 회전방향을 측정하는 것이 보다 바람직한바, 회전축(210)을 중심으로 제1감지부(310)와 미리 설정된 각도차, 바람직하게는 90°의 각도차를 가지도록 배치되어 제1감지부(310)와 함께 회전부(200)의 회전방향을 감지하는 제2감지부(350)를 추가로 포함할 수 있다.
상기 제2감지부(350)는, 회전축(210)을 중심으로 제1감지부(310)와 미리 설정된 각도차, 바람직하게는 90°의 각도차를 가지도록 배치되어 제1감지부(310)와 함께 회전부(200)의 회전방향을 감지하는 구성으로서 다양한 구성이 가능하다.
예로서, 상기 제2감지부(350)는, 회전축(210)의 축방향으로 광을 발생시키는 제2발광부(351)와, 회전축(210)의 축방향으로 제2발광부(351)와 이격되어 배치되어 제2발광부(351)에서 발광된 광을 수광하는 제2수광부(352)를 포함할 수 있다.
여기서 상기 제어부(330)는, 제1수광부(312) 및 제2수광부(352)의 광 차단여부에 따라 회전부(200)의 회전방향을 결정하게 된다.
유량측정과정은, 제1감지부(310)만 사용하여 감지하는바, 제2감지부(350)의 구성을 사용하여 회전부(200)의 회전방향을 감지하는 과정은, 후술하는 유량측정과정을 통해 자세히 설명한다.
상기 상호작용부(320)는, 제1감지부(310)와의 상호작용에 의해 회전부(200)의 회전이 인식되도록, 블레이드(220)에 반경방향으로 결합되는 구성으로서 다양한 구성이 가능하다.
예로서, 상기 상호작용부(320)는, 회전축(210)의 회전에 의하여, 제1발광부(311) 및 제1수광부(312) 사이의 광경로의 차단 및 차단해제를 교대로 수행할 수 있도록 180°/N(N은 1 이상의 자연수)의 각도차로 배치되는 하나 이상의 차단부(321)를 포함할 수 있다.
상기 차단부(321)는, 회전축(210)을 중심으로 180°/N(N은 1 이상의 자연수)의 각도차로 하나 이상으로 배치되어 회전축(210)의 회전에 의하여, 제1발광부(311) 및 제1수광부(312) 사이의 광경로의 차단 및 차단해제를 교대로 수행하는 구성으로서 다양한 구성이 가능하다.
보다 구체적으로, 상기 차단부(321)는, 회전축(210)을 중심으로 180°/N(N은 1 이상의 자연수)의 각도를 가지는 호 형상의 플레이트로 이루어질 수 있다.
유량측정과정(회전수 측정)과 회전방향 판단과정(회전방향 판단)을 동시에 할 경우 제1 감지부(310)와 제2감지부(320)을 모두 사용하게 되며, 이 경우 상기 상호작용부(320)는, 제1감지부(310)와의 상호작용에 의해 회전부(200)의 회전이 인식되고 제2감지부(350)와의 상호작용에 의하여 회전방향이 판단되도록, 블레이드(220)에 반경방향으로 결합되는 구성으로서 다양한 구성이 가능하다.
예로서, 상기 상호작용부(320)는, 회전축(210)의 회전에 의하여, 제1발광부(311) 및 제1수광부(312) 사이와 제2발광부(351) 및 제2수광부(352) 사이의 광경로의 차단 및 차단해제를 교대로 수행할 수 있도록 180°/P (P는 1 이상의 홀수)의 각도차로 배치되는 하나 이상의 차단부(321)를 포함할 수 있다.
상기 차단부(321)는, 회전축(210)을 중심으로 180°/P (P는 1 이상의 홀수)의 각도차로 하나 이상으로 배치되어 회전축(210)의 회전에 의하여, 제1발광부(311) 및 제1수광부(312) 사이와 제2발광부(351) 및 제2수광부(352) 사이의 광경로의 차단 및 차단해제를 교대로 수행하는 구성으로서 다양한 구성이 가능하다.
보다 구체적으로, 상기 차단부(321)는, 회전축(210)을 중심으로 180°/P (P는 1 이상의 홀수)의 각도를 가지는 호 형상의 플레이트로 이루어질 수 있다.
또한 상기 차단부(321)는, 도 10a 및 도 10b, 도 11a 내지 도 11c에 도시된 바와 같이, 회전축(210)을 중심으로 원주방향을 따라서 연결되어 일체로 형성될 수 있다.
구체적으로, 상기 블레이드(220)는, 회전축(210)의 길이방향으로 배치되는 직사각형 형상을 가지며, 일단이 회전축(210)에 결합된다
이때 상기 차단부(321)는, 도11 a 및 도11b 에 도시된 바와 같이, 블레이드(220)와 불투명재질로 일체형 사출로 형성될 수 있다.
또한 상기 차단부(321)는, 도 11c에 도시된 바와 같이, 투명 재질과 불투명재질로 이용하여 이중 사출로 형성될 수 있다. 이러한 투명재질과 불투명재질을 이용한 이중사출 방법은 차단부가 1개 인 경우인(도 10a, 도 10b)에도 같은 방법을 적용하여 형성할 수 있다.
또한 상기 차단부(321)는, 일예로서, 도 10a 및 도 10b에 도시된 바와 같이, 회전축(210)을 중심으로 180°의 각도를 가지는 호 형상의 플레이트로 이루어지며, 회전축(210)을 중심으로 원주방향을 따라서 차단부(321)의 양단을 서로 연결하는 반원연결부(322)를 추가로 포함할 수 있다.
더 나아가 상기 차단부(321)는, 회전관성을 최소화하기 위하여 플레이트 부분에서 광차단 부분을 제외한 부분을 절개하여 제거되어 형성됨이 바람직하다.
또한 상기 차단부(321)는, 도 10a 및 도 10b, 도 11a 내지 도 11b에 도시된 바와 같이, 회전축(210)을 중심으로 복수로 분할될 수 있다.
또한 상기 차단부(321)는, 회전축(210)의 길이방향의 상기 블레이드(220)의 중심에 배치됨이 바람직하다.
한편 상기 차단부(321)는, 유량감지만을 적용 경우 원주방향을 따라서 180°/N (N은 1 이상의 자연수)으로 배치될 수 있는데, 이 경우 180°/N (N은 1 이상의 자연수)의 원주각 및 180°/N (N은 1 이상의 자연수)의 각도차를 두고 설치됨이 바람직하다.
한편 상기 차단부(321)는, 유량감지와 회전방향감지를 같이 적용할 경우 원주방향을 따라서 180°/P (P는 1 이상의 홀수)으로 배치될 수 있는데, 이 경우 180°/P (P는 1 이상의 홀수)의 원주각 및 180°/P (P는 1 이상의 홀수)의 각도차를 두고 설치됨이 바람직하다.
그리고 상기 차단부(321)는, 유량감지를 위한 제1감지부(310)가 설치된 경우 1개 이상으로 설치됨이 바람직하며, 유량감지를 위한 제1감지부(310)에 더하여 회전방향의 감지를 위한 제2감지부(350)를 구비한 경우 홀수개로 설치됨이 바람직하다.
본 발명에 따른 유량측정장치를 이용한 유량측정과정에 관하여 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.
먼저 상기 제어부(330)는, 도 12에 도시된 바와 같이, 제1발광부(311)에 신호 송신을 명령하기 위하여 선택적으로 온/오프되는 제1스위치(371)와, 제2발광부(351)에 신호 송신을 명령하기 위하여 선택적으로 온/오프 되는 제2스위치(372)와, 제1, 2 스위치(371, 372)의 온/오프 작동을 위한 신호를 출력하는 중앙제어부(339) 및 제1감지부(310)와 제2감지부(350)의 상태정보가 저장되는 메모리(373)와 제1수광부(312)의 출력신호를 기준신호와 비교하여 해당 신호를 출력하도록 구성되는 제1비교부(374)와 제2수광부(352)의 출력신호를 기준신호와 비교하여 해당 신호를 출력하도록 구성되는 제2비교부(375)를 포함할 수 있다.
한편 본 발명에 따른 유량측정장치가, 제1감지부(310) 만을 포함한 경우 제2감지부(350)의 구성 및 작동은 생략될 수 있음은 물론이다.
이때 상기 제1감지부(310) 및 제2감지부(350)는, 회전축(210)을 중심으로 제1감지부(310)와 전술한 바와 같이 미리 설정된 각도차를 이룰 수 있으며, 보다 바람직하게는 90°의 각도차를 가지도록 배치된다.
상기 중앙제어부(339)는, 제1,2스위치(371, 372)의 온/오프 작동을 위한 신호를 출력하고, 제1,2스위치(371,372)의 온/오프 작동을 통해 각각 제1발광부(311)와 제2발광부(351)의 발광을 온/오프 할 수 있다.
상기 차단부(321)에 의하여 제1발광부(311) 및 제2발광부(351)의 광이 차단되면 제1수광부(312) 및 제2수광부(352) 각각 OFF 상태가 되므로 제1비교부(374) 및 제2비교부(375)로 입력되는 각각의 전압이, 제1비교부(374) 및 제2비교부(375) 가각의 레퍼런스단자의 기준전압(364 및 365)보다 높아 1비교부(374) 및 제2비교부(375)의 출력(310 및 350)은 각각 Hi 가 된다.
한편 상기 차단부(321)가 없는 부분에서는 제1발광부(311) 및 제2발광부(351)의 광이 제1수광부(312) 및 제2수광부(352)로 각각 수광 되어 제1수광부(312) 및 제2수광부(352)는 각각 On 상태가 되므로 제1비교부(374) 및 제2비교부(375)로 입력되는 각각의 전압이, 제1비교부(374) 및 제2비교부(375) 가각의 레퍼런스단자의 기준전압(364 및 365)보다 낮아지게 되어 1비교부(374) 및 제2비교부(375)의 출력(31 및 350)은 각각 Low 가 된다.
한편, 비교부(374, 375)는, 수신하는 제1수광부(312) 및 제2수광부(352)의 신호를 입력단자로 입력하고, 비교기의 입력단자에 입력되는 신호가 비교기의 각각의 레퍼런스단자의 기준전압(364 및 365)보다 높을 때는 Hi 신호를 출력하고, 입력단자로 입력되는 신호가 기준전압보다 낮을 때는 Low 신호를 출력하도록 동작하거나 또는 이와 반대로 구성할 수 있다.
상기 비교부(374, 375)는, 각각 슈미트트리거 회로를 구성하여, 히스테리시스를 가지도록 함으로써 차단부와 개구부의 중간단계에서 발생할 수 있는 에러를 없애 줄 수 있다.
이에 본 발명은, 유체의 유입구(111)와 배출구(112)가 서로 대향되어 형성되는 하우징(100)과; 하우징(100) 내부에 배치되는 회전축(210)과, 회전축(210)을 중심으로 유체의 흐름에 의해 회전되는 블레이드(220)를 포함하는 회전부(200)와; 회전축(210)에 대하여 회전축(210)의 반경방향으로 이격되어 배치되어 회전부(200)의 회전수를 감지하고, 회전축(210)의 축방향으로 광을 발생시키는 제1발광부(311)와, 제1발광부(311)와 회전축(210)의 축방향으로 이격되어 제1발광부(311)에서 발광된 광을 수광하는 제1수광부(312)를 포함하는 센서부와; 센서부에 감지된 회전부(200)의 회전수로부터 유체의 유량을 측정하는 제어부(330)를 구비하는 유량측정장치를 이용한 유량측정밥법으로서, 제1발광부(311)가 제1수광부(312)를 향해 발광하는 발광단계와; 제어부(330)를 통해 제1수광부(312)의 수광여부를 판단하고, 그에 따른 결과값을 저장하는 저장단계와; 제1발광부(311)의 발광을 오프하는 오프단계를 포함하며, 발광단계, 저장단계 및 오프단계를 설정주기(t) 간격으로 반복하고, 저장단계의 수광여부에 따른 결과값이 변화하는 횟수를 통해 상기 회전부(200)의 회전수를 카운팅하여 유량을 측정하는 것을 특징으로 하는 유량측정방법을 개시한다.
상기 유량측정방법이 이용되는 유량측정장치는, 그 구성 및 구체적 설명은 전술하였으므로 이하 생략한다. 다만, 본 발명에 따른 유량측정방법은, 도 1 내지 도 12에 도시된 유량측정장치는 물론, 회전부(200)의 회전축(210)의 배치에 무관하게 적용될 수 있음은 물론이다.
한편 본 발명에 따른 유량측정장치를 이용한 유량측정방법은, 최초에 각종 변수값을 초기화하는 초기화단계를 포함할 수 있으며, 제1감지부(310)의 제1수광부(312)의 상태값, 제2감지부(350)의 제2수광부(352)의 상태값 및 설정주기(t) 등을 초기화하는 단계로서, 장치의 전체 기동을 초기화하는 단계일 수 있다.
상기 발광단계는, 중앙제어부(339)가 대기모드로 유지되다가 설정주기(t) 후에 인터럽트에 의하여 액티브모드로 깨어나 상기 제1스위치(271)에 신호를 전달하여, 상기 제1스위치(271)를 온시킴으로써, 상기 제1발광부(311)를 활성화할 수 있다.
이때, 설정주기(t)는, 제1감지부(310)만 사용할 경우 상기 차단부(321)가 상기 제1감지부(310)를 지나는 시간과 상기 차단부(321)를 제외한 부분이 상기 제1감지부(310)를 지나는 시간 중 짧은 시간보다 짧아야 바람직하며, 제1감지부(31)와 제2감지부(350)를 모두 사용할 경우 상기 차단부(321)가 상기 제1감지부(310)를 지나는 시간과 상기 차단부(321)를 제외한 부분이 상기 제1감지부(310)를 지나는 시간 중 짧은 시간의 1/2 보다 짧게 설정됨이 바람직하다.
상기 저장단계는, 상기 제1수광부(312)의 수광여부에 따라 각기 다른 신호를 상기 중앙제어부(339)에 전송하고, 그 결과값을 상기 메모리(273)에 저장할 수 있다.
예를들면, 상기 차단부(321)가 상기 제1발광부(311) 및 상기 제1수광부(312) 사이의 광경로를 차단함으로써, 상기 제1수광부(312)의 상태가 광을 받지 못하는 경우 Hi가 출력되고, 상기 차단부(321)의 회전으로 광경로의 차단이 해제되는 경우, 상기 제1수광부(312)의 상태가 수광상태인바 Low가 출력될 수 있다.
따라서, 상기 제1수광부(312)로부터 Hi가 출력되는 경우, 차단부(321)의 차단으로 상기 제1수광부(312)가 광을 받지 못하는 상태이며, 상기 제1수광부(312)로부터 Low가 출력되는 경우, 광경로의 개방으로 상기 제1수광부(312)가 광을 받는 상태임을 의미한다.
상기 오프단계는, 상기 제1발광부(311)의 발광을 해제하는 단계를 말한다.
보다 구체적으로, 온상태였던 상기 제1스위치(371)가 오프상태로 변화하면서 상기 제1발광부(311)의 발광을 해제하고, 상기 제어부(330)는 대기모드로 전환할 수 있다.
상기 발광단계, 상기 저장단계 및 상기 오프단계를 상기 설정주기(t)를 주기로 반복하고, 상기 제1수광부(312)의 상태변화가 있는 경우 그 횟수를 카운트함으로써, 상기 회전부(200)의 회전수를 파악할 수 있다.
결과적으로 상기 회전부(200)의 회전수는 곧 유량을 의미하는바, 이로써 유량을 측정할 수 있다.
그 구체적인 실시예로서, 도 14 내지 도 18b에 도시된 바와 같이, 대기모드에 있던 제어부가 설정주기(t)를 지나 인터럽트에 의하여 엑티브모드로 활성화 되면, 제1발광부(311)가 ON상태로 변화하고, 이때의 제1수광부(312)의 상태를 읽어 메모리(373)에 저장되고, 상기 제1발광부(311)는 OFF상태로 변화한다.
한편, 상기 제1수광부(312)의 입력이 ON인 경우 도 14의 A에 따라 과거 마지막 제1수광부(312)가 OFF상태였는지 확인하고, OFF상태였을 경우 회전수를 0.5증가시키고, ON상태가 유지되는 경우 회전수의 증가는 없다.
이와 마찬가지로, 상기 제1수광부(312)의 입력이 OFF상태인 경우 도 14의 B에 따라 과거 마지막 제1수광부(312)가 ON상태였는지 확인하고, ON상태였을 경우 회전수를 0.5증가 시킴으로써, 차단부가 1개인 경우 회전부(200)의 1회전에 맞게 회전수를 카운팅할 수 있다.
또한, 다른 실시예로서, 상기 제1수광부(312)의 입력이 ON인 경우 과거 마지막 제1수광부(312)가 OFF상태였는지 확인하고, OFF상태였을 경우 회전수를 1 증가 시키고, 제1수광부(312)의 입력이 OFF인 경우에는 회전수의 변화를 주지 않거나, 이와는 반대로 제1수광부(312)의 입력이 OFF에서 ON으로 변할때 회전수를 1 증가시키고 제1수광부(312)의 입력이 ON에서 OFF로 변할때는 회전수의 변화를 주지 않음으로써, 차단부가 1개인 경우 회전부(200)의 1회전에 맞게 회전수를 카운팅할 수 있다.
상기 차단부(321)가 N개(N은 1이상의 자연수) 형성되는 경우, 이에 대응하여 상기 제1수광부(312)의 상태변화의 횟수를 1/(2N)으로 카운트하여 정확한 회전수를 판단할 수 있으며, 상기 차단부(321)가 N개(N은 1이상의 자연수) 형성되는 경우, 통상의 과정으로 상기 제1수광부(312) 상태변화의 횟수를 카운트하고, 그 값을 그대로 활용하거나, 변환식을 이용해 변환하여 계산할 수도 있음은 물론이다.
한편, 종래 유량 측정장치를 이용하는 경우, 고정주기를 통한 회전수 카운팅 방법은, 비교적 빠른 회전을 대비하여 짧은 주기의 고정주기를 설정하는바, 발광횟수가 많아 에너지소모가 많은 단점이 있었고, 이러한 단점을 보완하기 위해 회전부의 회전속도에 대응하여 발광주기를 조절하는 유량측정방법을 이하 설명한다.
회전속도에 대응하여 발광주기를 조절하는 유량측정방법은, 도 14 내지 도 18b에 도시된 바와 같이, 상기 제1수광부(312)의 수광여부에 따른 결과값이 동일하게 유지되는 유지시간을 연산하고, 종전 결과값이 동일하게 유지되는 유지시간과 비교하여 그 증감에 따라 상기 설정주기(t)를 증감시켜, 상기 회전부(200)의 회전속도에 대응하여 유량을 측정할 수 있다.
예를들면, 상기 제1수광부(312)가 광경로의 차단으로 인해, Hi 입력값을 가지는 경우, 최초 Low 입력에서 Hi 입력으로 변환된 시점부터 Hi 입력에서 Low 입력으로 변환되는 시점까지의 시간을 계산하여, Hi 입력값이 지속되는 유지시간을 연산한다.
이때, 상기 유지시간은, 상기 설정주기(t)에 상기 Hi 입력값이 유지되는 동안 저장되는 Hi 입력값의 카운트된 횟수를 곱하여 계산할 수 있다.
한편, Hi 입력값의 카운트된 횟수는, 상기 제1수광부(312)의 입력값이 상기 설정주기(t)의 주기로 도출될때, 그 값이 Hi인 횟수를 카운트하고 상기 메모리(373)에 저장함으로써, 구할 수 있다.
보다 구체적으로, 상기 제1수광부(312)가 OFF상태인 경우, 직전 제1수광부(312)의 상태가 ON인지 OFF인지를 판단하고, 직전 제1수광부(312)의 상태가 같은 OFF일때, 상기 제1수광부(312)의 OFF상태의 카운트값이 1 증가한다.
계속하여, 상기 제1수광부가(312)의 상태가 OFF에서 ON상태로 변화한 경우, 제1수광부(312)의 ON상태 카운트횟수를 0으로 만들고, 이와 동시에 제1수광부(312)의 OFF상태 카운트값을 설정주기(t)에 곱해 제1수광부(312) OFF상태 시간을 계산한다.
이렇게 계산된 제1수광부(312) OFF상태 시간으로부터 상기 제1수광부(312) OFF상태 시간이 기존 설정된 옵셋값 이상으로 감소하였다면, 회전부(200)의 회전속도가 빨라진 것을 의미하므로, 이에 대응되도록 설정주기(t)를 그 감소량에 따라 감소시킬 수 있다.
반면, 계산된 제1수광부(312)의 OFF상태 시간으로부터 상기 제1수광부(312) OFF상태 시간이 기존 설정된 옵셋값 이상으로 증가하였다면, 회전부(200)의 회전속도가 느려진 것을 의미하므로, 이에 대응되도록 설정주기(t)를 그 증가량에 따라 증가시킬 수 있다.
만일, 제1수광부(312)의 OFF상태 시간으로부터 상기 제1수광부(312) OFF상태 시간이 기존 설정된 옵셋값 범위 내라면, 설정주기(t)의 변동은 없다.
이와 같은 방법으로, 제1수광부(312)의 ON상태 시간 또한 계산할 수 있으며, 그 시간에 따라 설정주기(t)를 조정하거나 유지할 수 있음은 물론이다.
한편, 위와 같은 상기 설정주기(t)의 조정 및 유지에도, 원활한 유량측정을 위해 미리 설정된 최소값보다 작아지면 최소값으로, 미리 설정된 최대값보다 커지면 최대값으로 그 최대값 및 최소값을 제한할 수 있다.
이하, 본 발명에 따른 유량측정장치의 회전방향 판단방법을 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.
도 17a 내지 18b에 도시된 바와 같이, 상기 회전축(210)을 중심으로 제1감지부(310)와 미리 설정된 각도차를 가지도록 배치되며, 회전축(210)의 축방향으로 광을 발생시키는 제2발광부(351)와, 회전축(210)의 축방향으로 제2발광부(351)와 이격되어 배치되어 제2발광부(351)에서 발광된 광을 수광하는 제2수광부(352)를 포함하는 제2감지부(350)를 더 포함하고, 제어부(330)는, 제1수광부(312) 및 제2수광부(352)의 광 차단여부에 따라 회전부(200)의 회전방향을 결정할 수 있다.
유량측정장치의 회전방향 판단을 위해서는 원활하고 정확한 회전방향 판단을위해 차단부(231)가 홀수개 형성됨이 바람직하다.
상기 제1감지부(310) 및 제2감지부(350)의 상호작용부(320)와의 작용에 따른 광경로의 차단/해제의 상대적 판단에 따라 회전부(200)의 회전방향을 알 수 있고, 이를 통해 유체의 흐름방향을 결정할 수 있다.
예로서, 상기 제1감지부(310)과 제2감지부(350)가 회전축(210)을 중심으로 90°의 각도를 이루고, 차단부(321)이 1개 형성되어 180°를 이루는 구성인 경우를 이하 설명한다,
도 4에 도시된 바에 따라, 상기 유체 흐름이 정방향인 경우 회전부(200)는 시계방향으로 회전하게 되고, 유체 흐름이 역방향인 경우 회전부(200)는 반시계방향으로 회전하게 된다.
상기 회전부(200)가 시계방향으로 회전할 때, 제2감지부(350)의 광경로 차단/해제의 상태를 제1감지부(310)를 기준으로 파악하면, 제1감지부(310)의 광경로가 해제상태에서 차단상태로 변화할때, 제2감지부(350)의 광경로는 차단상태로 유지된다.
반면, 상기 회전부(200)가 반시계방향으로 회전할 때, 제2감지부(350)의 광경로 차단/해제의 상태를 제1감지부(310)를 기준으로 파악하면, 제1감지부(310)의 광경로가 해제상태에서 차단상태로 변화할때, 제2감지부(350)의 광경로는 해제상태로 유지된다.
즉, 상기 제1수광부(312)가 오프상태에서 온상태로 변화할때, 제2수광부(352)가 오프상태를 유지하는 경우 유체흐름은 정방향이며, 제2수광부(352)가 온상태를 유지하는 경우 유체흐름은 역방향이다.
한편 회전방향 판단을 위하여, 상기 차단부(321)의 개수가 홀수개이면서 복수개인 경우에도 제1감지부(310) 및 제2감지부(350)는 회전축(210)을 중심으로 제1감지부(310)와 전술한 바와 같이 90°의 각도를 이루게 배치함이 바람직하고, 상기와 같이 유체의 흐름방향을 판단할 수 있음은 물론이다.
한편, 본 발명에 따른 유량측정장치의 제2실시예에 대하여 첨부된 도면을 참조하여 상세히 설명하며, 전술한 실시예와 동일한 구성에 대하여는 설명을 생략한다.
상기 하우징(100)은, 도 19에 도시된 바와 같이, 상부하우징(150)의 외부에서 결합되어 광센서를 이용하여 유량을 측정하는 센서부의 암막 작동환경을 제공하는 암막커버(160)를 포함할 수 있다.
상기 암막커버(160)는, 상부하우징(150) 외부에서 결합되어 상부하우징(150) 내부에 암막환경을 제공하는 구성이면, 어떠한 구성도 가능하다.
예를 들면, 상기 암막커버(160)는, 상부하우징(150)의 플렌지부분(153)을 둘러싸고 결합설치되는 측면커버부(161)와, 측면커버부(161)의 상측에서 결합되는 상면커버부(162)를 포함할 수 있다.
이때, 상기 상면커버부(162)는 디스플레이부(340)가 외부로 노출되도록 개구부가 형성될 수 있으며, 이를 통해 사용자에게 유량 등의 정보를 제공할 수 있다.
상기 암막커버(160)는, 상부하우징(150)과 다양한 방법을 통해 결합될 수 있으며, 보다 바람직하게는 볼트결합 등에 의할 수 있다.
한편, 상기 커버부재(140)는, 제어부(330)와 다양한 방법에 의해 결합될 수 있으며, 일 예로 볼트결합을 통해 결합될 수 있다.
즉, 상기 커버부재(140)는, 도 20에 도시된 바와 같이, 제어부(330)에 형성되는 복수의 관통공(337)을 관통하는 복수의 나사(335)들이 삽입되어 볼트결합되도록, 이에 대응되는 볼트공(148)이 형성되는 복수의 결합부재(147)들이 상부면 중 복수의 관통공(337)에 대응되는 위치에 각각 설치될 수 있다.
이때, 상기 복수의 결합부재(147)들은, 제어부(330)와 커버부재(140)가 미리 설정된 거리만큼 이격되어 결합되도록, 일정 높이를 가지도록 구비될 수 있으며, 제어부(330) 측 단부에 볼트공이 형성되어, 제어부(330)에 형성되는 관통공(337)을 관통한 나사(335)가 볼트결합될 수 있다.
또한 상기 서브하우징(130)은, 도 21 내지 23에 도시된 바와 같이, 회전축(210)의 반경방향으로 연장되어 형성된 차단부(321)가 간섭없이 회전가능하도록, 내부공간의 내주면으로부터 회전축(210)의 반경방향으로 연장되어 돌출된 회전가이드부(139)가 각각 형성될 수 있다.
이때, 상기 회전가이드부(139)는, 서브하우징(130)의 유입포트(131) 및 배출포트(132)가 형성되는 각 측면에서 내주면으로부터 돌출되어 형성되는 구성으로서, 다양한 구성이 가능하다.
예를 들면, 상기 회전가이드부(139)는, 서브하우징(130)의 유입포트(131) 및 배출포트(132)가 형성되는 각 측면의 중심을 상하로 연속하여 가로지르도록 서브하우징(130)의 내부공간의 각 내주면으로부터 돌출되어 형성될 수 있다.
즉, 상기 회전가이드부(139)는, 유입포트(131)가 형성되는 측면의 중심을 상하로 가로지르며, 끊김없이 연속하여 형성될 수 있으며, 이와 마찬가지로 배출포트(132)가 형성되는 측면에서도 중심을 상하로 끊김없이 연속하여 가로지르도록 형성될 수 있다.
이를 통해, 도 22 및 도 23에 도시된 바와 같이, 서브하우징(130)이 비교적 간단한 구조를 가짐에 따라 사출 제작 시, 제작이 간편하고 비용이 저렴한 이점이 있다.
한편, 이 경우, 상기 유입포트(131) 및 상기 배출포트(132)는, 각각 회전가이드부(139)를 중심으로 대칭되어 형성되는 복수의 개구일 수 있다.
보다 구체적으로, 상기 유입포트(131)는, 회전가이드부(139)를 중심으로 좌측에 상측에서 하측으로 3개의 개구가 형성되고, 회전가이드부(139)를 중심으로 우측에 대칭되어 3개의 개구가 형성되어 총 6개의 개구가 형성될 수 있다.
이때, 상기 유입포트(131)는, 블레이드(220)가 회전축(210)의 하측에서 유입포트(131) 측으로부터 배출포트(132) 측으로 회전하도록 유체를 가이드하기 위하여, 서브하우징(130)의 회전축(210)에 수직인 측면에서 바라볼 때, 방사형의 일부를 가지도록 형성될 수 있다.
즉, 상기 유입포트(131)는, 유입되는 유체가 회전축(210)의 하측으로 이동하도록 대응되는 형상의 개구를 가질 수 있다.
한편 상기 유입포트(131)는, 도 22에 도시된 바와 같이, 절곡부(138)가 형성될 수 있다.
상기 절곡부(138)는, 블레이드(220) 및 서브하우징(130) 내부의 최하 높이에 비해 높게 위치하는 유입구(111)로부터 유입포트(131)를 통해 유체가 원활하게 유입될 수 있도록, 유입포트(131)가 유입구(111)를 향하도록 절곡되어 형성되는 구성일 수 있다.
상기 절곡부(138)는, 유입포트(131)와 같이 배출포트(132)에 형성될 수 있음은 또한 물론이다.
더 나아가, 상기 유입포트(131) 및 상기 배출포트(132)는, 절곡부(138)가 아닌 측면상 완만한 곡선형태로 경사를 가지고 형성될 수도 있다.
상기 유입포트(131)와 마찬가지로 상기 배출포트(132) 또한 형성될 수 있으며, 상기 배출포트(132)는, 회전가이드부(139)를 중심으로 좌우에 각각 1개의 개구로 형성될 수 있다.
이는, 상기 배출포트(132)는, 블레이드(220)가 정지관성을 극복하고 회전되도록 다수의 개구를 통해 유체의 압력을 제공하기 위한 유입포트(131)와는 달리, 제작의 편리성과, 유체의 원활한 배출을 위하여 개구를 최소화하여 형성됨이 바람직하기 때문이다.
한편, 이와는 달리 상기 배출포트(132)를 다수의 개구로 형성할 수 있음은 또한 물론이다.
더 나아가, 상기 배출포트(132) 또한, 블레이드(220)가 회전축(210)의 하측에서 유입포트(131) 측으로부터 배출포트(132) 측으로 회전하도록 유체를 가이드하기 위하여, 서브하우징(130)의 회전축(210)에 수직인 측면에서 바라볼 때, 외각측의 높이가 더 높은 방사형의 일부를 가지도록 형성될 수 있다.
이를 통해, 상기 유입포트(131) 및 상기 배출포트(132)는 모두 블레이드(220) 및 서브하우징(130) 내부의 최하 높이에 비해 높게 위치하는 유입구(111) 및 배출구(112)로부터 유체가 원활하게 유입 또는 배출되는 이점을 가질 수 있다.
또한, 상기 반원연결부(322) 및 차단부(321)는, 도 21에 도시된 바와 같이, 두께가 다를 수 있으며, 보다 바람직하게는 회전에 따른 관성모멘트가 일정하도록 반지름이 큰 차단부(321)의 질량이 반지름이 차단부(321)에 비해 작은 반원연결부(322)의 질량보다 작게 형성될 수 있다.
즉, 상기 반원연결부(322) 및 차단부(321)는, 반지름이 큰 차단부(321)의 두께가 상대적으로 반지름이 작은 반원연결부(322)에 비해 얇게 형성되어, 차단부(321)와 반원연결부(322)의 관성모멘트를 같게하고, 상호작용부(320)의 무게편차를 없앨 수 있다.
보다 구체적으로, 상기 반원연결부(322) 및 상기 차단부(321)는, 반원연결부(322)의 두께가 질량을 크게 하기 위하여 2mm일 수 있으며, 차단부(321)의 두께는 반원연결부(322)에 비해 질량이 작도록 1mm일 수 있다.
이로써, 상호작용부(320)의 위치에 따른 무게편차를 없애고, 관성모멘트를 일정하게 함으로써, 원활하고 일정한 속도로 회전하며, 회전진동없이 안정적인 회전이 가능하도록 할 수 있다.
또한, 상기 회전축(210)은, 전술한 바와 같이, 블레이드(220)에 삽입되어 결합될 수도 있으나, 보다 바람직하게는 일체형으로 형성되도록 인서트사출을 통해 제작될 수 있다.
이상은 본 발명에 의해 구현될 수 있는 바람직한 실시예의 일부에 관하여 설명한 것에 불과하므로, 주지된 바와 같이 본 발명의 범위는 위의 실시예에 한정되어 해석되어서는 안 될 것이며, 위에서 설명된 본 발명의 기술적 사상과 그 근본을 함께하는 기술적 사상은 모두 본 발명의 범위에 포함된다고 할 것이다.

Claims (26)

  1. 유체의 유입구(111)와 배출구(112)가 서로 대향되어 형성되는 하우징(100)과;
    상기 하우징(100) 내부에서 상기 유입구(111) 및 상기 배출구(112)를 잇는 가상선(C)에 수직을 이루어 배치되는 회전축(210)과, 상기 회전축(210)을 중심으로 유체의 흐름에 의해 회전되는 블레이드(220)를 포함하는 회전부(200)와;
    상기 회전축(210)에 대하여 상기 회전축(210)의 반경방향으로 이격되어 배치되어 상기 회전부(200)의 회전수를 감지하는 센서부와;
    상기 센서부에 감지된 상기 회전부(200)의 회전수로부터 상기 유체의 유량을 측정하는 제어부(330)를 포함하는 것을 특징으로 하는 유량측정장치.
  2. 청구항 1에 있어서,
    상기 센서부는,
    상기 회전축(210)에 대하여 상기 회전축(210)의 반경방향으로 이격되어 설치된 제1감지부(310)와;
    상기 제1감지부(310)와의 상호작용에 의해 상기 회전부(200)의 회전이 인식되도록, 상기 블레이드(220)에 반경방향으로 결합되는 상호작용부(320)를 포함하는 것을 특징으로 하는 유량측정장치.
  3. 청구항 2에 있어서,
    상기 제1감지부(310)는,
    상기 회전축(210)의 축방향으로 광을 발생시키는 제1발광부(311)와, 상기 제1발광부(311)와 상기 회전축(210)의 축방향으로 이격되어 상기 제1발광부(311)에서 발광된 광을 수광하는 제1수광부(312)를 포함하는 것을 특징으로 하는 유량측정장치.
  4. 청구항 3에 있어서,
    상기 센서부는,
    상기 회전축(210)을 중심으로 상기 제1감지부(310)와 미리 설정된 각도차를 가지도록 배치되며, 상기 회전축(210)의 축방향으로 광을 발생시키는 제2발광부(351)와, 상기 회전축(210)의 축방향으로 상기 제2발광부(351)와 이격되어 배치되어 상기 제2발광부(351)에서 발광된 광을 수광하는 제2수광부(352)를 포함하는 제2감지부(350)를 더 포함하고,
    상기 제어부(330)는, 상기 제1수광부(312) 및 상기 제2수광부(352)의 광 차단여부에 따라 상기 회전부(200)의 회전방향을 결정하는 것을 특징으로 하는 유량측정장치.
  5. 청구항 3 또는 청구항 4에 있어서,
    상기 상호작용부(320)는,
    상기 회전축(210)의 회전에 의하여, 상기 제1발광부(311) 및 상기 제1수광부(312) 사이의 광경로의 차단 및 차단해제를 교대로 수행할 수 있도록 180°/N(N은 1 이상의 자연수)의 각도차로 배치되는 하나 이상의 차단부(321)를 포함하는 것을 특징으로 하는 유량측정장치.
  6. 청구항 5에 있어서,
    상기 차단부(321)는,
    상기 회전축(210)을 중심으로 180°/N(N은 1 이상의 자연수)의 각도를 가지는 호 형상의 플레이트인 것을 특징으로 하는 유량측정장치.
  7. 청구항 6에 있어서,
    상기 차단부(321)는, 상기 회전축(210)을 중심으로 복수로 분할된 것을 특징으로 하는 유량측정장치.
  8. 청구항 6에 있어서,
    상기 차단부(321)는, 상기 회전축(210)을 중심으로 원주방향을 따라서 연결되어 일체로 형성된 것을 특징으로 하는 유량측정장치.
  9. 청구항 6에 있어서,
    상기 블레이드(220)는, 상기 회전축(210)의 길이방향으로 배치되는 직사각형 형상을 가지며, 일단이 상기 회전축(210)에 결합되며
    상기 차단부(321)는, 상기 블레이드(220)와 일체형 사출로 형성되는 것을 특징으로 하는 유량측정장치.
  10. 청구항 6에 있어서,
    상기 차단부(321)는, 투명 재질과 불투명재질로 이용하여 이중 사출로 형성되며 상기 블레이드(220)에 결합되는 원형플레이트인 것을 특징으로 하는 유량측정장치.
  11. 청구항 5에 있어서,
    상기 차단부(321)는, 상기 회전축(210)의 길이방향의 상기 블레이드(220)의 중심에 배치된 것을 특징으로 하는 유량측정장치.
  12. 청구항 5에 있어서,
    상기 차단부(321)는, 상기 회전축(210)을 중심으로 180°의 각도를 가지는 호 형상의 플레이트로 이루어지며,
    상기 회전축(210)을 중심으로 원주방향을 따라서 상기 차단부(321)의 양단을 서로 연결하는 반원연결부(322)를 추가로 포함하는 것을 특징으로 하는 유량측정장치.
  13. 청구항 5에 있어서,
    상기 하우징(100)은,
    상기 유입구(111) 및 상기 배출구(112)가 서로 대향되어 형성되며 상측이 개구된 하부하우징(110)과;
    상기 하부하우징(110)의 개구를 복개하도록 상기 하부하우징(110)과 결합되며 상기 제어부(330)의 디스플레이부(340)를 외부로 노출시키는 상부하우징(150)을 포함하는 것을 특징으로 하는 유량측정장치.
  14. 청구항 13에 있어서,
    상기 하우징(100)은,
    상기 하부하우징(110)의 내측에 설치되며 상기 회전부(200)를 지지하며 상기 유입구(111)를 통하여 유입된 유체를 상기 배출구(112)로 가이드하는 가이드유로가 형성됨과 아울러 상측이 개구되는 서브하우징(130)과;
    상기 서브하우징(130)의 개구를 복개하며 상기 상호작용부(320)의 회전을 가이드하는 제1투명가이드홈(141)이 상측으로 돌출 형성되는 커버부재(140)를 포함하며,
    상기 제1발광부(311) 및 상기 제1수광부(312)는, 상기 제1투명가이드홈(141)을 중심으로 서로 대향되어 설치된 것을 특징으로 하는 유량측정장치.
  15. 청구항 14에 있어서,
    상기 서브하우징(130)은, 상기 회전축(210)이 상측에서 삽입될 수 있도록 한 쌍의 회전축가이드홈(136)이 내주면에 형성되고,
    상기 회전축가이드홈(136)에 대응되며 상기 회전축(210)이 상기 유입구(111) 및 상기 배출구(112)를 잇는 가상선(C)과 수직을 이루어 배치되도록 상기 하부하우징(110)의 내주면에 형성된 제2가이드홈(117)을 따라서 삽입되는 돌출가이드부(137)가 외주면에 형성된 것을 특징으로 하는 유량측정장치.
  16. 청구항 14에 있어서,
    상기 서브하우징(130)은,
    상기 유입구(111)를 통하여 유입된 유체를 상기 배출구(112)로 가이드하는 가이드유로가 형성하도록 상기 회전축(210)을 중심으로 서로 대향되어 형성되는 유입포트(131) 및 배출포트(132)가 형성된 것을 특징으로 하는 유량측정장치.
  17. 청구항 16에 있어서,
    상기 서브하우징(130) 및 상기 커버부재(140)는,
    상기 블레이드(220)의 회전에 대응되는 원통형의 내부공간을 형성하며,
    상기 회전축(210)의 반경방향으로 연장되어 형성된 차단부(321)의 회전을 허용하기 위하여 상기 원통형의 내부공간의 내주면으로부터 상기 회전축(210)의 반경방향으로 연장되어 돌출된 회전가이드부(139, 149)가 형성된 것을 특징으로 하는 유량측정장치.
  18. 청구항 4에 있어서,
    상기 상호작용부(320)는,
    상기 회전축(210)의 회전에 의하여, 상기 제1발광부(311) 및 상기 제1수광부(312) 사이와 상기 제2발광부(351) 및 상기 제2수광부(352) 사이의 광경로의 차단 및 차단해제를 교대로 수행할 수 있도록 180°/P (P는 1 이상의 홀수)의 각도차로 배치되는 하나 이상의 차단부(321)를 포함하는 것을 특징으로 하는 유량측정장치.
  19. 청구항 17에 있어서,
    상기 회전가이드부(139)는,
    상기 서브하우징(130)의 상기 유입포트(131) 및 상기 배출포트(132)가 형성되는 각 측면의 중심을 상하로 연속하여 가로지르도록 상기 서브하우징(130)의 내부공간의 각 내주면으로부터 돌출되어 형성되는 것을 특징으로 하는 유량측정장치.
  20. 청구항 19에 있어서,
    상기 유입포트(131) 및 상기 배출포트(132)는,
    각각 상기 회전가이드부(139)를 중심으로 대칭되어 형성되는 복수의 개구인 것을 특징으로 하는 유량측정장치.
  21. 청구항 20에 있어서,
    상기 유입포트(131) 및 상기 배출포트(132)는,
    상기 블레이드(220)가 상기 회전축(210)의 하측에서 상기 유입포트(131) 측으로부터 상기 배출포트(132) 측으로 회전하도록 상기 유체를 가이드하기 위하여, 상기 서브하우징(130)의 회전축(210)에 수직인 측면 상 방사형으로 형성되는 것을 특징으로 하는 유량측정장치.
  22. 청구항 14에 있어서,
    상기 커버부재(140)는,
    상기 제어부(330)와 미리 설정된 거리만큼 이격되어 결합되도록, 상기 제어부(330)에 형성되는 복수의 관통공(337)을 관통하는 복수의 나사(335)들이 삽입되어 볼트결합되는 볼트공(148)이 형성되는 복수의 결합부재(147)들이 상부면에 설치되는 것을 특징으로 하는 유량측정장치.
  23. 청구항 1 내지 청구항 17 중 어느 하나의 항에 따른 유량측정장치를 이용한 유량측정방법으로서,
    상기 제1발광부(311)가 상기 제1수광부(312)를 향해 발광하는 발광단계(S1)와;
    상기 제어부(330)를 통해 상기 제1수광부(312)의 수광여부를 판단하고, 그에 따른 결과값을 저장하는 저장단계(S2)와;
    상기 제1발광부(311)의 발광을 오프하는 오프단계(S3)를 포함하고,
    상기 발광단계(S1), 상기 저장단계(S2) 및 상기 오프단계(S3)를 설정주기(t) 간격으로 반복하고, 상기 저장단계(S2)의 수광여부에 따른 결과값이 변화하는 횟수를 통해 상기 회전부(200)의 회전수를 카운팅하여 유량을 측정하는 것을 특징으로 하는 유량측정방법.
  24. 청구항 23에 있어서,
    상기 제1수광부(312)의 수광여부에 따른 결과값이 동일하게 유지되는 유지시간을 연산하고, 종전 결과값이 동일하게 유지되는 유지시간과 비교하여 그 증감에 따라 상기 설정주기(t)를 증감시켜, 상기 회전부(200)의 회전속도에 대응하여 유량을 측정하는 것을 특징으로 하는 유량측정방법.
  25. 청구항 17에 따른 유량측정장치를 이용한 유량측정방법으로서,
    상기 제1발광부(311)가 상기 제1수광부(312)를 향해 발광하는 발광단계(S1)와;
    상기 제어부(330)를 통해 상기 제1수광부(312)의 수광여부를 판단하고, 그에 따른 결과값을 저장하는 저장단계(S2)와;
    상기 제1발광부(311)의 발광을 오프하는 오프단계(S3)를 포함하고,
    상기 발광단계(S1), 상기 저장단계(S2) 및 상기 오프단계(S3)를 설정주기(t) 간격으로 반복하고, 상기 저장단계(S2)의 수광여부에 따른 결과값이 변화하는 횟수를 통해 상기 회전부(200)의 회전수를 카운팅하여 유량을 측정하며,
    상기 설정주기(t)는, 상기 제1감지부(310) 만 사용할 경우 상기 차단부(321)가 상기 제1감지부(310)를 지나는 시간과 상기 차단부(321)를 제외한 나머지부분이 상기 제1감지부(310)를 지나는 시간 중 짧은 시간보다 짧게 설정되며, 상기 제1감지부(31)와 상기 제2감지부(350)를 모두 사용할 경우 상기 차단부(321)가 상기 제1감지부(310)를 지나는 시간과 상기 차단부(321)를 제외한 나머지부분이 상기 제1감지부(310)를 지나는 시간 중 짧은 시간의 1/2 보다 짧게 설정되는 것을 특징으로 하는 유량측정방법.
  26. 유체의 유입구(111)와 배출구(112)가 서로 대향되어 형성되는 하우징(100)과;
    상기 하우징(100) 내부에 배치되는 회전축(210)과, 상기 회전축(210)을 중심으로 유체의 흐름에 의해 회전되는 블레이드(220)를 포함하는 회전부(200)와;
    상기 회전축(210)에 대하여 상기 회전축(210)의 반경방향으로 이격되어 배치되어 상기 회전부(200)의 회전수를 감지하고, 상기 회전축(210)의 축방향으로 광을 발생시키는 제1발광부(311)와, 상기 제1발광부(311)와 상기 회전축(210)의 축방향으로 이격되어 상기 제1발광부(311)에서 발광된 광을 수광하는 제1수광부(312)를 포함하는 센서부(300)와;
    상기 하우징(100)에 결합되어 상기 센서부(300)에 감지된 상기 회전부(200)의 회전수로부터 상기 유체의 유량을 측정하는 제어부(330)를 구비하는 유량측정장치에 있어서,
    상기 제1발광부(311)가 상기 제1수광부(312)를 향해 발광하는 발광단계(S1)와;
    상기 제어부(330)를 통해 상기 제1수광부(312)의 수광여부를 판단하고, 그에 따른 결과값을 저장하는 저장단계(S2)와;
    상기 제1발광부(311)의 발광을 오프하는 오프단계(S3)를 포함하고,
    상기 발광단계(S1), 상기 저장단계(S2) 및 상기 오프단계(S3)를 설정주기(t) 간격으로 반복하고, 상기 저장단계(S2)의 수광여부에 따른 결과값이 변화하는 횟수를 통해 상기 회전부(200)의 회전수를 카운팅하여 유량을 측정하는 것을 특징으로 하는 유량측정방법.
PCT/KR2018/016160 2017-12-18 2018-12-18 유량측정장치 및 이를 이용한 유량측정방법 WO2019124947A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18891818.9A EP3730904B1 (en) 2017-12-18 2018-12-18 Flow rate measurement device and flow rate measurement method thereby
CN201880081652.9A CN111492207B (zh) 2017-12-18 2018-12-18 流量测定装置及利用其的流量测定方法
US16/903,733 US11287295B2 (en) 2017-12-18 2020-06-17 Flow rate measurement device and flow rate measurement method thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0174603 2017-12-18
KR20170174603 2017-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/903,733 Continuation US11287295B2 (en) 2017-12-18 2020-06-17 Flow rate measurement device and flow rate measurement method thereby

Publications (1)

Publication Number Publication Date
WO2019124947A1 true WO2019124947A1 (ko) 2019-06-27

Family

ID=66994082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016160 WO2019124947A1 (ko) 2017-12-18 2018-12-18 유량측정장치 및 이를 이용한 유량측정방법

Country Status (5)

Country Link
US (1) US11287295B2 (ko)
EP (1) EP3730904B1 (ko)
KR (1) KR102114324B1 (ko)
CN (1) CN111492207B (ko)
WO (1) WO2019124947A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102541748B1 (ko) * 2020-11-27 2023-06-12 양연순 유량 센서
CN112525281A (zh) * 2020-12-01 2021-03-19 深圳市千宝通通科技有限公司 一种光纤传导编码计数装置、方法及干式智能表头
KR102619780B1 (ko) * 2021-05-12 2023-12-29 양연순 유량 센서
CN114577278B (zh) * 2022-05-06 2022-08-23 济南瑞泉电子有限公司 基于光学旋转编码的水表流量采样方法和计量结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441505A (en) * 1982-01-11 1984-04-10 Kinetics Measurement Corp. Sensing device for human lung exhalation/inhalation air flow measurement
JPS62150624U (ko) * 1986-03-17 1987-09-24
JP2593222Y2 (ja) * 1993-03-01 1999-04-05 株式会社ケーヒン 羽根車式流量検出器
JP3027007B2 (ja) * 1995-01-24 2000-03-27 マクミラン カンパニー タービンホイール式流量測定トランスデューサ
KR101112224B1 (ko) 2010-12-03 2012-02-14 (주) 원티엘 계량기의 유량측정 장치 및 방법
KR20120014532A (ko) * 2010-08-09 2012-02-17 김영탁 적외선 센서를 이용한 전자식 유량계
KR101729261B1 (ko) 2015-07-28 2017-04-21 박재삼 유체 또는 기체의 사용량 측정과 흐름 방향 판단 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792610A (en) * 1971-10-04 1974-02-19 Bpn Ass Inc Flow meter
US4195522A (en) * 1978-10-02 1980-04-01 Electronic Systems Engineering, Inc. Flowmeter
JPS6076612A (ja) * 1983-09-30 1985-05-01 Matsushita Electric Works Ltd 光学的ロ−タリエンコ−ダ
JPS62267619A (ja) * 1986-05-15 1987-11-20 Kanbayashi Seisakusho:Kk 流量測定装置
DE3923142C2 (de) * 1989-07-13 1999-11-04 Asea Brown Boveri Flügelradzähler zum Messen einer Flüssigkeitsmenge
JPH0755515A (ja) * 1993-08-11 1995-03-03 Zexel Corp 流量センサ
JP3396867B2 (ja) * 1994-12-13 2003-04-14 財団法人電力中央研究所 孔内流速測定装置
US6397687B1 (en) * 2000-01-13 2002-06-04 Jesus Garmas Water usage monitor and regulator
JP2004093544A (ja) * 2002-09-02 2004-03-25 Nobuo Kiyono 流量センサ及び流量測定装置
IL158710A0 (en) * 2003-11-02 2004-05-12 S F M Sophisticated Water Mete A fluid consumption meter
CN2735313Y (zh) * 2004-09-06 2005-10-19 杭州达峰智能系统有限公司 用于水表的红外光电传感器
DE102005030983B4 (de) * 2005-07-02 2014-06-26 Elster Messtechnik Gmbh Volumenzähler für Flüssigkeiten
JP5041383B2 (ja) * 2010-03-25 2012-10-03 和美 下村 浄化槽管理用の風量センサ装置
CN201811760U (zh) * 2010-08-30 2011-04-27 中山市汉功电器有限公司 一种电热水器用的红外线水流探测装置
KR101057536B1 (ko) * 2010-11-19 2011-08-17 김영탁 적외선 센서를 이용한 전자식 유량계
TW201643381A (zh) * 2015-06-09 2016-12-16 建準電機工業股份有限公司 氣流感知器及氣流偵測裝置
CN107397549A (zh) * 2017-09-05 2017-11-28 米尔思维(北京)医疗科技有限公司 一种涡轮传感器结构及包含所述结构的肺功能仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441505A (en) * 1982-01-11 1984-04-10 Kinetics Measurement Corp. Sensing device for human lung exhalation/inhalation air flow measurement
JPS62150624U (ko) * 1986-03-17 1987-09-24
JP2593222Y2 (ja) * 1993-03-01 1999-04-05 株式会社ケーヒン 羽根車式流量検出器
JP3027007B2 (ja) * 1995-01-24 2000-03-27 マクミラン カンパニー タービンホイール式流量測定トランスデューサ
KR20120014532A (ko) * 2010-08-09 2012-02-17 김영탁 적외선 센서를 이용한 전자식 유량계
KR101112224B1 (ko) 2010-12-03 2012-02-14 (주) 원티엘 계량기의 유량측정 장치 및 방법
KR101729261B1 (ko) 2015-07-28 2017-04-21 박재삼 유체 또는 기체의 사용량 측정과 흐름 방향 판단 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3730904A4

Also Published As

Publication number Publication date
EP3730904A1 (en) 2020-10-28
CN111492207B (zh) 2022-05-31
EP3730904B1 (en) 2024-02-07
US20200309575A1 (en) 2020-10-01
KR20190073304A (ko) 2019-06-26
CN111492207A (zh) 2020-08-04
KR102114324B1 (ko) 2020-05-25
EP3730904A4 (en) 2021-08-25
EP3730904C0 (en) 2024-02-07
US11287295B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2019124947A1 (ko) 유량측정장치 및 이를 이용한 유량측정방법
WO2012005483A2 (ko) 정전 용량 변화 감지 방법, 장치 및 그 방법을 실행하는 프로그램이 기록된 기록매체, 및 그 방법을 사용한 터치 감지 방법, 장치 및 그 방법을 실행하는 프로그램이 기록된 기록매체
WO2019172497A1 (ko) 냉장고
WO2019164084A1 (ko) 냉장고
WO2013176403A1 (ko) 전자식 가스미터기와 이의 사용량 원격 전송 장치 및 방법
WO2012124952A2 (ko) 사막기후 환경에 따른 내구성 시험장치
AU2018257543B2 (en) Washing machine and control method thereof
WO2012070867A2 (ko) 와이어를 이용한 자율이동장치 제어 시스템 및 방법
WO2020060235A1 (ko) 카메라 장치
WO2019135485A1 (ko) 센싱장치
WO2018199433A1 (en) Washing machine and control method thereof
WO2022114705A1 (en) Aerosol-generating device
WO2022015032A1 (ko) 잉크젯 다파장 경화기
WO2020149582A1 (ko) 공기 조화기 및 그 제어 방법
WO2019098408A1 (ko) 유로 유도 및 3축 홀 센서가 적용된 수도계량기
WO2019231203A1 (ko) 압축기의 오일 검출장치 및 이를 구비한 압축기
WO2022114700A1 (en) Aerosol-generating device
WO2023080616A1 (ko) 인휠모터
WO2019035576A1 (ko) 냉장고 및 그의 제어방법
WO2020179985A1 (ko) 펌프 케이싱 및 이를 포함하는 마그넷 펌프
WO2019009617A1 (ko) 의류처리장치 및 이의 제어방법
WO2017146355A1 (ko) 공기 청정기
WO2017135657A1 (ko) 풍력터빈의 정격출력 유지를 위한 토크모드스위치 제어방법 및 그 시스템
WO2023277412A1 (ko) 의류처리장치
WO2023277411A1 (ko) 의류처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018891818

Country of ref document: EP

Effective date: 20200720