WO2019124805A1 - 올레핀 중합체, 이의 제조 방법, 그리고 이를 이용한 필름 - Google Patents

올레핀 중합체, 이의 제조 방법, 그리고 이를 이용한 필름 Download PDF

Info

Publication number
WO2019124805A1
WO2019124805A1 PCT/KR2018/014973 KR2018014973W WO2019124805A1 WO 2019124805 A1 WO2019124805 A1 WO 2019124805A1 KR 2018014973 W KR2018014973 W KR 2018014973W WO 2019124805 A1 WO2019124805 A1 WO 2019124805A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
olefin polymer
molecular weight
alkyl group
group
Prior art date
Application number
PCT/KR2018/014973
Other languages
English (en)
French (fr)
Other versions
WO2019124805A8 (ko
Inventor
임슬기
이승민
권오주
신은지
이기수
홍대식
박성호
유영석
이진영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180148557A external-priority patent/KR102133030B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880011256.9A priority Critical patent/CN110291117B/zh
Priority to JP2019531705A priority patent/JP6862548B2/ja
Priority to BR112019018083-4A priority patent/BR112019018083A2/pt
Priority to EP18891719.9A priority patent/EP3560965A4/en
Priority to US16/478,692 priority patent/US10894843B2/en
Publication of WO2019124805A1 publication Critical patent/WO2019124805A1/ko
Publication of WO2019124805A8 publication Critical patent/WO2019124805A8/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the present invention relates to an olefin polymer, a method for producing the same, and a film using the same.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, both of which have been developed for their respective characteristics.
  • Ziegler-Natta catalysts have been widely applied to commercial processes since their invention in the 1950s, but because they are multisite catalysts with multiple active sites, the molecular weight distribution of the polymer is broad And there is a problem that the composition distribution of the comonomer is not uniform, and there is a limit in securing desired physical properties.
  • the metallocene catalyst is composed of a combination of a main catalyst, which is a main component of the transition metal compound, and a cocatalyst, which is an organometallic compound mainly composed of aluminum, and such a catalyst is a single- catalyst, which has a narrow molecular weight distribution according to single active site characteristics and has a characteristic that a polymer having homogeneous composition distribution of comonomer can be obtained.
  • a polymer polymerized by using a metallocene catalyst has a narrow molecular weight distribution, and when applied to some products, there is a problem that the productivity is lowered due to the influence of extrusion loads and the like.
  • An object of the present invention is to provide an olefin polymer which can simultaneously satisfy excellent drop impact strength and transparency.
  • the present invention also provides a process for producing the olefin polymer.
  • the present invention also provides a film containing the olefin polymer.
  • olefin polymers meeting the conditions of 0 to 0 below may be provided.
  • 0 &gt is 20 or more and 100 light or more) measured by an average value of the side chain content of 2 to 7 carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the olefin polymer
  • a falling impact strength is required ⁇ 1500 to 2400 measured by the standard, i) is a haze measured by the show ⁇ 3 ⁇ 41 [) 1003 by forming a film having a thickness of 0.05 _ is a 10% to 30%.
  • the olefin polymer of the embodiment has an average value of side branch content of 2 to 7 carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the olefin polymer Or 20 or more than 100, specifically 20 or 1, (XXX: 50 to 1,000, or 20: 100: 40 or 1,000: (Or 20 units / 1,000 or 20 units / 1,000 or 20 units / 1,000 or 20 units / 1,000 or 20 units / 50 or 1,000 or 20.5 or 1,00 or 50 or 1,000 or 20.1 or 1,00 to 40 or 1,0000 or 20.3 or 1,00 to 40 Or 20.5 pieces / 1,00 to 40 pieces / 1,000 pieces or 20.1 pieces / 1,00 to 30 pieces / 1,000 pieces (or 20.3 pieces / 1,00 And 30.5 / 1,000C, or 20.5 / 1,000C to 30/1000C, or 20.5 / 1,000C, 21.7 / 1,000C.
  • the olefin polymer of the embodiment has a structure in which the content of a comonomer such as alpha-olefin is concentrated in a high molecular weight main chain, that is, a short chain branching (SCB) orthogonal comonomer distribution.
  • SCB short chain branching
  • the average value (by FT-IR) of the side chain (SCB) content of 2 to 7 carbon atoms per 1000 carbon atoms of each of the plurality of polymer chains of the olefin polymer of the embodiment is increased to 20 / 1000C or more Therefore, by concentrating tie molecules such as short chain branching (S phase) in the high molecular weight portion which is relatively more physical than the low molecular weight, it is possible to realize more excellent properties.
  • S phase short chain branching
  • the drop impact strength measured from ASTM D1709A is high as 1,500 to 2,400 g as measured by molding the olefin polymer of the above embodiment into a film having a thickness of 100, And the haze measured based on ASTM D1003 may be lowered to 10% to 30%.
  • the impact strength of the olefin polymer of the embodiment is measured to be about 1100 ⁇
  • the results of the experiment are shown in Fig.
  • the olefin polymer of the embodiment can improve the drop impact strength and transparency, which are important physical properties of a film to which the synthesized polymer is applied, to be equal to or higher than that of the conventional art. Therefore, In addition, it is possible to realize stable durability through excellent mechanical strength in the process of applying the product, and at the same time, transparency can be ensured, thereby realizing excellent optical characteristics in the product to which the film is applied.
  • Derived monovalent functional groups such as linear, branched or cyclic, such as methyl, ethyl, propyl, isobutyl, sec-butyl, Butyl, pentyl, and the like.
  • Examples of the polycyclic group include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms , An aryl group having 6-12 carbon atoms, a heteroaryl group having 2-12 carbon atoms, an arylalkyl group having 6-12 carbon atoms, a halogen atom, a cyano group, an amino group, an amidino group, a nitro group, an amide group, a carbonyl group, A sulfonyl group, a carbamate group, and an alkoxy group having 1 to 10 carbon atoms.
  • substituted &quot means that a functional group is substituted for a hydrogen atom in the compound, and the position to be substituted is not limited as far as the position at which the hydrogen atom is substituted, that is, Two or more substituents may be the same or different from each other.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group is preferably a monocyclic aryl group, 2019/124805 1 »(: 1 ⁇ 1 ⁇ 2018/014973
  • the polycyclic aryl group include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a klycenyl group and a fluorenyl group.
  • the alkoxy group may be linear, branched or cyclic.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably 1 to 30 carbon atoms. Specifically, methoxy, ethoxy,!
  • the alkoxyalkyl group may be a functional group whose alkoxy group value is converted to the above-mentioned alkyl group.
  • the number of carbon atoms of the alkoxyalkyl group is not particularly limited, but it is preferably 1 to 2 carbon atoms. Specifically, 16-but include haeksil butoxy, and the like.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • olefin polymer is an ethylene homopolymer, or copolymer of ethylene or propylene with an alpha-olefin, having physical or chemical properties such as, for example, ethylene or propylene and alpha-olefin
  • ethylene or propylene and alpha-olefin refers to a copolymer comprising a plurality of repeating unit blocks or segments which are different from each other in the polymer so that the characteristic values of the derived repeating units (molar fraction), crystallinity, density, melting point, etc. are different from each other
  • the "polymer chain (s)" contained in the "olefin polymer” may refer to a plurality of polymer chains formed when the olefin polymer is polymerized and produced.
  • the molecular weight of these polymer chains can be confirmed by molecular weight distribution curves using gel permeation chromatography. Further, the distribution of the branch chains in the polymer chain can be confirmed by analyzing the oleophilic polymer have. The content of the polymer chain can be confirmed by analysis using 1 H-NMR. These polymer chains may be referred to as "high molecular weight chain (s) " included in the " olefin polymer ".
  • maximum peak molecular weight (Mp) n of the "olefin polymer” means that when the "polymer chain (s)" contained in the oleophilic polymer are listed in molecular weight order,
  • the peak molecular weight (Mp) of 11 can be ascertained by deriving the molecular weight distribution curve of the olefin polymer using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the molecular weight distribution curve can be defined as a function that the x axis is the molecular weight of the polymer chains or the log value thereof and the y axis is the content of the polymer chain.
  • the molecular weight x Value i.e., the molecular weight x value at the apex of the distribution curve
  • Mp maximum peak molecular weight
  • short chain branching in the olefin polymer is defined as a chain branching in the longest main chain in each of the above-mentioned polymer chain (s)
  • the number of such branch chains can be calculated by FT-IR analysis of the olefin polymer.
  • the olefin polymer of the embodiment has i) a plurality of polymer chains contained in the olefin polymer, (Measured by FT-m) of 2 to 7 carbon atoms per 1,000 carbon atoms per side of at least 20 / 1000C, ii) molded into a film having a thickness of 100, measured by ASTM D1709A the strength of 1500 g to 2400 g, iii) is able to satisfy the condition of 0.05 ⁇ thickness by forming a film of the above i) is a measured haze by ASTM D1003 10% to 30% to the iii).
  • the olefin polymer may have an average value (measured by FT-m) of the side chain content of 2 to 7 carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the olefin polymer is 20 / 1000C or more.
  • polymer chain (s) included in the "olefin polymer” may refer to a plurality of polymer chains formed when the olefin polymer is polymerized and produced have.
  • the molecular weights of these polymer chains can be determined by molecular weight distribution curves using gel permeation chromatography (GPC).
  • the gel permeation chromatography is carried out, for example, using a Polymer Laboratories PL gel MIX-B 300 mm long column, a Waters PL-GPC220 instrument, at an evaluation temperature of 100 ° C to 200 ° C .; 1,2,4-trichlorobenzene And a sample at a flow rate of 0.1 mL / min to 10 mL / min and a concentration of 1 mg / 10 mL to 20 mg / 10 mL is supplied in an amount of 100 y L to 300 uL .
  • the side chain content of 2 to 7 carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the olefin polymer can be confirmed by analyzing the olefin polymer by FT-IR.
  • the FT-IR is, for example, using a Bio-Rad FTS 3000 wi th Golden Gate Single Reflectance ATR system instrument with a DTGS detector, the evaluation temperature is 100 ° C to 200 ° C, the wavenumber 2000 cnf 1 to 4000 cm -1 , number of scans 1 to 20, and resolution 1 cnf 1 to 10 cm 1 .
  • the average value of the side chain content of 2 to 7 carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the olefin polymer is preferably 2 to 7 carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the olefin polymer Side branch content is divided by the number of polymer chains contained in the olefin polymer.
  • the average value of the side chain content of 2 to 7 carbon atoms per 1000 carbons in each of the plurality of polymer chains contained in the olefin polymer is determined by the logarithm of the molecular weight (M) obtained by gel permeation chromatography (log M) Is taken as the x-axis, and an SCB distribution curve with y-axis content of 2 to 7 carbon atoms per 1,000 carbon atoms with respect to the logarithmic value obtained by FT-IR is derived. Then, according to the above- Can be obtained.
  • the average value of the side branch contents of the seven branches is 20 7
  • the olefin polymer of the embodiment has a side chain having a number of carbon atoms of 2 to 7 per 1,000 carbon atoms (the average value (measured by the liver-1 ratio) of 20 or more per 100 carbon atoms of each of the plurality of polymer chains Accordingly, short-chain branches (3 ⁇ 4 01 ⁇ 0 1] 1 Oh ⁇ , linking molecules such as et ⁇ 1 «0 1 6 (on the high molecular weight part that is responsible for the physical properties in relatively more low molecular weight by concentrating a 11 ⁇ ) It is better than the existing one.
  • the olefin polymer of the embodiment has a side chain of 2 to 7 carbon atoms per 1,000 carbon atoms (the average value of the content of the catalyst (measured by the value - 20 7)] / 10000 in each of the plurality of polymer chains .
  • the olefin polymer of the above embodiment was molded into a film having a thickness of 100 ⁇ and a drop impact
  • 20 strength is reduced to less than 1500 ⁇ and less than about 1100 ⁇ .
  • the olefin polymer of the embodiment of the present invention has a larger peak molecular weight than that of the maximum peak amount of 25 times as much as that of the olefin polymer of the embodiment of the present invention,
  • the side chain content of 2 to 7 carbon atoms per 1000 carbon atoms also tends to increase.
  • the olefin polymer has a logarithm to the logarithmic value (1) of the molecular weight obtained by gel permeation chromatography on the X-axis, and the number of carbon atoms of 2 to 7 per 1000 carbon atoms In the 808 distribution curve, where the side chain content is zero, the point on the X axis corresponding to the logarithm of the weight average molecular weight 2019/124805 1 »(: 1 ⁇ 1 ⁇ 2018/014973
  • X-axis 0.8 to a maximum of carbon per 1000 in the range of 1.0 to as first the X-axis point that corresponds to the logarithm of the X-axis point 0, up to a molecular weight corresponding to the log value of the minimum molecular weight Can have from 2 to 7 side-branch contents.
  • the olefin polymer of one embodiment tends to decrease the side chain content of 2 to 7 carbon atoms per 1000 carbon atoms as the molecular weight decreases from the maximum peak molecular weight.
  • the olefin polymer has a logarithmic value (1 to 4) of the molecular weight (3 ⁇ 4!) Obtained by gel permeation chromatography as the X-axis,
  • the logarithm of the weight average molecular weight in the 803 distribution curve with the number of carbon atoms per 1,000 carbon atoms obtained by the above logarithmic transformation is plotted as 0.5,
  • the point on the X axis is 0 and the point on the X axis corresponding to the logarithm of the maximum molecular weight is 1, the side branch content of 2 to 7 carbon atoms per 1,000 carbon atoms in the range of 0 to 0.2 on the X axis have.
  • the olefin polymer is formed into a film having a thickness of 100 ⁇ , more specifically, 5011x5011x100 ⁇ (width X length X thickness), and has a drop impact strength of 1500 to 2400 measured on the basis of 1709 1550 2 to 2200, or 1580 to 2000 g, or 1590 to 1700 .
  • the drop impact strength of the olefin polymer is excessively decreased to less than 150 ⁇ ⁇ , it is difficult to attain a certain level of strength to apply the olefin polymer to a film. Therefore, in the course of manufacturing, storing, It has poor durability such as damage or breakage.
  • the olefin polymer may be molded into a film having a thickness of 0.05111111 to have a haze of 10% to 30%, or 15% to 30%, or 20% to 30%, or 25% To 30%, or from 26.3% to 27.8%.
  • a haze of 10% to 30%, or 15% to 30%, or 20% to 30%, or 25% To 30%, or from 26.3% to 27.8% When the haze of the olefin polymer is excessively increased to exceed 30%, it is difficult to achieve a sufficient level of transparency when the olefin polymer is applied to a film, and it is difficult to satisfy the optical characteristics required for the product to which the film is applied.
  • the olefin polymer has a melt index of 230 (Measured by a load of 2.16) in the range of 0.80 / 10 [ 11 to 0.93 / 1 (1 ⁇ 4 1 ratio, or 0.85 / 10 11 to 0.93 / 10 11 ).
  • the melt index can be controlled according to the amount of water introduced during the polymerization process.
  • the olefin polymer according to the present invention has a melt index The strength and the strength can be improved at the same time.
  • the olefin polymer has a density (show ⁇ 1) 1505) is 0.910 ⁇ / 0 11 3 to 0.930 ⁇ ⁇ : may be.
  • the olefin polymer may be two days the weight average molecular weight measured 1 ⁇ 2 tt) is 100000 ⁇ ⁇ 0 1 150 000 to John ⁇ .
  • the weight average molecular weight of the olefin polymer is 1/2), it may be difficult to realize stable molding processability in the production of a film due to a high molecular weight increase.
  • the olefin polymer of this embodiment can be produced by a process for producing an olefin polymer described later.
  • a first transition metal compound represented by the following general formula (1) A second transition metal compound represented by the following formula (2); And a step of polymerizing the olefin monomer in the presence of a hybrid supported catalyst comprising the first and second transition metal compound-supported supports.
  • 3 ⁇ 4 and 3 ⁇ 4 are alkyl groups having 1 to 20 carbon atoms and the remainder is hydrogen,
  • XI to 4 are the same or different from each other, each independently halogen,
  • ⁇ 2 is an alkyl group having 1 to 20 carbon atoms
  • the first transition metal compound represented by the general formula ( 1 ) comprises an indene compound having a different ligand loop ring group and a base compound containing a group 14 or group 15 atom, and the different ligands are crosslinked by - (3 ⁇ 4) (3 ⁇ 4) exists between the other ligands.
  • the first transition metal compound having such a specific structure can provide an olefin polymer having excellent support stability, exhibiting high activity in olefin polymerization and having a high molecular weight.
  • the ligand in the structure of the first transition metal compound represented by the formula (1) may affect, for example, the olefin polymerization activity and the copolymerization property of the olefin.
  • the first transition metal compound of formula (1) comprising a ligand of formula (3) as a ligand of the formula (3) can provide a catalyst exhibiting very high activity and a high comonomer conversion rate in the olefin polymerization process.
  • the I ligand may affect, for example, the olefin polymerization activity.
  • formula (I) is - NR 3 - can provide a catalyst showing a case butyl group very high activity in olefin polymerization microporous-a, the 3 ⁇ 4 the alkyl group, in particular tert having 1 to 10 carbon atoms.
  • the above may have the structure - (Or: is an alkoxyalkyl group having 1 to 20 carbon atoms, preferably a tertbutoxy nucleus group, and 9 may be an alkyl group having 1 to 2 carbon atoms, preferably a methyl group .
  • (3 ⁇ 4) (3 ⁇ 4) exists between the crosslinked ligands, and (3 ⁇ 4) (3 ⁇ 4) may affect the storage stability of the metal complex.
  • a transition metal compound which is any one of X I and 3 ⁇ 4 and each independently halogen can be used.
  • the first transition metal compound may be a compound represented by the following formula (4).
  • one of the 3 ⁇ 4 and 3 ⁇ 4 is an alkyl group having 1 to 20 carbon atoms
  • ⁇ 2 is an alkyl group having 1 to 20 carbon atoms.
  • examples of the compound represented by the formula (4) include compounds represented by the following formulas (4-1) to (4-3).
  • the second ⁇ metal compound represented by Formula 2 is activated by an appropriate method to provide an olefin polymer having a low molecular weight by using it as a catalyst for olefin polymerization.
  • the hybrid supported catalyst comprising the first and second transition metal compounds can provide an olefin polymer having a broad molecular weight distribution.
  • Cp and Cp 2 of formula (II) is a date in the carbonyl can cyclopentadienyl.
  • Cp ⁇ 1 ⁇ 4 CP 2 is a group in Kasai claw penta die, cyclopentadienyl the i groups are replace in (br idged) a second transition metal compound while not being used as a ligand is alpha at the time of olefin polymerization - low air to olefin And produces predominantly low molecular weight olefin polymers.
  • the 0 may be substituted by 1 to 5 R 7
  • the Cp 2 may be substituted by 1 to 5 3 ⁇ 4.
  • a plurality of R 7 s may be the same or different.
  • v is an integer of 2 or more in the general formula (2)
  • a plurality of secondary books may be the same or different.
  • These R 7 and R 4 may be the same or different from each other and each independently hydrogen or an alkyl group having 1 to 20 carbon atoms.
  • the second transition metal compound having a substituent such as R < 7 > and a quaternary group may have excellent support stability.
  • the groups 3 ⁇ 4 and 3 ⁇ 4 of formula (2) may be the same or different and each independently halogen.
  • the second transition metal compound having a substituent such as 3 ⁇ 4 and X 4 virtual groups can be easily substituted with an alkyl group by reaction with an alkylmetal or methylaluminoxane as a cocatalyst. Further, the second transition metal compound forms an ionic intermediate with the cocatalyst by a subsequent alkyl abstract ion, so that the cationic form, which is an active species of the olefin polymerization reaction, .
  • the second transition metal compound may include a compound represented by the following formula (5).
  • 3 ⁇ 4 and 3 ⁇ 4 are the same or different and each independently represents hydrogen or an alkyl group having 1 to 20 carbon atoms,
  • I is 3 ⁇ 4 or
  • Examples of the compound represented by the formula (5) include compounds represented by the following formula (5-1).
  • the hybrid supported catalyst may contain the first transition metal compound task 2 transition metal compound in a molar ratio of 1: 0.1 to 1: 0.9, or 1: 0.2 to 1: 0.8, or 1: 0.3 to 1: 0.5. Accordingly, the molecular weight distribution of the olefin polymer, the distribution of the copolymerized monomers in the polymer slurry, and the copolymerization characteristics of the olefin can be easily controlled to realize the desired physical properties more easily.
  • a carrier containing a hydroxyl group or a siloxane group on its surface can be used.
  • a carrier containing a hydroxyl group or a siloxane group having high reactivity can be used by drying at a high temperature to remove moisture from the surface.
  • silica, alumina, magnesia, or a mixture thereof may be used.
  • the carrier may be a dried at high temperatures, they typically ⁇ 2 0, 3 ⁇ 400 3 6 3 80 4 and 03 3 ⁇ 4 word) can contain an oxide, carbonate salts, sulfate, nitrate component of 2, and so on.
  • the hybrid supported catalyst may further include a cocatalyst to activate the transition metal compounds which are catalyst precursors.
  • a cocatalyst those commonly used in the art to which the present invention belongs may be applied without any particular limitation.
  • the cocatalyst may be one or more compounds selected from the group consisting of compounds represented by the following formulas (6) to (8).
  • the hybrid supported catalyst may further include at least one cocatalyst selected from the group consisting of the compounds represented by the following formulas (6) to (8).
  • Lt Lt; / RTI > to 20; Is an integer of 2 or more;
  • the seedlings are neutral or cationic Lewis bases; H is a hydrogen atom; Is a Group 13 element;
  • the show may be the same as or different from each other, and each independently at least one hydrogen atom is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms substituted or unsubstituted with an alkoxy or phenoxy, or an alkyl group having 1 to 20 carbon atoms.
  • Non-limiting examples of the compound represented by Formula (6) above include methylaluminoxane, ethylaluminoxane, -Butylaluminoxane or urea-butylaluminoxane, and the like.
  • Non-limiting examples of the compound represented by the formula (7) include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethyl chloro aluminum, triisopropyl aluminum, tri- But are not limited to, aluminum, tricyclopentylaluminum, tripentylaluminum, triisopentylaluminum, triacylaluminum, trioctylaluminum, ethyldimethylaluminum, methyldiethylaluminum, triphenylaluminum, tri- A seed or dimethyl aluminum ethoxide, and the like.
  • non-limiting examples of compounds represented by formula (8) include trimethylammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, - dimethylanilinium tetrakis (Pentafluorophenyl) borate, ruthenium tetrakis (pentafluorophenyl) borate, ruthenium tetrakis (pentafluorophenyl) borate, ruthenium tetrakis (pentafluorophenyl) borate, - (1: -butyldimethylsilyl) -2,3,5,6-tetrafluorophenyl) borate, -dimethyl anilinium tetrakis (4- (triisopropylsilyl) Tetrafluorophenyl) borate, - dimethylanilinium pentafluorophenoxy
  • Such hybrid supported catalysts can be prepared, for example, by carrying catalyst precursors 1 and 2 on a support carrying a promoter on a support and a support for catalyst support.
  • the support dried at high temperature and the co-catalyst are mixed, 120 And the mixture is stirred at a temperature to prepare a co-catalyst-carrying carrier.
  • the first transition metal compound is added to the catalyst supporting carrier, and about 20 After stirring at 120 ° C, the second transition metal compound is added and stirred again at a temperature of about 20 to 120 ° C to prepare a hybrid supported catalyst.
  • a catalyst precursor may be added to the catalyst supporting carrier, followed by stirring, and then a co-catalyst may be further added to prepare the mixed supported catalyst.
  • the content of the carrier, cocatalyst, promoter-supported carrier, first and second transition metal compounds used for using the hybrid supported catalyst may be appropriately controlled depending on the physical properties or effects of the desired hybrid supported catalyst.
  • hydrocarbon solvents such as pentane, nucleic acid, heptane and the like, or aromatic solvents such as benzene, toluene and the like may be used.
  • the specific preparation method of the hybrid supported catalyst may be referred to the following examples.
  • the manufacturing method of the hybrid supported catalyst is not limited to the description described in the present specification, and the manufacturing method may further adopt the step of adopting conventionally in the technical field of the present invention, (S) may typically be altered by alterable step (s). 2019/124805 1 »(: 1 ⁇ 1 ⁇ 2018/014973
  • olefin monomer examples include ethylene, alpha-olefin, cyclic olefin, and the like.
  • the olefin monomer has two or more double bonds.
  • the olefin monomer or the triene olefin monomer may also be polymerized.
  • the monomer examples include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-heptene, Dodecene, 1-tetradecene, 1 -hexadecene, 1 -tocene, norbornene, norbornene, ethylidene norbornene, phenyl norbornene, vinyl norbornene, dicyclopentadiene, 1,4-butadiene, 1 , 5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene and the like.
  • the olefin polymer is a co-polymer of ethylene and another comonomer
  • the comonomer may be at least one comonomer selected from the group consisting of propylene, 1-butene, 1-heptene, 4-methyl- .
  • polymerization of the olefin monomers various polymerization processes known as polymerization of the olefinic monomers such as a continuous solution polymerization process, a bulk polymerization process, a suspension polymerization process, a slurry polymerization process or an emulsion polymerization process can be employed.
  • polymerization reaction To 110 of mine a continuous solution polymerization process, a bulk polymerization process, a suspension polymerization process, a slurry polymerization process or an emulsion polymerization process.
  • the hybrid supported catalyst may be used in a state of being dissolved or diluted in a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • a small amount of water or air that can adversely affect the catalyst can be removed in advance.
  • a film comprising the olefin polymer of one embodiment.
  • the film can be produced by applying various molding methods, conditions, and devices known in the field of polymer
  • the olefin polymer may include all of the above-mentioned contents in one embodiment.
  • the film is formed into a film of 50 50 100, (width X length X thickness) 2019/124805 1 »(: 1 ⁇ 1 ⁇ 2018/014973
  • the falling impact strength measured on the basis of the 1709 show may be 1500 to 2400, or 1550 to 2200, or 1580 to 2000 or 1590 to 1700.
  • the film had a thickness of 0.05 ⁇ molded into a film show ⁇ 0 1003 a haze of 10% to 30% measured by the, or 15% to 30%, or 20% to 30%, or 25% to 30% , Or 26.3% to 27.8%.
  • the contents of the drop impact strength and haze may also include all of the above-described contents in the embodiment.
  • an olefin polymer capable of simultaneously satisfying excellent drop impact strength and transparency, a method for producing the same, and a film using the same.
  • Fig. 1 is a diagram showing a molecular weight distribution curve (solid line) and a seedling capsule curve (dotted line) of the olefin polymer of Example 1 of the present invention.
  • Fig. 2 is a graph showing the molecular weight distribution curve (solid line) and the ellipsoidal curve (dotted line) together with the olefin polymer of Bisphenol 1.
  • a 3, 4-dimethyl-ind-indene compound as shown in the above structural formula was used as a ligand show Respectively.
  • a solution seedlings prepared by injecting l- (6- (tert-butoxy)) -n- (tert-butyl) _ 1 -chloro-1-methylsilanamine (ligand B) and toluene into a 250 mL schlenk flask was cooled to -78.
  • the solution A prepared before the cooled solution B was slowly injected. And the mixture of solutions A and B was stirred at room temperature overnight.
  • a transition metal compound of the following structure was prepared in the same manner as in Production Example 1, except that (1) 4-methyl-inden-1-ylene was used instead of 3,4-dimethyl-indene as a ligand.
  • a transition metal compound of the following structure was prepared in the same manner as in Production Example 1 except that (1) 3-methyl-inden-1-ylene was used instead of 3,4- . 2019/124805 1 »(: 1 ⁇ 1 ⁇ 2018/014973 Comparative Preparation Example 1: Preparation of transition metal compound
  • Butylamino) (2,3,4,5-tetramethylcyclopentadienyl) -titanium dichloride of the structure shown below was prepared.
  • a transition metal compound of the following structure was prepared in the same manner as in Production Example 1, except that inner-indene was used instead of 3,4-dimethyl-indene as the ligand (1) in Production Example 1.
  • Example 1 Preparation of hybrid supported catalyst and production of olefin polymer using the same
  • a 600 metal alloy reactor equipped with a mechanical stirrer, temperature controllable, and high pressure reaction was prepared.
  • the hybrid supported catalyst prepared in (1) of Example 1 was quantified in a dry box and placed in a glass bottle of 50, and then the inlet of the glass bottle was sealed with a rubber diaphragm.
  • the 600 was to put a 1.0 1 ⁇ 01 triethyl aluminum containing a nucleic acid 40 (supported hybrid prepared in advance and 1 ⁇ 21 catalyst of the metal alloy reactor without contact with air and then, the temperature of the reactor about 80 I:. Up to Ethylene gas was injected into the reactor to polymerize ethylene for about 1 hour, and the ethylene gas was continuously injected so that the pressure of the reactor was maintained at about 301 £ 8: 2 .
  • Example 2 Preparation of hybrid supported catalyst and production of olefin polymer using the same
  • a mixed supported catalyst was prepared in the same manner as in Example 1, except that the transition metal compound prepared in Preparation Example 2 was used as the first transition metal compound in Example 1, and the mixed supported catalyst was used in Example 1 An ethylenic homopolymer was obtained in the same manner.
  • Example 3 Preparation of hybrid supported catalyst and production of olefin polymer using the same
  • a mixed supported catalyst was prepared in the same manner as in Example 1, except that the transition metal compound prepared in Preparation Example 3 was used as the first transition metal compound in Example 1, and the mixed supported catalyst was used in Example 1 In the same way, 2019/124805 1 »(: 1 ⁇ 1 ⁇ 2018/014973
  • a mixed supported catalyst was prepared in the same manner as in Example 1, except that the transition metal compound prepared in Comparative Preparation Example 1 was used as the first transition metal compound in Example 1, and the mixed supported catalyst was used in Example 1 The ethylene homopolymer was obtained.
  • Comparative Example 2 Preparation of hybrid supported catalyst and production of olefin polymer using the same
  • a mixed supported catalyst was prepared in the same manner as in Example 1, except that the transition metal compound prepared in Comparative Preparation Example 2 was used as the first transition metal compound in Example 1, and the mixed supported catalyst was used in Example 1 The ethylene homopolymer was obtained.
  • Comparative Example 3 Preparation of hybrid supported catalyst and production of olefin polymer using the same
  • a mixed supported catalyst was prepared in the same manner as in Example 1, except that the transition metal compound prepared in Comparative Preparation Example 3 was used as the # 1 transition metal # compound in Example 1, and the mixed supported catalyst was used An ethylene homopolymer was obtained in the same manner as in Example 1.
  • Test Example 1 Measurement of physical properties of olefin polymer
  • Weight average molecular weight (Mw) and polydispersity index (PDI) The weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer were measured by Gel Permeation Chromatography ), And the molecular weight distribution (PDI) was calculated by dividing the weight average molecular weight by the number average molecular weight.
  • measuring apparatus and measurement conditions of gel permeation chromatography are as follows.
  • log M The logarithmic value (log M) of the molecular weight (M) obtained by gel permeation chromatography was measured using an FT-IR apparatus as the x-axis, and the logarithm of the logarithmic value obtained by FT- To seven side-branch contents on the y-axis. In FIGS. 1 and 2, a discontinuous dotted line is shown.
  • the average value of side branch content of 2 to 7 carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the olefin polymer was calculated and shown in Table 1 below.
  • the average value of the number of carbon atoms per 1000 carbon atoms contained in each of the plurality of polymer chains contained in the olefin polymer is 2 to 7 Was obtained by dividing the sum of the side chain content of the olefin polymer by the number of the polymer chains contained in the olefin polymer.
  • the measurement apparatus and measurement conditions of the gel permeation chromatography were the same as those described above in (3) the weight average molecular weight (Mw) and the molecular weight distribution, and the FT-IR measuring apparatus and measurement conditions were as follows.
  • Olefin case 0.86 ⁇ / 10 minutes to 0.92 ⁇ / 10 bun low melt index «of the polymer obtained in Example As shown in Table 11), broad molecular weight distribution of 8.9 to 9.6 1) 1), 20.5 And a high average cleaning value of 1/100 to 21.7 / 1,000 (:).
  • the embodiment is different from the transition of Comparative Example the olefin polymer obtained from the supported catalyst mixed with the metal compound, 0.94 ⁇ / 10 minutes to 1.04 ⁇ / 10 bun (MI) of 2.4 to 3.5, a narrow molecular weight distribution (PDI) compared to the examples, a lower average SCB content value than the examples at 14.7 / 1000C to 16.4 / 1,000C Respectively.
  • Test Example 2 Measurement of physical properties of film
  • Haze A film was molded into a thickness of 0.05 mm and measured on the basis of ASTM D 1003. At this time, the average value was measured 10 times per one hour.
  • Drop Impact Strength A specimen was prepared by cutting the film to a size of 5 cm ⁇ 5 cm ⁇ 100 (width ⁇ length ⁇ thickness). Thereafter, the specimen was placed in a drop impact tester under the conditions of ASTM D1709A, and drop impact strength was measured by dropping a 38 mm diameter epidemic from 0.66 m height. [Table 2]
  • Comparative Example for the films obtained in, eoteuna indicate the same level of haze as in Example to 23.0% to 26.3%, dropping impact strength is significantly lower than the 850 to 1050 ⁇ ⁇ rosil o'clock.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명에 따르면, 우수한 낙하 충격 강도와 투명도를 동시에 만족할 수 있는 올레핀 중합체 및 이의 제조 방법, 그리고 이를 이용한 필름이 제공될 수 있다.

Description

【발명의 명칭】
올레핀중합체, 이의 제조방법, 그리고이를이용한필름
【기술분야】
관련출원 (들)과의 상호인용
본 출원은 2017년 12월 18일자 한국 특허 출원 제 10-2017-0174517호 및 2018년 11월 27일자한국특허 출원제 10-2018-0148557호에 기초한우선권 의 이익을주장하며, 해당한국특허 출원들의 문헌에 개시된모든내용은본 명세서의 일부로서 포함된다.
본발명은올레핀중합체, 이의 제조방법, 그리고이를이용한필름에 관한것이다.
【발명의 배경이 되는기술】
올레핀중합촉매계는지글러 나타및 메탈로센촉매계로분류할수있 으며, 이 두가지의 고활성 촉매계는각각의 특징에 맞게 발전되어 왔다. 지글 러 나타촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔 으나, 활성점이 여러 개 혼재하는다활성점 촉매 (mult i s i te catalyst)이기 때 문에, 중합체의 분자량분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아원하는물성 확보에 한계가있다는문제점이 있다.
한편, 메탈로센 촉매는 전이 금속화합물이 주성분인 주촉매와 알루미 늄이 주성분인 유기 금속화합물인 조촉매의 조합으로 이루어지며, 이와같은 촉매는균일계 착체 촉매로단일 활성점 촉매 (single si te catalyst )이며, 단 일 활성점 특성에 따라분자량분포가좁으며, 공단량체의 조성 분포가균일한 고분자가얻어지는특성을가지고있다.
다만, 메탈로센 촉매를 이용하여 중합한고분자는분자량분포가좁아 일부제품에 적용할경우압출부하등의 영향으로생산성을저하시키는문제가 있다.
이러한문제를해결하기 위하여 , 담체에 서로다른 2종의 메탈로센촉 매 전구체를활성화제와함께 담지하고, 이를이용하여 고분자를중합함으로써 고분자의 분자량분포를제어하는방안이 제안되었다.
하지만, 기존의 사용된 촉매는 2종의 촉매 특성을동시에 구현하는데 한계가있었고, 합성된중합체를적용하는필름의 중요물성인낙하중격 강도 2019/124805 1»(:1^1{2018/014973
와투명도를동시에 향상시키기 어려운한계가있었다.
이에, 2종와메탈로센 촉매 전구체를 이용하면서도, 합성된 중합체가 우수한낙하충격 강도와투명도를동시에 만족할수있는새로운중합체의 개 발이 요구되고있다.
【발명의 내용】
【해결하고자하는과제】
본 발명은 우수한낙하충격 강도와투명도를 동시에 만족할 수 있는 올레핀중합체를제공하기 위한것이다.
본발명은또한, 상기 올레핀 중합체의 제조방법을제공하기 위한것 이다.
본 발명은 또한, 상기 올레핀 중합체를 포함한 필름을 제공하기 위한 것이다.
【과제의 해결수단】
발명의 일 구현예에 따르면, 하기 0 내지 0의 조건을충족하는올 레핀중합체가제공될수있다.
0 상기 올레핀 중합체에 함유된 복수의 고분자 쇄 각각이 갖는 탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량의 평균값 07- ¾에 의해측정)이 20개/ 100明이상이고, )두께 100 !의 필름으로성형하여
Figure imgf000004_0001
준으로측정한낙하충격강도가 1500 §내지 2400요이며, ᅵ ) 두께 0.05 _의 필름으로성형하여 쇼況¾1[)1003을기준으로측정한헤이즈가 10 %내지 30 %이 다.
구체적으로, 상기 일구현예의 올레핀중합체는, 상기 올레핀중합체에 함유된복수의 고분자쇄 각각이 갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량의 평균값
Figure imgf000004_0002
의해측정)이 20개/ 100 이상, 구체적으로 20 개/ 1,(XXX:내지 50개/ 1,000(:, 또는 20개/ 1,00況내지 40개/ 1,000(:, 또는 20 개/ 1,0000 내지 30 개/ 1,000(:, 또는 20 개/ 1,00 내지 22 개/ 1,000(:, 또는 20.1개/ 1,00(犯내지 50개/ 1,000(:, 또는 20.3개/ 1,00的내지 50개/ 1,000(:, 또는 20.5 개/ 1,00(犯 내지 50 개/ 1,000(:, 또는 20.1 개/ 1,00ᄄ 내지 40 개 /1,0000, 또는 20.3개/ 1,00 내지 40개/ 1,000(:, 또는 20.5개/ 1,00的내지 40개/ 1,000(:, 또는 20.1개/ 1,00明내지 30개/ 1,000(:, 또는 20.3개/ 1,00 내지 30 개/ 1,000C, 또는 20.5 개/ 1,000C 내지 30 개/ 1,000C, 또는 20.5 개 /1,000C내자 21.7개/ 1,000C로나타나는특징이 있다.
이에 따라, 종래의 메탈로센 필름에서 구현하기 어려웠던 낙하충격강도 향상및헤이즈감소를동시에 만족할수있는올레핀중합체 합성이 가능해질 뿐 아니라, 메탈로센 족매를사용함에 따른분자량, 분자량 분포, 용융지수, 밀도특성도우수한것으로확인되었다.
특히, 상기 일 구현예의 올레핀중합체가알파-올레핀과같은공단량체 의 함량이 고분자량 주쇄에 집중되어 있는 구조, 즉 짧은 사슬 가지 (Short Chain Branching, SCB) 함량이 고분자량 쪽으로 갈수록 많아지는 B0CD(broad orthogonal comonomer distribution)구조를이루고있기 때문에, 후술하는바 와같이 고분자량을 갖는 고분자 쇄의 SCB 함량이 상대적으로 높아짐에 따라 상기 올레핀중합체에 함유된복수의 고분자쇄 각각이 갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지 (SCB) 함량의 평균값 (FT-m에 의해 측정 )이 20개 /1000C이상으로높아질수있다.
이러한올레핀중합체의 특징적인구조는후술하는다른구현예의 올레 핀중합체 제조방법에사용되는특정 구조의 2종의 메탈로센촉매 전구체복합 사용에 따른것으로보인다.
그리고, 상기 일 구현예의 올레핀 중합체가 복수의 고분자 쇄 각각이 - 갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지 (SCB)함량의 평균값 (FT-IR 에 의해측정)이 20개/ 1000C이상으로높아짐에 따라, 저분자량보다상대적으 로물성을담당하는고분자량부분에 짧은사슬가지 (Short Chain Branching, S況)와같은연결분자(Tie Molecule)들을집중함으로써 기존에 비해보다우수 한물성을구현할수있다.
상기 물성의 구체적인 예를 들면, 상기 일 구현예의 올레핀 중합체를 두께 100 의 필름으로성형하여 ASTM D1709A을기준으로측정한낙하충격강도 가 1500 g내지 2400 g로높게나타날뿐아니라, 두께 0.05 _의 필름으로성 형하여 ASTM D1003을 기준으로측정한헤이즈가 10 %내지 30 %로낮아질 수 있다.
상기 일구현예의 올레핀중합체가복수의 고분자쇄 각각아갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지 (SCB)함량의 평균값(FT-m에 의해측 2019/124805 1»(:1^1{2018/014973
정)이 20 711/10000보다작아지는경우에는, 상기 일 구현예의 올레핀 중합체 를두께 100_의 필름으로성형하여 쇼況 1)1709쇼을기준으로측정한낙하충격 강도가 1500요에 못미치는대략 1100 §이하로감소하게 되는점을실험을통 해 확인하고발명을완성하였다.
따라서, 상기 일 구현예의 올리핀 중합체는합성된 중합체를 적용하는 필름의 중요물성인 낙하충격 강도와투명도가종래기술에 대비하여 동등수 준 이상으로향상될수 있기 때문에, 해당필름을제조, 보관및 운반하거나, 제품적용하는과정에서 우수한기계적 강도를통해 안정적인내구성을구현할 수있으며, 동시에 투명성을확보하여 해당필름이 적용된제품에서 우수한광 학특성 구현이 가능할수있다.
본명세서에서, 어떤부분이 어떤구성요소를 "포함1’ 한다고할때, 이 는특별히 반대되는기재가없는한다른구성요소를제외하는것이 아니라다 른구성 요소를더 포함할수있는것을의미한다.
본 명세서에서, 알킬기는,
Figure imgf000006_0001
유래한 1가의 작용 기로, 예를들어, 직쇄형, 분지형 또는고리형으로서, 메틸, 에틸, 프로필, 이 소부틸,
Figure imgf000006_0002
부틸, 펜틸, 핵실등이 될수있다. 상기 알킬기에 포 함되어 있는하나이상의 수소원자는다른치환기로치환될수있고, 상기 치 환기의 예로는탄소수 1내지 10의 알킬기, 탄소수 2내지 10의 알케닐기, 탄 소수 2내지-- 10의 알키닐기, 탄소수 6내지 12의 아릴기 , 탄소수 2내지 12의 헤테로아릴기, 탄소수 6내지 12의 아릴알킬기, 할로겐 원자, 시아노기, 아미 노기, 아미디노기, 니트로기, 아마이드기, 카보닐기, 히드록시기, 술포닐기, 카바메이트기, 탄소수 1내지 10의 알콕시기 등을들수있다.
상기 "치환’’이라는용어는화합물 내의 수소원자대신 다른 작용기가 결합하는것을의미하며, 치환되는위치는수소원자가치환되는위치 즉, 치 환기가치환가능한위치라면 한정되지 않으며, 2이상치환되는경우, 2이상 의 치환기는서로동일하거나상이할수있다.
본명세서에 있어서, 아릴기는특별히 한정되지 않으나탄소수 6내지 60인 것이 바람직하며 , 단환식 아릴기 또는다환식 아릴기일수있다. 일실시 상태에 따르면, 상기 아릴기의 탄소수는 6내지 30이다. 일실시상태에 따르면, 상기 아릴기의 탄소수는 6내지 20이다. 상기 아릴기가단환식 아릴기로는페 2019/124805 1»(:1^1{2018/014973
닐기, 바이페닐기, 터페닐기 등이 될수 있으나, 이에 한정되는것은아니다. 상기 다환식 아릴기로는나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페 릴레닐기, 크라이세닐기, 플루오레닐기 등이 될수 있으나, 이에 한정되는 것 은아니다.
본명세서에 있어서, 알콕시기는직쇄, 분지쇄 또는고리쇄일수있다. 알콕시기의 탄소수는특별히 한정되지 않으나, 탄소수 1내지 30인 것이 바람 직하다. 구체적으로메톡시, 에톡시, !!_프로폭시, 이소프로폭시, 卜프로필옥시, 11-부톡시, 이소부톡시, 161寸_부톡시,
Figure imgf000007_0001
11-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시 , 11-핵실옥시, 3,3 -디메틸부틸옥시, 2 -에틸부틸옥시, 옥틸옥시 , 11-노닐옥시, 11-데실옥시, 벤질옥시, I)-메틸벤질옥시 등이 있으나, 이에 한정되 지 않는다.
본명세서에 있어서, 알콕시알킬기는상술한알킬기에 대하여 알콕시기 가치환된 작용기일 수 있다. 알콕시알킬기의 탄소수는특별히 한정되지 않으 나, 탄소수 1 내지 2◦인 것이 바람직하다. 구체적으로 16 -부톡시핵실 등이 있으나, 이에 한정되지 않는다.
본명세서에 있어서, 할로겐기의 예로는불소, 염소, 브롬또는요오드 가있다.
본 명세서에서, + , 또는 一는다른 치환기에 연결되는 결합을 의 미한다. .
본 명세서 전체에서 "올레핀 중합체는 에틸렌 단독 중합체이거나, 혹 은에틸렌또는프로필렌과, 알파-올레핀이 공중합된공중합체로서, 물리적 또 는 화학적 특성, 예를 들어, 에틸렌 또는프로필렌과, 알파-올레핀에서 각각 유래한반복단위들의 함량 (몰분율), 결정화도, 밀도, 또는융점 등의 특성 중하나이상의 특성 값이 서로상이하여, 고분자내에서 서로구분될수있는 복수의 반복단위 블록또는세그먼트를포함하는공중합체를지칭할수있다. 또한, 상기 "올레핀 중합체"에 포함된 ’ '고분자 쇄(들)"라 함은, 상기 올레핀중합체를중합및 제조하였을때, 형성되는다수의 고분자사슬들을지 칭할수 있다. 이러한고분자사슬들의 분자량등은 겔 투과 크로마토그래피 ½ᄄ)룰이용한분자량분포곡선을통하여 확인될수있다. 또한, 상기 고분자 사슬내의 분지쇄의 분포는 로올레핀 중합체를분석함으로서 확인할수 있다. 그리고, 상기 고분자사슬의 함량은 1H-NMR을 이용한분석을통해서 확 인할수 있다. 이러한고분자사슬들을상기 ’’올레핀 중합체"에 포함된 "고분 자쇄 (들)’'로정의할수있다.
또한, 상기 ’’올레핀 중합체’’의 "최대 피크분자량 (Mp)n이라함은 이러 한올레핀중합체에 포함된 "고분자쇄 (들)"을분자량크기 순서로나열하였을 때, 상기 올레핀중합체에 가장큰함량으로포함되는고분자쇄들의 분자량을 지칭할 수 있다. 이러한 11최대 피크 분자량 (Mp)’’은 겔 투과 크로마토그래피 (GPC)를 이용해 올레핀 중합체의 분자량분포곡선을도출함으로서 확인될수 있다. 예를들어, 이러한분자량분포곡선은 x축을각고분자쇄의 분자량또 는 이의 log값으로하고, y축을고분자쇄의 함량으로하는함수로정의될수 있는데, 이러한분포곡선의 y값이 최대로되는지점에서의 분자량 x값 (즉, 상기 분포 곡선의 꼭지점에서의 분자량 x 값)을 "최대 피크 분자량 (Mp)”으로 지칭할수있다.
그리고, 상기 올레핀 중합체’’에서, ’’분지쇄 (short chain branching; SCB)"라고함은상술한각각의 고분자쇄 (들)에서 , 가장긴주쇄에 가지와같 은형태로분지 결합된쇄 (chain)를지칭할수있다. 이러한분지 쇄의 개수는 상기 올레핀중합체를 FT-IR분석함으로서산출될수있다. 구체적으로, 상기 일구현예의 올레핀중합체는 i )상기 올레핀중합체 에 함유된복수의 고분자쇄 각각이 갖는탄소 1000개당의 탄소수 2내지 7개 의 곁가지 함량의 평균값 (FT- m에 의해측정)이 20개/ 1000C이상이고, i i )두 께 100 의 필름으로성형하여 ASTM D1709A을 기준으로측정한낙하충격강도가 1500 g내지 2400 g이며, i i i )두께 0.05 의 필름으로성형하여 ASTM D1003 을 기준으로측정한헤이즈가 10 %내지 30 %인 상기 i ) 내지 i i i )의 조건을 충족할수있다.
먼저, 상기 올레핀 중합체는 0 상기 올레핀 중합체에 함유된 복수의 고분자쇄 각각이 갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량의 평균값 (FT-m에 의해측정)이 20개/ 1000C이상일수있다.
상기 ’’올레핀 중합체"에 포함된 "고분자 쇄 (들)'’라함은, 상기 올레핀 중합체를중합및 제조하였을때, 형성되는다수의 고분자사슬들을지칭할수 있다. 이러한고분자사슬들의 분자량등은겔투과크로마토그래피 (GPC)를이 용한분자량분포곡선을통하여 확인될수있다.
상기 겔 투과 크로마토그래피는 예를 들어, Polymer Laborator ies PLgel MIX-B 300mm 길이 칼럼, Waters PL-GPC220 기기를 이용하여, 평가 온도는 100 °C 내지 200 이며, 1,2, 4 -트리클로로벤젠을 용매로서 사용하였으며, 유속은 0.1 mL/min 내지 10 mL/min 의 속도이고, 1 mg/10mL 내지 20mg/10mL의 농도의 시료를 100 y L내지 300 u L의 양으로공급하는 조건으로사용할수있다. 한편, 상기 올레핀 중합체에 함유된 복수의 고분자쇄 각각이 갖는탄 소 1000개당의 탄소수 2내지 7개의 곁가지 함량은 FT-IR로올레핀 중합체를 분석함으로서 확인할수있다.
상기 FT-IR은예를들어, DTGS검출기가포함된 Bio-Rad FTS 3000 wi th Golden Gate Single Ref lect ion ATR system 기기를 이용하여, 평가 온도는 100 °C 내지 200 °C이며, 파수 (wavenumber ) 2000 cnf1내지 4000 cm-1, 스캔 횟 수 (number of scanning) 1회 내지 20회, 해상도 (resolut ion) 1 cnf1내지 10 cm 1조건으로사용할수있다.
상기 올레핀중합체에 함유된복수의 고분자쇄 각각이 갖는탄소 1000 개당의 탄소수 2내지 7개의 곁가지 함량의 평균값은, 상기 올레핀 중합체에 함유된 복수의 고분자쇄 각각이 갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량의 합계를상기 올레핀 중합체에 함유된 고분자쇄의 개수로나누 어 계산할수있다.
또는, 상기 올레핀 중합체에 함유된 복수의 고분자쇄 각각이 갖는 탄 소 1000개당의 탄소수 2내지 7개의 곁가지 함량의 평균값은, 겔투과크로마 토그래피에 의해 얻어진 분자량 (M)의 로그값 ( log M)을 x축으로하고, FT-IR에 의해 얻어진상기 로그값에 대한탄소 1,000개당의 탄소수 2내지 7개의 곁가 지 함량을 y축으로하는 SCB분포곡선을도출한이후, 상술한평균값 계산방 법에 따라구할수있다.
즉, 상기 올레핀 중합체는 겔 투과 크로마토그래피 (GPC: Gel
Permeat ion Chromatography)를이용하여 측정된다양한분자량을갖는모든고 분자쇄에 대하여, 각각의 고분자쇄마다갖는탄소 1000개당의 탄소수 2내 2019/124805 1»(:1^1{2018/014973
지 7개의 곁가지 함량의 평균을구한값이 20 7||/10000이상, 또는구체적으로 20개/ 1,00 내지 50개/ 1,000(:, 또는 20개/ 1,00於내지 40개/ 1,000(:, 또는 20개/ 1,00ᄄ내지 30개/ 1,000(:, 또는 20개/ 1,00於내지 22개/ 1,000(:, 또는 20.1개/ 1,00況내지 50개/ 1 ,000(:, 또는 20.3개/ 1 ,00 내지 50개/ 1,000(:, 5 또는 20.5 개/ 1,00況 내지 50 개/ 1,000(:, 또는 20.1 개/ 1,00(犯 내지 40 개 /1,0000, 또는 20.3개/ 1,00 내지 40개/ 1,000(:, 또는 20.5개/ 1,00的내지 40개/ 1,000(:, 또는 20.1개/ 1,00的내지 30개/ 1,000(:, 또는 20.3개/ 1,00的 내지 30 개/ 1,000(:, 또는 20.5 개/ 1,00ᄄ 내지 30 개/ 1,000(:, 또는 20.5 개 /1,0000내지 21.7개/ 1,000(:으로높게나타날수있다.
10 그리고, 상기 일 구현예의 올레핀 중합체가 복수의 고분자 쇄 각각이 갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지(就 함량의 평균값(肝-1요 에 의해측정)이 20개/ 100 이상으로높아짐에 따라, 저분자량보다상대적으 로물성을담당하는고분자량부분에 짧은사슬가지(¾01^ 01 ]1아 退, 엤引와같은연결분자奸 1«016(:11比)들을집중함으로써 기존에 비해 보다우수 15 한물성을구현할수있다.
상기 일구현예의 올레핀중합체가복수의 고분자쇄 각각이 갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지(況¾함량의 평균값(的- 에 의해측 정)이 20 7]]/10000보다작아지는경우에는, 상기 일 구현예의 올레핀 중합체 - 를두께 100_의 필름으로성형하여 쇼況¾1 1)1709쇼을기준으로측정한낙하충격
20 강도가 1500 §에 못미치는대략 1100 §이하로감소하는한계가있다.
또한, 하기 도 1과 같은 겔 투과크로마토그래피에 의해 얻어진 분자량 »)의 로그값(1(¾ 을 X축으로하고,
Figure imgf000010_0001
의해 얻어진 상기 로그값에 대 한탄소 1,000 개당의 탄소수 2 내지 7개의 곁가지 함량을 축으로 하는洗묘 분포곡선에 나타난바와같이, 상기 알구현예의 올레핀중합체는최대피크분 25 자량보다분자량이 증가할수록대체로탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량또한증가하는경향을보인다.
이에 따라, 상기 올레핀중합체는겔투과크로마토그래피에 의해 얻어 진 분자량 «)의 로그값(1에 을 X축으로하고, 1汗- 에 의해 얻어진 상기 로 그값에 대한 탄소 1,000 개당의 탄소수 2 내지 7개의 곁가지 함량을 축으로 0 하는 808분포곡선에서, 중량평균분자량의 로그값에 해당하는 X축상지점을 2019/124805 1»(:1^1{2018/014973
0.5라하고최소분자량의 로그값에 해당하는 X축상지점을 0, 최대 분자량의 로그값에 해당하는 X축상지점을 1이라할때, X축상 0.8내지 1.0의 구간내 에서 최대의 탄소 1,000개당의 탄소수 2내지 7개의 곁가지 함량을가질 수 있다.
반면, 하기 도 1에 나타난바와같이, 상기 일 구현예의 올레핀 중합체 는최대피크분자량보다분자량이 감소할수록 대체로 탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량이 감소하는경향을보인다.
이에 따라, 상기 올레핀중합체는겔투과크로마토그래피에 의해 얻어 진분자량(¾!)의 로그값(1에 ¾0을 X축으로하고,
Figure imgf000011_0001
의해 얻어진상기 로 그값에 대한탄소 1,000 .개당의 탄소수 2 내자 7개의 곁가지 함량을 축으로 하는 803분포곡선에서 , 중량평균분자량의 로그값에 해당하는 X축상지점을 0.5라하고최소분자량의 로그값에 해당하는 X축상지점을 0, 최대 분자량의 로그값에 해당하는 X축상지점을 1이라할때, X축상 0내지 0.2의 구간내에 서 최소의 탄소 1,000개당의 탄소수 2내지 7개의 곁가지 함량을가칠 수 있 다.
또한, 상기 올레핀중합체는두께 100_, 보다구체적으로 5011x5011x100 _(가로 X세로 X두께)의 필름으로성형하여쇼況1\1 1)1709요을기준으로측정한낙하 충격강도가 1500용내지 2400용, 또는 1550 2내지 2200요, 또는 1580요내지 2000 g, 또는 1590당내지 1700
Figure imgf000011_0002
수 있다. 상기 올레핀 중합체의 낙하충격 강도가 150¾미만으로지나치게 감소하는경우, 상기 올레핀중합체를필름에 적용하기에 중분한수준의 강도를 달성하기 어려워, 해당 필름을 제조 보관 및 운반하거나, 제품 적용하는과정에서 필름이 손상되거나파손되는등의 불 량한내구성을갖게된다.
또한, 상기 올레핀 중합체는 두께 0.05 111111의 필름으로 성형하여 쇼射¾1 1)1003을기준으로측정한헤이즈가 10 %내지 30 %, 또는 15 %내지 30 %, 또 는 20 %내지 30%, 또는 25 %내지 30 %, 또는 26.3 %내지 27.8 %일수있다. 상기 올레핀 중합체의 헤이즈가 30%초과로지나치게 증가하는경우, 상기 올 레핀 중합체를필름에 적용시 충분한수준의 투명도를달성하기 어려워, 해당 필름이 적용된제품에서 요구하는수준의 광학특성을만족하기 어렵다.
한편, 상기 올레핀 중합체는분자량분포(_=¾加/!加)가 5내지 10, 또 2019/124805 1»(:1^1{2018/014973
는 7내지 10, 또는 8.5내지 10, 또는 8.9내지 9.6일 수 있다. 이처럼 상기 올레핀중합체의 분자량분포가상술한범위로넓게나타남에 따라, 상기 올레 핀중합체의 가공성이 향상될수있다. 상기 올레핀중합체의 분자량분포가 5 미만으로감소하거나, 10초과로증가하는경우, 상기 올레핀중합체를필름에 적용하기 위한최적 수준의 가공성을확보하기 어려워, 필름제조공정의 효율 성이 나빠질수있고, 고강도구현이 어렵다.
또한, 상기 올레핀 중합체는용융지수 況 1)1238에 따라 230
Figure imgf000012_0001
에서 2.16 하중으로 측정)가 0.80 용/10[ 11 내지 0.93 용/1(¾1比, 또는 0.85 당/101 11내지 0.93용/101 11일 수 있다. 상기 용융지수는중합공정시 투입되 는수소량에 따라조절가능한데, 본발명에 따른올레핀중합체는상기한바 와같은범위의
Figure imgf000012_0002
가짐으로써 필름등으로의 성형 가공성과함께 강도를동 시에 개선시킬수있다.
특히 올레핀중합체를이용한필름성형가공에 있어서 지나치게 낮아면 가공 압력이 상승하여 가공성이 저하될 우려가 있고, 과도하게 증가할 경우, 제조되는고강도구현이 어렵다.
또한, 상기 올레핀 중합체는 밀도(쇼況 1)1505)가 0.910 §/011 3 내지 0.930 §八: 일 수 있다. 상기 올레핀 중합체는 중량평균 분자량 ½ᄄ측정)이 100000 §^01 내지 150000요細이일 수 있다. 상기 올레핀 중합체의 중량평균 분자량 ½1 즉정)이 지나치게 증가할경우, 고분자량증가에 따라필름 제조시 안정적인성형 가공성을구현하기 어려울수있다.
한편, 상술한바와같이, 상기 일 구현예의 올레핀 중합체는후술하는 올레핀중합체의 제조방법에 의해 제조될수있다. 발명의 다른구현예에 따르면, 하기 화학식 1로표시되는제 1전이 금 속화합물; 하기 화학식 2로표시되는제 2 전이 금속화합물; 및 상기 제 1 및 제 2전이 금속화합물이 담지된 담체를포함하는혼성 담지 촉매 존재 하 에, 올레핀 단량체를중합하는단계를포함하는, 올레핀 중합체의 제조방법이 제공된다.
[화학식 1] 2019/124805 1»(:1^1{2018/014973
Figure imgf000013_0001
[화학식 2]
[。11(1?7) ] [¾2(¾)' 1¾234
상기 화학식 1및 2에서,
은하기 화학식 3으로표시되는리간드이고,
[화학식 3]
Figure imgf000013_0002
¾및 ¾은서로동일하거나상이하며, ¾및 ¾중적어도하나는탄소 수 1내지 20의 알킬기이고, 나머지는수소이며,
~0 - , ~3 - , 내1¾ -또는 1?4 _이며,
¾및 ¾은서로동일하거나상이하며, 각각독립적으로수소, 또는탄 소수 1내지 20의 알킬기이고,
및 I는서로동일하거나상이하며 , 각각독립적으로 , 또는 이며,
XI내지 4는서로동일하거나상이하고, 각각독립적으로할로겐이며,
Figure imgf000013_0003
은 0, , 06 , ¾또는此이며 ,
은탄소수 1내지 20의 알콕시알킬기이고,
^2는탄소수 1내지 20의 알킬기이며 ,
Figure imgf000013_0004
및 ¾는서로동일하거나상이하고, 각각독립적으로수소, 또는탄 소수 1내지 20의 알킬기이며, 2019/124805 1»(:1^1{2018/014973
11및 는각각독립적으로 0내지 5사이의 정수이다. 상기 화학식 1로표시되는제 1전이 금속화합물은서로다른 리간드 로치환기를포함하는 인덴화합물과 14족또는 15족원자를포함하는베이스 화합물을포함하며, 서로다른리간드는 -에 의하여 가교되어 았고, 서로다 른 리간드사이에 (¾)(¾)가존재하는 구조를 가진다. 이러한특정 구조를 가지는제 1전이 금속화합물은우수한담지 안정성을가지며, 올레핀중합시 높은활성을나타내고, 고분자량을갖는올레핀중합체를제공할수있다. 구체적으로, 상기 화학식 1로표시되는 제 1 전이 금속화합물의 구조 내에서 의 리간드는, 예를들면, 올레핀 중합활성과올레핀의 공중합특성 에 영향을미칠수있다.
특히, 의 리간드로, 화학식 3의 리간드를포함하는화학식 1의 제 1 전이 금속화합물은올레핀중합공정에서 매우높은활성과높은공단량체 전 환율을나타내는촉매를제공할수있다.
그리고, 상기 화학식 1로표시되는제 1전이 금속화합물의 구조내에 서 I리간드는, 예를들면, 올레핀중합활성에 영향을미칠수있다.
특히, 화학식 1의 가 - NR3 -이며, 상기 ¾이 탄소수 1내지 10의 알킬 기, 구체적으로 터트-부틸기인 경우 올레핀 중합 공성에서 매우 높은 활성을 나타내는촉매를제공할수있다.
상기 의 리간드및 의 리간드는
Figure imgf000014_0001
의하여 가교되어 우수한담지 奸
안정성을나타낼수있다. 이러한효과를위하여, 상기 -는 의 구조를 가질 수 있으며, 여기서
Figure imgf000014_0002
(:또는 ^이고, 은탄소수 1내지 20의 알콕 시알킬기, 바람직하게는 터트부톡시핵실기이고, 九는 탄소수 1내지 2◦의 알 킬기, 바람직하게는메틸기일수있다. .
한편 , 가교된 리간드 사이에는 (¾)(¾)이 존재하는데, (¾)(¾)는 금속착물의 보관안정성에 영향을미칠수있다.
이러한효과를더욱효과적으로담보하기 위하여 XI및 ¾가각각독립 적으로할로겐중어느하나인 전이 금속화합물을사용할수있다.
상기 화학식 1로 표시되는 제 1 전이 금속 화합물은 공지의 반응들을 2019/124805 1»(:1/10公018/014973
응용하여 합성될수 있으며 , 보다상세한합성 방법은실시예를참고할수 있 다.
구체적으로, 상기 제 1 전이 금속화합물은 하기 화학식 4로표시되는 화합물일수있다.
[화학식 4]
Figure imgf000015_0001
상기 화학식 4에서, 상기 ¾ 및 ¾은서로동일하거나상이하며, ¾ 및 ¾중적어도하나는탄소수 1내지 20의 알킬기이고, 나머지는수소이며,
¾은탄소수 1내지 10의 알킬기이고,
은 , 또는 이며,
XI및 ¾는서로동일하거나상이하고, 각각독립적으로할로겐이며,
Figure imgf000015_0002
은탄소수 1내지 20의 알콕시알킬기이고,
\2는탄소수 1내지 20의 알킬기이다.
보다구체적으로, 상기 화학식 4로표시되는화합물의 예로는하기 화학 식 4-1내지 4-3의 화합물을들수있다.
[화학식 4-1]
Figure imgf000015_0003
[화학식 4-2]
Figure imgf000016_0001
한편, 상기 제 1전이 금속화합물과는달리 상기 화학식 2로표시되는 제 2전끼 금속화합물을적절한방법으로활성화시켜 올레핀 중합반응의 촉 매로이용하면, 저분자량의 올레핀중합체를제공할수있다. 따라서, 제 1및 제 2전이 금속화합물을포함하는혼성 담지 촉매는넓은분자량분포를가지 는올레핀중합체를제공할수있다.
구체적으로, 화학식 2의 Cp 및 Cp2는사이클로펜타다이에닐기일 수 있 다. Cp^ ¼ CP2가사이클로펜타다이에닐기이고, 사이클로펜타다이에 i기가 가 교되어 (br idged) 있지 않은채로리간드로사용되는제 2전이 금속화합물은 올레핀중합시에 알파-올레핀에 대한낮은공중합성을보이며, 저분자량의 올 레핀 중합체를 우세하게 생성한다. 따라서, 이러한 제 2 전이 금속 화합물을 화학식 1의 제 1전이 금속화합물과동일담체에 혼성 담지하여 사용하면, 올 레핀중합체의 분자량분포, 올레핀중합체사슬내에 공중합된단량체의 분포 및올레핀의 공중합특성을용이하게조절하여 목적하는올레핀중합체의 물성 을보다용이하게구현할수있다.
상기 0 는 1내지 5개의 R7에 의하여 치환될수있고, 상기 Cp2는 1내 지 5개의 ¾에 의하여 치환될수 있다. 상기 화학식 2에서 u가 2 이상의 정수 일 때, 복수의 R7은서로동일하거나상이할수있다. 또한, 화학식 2에서 v가 2이상의 정수일때, 복수의 ¾도서로동일하거나상이할수있다. 이러한 R7 및 ¾는 서로 동일하거나상이하고, 각각독립적으로 수소, 또는탄소수 1내지 20의 알킬기일수 있다. R7및 ¾가상기와같은치환기를 가지는제 2전이 금속화합물은우수한담지 안정성을가질수있다.
또한, 화학식 2의 ¾및 ¾는서로동일하거나상이하고각각독립적으 로할로겐중어느하나일 수 있다. ¾및 X4가상기와같은치환기를가지는 제 2전이 금속화합물은조촉매인 알킬 메탈또는메틸알루미녹산과의 반응에 의해 할로겐기가알킬기로용이하게 치환될수있다. 또한, 이어지는알킬추 줄 (alkyl abstract ion)에 의해 상기 제 2 전이 금속 화합물이 상기 조촉매와 이온중간체 ( ionic intermediate)를형성함으로써 올레핀중합반응의 활성 종 인 양이온형태 (cat ionic form)를보다용이하게 제공할수있다.
상기 제 2전이 금속화합물은하기 화학식 5로표시되는화합물을포 함할수있다.
[화학식 5]
Figure imgf000017_0001
상기 화학식 5에서, ¾및 ¾는서로동일하거나상이하고, 각각독립적 으로수소, 또는탄소수 1내지 20의 알킬기이며,
I은 , ¾또는 이며 ,
¾및 4는서로동일하거나상이하고, 각각독립적으로할로겐이다.. 보다구체작으로, 상기 화학식 5로표시되는화합물의 예로는하기 화학 식 5-1의 화합물을들수있다.
[화학식 5-1] 2019/124805 1»(:1^1{2018/014973
Figure imgf000018_0001
상기 혼성 담지 촉매는제 1전이 금속화합물과제 2전이 금속화합 물을 1:0.1내지 1:0.9, 또는 1:0.2내지 1 :0.8, 또는 1:0.3내지 1:0.5의 몰 비로포함할수 있다. 이에 따라, 올레핀 중합체의 분자량분포및 고분자사 슬내의 공중합된단량체의 분포와올레핀의 공중합특성을용이하게조절하여 목적하는물성을보다용이하게구현할수있다.
상기 담체로는 표면에 하이드록시기 또는 실록산기를 함유하는 담체를 사용할수있다. 구체적으로, 상기 담체로는고온에서 건조하여 표면에 수분을 제거함으로써 반응성이 큰하이드록시기 또는실록산기를 함유하는담체를사 용할수있다. 보다구체적으로, 상기 담체로는실리카, 알루미나, 마그네시아 또는 이들의 혼합물등을사용할수 있다. 상기 담체는고온에서 건조된 것일 수있고, 이들은통상적으로犯20, ¾003 63804및 ¾ 어03)2등의 산화물, 탄산 염, 황산염 , 질산염 성분을포함할수있다.
상기 혼성 담지 촉매는촉매 전구체인 전이 금속화합물들을활성화시 키기 위하여 조촉매를추가로포함할수 있다. 상기 조촉매로는본발명이 속 하는기술분야에서 통상적으로사용하는것이 특별한제한없이 적용될수 있 다. 비제한적인 예로, 상기 조촉매은하기 화학식 6내지 8표시되는화합물로 이루어진군에서 선택되는 1종이상의 화합물일수있다.
상기 혼성 담지 촉매는하기 화학식 6내지 8로표시되는화합물로 이 루어진군에서 선택되는 1종이상의 조촉매를추가로포함할수있다.
[화학식 6]
_[쇼1 (!¾)-()]„「
상기 화학식 6에서, ¾은서로동일하거나다를수 있으며, 각각독립 적으로할로겐; 탄소수 1내지 20의 알킬기; 또는할로겐으로치환된탄소수 1 2019/124805 1»(:1^1{2018/014973
내지 20의 알킬기이고; 은 2이상의 정수이며;
[화학식 7]
103
상기 화학식 7에서,
Figure imgf000019_0001
동일하거나다를수 있으며, 각각독립 적으로할로겐; 탄소수 1내지 20의 알킬기; 또는할로겐으로치환된탄소수 1 내지 20의 알킬기이고; 는알루미늄또는보론이며;
[화학식 8]
犯내] +[2 ]_또는[리 +[ :
상기 화학식 8에서, 묘는중성 또는 양이온성 루이스 염기이고; H는수 소원자이며 ; 는 13족원소이고; 쇼는서로동일하거나다를수 있으며 , 각각 독립적으로 1이상의 수소원자가할로겐, 탄소수 1내지 20의 알킬기, 알콕시 또는페녹시로치환또는비치환된 탄소수 6내지 20의 아릴기 또는탄소수 1 내지 20의 알킬기이다.
상기에서 화학식 6으로표시되는화합물의 비제한적인 예로는메틸알루 미녹산, 에틸알루미녹산,
Figure imgf000019_0002
-부틸알루미녹산또는 ᅣ라 부틸알루미녹산등을 들수있다. 그리고, 화학식 7로표시되는화합물의 비제한적인 예로는트라이 메틸알루미늄, 트라이에틸알루미늄, 트라이이소부틸알루미늄, 트라이프로필알 루미늄, 트라이부틸알루미늄, 디메틸클로로알루미늄, 트라이이소프로필알루미 늄, 트라이- -부틸알루미늄 , 트라이사이클로펜틸알루미늄 , 트라이펜틸알루미 늄, 트라이이소펜틸알루미늄 , 트라이핵실알루미늄, 트라이옥틸알루미늄, 에틸 디메틸알루미늄, 메틸디에틸알루미늄, 트라이페닐알루미늄 , 트라이-!)-톨릴알루 미늄, 디메틸알루미늄메톡시드또는디메틸알루미늄에톡시드등을들수있다. 마지막으로, 화학식 8로표시되는화합물의 비제한적인 예로는트라이메틸암모 늄테트라키스(펜타플루오로페닐)보레이트, 트라이에틸암모늄테트라키스(펜타 플루오로페닐)보레이트, -디메틸아닐리늄 테트라키스(펜타플루오로페닐)보 레이트, 比 -디메틸아닐리늄 !!_부틸트리스(펜타플루오로페닐)보레이트, 比 -디 메틸아닐리늄 벤질트리스(펜타플루오로페닐)보레이트 , -디메틸아닐리늄 테 트라키스(4-(1:-부틸디메틸실릴)- 2,3, 5,6 -테트라플루오로페닐)보레이트, -디 메틸아닐리늄 테트라키스(4-(트라이이소프로필실릴)- 2,3,5,6 -테트라플루오로페 닐)보레이트, -디메틸아닐리늄펜타플루오로페녹시트리스(펜타플루오로페닐) 2019/124805 1»(:1^1{2018/014973
보레이트, -디메틸- 2,4,6 -트라이메틸아닐리늄테트라키스(펜타플루오로페닐) 보레이트, 트라이메틸암모늄 테트라키스(2, 3, 4, 6 -테트라플루오로페닐)보레이트 , -디메틸아닐리늄테트라키스(2,3, 4,6 -테트라플루오로페닐)보레이트, 핵사데 실디메틸암모늄 테트라키스(펜타플루오로페닐)보레이트 , 메틸- 도데실아닐 리늄 테트라키스(펜타플루오로페닐)보레이트 또는 메틸디(도데실)암모늄 테트 라키스(펜타플루오로페닐)보레이트등을들수있다.
이러한혼성 담지 촉매는, 예를들면, 담체에 조촉매를 담지시키는단 계 및조촉매담지 담체에 촉매 전구체인제 1및 제 2전이 금속화합물을담 지시키는단계로제조될수있다.
구체적으로, 담체에 조촉매를담지시키는단계에서는, 고온에서 건조된 담체 및 조촉매를혼합하고, 이를 약 20
Figure imgf000020_0001
120
Figure imgf000020_0002
온도에서 교반하여 조촉매담지 담체를제조할수있다.
그리고, 조촉매 담지 담체에 촉매 전구체를담지시키는 단계에서는조 촉매 담지 담체에 제 1 전이 금속 화합물을 첨가하고, 이를 약 20
Figure imgf000020_0003
내지 120 온도에서 교반한후, 제 2전이 금속화합물을첨가하고, 다시 이를 약 20 내지 120 X:의 온도에서 교반하여 혼성 담지 촉매를제조할수있다. 상기 조촉매 담지 담체에 촉매 전구체를담지시키는단계에서는조촉매 담지 담체에 촉매 전구체를첨가하여 교반한후, 조촉매를추가로첨가하여 혼 성 담지 촉매를제조할수있다.
상기 혼성 담지 촉매를사용하기 위하여 사용되는담체, 조촉매, 조촉 매 담지 담체, 제 1 및 제 2 전이 금속화합물의 함량은목적하는혼성 담지 촉매의 물성 또는효과에 따라적절하게조절될수있다.
상기 혼성 담지 촉매 제조시에 반응 용매로는 펜탄, 핵산, 헵탄등과 같은 탄화수소용매, 또는 벤젠, 톨루엔 등과 같은 방향족용매가사용될 수 있다.
상기 혼성 담지 촉매의 구체적인 제조방법은후술하는실시예를 참고 할수 있다. 그러나, 혼성 담지 촉매의 제조방법이 본명세서에 기술한내용 에 한정되는것은아니며, 상기 제조방법은본발명이 속한기술분야에서 통 상적으로채용하는단계를추가로채용할수있고, 상기 제조방법의 단계(들) 는통상적으로변경 가능한단계(들)에 의하여 변경될수있다. 2019/124805 1»(:1^1{2018/014973
상기 올레핀 단량체의 예로는 에틸렌, 알파-올레핀, 사이클릭 올레핀 등이 있으며, 이중결합을 2개 이상가지고있는다이엔올레핀계 단량체또는 트라이엔올레핀계 단량체 등도중합가능하다. 상기 단량체의 구체적인 예로 는에틸렌, 프로필렌, 1 -부텐, 1 -펜텐, 4 -메틸- 1 -펜텐, 1 -핵센, 1 -헵텐, 1 -옥 텐, 1 -데센, 1 -운데센, 1 -도데센, 1 -테트라데센, 1 -핵사데센, 1 -아이토센, 노 보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타 디엔, 1,4 -부타디엔, 1,5 -펜타디엔, 1,6 -핵사디엔, 스티렌, 알파-메틸스티텐, 디비닐벤젠, 3 -클로로메틸스티렌등이 있으며, 이들단량체를 2종 이상혼합 하여 공중합할수도있다. 상기 올레핀중합체가에틸렌과다른공단량체의 공 중합체인 경우에, 상기 공단량체는프로필렌, 1 -부텐, 1 -핵센, 4 -메틸- 1 -펜텐 및 1 -옥텐으로이루어진군에서 선택된하나이상의 공단량체인 것이 바람직하 다.
상기 올레핀 단량체의 중합반응을위하여, 연속식 용액 중합공정, 벌 크중합공정, 현탁중합공정, 슬러리 중합공정 또는유화중합공정 등올 레핀단량체의 중합반응으로알려진다양한중합공정을채용할수있다. 구체적으로, 상기 중합반응은
Figure imgf000021_0002
내지 110
Figure imgf000021_0001
50
Figure imgf000021_0003
또한, 상기 중합반응에서, 상기 혼성 담지 촉매는펜탄, 핵산, 헵탄, 노난, 데칸, 톨루엔, 벤젠, 디클로로메탄, 클로로벤젠등과같은용매에 용해 또는희석된상태로 이용될수 있다. 이때, 상기 용매를소량의 알킬알루미늄 등으로처리함으로써, 촉매에 악영향을줄수 있는소량의 물또는공기 등을 미리 제거할수있다. 한편, 발명의 또다른구현예에 따르면, 상기 일구현예의 올레핀중합 체를포함하는필름을제공할수있다. 상기 필름은고분자성형분야에서 알려 진다양한성형방법, 조건, 장치를제한없이 적용하여 제조할수있다.
상기 다른구현예의 필름에서, 올레핀중합체는상기 일구현예에서 상 술한내용을모두포함할수있다.
또한, 상기 필름은 50 50 100,(가로 X세로 X두께)의 필름으로 성형하 2019/124805 1»(:1^1{2018/014973
여 요況¾1 1)1709쇼을기준으로측정한낙하충격강도가 1500용내지 2400용, 또는 1550용내지 2200용, 또는 1580 딩내지 2000 또는 1590용내지 1700용일수 있다.
또한, 상기 필름은 두께 0.05 의 필름으로 성형하여 쇼況 0 1003을 기준으로측정한헤이즈가 10 %내지 30 % , 또는 15 %내지 30 %, 또는 20 % 내지 30%, 또는 25 %내지 30 %, 또는 26.3 %내지 27.8 %일수있다.
상기 낙하충격강도및 헤이즈에 대한내용또한상기 일 구현예에서 상 술한내용을모두포함할수있다.
【발명의 효과】
본 발명에 따르면, 우수한 낙하 충격 강도와 투명도를 동시에 만족할 수있는올레핀중합체 및 이의 제조방법, 그리고이를이용한필름이 제공될 수있다.
【도면의 간단한설명】
도 1은실시예 1의 올레핀중합체의 분자량분포곡선(실선) 및 묘분 포곡선(점선)을함께도시한도면이다.
도 2은비교예 1의 올레핀중합체와분자량분포곡선(실선) 및쌨요분 포곡선(점선)을함께도시한도면이다.
【발명을실시하기 위한구체적인내용】
발명을하기의 실시예에서 보다상세하게 설명한다. 단, 하기의 실시예 는본발명을예시하는것일뿐, 본발명의 내용이 하기의 실시예에 의하여 한 정되는것은아니다.
<제조예및비교제조예>
제조예 1: 전이금속화합물의 제조
(1) 리간드쇼의 제조
Figure imgf000022_0001
상기 구조식과같은 3, 4 -다이메틸-내-인덴화합물을리간드쇼로사용하 였다.
(2) 리간드묘의 제조
2501 3^161^ £183뇨에 卜부틸아민 1¾11>( 120_01 )와에테르 용매 20[1 를 넣고, 상기 크뇨와다른 250^ 5^16^ 크뇨에 (6 - 161:1;-부톡시핵실)다이 클로로 (메틸)실란 16은(60_01 )과에테르용매 40此를넣어 卜부틸아민용액 및 (6아61寸_부톡시핵실)다이클로로 (메틸)실란 용액을 각각 준비하였다. 그리고, 상기 ^부틸아민용액을 -78 X:로냉각한다음, 냉각된용액에 (6아6 -부톡시 핵실)다이클로로 (메틸)실란용액을천천히 주입하고, 이를상온에서 약 2시간 동안교반하였다. 생성된 3113?6 1011을 여과하여 아이보리 ( 이7) 색상 을띄며, 액상인 1-(6-(161·!;-부톡시 )핵실)- - 卜부틸)- 1 -클로로- 1 -메틸실란 아민 (리간드 을얻었다.
Figure imgf000023_0001
¾ NMR (CDCls): 3.29 (t , 2H), 1.52-1.29 (m, 10H), 1.20 (s , 9H), 1.16 (s , 9H) , 0.40 (s, 3H)
(3) 리간드 A및 B의 가교
250mL schlenk f lask에 3, 4 -다이메틸- 1H-인덴 (리간드 A) 1.7g(8.6mmol ) 을넣고, THF 30mL를첨가하여 리간드 A용액을제조하였다. 상기 리간드 A용 액을 -78 °C로냉각한후, n-BuLi 용액 3.6mL(9. lmmol , 2.5M in hexane)를상 기 리간드 A용액에 첨가하고, 이를상온에서 하룻밤동안교반하여 purple- brown의 용액을 얻었다. 상기 purple-brown용액의 용매를톨루엔으로 치환하 고, 이 용액에 CuCN 39mg(0.43mmol)을 THF 2mL에 분산시킨용액을주입하여 용 액 A를제조하였다.
한편, 250mL schlenk f lask에 l-(6-(tert-부톡시)핵실)- N-(tert_부틸)_ 1-클로로- 1-메틸실란아민 (리간드 B) 및 톨루엔을주입하여 준비한용액 묘를 - 78로냉각하였다. 상기 냉각된용액 B에 앞서 제조한용액 A를천천히 주입하 였다. 그리고용액 A및 B의 혼합물을상온에서 하룻밤동안교반하였다. 그리 고, 생성된 고체를 여과하여 제거함으로써 brown색상을띄며 점성이 있는 액 상의 1-(6-0;61 1;-부톡시)핵실)- -0;61 1;-부틸)-1-(3,4-다이메틸- 111-인덴- 3 -일)_ 1 -메틸실란아민 (리간드쇼및 8의 가교생성물) 4.2§(> 99% 61(1)을얻었다.
Figure imgf000024_0001
(4)전이 금속화합물의 제조
2501 £(土161止: £1크3뇨에 1-(6-( 61 1:-부톡시)핵실)- - 아卜부틸)- 1 -
(3,4 -다이메틸- 1H-인덴- 3 -일)- 1-메틸실란아민 (리간드 A 및 B의 가교 생성물) 4.2g을넣고, 상기 f l ask에 톨루엔 14mL와 n_핵산 1.7mL를주입하여 가교생성 물을용해시켰다. 이 용액을 -78 °C로냉각한후, n-BuLi 용액 7.3mL(18mmol , 2.5M in hexane)를상기 냉각된용액에 주입하였다. 그리고, 상기 용액을상온 에서 약 12시간 동안 교반하였다. 이어서, 상기 용액에 트라이메틸아민 5.3mL(38mraol )을투입하고, 이 용액을 약 40 °C에서 약 3시간동안교반하여 용액 C를준비하였다.
한편,ᅳ별도로준비된 250mL schlenk f lask에 TiCl4(THF)2 2.3g(8.6mmol ) 과톨루엔 10mL를 첨가하여 TiCl4(THF)2를톨루엔에 분산시킨용액 D를제조하 였다. 상기 용액 D에 앞서 준비한용액 C를 -78 °C에서 천천히 주입하고, 용액 C및 D의 혼합물을상온에서 약 12시간동안교반하였다. 그후, 상기 용액을 감압하여 용매를제거하고, 얻어진용질은톨루엔에 용해시켰다. 그리고, 톨루 엔에 용해되지 않은고체는여과하여 제거하고여과된용액에서 용매를제거하 여 갈색고체 형태의 전이 금속화합물 4.2g(83% yield)를얻었다. 2019/124805 1»(:1^1{2018/014973
Figure imgf000025_0001
제조예 2: 전이금속화합물의 제조
제조예 1의 (1) 리간드쇼로 3, 4 -다이메틸- 인덴 대신 4 -메틸-내-인덴 을사용한것을제외하고, 제조예 1과동일한방법으로하기 구조의 전이 금속 화합물을제조하였다.
Figure imgf000025_0002
제조예 3: 전이금속화합물의 제조
제조예 1의 (1) 리간드쇼로 3, 4 -다이메틸-내-인덴 대신 3 -메틸-내-인덴 을사용한것을제외하고, 제조예 1과동일한방법으로하기 구조의 전이 금속 화합물을제조하였다. 2019/124805 1»(:1^1{2018/014973
Figure imgf000026_0001
비교제조예 1: 전이금속화합물의 제조
하기 구조의 부톡시핵실메틸실릴어아-부틸아미도)(2,3, 4, 5 -테트라메 틸사이클로펜타다이에닐)-티타늄다이클로라이드를제조하였다.
Figure imgf000026_0002
비교제조예 2: 전이금속화합물의 제조
제조예 1의 (1) 리간드쇼로 3 ,4 -다이메틸- 인덴 대신 1,2ᅳ다이메틸- 해_벤조[비사이클로펜타[則싸이오펜를사용한것을제외하고, 제조예 1과동일 한방법으로하기 구조의 전이 금속화합물을제조하였다.
Figure imgf000026_0003
비교제조예 3: 전이금속화합물의 제조 2019/124805 1»(:1/10公018/014973
제조예 1의 (1)리간드 로 3,4 -다이메틸-내-인덴 대신 내-인덴을사용 한것을제외하고,제조예 1과동일한방법으로하기 구조의 전이 금속화합물 을제조하였다.
Figure imgf000027_0001
<실시예및비교예>
실시예 1: 혼성 담지 촉매의 제조및 이를 이용한올레판중합체의 제 조
(1)혼성 담지촉매의 제조
10 300mL유리 반응기에 톨루엔 lOOmL를넣고, 반응기 온도 40 °C에서, 실 리카 (Grace Davison, SP952) 7g을투입한후, 교반하였다.이후, 10wt%메틸알 루미녹산 (MA0)/톨루엔 용액 (Albemarle사)을 5.3mL를투입하고, 95 °C로승온 하면서 2시간 stirring시켰다.이후, 반응기 온도를 40 로낮춘후교반을 중지하고 10분동안 settling한후반응용액을 decantation하였다.이후, 톨15…루엔 lOOmL를—투입하호 10분 ¾ 교반한 후, 교반을 중지하고 10분 동안 settling시키고 톨루엔 용액을 decantation하였다. 이후, 반응기에 톨루엔 50mL를투입하고,상기 제조예 1의 전이 금속화합물 0.30 g와제 2전이 금속 화합물로 비스 (n-부틸사이클로펜타다이에닐 )-지르코늄다이클로라이드를 Glove Box내에서 1:0.45의 몰비율로섞은다음톨루엔 25ml에 녹여 반응기로넘긴다 20 음 80 °C에서 500rpm으로 2시간교반하였다. 이후, 교반을 중지하고, 1◦분간 settling시킨 후 반응용액을 decantation하였다.이후, 톨루엔 50mL를 반응 기에 투입하고. 반응기 온도를 상온으로 낮춘 후, 교반을 중지하고 10분간 settling시킨후반응용액을 decantation하였다.이후,반응기에 핵산 100mL 를 투입하고 아크릴로니트릴 스티렌 아크릴레이트 (Acrylonitri le styrene 25 acrylate, ASA) 0.05_ol을 넣고 10분간 교반 후, 핵산 슬러리를 250mL schlenk flask로이송하고핵산용액을 decantation하였다.이후,상온에서 3 2019/124805 1»(:1^1{2018/014973
시간동안감압하에 건조하여, 혼성 담지 촉매를얻었다.
(2)올레핀중합체의 제조
올레핀 중합체의 제조를위하여 기계식 교반기가장착되어 있으며, 온 도조절이 가능하고, 고압의 반응에사용될수있는 600 금속합금반응기를 준비하였다.
한편, 상기 실시예 1의 (1)에서 제조한혼성 담지 촉매를드라이 박스 에서 정량하여 50 의 유리병에 담은후, 상기 유리병의 입구를고무격막으로 밀봉하였다.
그리고, 상기 600 금속합금반응기에 1.01^01의 트라이에틸알루미늄 이 함유된핵산 40(½1와앞서 준비한혼성 담지 촉매를공기 접촉없이 투입하 였다. 이어서, 상기 반응기의 온도를 약 80 I:로올리고, 상기 반응기에 에틸 렌 가스를주입하여 약 1시간동안에틸렌을중합하였다. 이때, 에틸렌 가스 는반응기의 압력이 약 301¾£八:이2정도로유지되도록계속주입되었다.
이후, 에틸렌이 목적하는수준으로중합되면, 반응기의 교반을멈추고, 미반응에틸렌 가스를배기시켜 제거하였다. 그리고, 반응 생성물에서 용매를 제거하고 얻어진 고체를 약 80 公의 진공오븐에서 약 4시간동안건조시켜 에틸렌단독중합체를얻었다. 실시예 2: 혼성 담지 촉매의 제조및 이를 이용한올레핀중합체의 제 조
실시예 1에서 제 1전이 금속화합물로제조예 2에서 제조한전이 금속 화합물을사용한것을제외하고, 실시예 1과동일한방법으로혼성 담지 촉매 를제조하고, 상기 혼성 담지 촉매를이용하여 실시예 1과동일한방법으로에 틸렌단독중합체를얻었다. 실시예 3: 혼성 담지 촉매의 제조및 이를 이용한올레핀중합체의 제 조
실시예 1에서 제 1전이 금속화합물로제조예 3에서 제조한전이 금속 화합물을사용한것을제외하고, 실시예 1과동일한방법으로혼성 담지 촉매 를제조하고 , 상기혼성 담지 촉매를이용하여 실시예 1과동일한방법으로에 2019/124805 1»(:1^1{2018/014973
틸렌단독중합체를얻었다. 비교예 1: 혼성 담지 촉매의 제조및이를 이용한올레핀중합체의 제 조
실시예 1에서 제 1 전이 금속화합물로비교제조예 1에서 제조한전이 금속화합물을사용한것을제외하고, 실시예 1과동일한방법으로혼성 담지 촉매를제조하고, 상기 혼성 담지 촉매를 이용하여 실시예 1과동일한방법으 로에틸렌단독중합체를얻었다. 비교예 2: 혼성 담지 촉매의 제조및 이를이용한올레핀중합체의 제 조
실시예 1에서 제 1 전이 금속화합물로비교제조예 2에서 제조한전이 금속화합물을사용한것을제외하고, 실시예 1과동일한방법으로혼성 담지 촉매를제조하고, 상기 혼성 담지 촉매를 이용하여 실시예 1과동일한방법으 로에틸렌단독중합체를얻었다. 비교예 3: 혼성 담지 촉매의 제조및 이를 이용한올레핀중합체의 제 조
실시데 1에서 제- 1 전이 금#화합물로 비교제조예 3에서 제조한전이 금속화합물을사용한것을제외하고, 실시예 1과동일한방법으로혼성 담지 촉매를제조하고, 상기 혼성 담지 촉매를 이용하여 실시예 1과동일한방법으 로에틸렌단독중합체를얻었다.
<시험예>
시험예 1 :올레핀중합체의물성측정
상기 실시예 1내지 3및 비교예 1내지 3에서 제조한에틸렌 단독중 합체의 물성을측정하고, 그결과를하기 표 1에 나타내었다.
(1)용융지수( , 단위 : 용/ 10분): 쇼況¾1 1)1238에 따라 230 °(:에서 2.16 하중으로측정하였으며, 10분동안용융되어 나온중합체의 무게(묘)로나타 내었다. (2)밀도 (단위 : g/cm3) : ASTM D1505기준에 따라측정하였다.
(3)중량평균분자량 (Mw)및분자량분포 (polydi spersi ty index, PDI) : 겔 투과 크로마토그래피 (GPC: Gel Permeat ion Chromatography)를 이용하여, 중합체의 중량평균분자량 (Mw)과수평균분자량 (Mn)을측정하였고, 중량평균분자량을수평균분자량으로나누어 분자량분포 (PDI)를계산하였다.
이때, 겔투과크로마토그래피의 측정기기 및측정 조건은다음과같다.
Polymer Laborator ies PLgel MIX-B 300mm길이 칼럼, Waters PL-GPC220 기기를 이용하여, 평가온도는 160 °C이며, 1,2, 4 -트리클로로벤젠을용매로서 사용하였으며 유속은 ImL/min의 속도이고, 샘플은 10mg/10mL의 농도로조제한 다음, 200 y L의 양으로공급하며, 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw, Mn, PDI 의 값을 구할 수 있다. 폴리스티렌 표준품의 분자량은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을사용하였다. (4) SCB( Short Chain Branch; 탄소 1,000 개당의 탄소수 2내지 7개의 곁가지 (branch))단위: 개/ 1,000C)함량의 평균값
겔 투과 크로마토그래피 (GPC: Gel Permeat ion Chromatography)를 이용 하여 분자량 (M)의 로그값 ( log M)을 x축으로하고, 상기 로그값에 대한분자량 분포 (dwt/dlog M)를 y축으로하여 분자량분포곡선을그렸다. 하기 도 1, 도 2 에서는연속적인실선으로표시하였다.
FT-IR장치를 이용하여, 겔투과크로마토그래피에 의해 얻어진분자량 (M)의 로그값 ( log M)을 x축으로하고, FT-IR에 의해 얻어진 상기 로그값에 대 한탄소 1,000 개당의 탄소수 2내지 7개의 곁가지 함량을 y축으로 하는 S期 분포곡선을그렸다. 하기 도 1, 도 2에서는불연속적인점선으로표시하였다. 그리고, 상기 S期분포곡선을이용하여, 올레핀중합체에 함유된복수 의 고분자쇄 각각이 갖는탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량 의 평균값을계산하고, 하기 표 1에 나타내었다.
상기 평균값은 일반적인 평균값 계산방법에 따라, 상기 올레핀 중합체 에 함유된복수의 고분자쇄 각각이 갖는탄소 1000개당의 탄소수 2내지 7개 의 곁가지 함량의 합계를상기 올레핀중합체에 함유된고분자쇄의 개수로나 누어 구하였다.
이때, 겔투과크로마토그래피의 측정기기 및 측정 조건은상기 (3)중 량평균 분자량 (Mw) 및 분자량 분포에서 상술한내용과동일하며, FT-IR측정 기기 및측정 조건은다음과같다.
<측정 기기 ñ FT-IR (Bio-Rad FTS 3000, Bio Rad) wi th Golden Gate Single Ref lect ion ATR system
<측정조건 ñ
파수 (wavenumber ) : 2700 cnf1내지 3000 cnf1
스캔횟수 (number of scanning) : 16회
해상도 (resolut ion) : 8 cm一1
검줄기 (detector) : DTGS
【표 1]
시험예 1의 측정결과
Figure imgf000031_0001
상기 표 1에 나타난바와같이, 실시예에서 얻어진 올레핀 중합체의 경 우, 0.86 §/10분내지 0.92 §/10분의 낮은용융지수 «1 ), 8.9내지 9.6의 넓은 분자량분포 1)1 ), 20.5개/ 1,00吹내지 21.7개/ 1 ,000(:의 높은평균洗표함량 값을나타내었다.
반면, 실시예와는상이한전이 금속화합물을사용한혼성 담지 촉매로 부터 얻어진비교예올레핀중합체의 경우, 0.94 §/10분내지 1.04 §/10분으로 실시예에 비해높은용융지수 (MI), 2.4내지 3.5로실시예에 비해좁은분자량 분포 (PDI ) , 14.7 개/ 1,000C내지 16.4개/ 1,000C로 실시예에 비해 적은 평균 SCB함량값을나타내었다. 시험예 2 : 필름의물성측정
상기 실시예 1내지 3, 비교예 1내지 3의 올레핀중합체를산화방지제 ( Iganox 1010 + Igafos 168, CIBA사)처방후이축압출기로제립후, 단축압출 기 (신화공업 Single Screw Extruder , Blown Fi lm M/C, 50파이, L/D=20)를 이 용하여 압출온도 165 200 °C에서 0.05 mm의 두께가되도록 인플레이션성형 하여 필름을 제조하였다. 이때 다이갭 (Die Gap)은 2.0 mm, 팽창비 (Blown-Up Rat io)는 2.3으로하였다.
(1) 헤이즈 (Haze) : 두께 0.05 mm의 규격으로 필름을 성형하여 ASTM D 1003을기준으로측정하였다. 이때 한시편당 10회 측정하여 그평균치를취하 였다.
(2) 낙하충격강도: 5cmx5cmxl00_ (가로 x세로 x두께)의 크기로필름을재 단하여 시편을 제조하였다. 그후, ASTM D1709A의 조건에 따라, 상기 시편을 낙하충격 시험기에 위치시키고, 0.66m높이에서 지름이 38mm인추를자유낙하 시켜 낙하충격 강도를측정하였다. 【표 2]
시험예 2의 측정결과
Figure imgf000032_0001
상기 표 2에 나타난바와같이, 실시예에서 얻어진필름의 경우, 26.3 % 내지 27.8 %의 헤이즈, 1590 2내지 1670 §의 높은낙하충격강도를나타내었다. \¥0 2019/124805 11:171012018/014973
반면, 비교예에서 얻어진 필름의 경우, 23.0 %내지 26.3 %로실시예와 동등수준의 헤이즈를나타내었으나, 낙하충격강도가 850 §내지 1050 §로실 시예에 비해낮게나타났다.

Claims

2019/124805 1»(:1^1{2018/014973 【청구범위】
【청구항 1】
하기 0내지
Figure imgf000034_0001
조건을충족하는올레핀중합체:
0 상기 올레핀 중합체에 함유된 복수의 고분자 쇄 각각이 갖는 탄소 1000개당의 탄소수 2내지 7개의 곁가지 함량의 평균값 0 -1묘에 의해측정)이
20개/ 10000이상이고,
[ [) 두께 100 /패의 필름으로 성형하여 쇼況 [)1709쇼을 기준으로 측정한 낙하충격강도가 1500 §내지 2400 §이며 ,
0두께 0.05 의 필름으로성형하여쇼況¾1 1)1003을기준으로측정한 헤이즈가 10 %내지 30 %이다.
【청구항 2]
제 1항에 있어서,
겔투과크로마토그래피에 의해 얻어진분자량(0의 로그값(1 ¾0을 X 축으로하고, 1 -11?에 의해 얻어진상기 로그값에 대한탄소 1,000개당의 탄 소수 2내지 7개의 곁가지 함량을 축으로하는엤묘분포곡선에서,
중량평균분자량의 로그값에 해당하는 X축상지점을 0.5라하고 최소 분자량의 로그값에 해당하는 X축상지점을 0, 최대 분자량의 로그값에 해당하 는 X축상지점을 1이라할때,
X축상 0.8내지 1.0의 구간내에서 최대의 탄소 1,000개당의 탄소수 2 내지 7개의 곁가지 함량을갖는, 올레핀중합체.
【청구항 3]
제 1항에 있어서,
겔투과크로마토그래피에 의해 얻어진분자량(¾0의 로그값(1예則을 X 축으로
Figure imgf000034_0002
의해 얻어진상기 로그값에 대한탄소 1,000개당의 탄 소수 2내지 7개의 곁가지 함량을
Figure imgf000034_0003
곡선에서 ,
중량평균분자량의 로그값에 해당하는 X축상지점을 0.5라하고 최소 분자량의 로그값에 해당하는 X축상지점을 0, 최대 분자량의 로그값에 해당하 는 X축상지점을 1이라할때, 2019/124805 1»(:1^1{2018/014973
X축상 0 내지 0.2의 구간 내에서 최소의 탄소 1,000 개당의 탄소수 2 내지 7개의 곁가지 함량을갖는, 올레핀중합체.
【청구항 4]
제 1항에 있어서,
상기 올레핀중합체는분자량분포가 5내지 10인, 올레핀중합체.
【청구항 5]
제 1항에 있어서,
Figure imgf000035_0001
하중으로측정)가 0.80용/101 11내지 0.93용/101 11인올레핀중합체.
【청구항 6】
제 1항에 있어서,
상기 올레핀중합체는밀도 況 1505)가 0.910용/예3내지 0.930용/ 3 인올레핀중합체.
【청구항 7]
제 1항에 있어서,
Figure imgf000035_0002
150000용細 인, 올레핀중합체.
【청구항 8]
하기 화학식 1로표시되는제 1전이 금속화합물; 하기 화학식 2로표 시되는제 2전이 금속화합물; 및상기 제 1및 제 2전이 금속화합물이 담 지된 담체를포함하는혼성 담지 촉매 존재 하에, 올레핀 단량체를 중합하는 단계를포함하는, 제 1항의 올레핀중합체의 제조방법 :
[화학식 1] 2019/124805 1»(:1^1{2018/014973
Figure imgf000036_0001
[화학식 2]
[◦아(¾:니½2(¾)네¾)(4
상기 화학식 1및 2에서,
은하기 화학식 3으로표시되는리간드이고,
[화학식 3]
Figure imgf000036_0002
¾및 ¾은서로동일하거나상이하며, ¾및 ¾중적어도하나는탄소 수 1내지 20의 알킬기이고, 나머지는수소이며,
Figure imgf000036_0003
¾및요4은서로동일하거나상이하며, 각각독립적으로수소, 또는탄 소수 1내지 20의 알킬기이고,
¾및 ¾는서로동일하거나상이하며, 각각독립적으로 Ti , ¾또는 이며,
¾내지 ¾는서로동일하거나상이하고, 각각독립적으로할로겐이며,
Figure imgf000036_0004
¾및 ¾는서로동일하거나상이하고, 각각독립적으로수소, 또는탄 소수 1내지 20의 알킬기이며, 2019/124805 1»(:1^1{2018/014973
I:및 V는각각독립적으로 0내지 5사이의 정수이다.
【청구항 91
제 8항에 있어서,
상기 제 1전이 금속화합물은하기 화학식 4로표시되는화합물인올 레핀중합체의 제조방법:
[화학식 4]
Figure imgf000037_0001
상기 화학식 4에서, 상기 ¾및 ¾은서로동일하거나상이하며, ¾및 ¾중적어도하나는탄소수 1내지 20의 알킬기이고, 나머지는수소이며,
¾은탄소수 1내지 10의 알킬기이고,
¾은 , 또는뱌이며,
XI및 ¾는서로동일하거나상이하고, 각각독립적으로할로겐이며 ,
Figure imgf000037_0002
이고,
은탄소수 1내지 20의 알콕시알킬기이고,
\2는탄소수 1내지 20의 알킬기이다.
【청구항 10】
제 8항에 있어서,
상기 제 2 전이 금속화합물은하기 화학식 5로표시되는화합물인 올 레핀중합체의 제조방법:
[화학식 5] 2019/124805 1»(:1^1{2018/014973
Figure imgf000038_0001
상기 화학식 5에서, 取및 ¾는서로동일하거나상이하고, 각각독립적 으로수소, 또는탄소수 1내지 20의 알킬기이며,
¾12은 , .社또는 이며 ,
¾및 ¾는서로동일하거나상이하고, 각각독립적으로할로겐이다.
【청구항 11】
저 18항에 있어서, 제 1 전이 금속 화합물과 제 2 전이 금속 화합물은 1:0.1내지 1:0.9의 몰비로포함되는올레핀중합체의 제조방법.
【청구항 12】
제 8항에 있어서, 상기 담체는실리카, 알루미나, 마그네시아또는 이들 의 혼합물인올레핀중합체의 제조방법.
【청구항 13】
제 8항에 있어서,
상기 혼성 담지 촉매는하기 화학식 6내지 8로표시되는화합물로 이 루어진군에서 선택되는 1종이상의 조촉매를추가로포함하는올레핀중합체 의 제조방법:
[화학식 6]
-[시 (1¾)-0]„厂
상기 화학식 6에서,
¾은서로동일하거나다를수 있으며, 각각 독립적으로 할로겐; 탄소 수 1내지 20의 알킬기; 또는할로겐으로치환된탄소수 1내지 20의 알킬기이 고; 2019/124805 1»(:1^1{2018/014973
은 2이상의 정수이며 ;
[화학식 7]
1(¾0)3
상기 화학식 7에서,
Figure imgf000039_0001
동일하거나다를수 있으며, 각각독립적으로할로겐; 탄소 수 1내지 20의 알킬기; 또는할로겐으로치환된탄소수 1내지 20의 알킬기이 고;
1는알루미늄또는보론이며 ;
[화학식 8]
犯-}1] + [2/\4]-또는 [리+[å ]- 상기 화학식 8에서,
묘는중성 또는양이온성 루이스염기이고;
묘는수소원자이며;
는 13족원소이고;
요는서로동일하거나다를수 있으며, 각각독립적으로 1 이상의 수소 원자가할로겐, 탄소수 1내지 20의 알킬기, 알콕시 또는페녹시로치환또는 비치환된탄소수 6내지 20의 아릴기 또는탄소수 1내지 20의 알킬기이다.
【청구항 14】
제 8항에 있어서,
상기 올레핀 단량체는에틸렌, 프로필텐, 1 -부텐, 1 -펜텐, 4 -메틸- 1 -펜 텐, 1 -핵센, 1 -헵텐, 1 -옥텐, 1 -데센, 1 -운데센, 1 -도데센, 1 -테트라데센, 1_ 핵사데센 , 1 -아이토센, 노보넨, 노보나디엔, 에틸리덴노보덴 , 페닐노보덴, 비 닐노보덴, 디사이클로펜타디엔, 1,4 -부타디엔, 1,5 -펜타디엔, 1,6 -핵사디엔, 스티텐 , 알파-메틸스티텐, 디비닐벤젠및 3 -클로로메틸스티렌으로이루어진군 으로부터 선택되는 1종이상을포함하는올레핀중합체의 제조방법 .
【청구항 15】
제 1항의 올레핀중합체를포함하는, 필름.
PCT/KR2018/014973 2017-12-18 2018-11-29 올레핀 중합체, 이의 제조 방법, 그리고 이를 이용한 필름 WO2019124805A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880011256.9A CN110291117B (zh) 2017-12-18 2018-11-29 烯烃聚合物,其制备方法和使用该烯烃聚合物的膜
JP2019531705A JP6862548B2 (ja) 2017-12-18 2018-11-29 オレフィン重合体、その製造方法、そしてこれを利用したフィルム
BR112019018083-4A BR112019018083A2 (pt) 2017-12-18 2018-11-29 polímero de olefina, método de preparação do mesmo e filme utilizando o mesmo
EP18891719.9A EP3560965A4 (en) 2017-12-18 2018-11-29 OLEFIN POLYMER, PRODUCTION METHOD THEREFOR AND FILM THEREFOR
US16/478,692 US10894843B2 (en) 2017-12-18 2018-11-29 Olefin polymer, preparation method of the same, and film using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170174517 2017-12-18
KR10-2017-0174517 2017-12-18
KR1020180148557A KR102133030B1 (ko) 2017-12-18 2018-11-27 올레핀 중합체, 이의 제조 방법, 그리고 이를 이용한 필름
KR10-2018-0148557 2018-11-27

Publications (2)

Publication Number Publication Date
WO2019124805A1 true WO2019124805A1 (ko) 2019-06-27
WO2019124805A8 WO2019124805A8 (ko) 2019-08-08

Family

ID=66993606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014973 WO2019124805A1 (ko) 2017-12-18 2018-11-29 올레핀 중합체, 이의 제조 방법, 그리고 이를 이용한 필름

Country Status (1)

Country Link
WO (1) WO2019124805A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034464A1 (en) * 2008-09-25 2010-04-01 Basell Polyolefine Gmbh Impact resistant lldpe composition and films made thereof
KR20110061584A (ko) * 2008-09-25 2011-06-09 바젤 폴리올레핀 게엠베하 내충격성 lldpe 조성물 및 이것으로 제조된 필름
KR20110063489A (ko) * 2008-09-25 2011-06-10 바젤 폴리올레핀 게엠베하 내충격성 lldpe 조성물 및 이것으로 제조된 필름
KR20110063488A (ko) * 2008-09-25 2011-06-10 바젤 폴리올레핀 게엠베하 내충격성 lldpe 조성물 및 이것으로 제조된 필름
KR20150063823A (ko) * 2013-12-02 2015-06-10 주식회사 엘지화학 인덴기를 갖는 메탈로센형 촉매 및 이를 이용한 올레핀 중합체의 제조방법
KR20160067508A (ko) * 2014-12-04 2016-06-14 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034464A1 (en) * 2008-09-25 2010-04-01 Basell Polyolefine Gmbh Impact resistant lldpe composition and films made thereof
KR20110061584A (ko) * 2008-09-25 2011-06-09 바젤 폴리올레핀 게엠베하 내충격성 lldpe 조성물 및 이것으로 제조된 필름
KR20110063489A (ko) * 2008-09-25 2011-06-10 바젤 폴리올레핀 게엠베하 내충격성 lldpe 조성물 및 이것으로 제조된 필름
KR20110063488A (ko) * 2008-09-25 2011-06-10 바젤 폴리올레핀 게엠베하 내충격성 lldpe 조성물 및 이것으로 제조된 필름
KR20150063823A (ko) * 2013-12-02 2015-06-10 주식회사 엘지화학 인덴기를 갖는 메탈로센형 촉매 및 이를 이용한 올레핀 중합체의 제조방법
KR20160067508A (ko) * 2014-12-04 2016-06-14 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매

Also Published As

Publication number Publication date
WO2019124805A8 (ko) 2019-08-08

Similar Documents

Publication Publication Date Title
RU2670752C2 (ru) Полимер на основе олефинов с исключительной способностью к переработке
EP3031832B1 (en) Method for preparing polyolefin
RU2759915C2 (ru) Композиция катализатора для полимеризации олефина, способ получения полиолефина и полиолефиновая смола
KR101658172B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
KR101549209B1 (ko) 가공성이 우수한 올레핀계 중합체
KR20150058020A (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
WO2016036204A1 (ko) 가공성이 우수한 올레핀계 중합체
WO2016167568A1 (ko) 가공성이 우수한 에틸렌 /알파-올레핀 공중합체
KR20160121940A (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
EP3255066A1 (en) Method for producing metallocene-supported catalyst
US11732069B2 (en) Polypropylene and method for preparing the same
KR102559050B1 (ko) 프로필렌-1-부텐 공중합체 및 그 제조방법
KR102226823B1 (ko) 굴곡탄성율이 우수한 폴리올레핀 제조용 촉매 조성물
KR20160122065A (ko) 가공성 및 표면 특성이 우수한 에틸렌/알파-올레핀 공중합체
EP3363820A1 (en) Hybrid supported metallocene catalyst, and method for preparing polyolefin by using same
JP7118500B2 (ja) 混成担持触媒およびそれを用いたポリオレフィンの製造方法
CN110291117B (zh) 烯烃聚合物,其制备方法和使用该烯烃聚合物的膜
CN111164111B (zh) 催化剂组合物和使用其制备烯烃聚合物的方法
WO2019124805A1 (ko) 올레핀 중합체, 이의 제조 방법, 그리고 이를 이용한 필름
KR20200090039A (ko) 에틸렌-알파올레핀의 제조 방법 및 사출 성형품의 제조 방법
KR102389323B1 (ko) 폴리프로필렌
KR102215024B1 (ko) 폴리올레핀의 제조 방법
WO2015072658A1 (ko) 가공성이 우수한 올레핀계 중합체

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019531705

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018891719

Country of ref document: EP

Effective date: 20190723

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891719

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019018083

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019018083

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190830