WO2019124624A1 - Electromagnetic wave shielding film, method for manufacturing printed circuit board, and method for manufacturing electromagnetic wave shielding film - Google Patents

Electromagnetic wave shielding film, method for manufacturing printed circuit board, and method for manufacturing electromagnetic wave shielding film Download PDF

Info

Publication number
WO2019124624A1
WO2019124624A1 PCT/KR2018/000662 KR2018000662W WO2019124624A1 WO 2019124624 A1 WO2019124624 A1 WO 2019124624A1 KR 2018000662 W KR2018000662 W KR 2018000662W WO 2019124624 A1 WO2019124624 A1 WO 2019124624A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
adhesive layer
film
metal layer
conductive adhesive
Prior art date
Application number
PCT/KR2018/000662
Other languages
French (fr)
Korean (ko)
Inventor
정광춘
조남부
박광진
윤희근
Original Assignee
(주)잉크테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)잉크테크 filed Critical (주)잉크테크
Publication of WO2019124624A1 publication Critical patent/WO2019124624A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to an electromagnetic wave shielding film, a method of manufacturing a printed circuit board, and a method of manufacturing an electromagnetic wave shielding film. More particularly, the present invention can broaden the ground area of an electromagnetic wave shielding film attached to a printed circuit board, A method for manufacturing a printed circuit board, and a method for manufacturing an electromagnetic wave shielding film, which can provide excellent environmental reliability, heat resistance and step property.
  • FPCB flexible printed wiring board
  • the FPCB is used with a shield film for shielding electromagnetic noise.
  • a conventional shield film has a base film and a conductive layer laminated thereon. Normally, a reinforcing film for workability is used for the base film side in this basic constitution, and a protective film is used for the conductive layer to manufacture a product.
  • Japanese Patent Application Laid-Open No. 5-3395 discloses a method of using a metal thin film to obtain an excellent shielding effect.
  • Japanese Patent Laid-Open No. 7-122882 discloses a method of combining a conductive adhesive layer and a metal thin film using a metal filler .
  • the electromagnetic wave shielding film is produced by applying and drying a conductive adhesive layer on the metal layer in the state that the carrier film and the metal layer are laminated and laminating a protective film on the conductive adhesive layer.
  • the metal layer is peeled off from the conductive adhesive layer in a state where the metal layer is attached to the carrier film or peeling phenomenon occurs in which the metal layer and the conductive adhesive layer are separated from each other during the peeling of the carrier film .
  • an object of the present invention to provide an electromagnetic wave shielding film capable of eliminating a ground film by widening a ground area of an electromagnetic wave shielding film attached to a printed circuit board, And a method for manufacturing an electromagnetic wave shielding film.
  • a method of manufacturing an electromagnetic wave shielding film, a method of manufacturing a printed circuit board, and a method of manufacturing an electromagnetic wave shielding film which can prevent the metal layer from being arbitrarily separated from the conductive adhesive layer in the peeling process of the carrier film by peeling the carrier film in a state where the conductive adhesive layer is semi-cured .
  • a semiconductor device comprising: a carrier film; a conductive metal layer formed on one surface of the carrier film; a conductive adhesive layer formed on the metal layer; And a protective film formed on the conductive adhesive layer.
  • the conductive adhesive layer preferably includes a binder resin and a conductive filler.
  • the conductive filler may include silver, copper, aluminum, nickel, gold, zinc or iron particles, and the particles may be in the form of flake, spherical, dendrite or granule .
  • the particles preferably have a size of 3 mu m to 20 mu m.
  • the binder resin is at least one of polyvinyl butyral, cellulose, polyurethane, polyester, epoxy, phenoxy, novolak, alkyd, amide, imide resin or modified products thereof.
  • a conductive layer is interposed between the metal layer and the conductive adhesive layer.
  • the conductive layer is made of a material having an electrical conductivity higher than that of the metal layer.
  • the conductive layer is preferably formed by coating a silver ink on a metal layer.
  • the metal layer is preferably at least one selected from the group consisting of nickel, copper, aluminum, zinc, and alloys thereof.
  • the metal layer is preferably formed of a foil having a thickness of 2 to 10 mu m.
  • An object of the present invention is to provide a method of manufacturing a shielding film, comprising the steps of: preparing a shielding film in which a carrier film, a metal layer, a conductive adhesive layer and a protective film are sequentially laminated; a protective film removing step of removing the protective film of the shielding film; A bonding step of bonding the conductive adhesive layer of the film to the printed circuit board; removing the carrier film of the shielding film; And forming an insulation layer on the metal layer of the shielding film, the insulation layer having an opening formed in an area where the ground extension terminal of the printed circuit board is to be formed.
  • an insulating layer is formed by printing an insulating paste on the metal layer.
  • the insulating layer forming step it is preferable to form an insulating layer by attaching an insulating film having openings on the metal layer.
  • the insulating layer forming step may include: a coverlay preparing step of preparing a coverlay in which a carrier film, an insulating layer, an adhesive layer, and a protective film are laminated in order; A protective film removing step of removing the protective film of the coverlay; And a lapping step of lapping the metal layer of the shielding film and the adhesive layer of the coverlay.
  • the method may further include forming a plating layer on the metal layer exposed through the opening of the insulating layer.
  • the method may further include removing a metal layer partially removing the metal layer exposed through the opening of the insulating layer in the thickness direction prior to the plating layer forming step.
  • the semi-curing step of the conductive adhesive layer it is preferable to perform the semi-curing step of the conductive adhesive layer to semi-cure the conductive adhesive layer prior to the carrier film removing step.
  • a coverlay carrier film removing step of removing the carrier film of the coverlay after the lapping step it is preferable to perform a coverlay carrier film removing step of removing the carrier film of the coverlay after the lapping step.
  • step of completely curing the adhesive layer to completely cure the adhesive layer of the coverlay after the step of removing the coverlay carrier film.
  • a conductive layer of a material having a relatively higher electric conductivity than the metal layer between the metal layer and the conductive adhesive layer it is preferable to form a conductive layer of a material having a relatively higher electric conductivity than the metal layer between the metal layer and the conductive adhesive layer.
  • a conductive layer forming step of forming a conductive layer on one surface of the metal layer prior to the step of forming the conductive adhesive layer it is preferable to perform a conductive layer forming step of forming a conductive layer on one surface of the metal layer prior to the step of forming the conductive adhesive layer.
  • the conductive layer is made of a material having an electrical conductivity higher than that of the metal layer.
  • the conductive layer is preferably formed by coating a silver ink on a metal layer.
  • an electromagnetic wave shielding film a method of manufacturing a printed circuit board, and a method of manufacturing an electromagnetic wave shielding film, which can enlarge a ground area of an electromagnetic wave shielding film attached to a printed circuit board to eliminate a ground film. Therefore, it is possible to solve the difficulty that the ground can not be widened in manufacturing the microcircuit substrate, so that it is possible to provide a manufacturing effect of the microcircuit substrate, thereby reducing the manufacturing process, productivity, and manufacturing cost.
  • a printed circuit board to which an electromagnetic wave shielding film for high-speed transmission having anti-oxidation characteristics and high heat resistance characteristics are applied can be manufactured.
  • the carrier film is peeled off while the conductive adhesive layer is semi-cured, thereby preventing the metal layer from being separated from the conductive adhesive layer in the peeling process of the carrier film.
  • FIG. 1 is a cross-sectional view of an electromagnetic wave shielding film according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a process for manufacturing a printed circuit board according to a second embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a process for manufacturing a printed circuit board according to a third embodiment of the present invention
  • FIG. 4 is a cross-sectional view of an electromagnetic wave shielding film according to a fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a process for manufacturing a printed circuit board according to a fifth embodiment of the present invention.
  • FIG. 6 is a sectional view of a process for manufacturing a printed circuit board according to a sixth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a process for manufacturing an electromagnetic wave shielding film according to a seventh embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of an electromagnetic wave shielding film manufacturing method according to an eighth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of an electromagnetic wave shielding film according to a first embodiment of the present invention.
  • the electromagnetic wave shielding film 10 comprises a carrier film 11, a conductive metal layer 12 formed on one side of the carrier film 11, a conductive metal layer 12 formed on the metal layer 12, And an adhesive layer (13) and a protective film (14) formed on the conductive adhesive layer (13).
  • the carrier film 11 may be provided in the form of AL-PET (Aluminum-Laminated Polyethylene Terephthalate) laminated with an aluminum film on a PET film or in the form of Copper-Laminated Polyethylene Terephthalate Can be provided.
  • AL-PET Alluminum-Laminated Polyethylene Terephthalate
  • the metal layer 12 may be formed on the carrier film 11 by a variety of methods such as plating, printing, coating, or vapor deposition of a conductive material.
  • the metal layer 12 may be formed on one side of the carrier film 11, It is also possible to use ready made products.
  • the conductive adhesive layer 13 may include a conductive filler and a binder resin, a curing agent, a flame retardant, and an additive.
  • the conductive adhesive layer 13 may be formed by applying a conductive adhesive composition to the metal layer 12.
  • the binder resin should be excellent in heat resistance, acid resistance, and alkali resistance, and it is particularly preferable that the binder resin is excellent in adhesion and lowers the influence on the conductivity of the conductive filler due to the characteristics of the binder.
  • the heat resistance of the resin When the heat resistance of the resin is low, defects may occur in the surface of the solder process, which is an essential step in the manufacture of a printed circuit board, or the resistance may increase due to heat.
  • copper plating or gold plating can be performed to lower circuit resistance or prevent corrosion at the time of manufacturing a printed circuit board. Since the plating solution is strongly acidic or strongly alkaline, excellent chemical resistance and alkali resistance are required.
  • a cleaning operation may be performed with an alkaline solution for surface cleaning and flux removal before and after the solder. In some cases, soft etching may be performed to improve the uniformity and adhesion of the plating.
  • the conductive adhesive layer 13 should be pre-fixed on the printed circuit board in a B-stage state, and then be supplied to the main process. Therefore, the binder resin should have a semi-cured state at room temperature and should be fully cured in the main process.
  • binder resin of the conductive adhesive layer 13 examples include polyvinyl butyral (PVB), cellulose, polyurethane, polyester, epoxy, phenoxy, Novolac, Alkyd, Amide, Imide resins or their modifications can be used.
  • PVB polyvinyl butyral
  • cellulose polyurethane
  • polyester epoxy, phenoxy, Novolac, Alkyd
  • Amide Imide resins or their modifications can be used.
  • a cresol novolak resin was mixed with a denatured product of a polyester resin to improve heat resistance.
  • the conductive filler may be a conductive metal such as Silver, Copper, Aluminum, Nickel, Gold, Zinc and Iron, Can be used. These shapes may be in the form of Flake, Spherical, Dendrite, Granule, or the like.
  • the conductive filler having a particle size of 30 mu m or less can be used. More preferably not less than 3 mu m and not more than 20 mu m.
  • a conductive filler of less than 3 mu m is used, the resistance of the resin increases, so that more metal particles must be used and the resistance is also increased.
  • the particles having a size exceeding 20 mu m are uncoated in the coating direction in the coating process, the dried coating film is uneven, and pin-holes are generated.
  • the protective film 14 may be formed of a PET film coated with a silicon release coating and may be attached to the conductive adhesive layer 13 by a method of laminating a protective film 14 having a silicon release treatment on the conductive adhesive layer 13.
  • the electromagnetic wave shielding film 10 of the present embodiment has a carrier film 11 having a thickness of 83 ⁇ , a metal layer 12 having a thickness of 3 ⁇ , a conductive adhesive layer 13 having a thickness of 6 ⁇ and a protective film 14 having a thickness of 75 ⁇ Lt; / RTI >
  • the conductive adhesive layer is formed on the carrier film 11 on which the metal layer 12 is formed to form the conductive adhesive layer 13
  • a conductive adhesive may be coated on the protective film 14 to form a conductive adhesive layer 13, followed by laminating the carrier film 11 on which the metal layer 12 is formed.
  • FIG. 2 is a cross-sectional view of a process for manufacturing a printed circuit board according to a second embodiment of the present invention.
  • the method of manufacturing a printed circuit board according to the second embodiment of the present invention may further include a step of preparing a shielding film (S110), a step of forming a shielding film (S120), a step of removing a protective film (S130), a bonding step (S140) Step S150, the carrier film removing step S160, the conductive adhesive layer complete curing step S170, the insulating layer forming step S180, the metal layer part removing step S190, and the plating layer forming step S200.
  • the shielding film 10 in which the carrier film 11, the metal layer 12, the conductive adhesive layer 13, and the protective film 14 are sequentially laminated is prepared in the step of preparing the shielding film (S110) .
  • the shielding film 10 may be made of the electromagnetic wave shielding film of the first embodiment of the present invention.
  • the shielding film 10 in a sheet form is stuck on a printed circuit board (PCB) to be attached in the shielding film punching step S120.
  • the punching of the shielding film 10 may be performed by a pressing process or a laser cutting process.
  • the protective film 14 disposed on one side of the conductive adhesive layer 13 of the shielding film 10 is removed in the step of removing the protective film S130 as shown in FIG. Since the protective film 14 has an appropriate releasing force with respect to the conductive adhesive layer 13, it can be easily peeled off.
  • the conductive adhesive layer 13 of the shielding film 10 is adhered to the surface of the printed circuit board (PCB) on which the circuit pattern is formed.
  • the shielding film 10 is heated for a predetermined time so that the conductive adhesive layer 13 is in a B-stage state.
  • the semi-curing condition may be changed depending on the composition of the conductive adhesive layer 13, and in this embodiment, the temperature is raised at a temperature of 150 DEG C and a pressure of 3 bar for 20 seconds using a folding machine.
  • the bonding strength between the conductive adhesive layer 13 and the metal layer 12 is increased by the semi-curing of the conductive adhesive layer 13.
  • the carrier film 11 attached to the metal layer 12 of the shielding film 10 is removed in the step of removing the carrier film S160 as shown in FIG.
  • the metal layer 12 to which the carrier film 11 is attached is in a state in which the bonding strength with the conductive adhesive layer 13 is increased as the conductive adhesive layer 13 is semi-cured. Therefore, in the process of removing the carrier film 11 It is possible to prevent the metal layer 12 from being peeled off from the conductive adhesive layer 13.
  • the conductive adhesive layer 13 is heated and pressed so as to be in a C-Stage state.
  • the complete curing conditions of the conductive adhesive layer 13 may be changed depending on the composition of the conductive adhesive layer 13.
  • the insulating layer 22 may be formed by printing an insulating paste through a screen formed in accordance with a pattern and then drying the insulating paste as shown in FIG. 2 (f).
  • the insulating layer 22 can be formed in a desired region by using the screen printing method and an insulating layer 22 having an opening 22a formed in a region where a ground expansion terminal of a printed circuit board So that it can be formed on the metal layer 12 of the shielding film 10.
  • an insulating film (Coverlay) is formed so that the opening 22a is formed in the area where the ground expansion terminal of the printed circuit board PCB is to be formed It is also possible to form the insulating layer 22 by attaching it to the metal layer 12 later.
  • the metal layer 12 of the shielding film 10 is electrically connected to the ground circuit of the printed circuit board PCB through the conductive adhesive layer 13 so that the metal layer 12 exposed through the opening 22a of the insulating layer 22 12 can be utilized as a ground expansion terminal of a printed circuit board (PCB).
  • PCB printed circuit board
  • the insulating paste may include a binder resin, a flame retardant, a colorant, a curing agent, and the like.
  • the binder resin of the insulating layer 22 should be capable of being coated, have high flexibility after curing, and should have a scratch resistance (2H or more) because it is located outside the printed circuit board.
  • the insulating layer 22 Since the insulating layer 22 is exposed in the manufacturing process of the printed circuit board, the insulating layer 22 should have excellent heat resistance, chemical resistance, alkali resistance, and acid resistance.
  • the other reinforcing plate is required to be attached and marked on the insulating layer 22, it should be designed to have excellent adhesion.
  • the surface is polyimide, there is a problem of lamination adhesion, and a plasma process may be added.
  • the metal layer 12 exposed through the opening 22a of the insulating layer 22 is soft-etched and partially removed in the thickness direction (S190)
  • the oxidized surface of the metal layer 12 is removed (0.3 to 1.0 ⁇ ).
  • a surface antioxidation conductive material such as gold (Au) is applied to the metal layer 12 whose surface has been removed through electroplating or electroless plating as shown in FIG. 2 (h)
  • the plating layer 30 is formed by plating.
  • the plating layer 30 may be used as a ground extension terminal while being electrically connected to the ground circuit of the printed circuit board (PCB) while protecting the metal layer 12.
  • FIG 3 is a cross-sectional view of a process for manufacturing a printed circuit board according to a third embodiment of the present invention.
  • a method of manufacturing a printed circuit board includes a step of preparing a shielding film S110, a step of forming a shielding film S120, a step of removing a protective film S130, a bonding step S140, Step S150, carrier film removing step S160, insulating layer forming step S180 ', metal layer part removing step S190, and plating layer forming step S200.
  • the remaining steps except for the insulating layer forming step S180 ' are the same as those of the second embodiment, so detailed description of the same steps will be omitted.
  • the insulating layer forming step S180 ' may include a cover layer preparing step S181, a covering layer removing step S182, a protective film removing step S183, a lapping step S184, an adhesive layer semi-curing step S185, A film removal step (S186), and an adhesive layer full curing step (S187).
  • the coverlay 20 has a carrier film 21 having a thickness of 55 ⁇ ⁇ , an insulating layer 22 having a thickness of 7 ⁇ ⁇ , an adhesive layer 23 having a thickness of 8 ⁇ ⁇ and a protective film 24 having a thickness of 75 ⁇ ⁇ , ≪ / RTI >
  • the carrier film 21 of the coverlay 20 may be provided in the form of a semi-matt PET and the insulating layer 22 and the adhesive layer 23 may comprise a light absorbing material. have.
  • the coverlay 20 is formed in the coverlay punching step S182 to form the opening 22a of FIG. 3 (j) in a region where the ground extension terminal is to be formed.
  • the punching of the coverlay 20 can be performed by a pressing process, a laser cutting process, or the like.
  • step S183 the protective film 24 disposed on one side of the adhesive layer 23 of the coverlay 20 is removed as shown in FIG. 3 (h). Since the protective film 24 has an appropriate releasing force with respect to the adhesive layer 23, it can be easily peeled off.
  • the adhesive layer 23 of the coverlay 20 is adhered to the metal layer 12 of the shielding film 10 in close contact with each other.
  • the coverlay 20 is heated for a predetermined time so that the adhesive layer 23 of the coverlay 20 is in a B-stage state.
  • the semi-curing conditions may be changed depending on the composition of the adhesive layer 23, and in this embodiment, the temperature is raised at a temperature of 150 DEG C and a pressure of 3 bar for 20 seconds using a folding machine.
  • the bonding strength between the adhesive layer 23 and the metal layer 12 is increased by the semi-curing of the adhesive layer 23.
  • the carrier film 21 attached to the insulating layer 22 of the coverlay 20 is removed as shown in FIG. 3 (j).
  • the insulating layer 22 to which the carrier film 21 is attached is in a state in which the bonding strength with the adhesive layer 23 is increased as the adhesive layer 23 is semi-cured. Therefore, in the process of removing the carrier film 21, It is possible to prevent the insulating layer 22 from being peeled off from the adhesive layer 23.
  • the carrier film 21 of the coverlay 20 The bonding surface between the metal layer 12 and the conductive adhesive layer 13 may be separated or the bonding surface between the conductive adhesive layer 13 and the printed circuit board PCB may be prevented from being separated.
  • the adhesive layer 23 is heated and pressed so as to be in a C-Stage state.
  • the complete curing condition of the adhesive layer 23 may be changed depending on the composition of the adhesive layer 23.
  • the conductive adhesive layer 13 of the shielding film 10 can be completely cured in the process of performing the adhesive layer full curing step (S187), so that the conductive adhesive layer completely cured in the second embodiment (S170) can be omitted.
  • the adhesive layer 23 of the coverlay 20 may be completely cured under the same conditions as those of the conductive adhesive layer 13 of the shielding film 10.
  • the opening 22a is formed in the insulating layer 22 of the coverlay 20 which is laminated on the metal layer 12 of the shielding film 10 so that the ground extension terminal of the printed circuit board PCB is to be formed, Respectively. That is, the metal layer 12 of the shielding film 10 is electrically connected to the ground circuit of the printed circuit board PCB through the conductive adhesive layer 13, and the metal layer 12 connected to the ground circuit is electrically connected to the insulating layer 22, The exposed metal layer 12 can be utilized as a ground extending terminal of the printed circuit board PCB.
  • the insulating layer 22 of the coverlay 20 is preferably made of the same material as the insulating layer 22 of the second embodiment.
  • a metal layer part removing step (S190) and a plating layer forming step (S200) are performed as shown in (k) and (l)
  • the plating layer 30 is formed on the exposed metal layer 12 through the opening 22a of the insulating layer 22.
  • the coverlay 20 when used, it may proceed sequentially from the step of preparing the shielding film (S110) to the step of forming the insulating layer (S180 ') as in the present embodiment, And the coverlay 20 may be laminated and pressed, respectively.
  • FIG. 4 is a cross-sectional view of an electromagnetic wave shielding film according to a fourth embodiment of the present invention.
  • An electromagnetic wave shielding film 10 ' according to a fourth embodiment of the present invention includes a carrier film 11, a conductive metal layer 12 formed on one side of the carrier film 11, A conductive layer 15 formed on the conductive layer 15 and a conductive adhesive layer 13 formed on the conductive layer 15 and a protective film 14 formed on the conductive adhesive layer 13.
  • the conductive layer 15 is preferably made of a material having a relatively higher electrical conductivity than the metal layer 12 and may be formed by coating a silver ink having an excellent electrical conductivity on the metal layer 12.
  • a coating method of the conductive layer 15 gravure coating, screen printing, slot die, spin coating, or the like can be used.
  • FIG. 5 is a cross-sectional view of a process for manufacturing a printed circuit board according to a fifth embodiment of the present invention.
  • the method for manufacturing a printed circuit board according to the fifth embodiment of the present invention shown in Fig. 5 differs from the method for manufacturing a printed circuit board of the second embodiment in that the electromagnetic wave shielding film 10 'of the fourth embodiment of the present invention is used, .
  • the method for fabricating a printed circuit board according to the fifth embodiment of the present invention includes a step of preparing a shielding film S110 ', a step of forming a shielding film S120, a step of removing a protective film S130, The conductive adhesive layer semi-curing step S150, the carrier film removing step S160, the insulating layer forming step S180, the metal layer part removing step S190, and the plating layer forming step S200.
  • the shielding film 10 ' is prepared.
  • This shielding film 10 ' can be made of the electromagnetic wave shielding film 10' of the fourth embodiment of the present invention.
  • the conductive layer 15 is formed on the metal layer 12 by coating a silver ink having a relatively higher electrical conductivity than the metal layer 12 on the metal layer 12.
  • the silver ink may be gravure-coated, screen-printed, slot- Or the like on the metal layer 12.
  • the remaining steps except for the shielding film preparing step S110 ' are the same as those of the second embodiment shown in FIG. 2, so that a detailed description of the same steps will be omitted.
  • FIG. 6 is a cross-sectional view of a process for manufacturing a printed circuit board according to a sixth embodiment of the present invention.
  • a method of manufacturing a printed circuit board includes the steps of preparing a shielding film S110 ', removing a shielding film S120, removing a protective film S130, a bonding step S140, A carrier film removing step S160, an insulating layer forming step S180 ', a metal layer part removing step S190, and a plating layer forming step S200.
  • the step of preparing the shielding film (S110 ') is the same as the step of preparing the shielding film (S110') of the fifth embodiment shown in FIG. 5, and the remaining steps except for the step of preparing the shielding film (S 120) to the plating layer forming step (S 200) of the third embodiment shown in FIG. 3, detailed description of the same steps will be omitted.
  • FIG. 7 is a cross-sectional view showing a process for manufacturing an electromagnetic wave shielding film according to a seventh embodiment of the present invention.
  • a metal layer 12 provided in the form of a copper foil excellent in electric conductivity is prepared as shown in FIG. 7A.
  • a conductive adhesive is coated on one surface of the metal layer 12 and then dried to form a conductive adhesive layer 13, as shown in FIG. 7 (b).
  • the conductive adhesive layer 13 may include a conductive filler and a binder resin, a curing agent, a flame retardant, and an additive.
  • the conductive adhesive layer 13 may be formed by applying a conductive adhesive composition to the metal layer 12 .
  • the first protective film 14 may be formed of a PET film coated with a silicon release coating.
  • an insulation layer 22 may be formed by coating an insulating paste on the other surface of the metal layer 12 and then drying the insulating paste as shown in FIG. 7D.
  • the insulating paste may include a binder resin, a flame retardant, a colorant, a curing agent, and the like.
  • the second protective film forming step S250 a method of laminating the second protective film 14 ', which has been subjected to the silicon release treatment, on the insulating layer 22 may be used as shown in FIG. 7E.
  • the second protective film 14 ' may be a PET film coated with a silicon release coating.
  • the electromagnetic wave shielding film manufactured as described above may be used for protecting the conductive adhesive layer 13 from the step of removing the protective film (S130) to the step of completely hardening the conductive adhesive layer (S170) shown in FIGS. 2C to 2E
  • the first protective film 14 is peeled to expose the conductive adhesive layer 13 and the exposed conductive adhesive layer 13 is semi-cured while being bonded to the printed circuit board,
  • the electromagnetic wave shielding film can be bonded onto the printed circuit board through the step of completely curing the conductive adhesive layer 13 after removing the protective film 14 '.
  • the bonding strength between the conductive adhesive layer 13 and the metal layer 12 is increased in the state where the conductive adhesive layer 13 is semi-cured, the metal layer 12 and the conductive adhesive layer 13 Or the bonding surface of the conductive adhesive layer 13 and the printed circuit board can be prevented from being separated from each other.
  • FIG. 8 is a cross-sectional view of a process for manufacturing an electromagnetic wave shielding film according to an eighth embodiment of the present invention.
  • the method of manufacturing an electromagnetic wave shielding film according to an eighth embodiment of the present invention may include a metal layer preparing step S210, a conductive layer forming step S211 for forming a conductive layer 15 on one surface of the metal layer 12, A conductive adhesive layer forming step S220 for forming a conductive adhesive layer 13 on the conductive layer 15 and a first protective film forming step S230 for joining the first protective film 14 on the conductive adhesive layer 13 Forming an insulating layer 22 on the other surface of the metal layer 12 and forming a second protective film 14 'on the insulating layer 22, Forming step S250.
  • a silver ink having an excellent electrical conductivity may be coated on the metal layer 12 to form the conductive layer 15 as shown in FIG. 8B.
  • the coating method of the conductive layer gravure coating, screen printing, slot die, spin coating, or the like can be used.
  • the conductive layer 15 is formed on the metal layer 12 as described above, the electromagnetic wave shielding effect can be further improved.
  • a conductive adhesive is coated on the conductive layer 15 and then dried to form a conductive adhesive layer 13, as shown in FIG. 8C.
  • the remaining steps except for the conductive layer forming step S211 are the same as those of the seventh embodiment, so a detailed description of the same steps will be omitted.
  • the resulting conductive adhesive was filtered through a filter made of SUS 1000 mesh to obtain an anisotropy conductive adhesive composition.
  • the anisotropic conductive adhesive composition thus prepared was coated on a copper foil (copper foil having a thickness of 3 mu m) with a carrier using a slot die and heated at 150 DEG C for 2 minutes to form an anisotropic conductive adhesive layer having a dry thickness of 3 mu m . Thereafter, a PET protective film having a thickness of 50 ⁇ and treated with silicone was laminated on the anisotropic conductive adhesive layer.
  • the resulting conductive adhesive was filtered through a filter made of SUS 1000 mesh to obtain an anisotropy conductive adhesive composition.
  • the resulting anisotropic conductive adhesive composition was coated on a copper foil (copper foil 6 ⁇ m thick) having a carrier by a slot die and heated at 150 ° C. for 2 minutes to form an anisotropic conductive adhesive layer having a dry thickness of 3 ⁇ m . Thereafter, a PET protective film having a thickness of 50 ⁇ and treated with silicone was laminated on the anisotropic conductive adhesive layer.
  • the resulting conductive adhesive was filtered through a filter made of SUS 1000 mesh to obtain an anisotropy conductive adhesive composition.
  • the anisotropic conductive adhesive composition thus prepared was coated on a copper foil (copper foil having a thickness of 10 mu m) coated with a carrier using a slot die and heated at 150 DEG C for 2 minutes to form an anisotropic conductive adhesive layer having a dry thickness of 3 mu m . Thereafter, a PET protective film having a thickness of 50 ⁇ and treated with silicone was laminated on the anisotropic conductive adhesive layer.
  • the conductive adhesive thus prepared was filtered with a filter made of SUS 1000 mesh to obtain an isotropic conductive adhesive composition.
  • the isotropic conductive adhesive composition thus prepared was coated on a surface of a copper foil (copper foil having a thickness of 3 mu m) with a carrier using a slot die and heated at 150 DEG C for 2 minutes to form an isotropic conductive adhesive layer having a dry thickness of 7 mu m . Thereafter, an acrylic adhesive-treated PET protective film having a thickness of 50 ⁇ was laminated on the isotropic conductive adhesive layer.
  • a silver ink (TEC-CO-021, manufactured by InkTec Co., Ltd.) was coated on the surface of a copper foil (copper foil having a copper thickness of 3 mu m) having a carrier film attached thereto by a micro gravure coater and then heated and sintered at 150 DEG C for 4 minutes, Silver metal layer.
  • the conductive adhesive thus prepared was filtered through a SUS 1000 mesh filter to obtain an anisotropy conductive adhesive composition.
  • the anisotropic conductive adhesive composition thus prepared was coated on a copper foil (copper foil having a thickness of 3 mu m) with a carrier using a slot die and heated at 150 DEG C for 2 minutes to form an anisotropic conductive adhesive layer having a dry thickness of 3 mu m . Thereafter, a PET protective film having a thickness of 50 ⁇ and treated with silicone was laminated on the anisotropic conductive adhesive layer.
  • the resulting conductive adhesive was filtered through a filter made of SUS 1000 mesh to obtain an anisotropy conductive adhesive composition.
  • the anisotropic conductive adhesive composition thus prepared was coated on a copper foil (copper foil having a thickness of 3 mu m) with a carrier using a slot die and heated at 150 DEG C for 2 minutes to form an anisotropic conductive adhesive layer having a dry thickness of 3 mu m . Thereafter, a PET protective film having a thickness of 50 ⁇ and treated with silicone was laminated on the anisotropic conductive adhesive layer.
  • a modified epoxy resin (Arakid-9201N, Arakawa Chemical Industries, Ltd.) was added to 100 parts by weight of this dispersion, and the mixture was stirred at a low speed for 1 hour and filtered through SUS1000 mesh to obtain an insulating layer composition.
  • the insulating layer composition was coated using a slot die and heated at 150 DEG C for 5 minutes to form an insulation layer having a dry thickness of 5 mu m, .
  • the conductive adhesive thus prepared was filtered with a filter made of SUS 1000 mesh to obtain an isotropic conductive adhesive composition.
  • the isotropic conductive adhesive composition thus prepared was coated on a surface of a copper foil (copper foil having a thickness of 3 mu m) with a carrier using a slot die and heated at 150 DEG C for 2 minutes to form an isotropic conductive adhesive layer having a dry thickness of 7 mu m . Thereafter, an acrylic adhesive-treated PET protective film having a thickness of 50 ⁇ was laminated on the isotropic conductive adhesive layer.
  • a modified epoxy resin (Arakid-9201N, Arakawa Chemical Industries, Ltd.) was added to 100 parts by weight of this dispersion, and the mixture was stirred at a low speed for 1 hour and filtered through SUS1000 mesh to obtain an insulating layer composition.
  • the insulating layer composition was coated using a slot die and heated at 150 DEG C for 5 minutes to form an insulation layer having a dry thickness of 5 mu m, .
  • a modified epoxy resin (Arakid-9201N, Arakawa Chemical Industries, Ltd.) was added to 100 parts by weight of this dispersion, and the mixture was stirred at a low speed for 1 hour and filtered through SUS1000 mesh to obtain an insulating layer composition.
  • the insulating layer composition was applied to a 50 mu m-thick PET film treated with silicone and then dried at 150 DEG C for 2 minutes to obtain a coating film having a dry thickness of 7 mu m.
  • a silver metal layer having a thickness of 0.2 ⁇ ⁇ was formed on the insulating layer by sputtering.
  • the resulting conductive adhesive was filtered through a filter made of SUS 1000 mesh to obtain an anisotropy conductive adhesive composition.
  • the prepared anisotropic conductive adhesive composition was coated on the surface of the silver metal layer using a slot die and heated at 150 DEG C for 2 minutes to form an anisotropic conductive adhesive layer having a dry thickness of 3 mu m. Then, a 50 ⁇ m thick PET protective film treated with silicone was laminated to an anisotropic conductive adhesive layer to prepare Comparative Example 1.
  • a modified epoxy resin (Arakid-9201N, Arakawa Chemical Industries, Ltd.) was added to 100 parts by weight of this dispersion, and the mixture was stirred at a low speed for 1 hour and filtered through SUS1000 mesh to obtain an insulating layer composition.
  • the insulating layer composition was applied to a 50 mu m-thick PET film treated with silicone and then dried at 150 DEG C for 2 minutes to obtain a coating film having a dry thickness of 7 mu m.
  • the conductive adhesive thus prepared was filtered with a filter made of SUS 1000 mesh to obtain an isotropic conductive adhesive composition.
  • the isotropic conductive adhesive composition thus prepared was coated on the surface of a PET release film of a silicon release mold using a slot die and heated at 150 ⁇ for 3 minutes to form an isotropic conductive adhesive layer having a dry thickness of 12 ⁇ to form an insulating layer on the silicone release PET film Comparative Example 2 was prepared by roll lamination at a temperature of 100 ⁇ and a pressure of 7 bar.
  • the test sample was cut to a size of 25.4 mm in length and 25 cm in length and then the protective film of the conductive adhesive layer was removed, and a 25 ⁇ m thick PI film (Kapton, DuPont) was placed on one surface thereof. (Pressure: 3 bar, 20 seconds), and then a 25 ⁇ m thick bonding sheet was laminated on the copper surface or the insulating layer surface from which the carrier film was removed, and hot press (press condition: temperature: 150 ° C., pressure: 40 kgf / cm 2, time: 60 minutes) The adhesive layer was fully cured (C-stage) under heating and pressurization. And the tensile strength at a tensile rate of 58.8 M / min and a 180 degree was measured under an atmosphere of 25 ° C and 50% RH. The same sample was tested 3 times and the average value was indicated.
  • PI film Kerpton, DuPont
  • the protective film of the electromagnetic wave shielding film was removed and a PI film (Kapton, DuPont) having a thickness of 25 mu m was attached by using a folding machine (temperature: 150 DEG C, pressure 3 bar, 20 seconds)
  • a folding machine temperature: 150 DEG C, pressure 3 bar, 20 seconds
  • To 4 were prepared by completely removing the carrier and laminating an insulating film (BT-012, manufactured by InkTec Co., Ltd.) and heating and pressurizing the adhesive layer by Hot Press (press condition: temperature: 150 ⁇ , pressure: 40 kgf / C-stage).
  • the cured samples were visually observed at 295 ° C solder for 1 minute and 2 times, and evaluated for bubble, lifting, and appearance color change. Five samples of each sample were tested to indicate the number of appearance defects.
  • a FRP rod (width 5 mm, length 25 cm) to be used as a level step as shown in Fig. 12 was placed on a PI film (Kapton, DuPont) having a thickness of 100 ⁇ , 200 ⁇ , 300 ⁇ and 400 ⁇ , (Temperature: 150 ° C, pressure: 3 bar, 20 seconds), and then the carrier was removed and the insulating film (BT- 012, manufactured by InkTec Co., Ltd.) was laminated and pressurized by a hot press (press condition: temperature: 150 DEG C, pressure: 40 kgf / cm2, time: 60 minutes) to completely cure the adhesive layer (C-stage).
  • a hot press press condition: temperature: 150 DEG C, pressure: 40 kgf / cm2, time: 60 minutes
  • the surface of the insulating layer of the sample was observed with a hand microscope for cracks at the stepped portions (see the photograph of the surface of FIG. 12). Five evaluation samples were prepared, and the number of cracks was indicated by the step thickness.
  • the prepared sample was allowed to stand in a 85 ° C and 85% RH chamber for 72 hours, and the appearance and resistance change were measured.
  • the PI film Kerpton, DuPont
  • the carrier was removed, Ltd.
  • hot pressing press condition: temperature: 150 ⁇ ⁇ , pressure: 40 kgf / cm2, time: 60 minutes

Abstract

The present invention relates to an electromagnetic wave shielding film, a method for manufacturing a printed circuit board, and a method for manufacturing an electromagnetic wave shielding film. The electromagnetic wave shielding film according to the present invention comprises: a carrier film; a conductive metal layer formed on one surface of the carrier film; a conductive bonding layer formed on the metal layer; and a protection film formed on the conductive bonding layer.

Description

전자파 차폐필름, 인쇄회로기판 제조방법 및 전자파 차폐필름 제조방법Electromagnetic wave shielding film, method of manufacturing printed circuit board and method of manufacturing electromagnetic wave shielding film
본 발명은 전자파 차폐필름, 인쇄회로기판 제조방법 및 전자파 차폐필름 제조방법에 관한 것으로서, 보다 상세하게는 인쇄회로기판에 부착되는 전자파 차폐필름의 접지면적을 넓게 확장시킬 수 있어 그라운드필름을 생략할 수 있으며, 우수한 환경신뢰성 및 내열성, 단차 특성을 제공할 수 있는 고속 전송용 전자파 차폐필름, 인쇄회로기판 제조방법 및 전자파 차폐필름 제조방법에 관한 것이다.The present invention relates to an electromagnetic wave shielding film, a method of manufacturing a printed circuit board, and a method of manufacturing an electromagnetic wave shielding film. More particularly, the present invention can broaden the ground area of an electromagnetic wave shielding film attached to a printed circuit board, A method for manufacturing a printed circuit board, and a method for manufacturing an electromagnetic wave shielding film, which can provide excellent environmental reliability, heat resistance and step property.
휴대전화, 디지털 카메라, 노트북PC, 사무기기, 의료기기 등의 전자기기의 내부 소자로부터 발생되는 전자파는 두통, 시력저하, 뇌종양, 순환계 이상 등 각종 질병에 영향을 미칠 수 있다고 보고되고 있어, 전자파의 인체에 대한 유해성 논란이 가중되고 있다. 또한 전자제품의 경량화 추세에 의해 소자의 집적도가 증가하면서 각 구성소자로부터 발생되는 불요전자파(electromagnetic noise)는 주변 소자의 오작동을 일으켜 기기장애의 원인이 되기도 한다. 따라서 최근에는 컴퓨터, 휴대전화, 의료기기, 멀티미디어 플레이어 등의 가정용, 사무용, 산업용 전자제품으로부터 발생되는 전자파에 대한 차폐규격의 강화와 더불어 EMI(electromagnetic interference) 및 RFI(Radio Frequency interference) 방출에 대한 규제도 강화되고 있어 각종 전자기기 및 부품의 전자파차폐 대책이 중요한 과제로 대두되고 있다.It has been reported that electromagnetic waves generated from internal elements of electronic devices such as mobile phones, digital cameras, notebook PCs, office equipment and medical devices can affect various diseases such as headache, visual loss, brain tumor, circulatory system abnormality, The controversy about the harmfulness to human body is increasing. In addition, due to the weight reduction of electronic products, the degree of integration of devices increases, and electromagnetic noise generated from each component causes malfunction of peripheral devices, which may cause device failure. Recently, shielding standards for electromagnetic waves generated from household, office, and industrial electronic products such as computers, mobile phones, medical devices, and multimedia players have been strengthened and restrictions on EMI (electromagnetic interference) and RFI And measures against electromagnetic wave shielding of various electronic devices and parts are becoming important tasks.
최근 들어서는 사무용기기, 통신기기, 휴대전화 등의 고성능화 및 소형화의 요청에 응하기 위해, 좁고 복잡한 구조의 플렉서블 프린트 배선판(이하 FPCB)이 많이 사용되고 있다. FPCB는 전자파 노이즈를 차단하기 위한 실드 필름(Shield film)이 부착되어 사용되어 있다.In recent years, a flexible printed wiring board (hereinafter referred to as FPCB) having a narrow and complicated structure has been widely used in order to meet demands for high performance and miniaturization of office equipment, communication equipment, mobile phones and the like. The FPCB is used with a shield film for shielding electromagnetic noise.
종래의 실드필름으로는, 베이스필름(base film)과 그 위에 적층한 도전층을 기본 구성으로 되어 있는 것이 널리 알려져 있다. 통상, 이 기본 구성에 베이스필름측에는 작업성을 위한 보강 필름을 사용하고, 도전층에는 보호 필름을 사용 제품화하여 사용되고 있다.It is widely known that a conventional shield film has a base film and a conductive layer laminated thereon. Normally, a reinforcing film for workability is used for the base film side in this basic constitution, and a protective film is used for the conductive layer to manufacture a product.
일본 특개평 제5-3395호에는 우수한 실드효과를 얻기 위해 금속 박막을 사용하는 방법을 기술하고 있고, 일본 특개평 제7-122882호에서는 금속필러를 사용한 전도성 접착층과 금속박막을 조합시킨 방법을 기술하고 있다.Japanese Patent Application Laid-Open No. 5-3395 discloses a method of using a metal thin film to obtain an excellent shielding effect. Japanese Patent Laid-Open No. 7-122882 discloses a method of combining a conductive adhesive layer and a metal thin film using a metal filler .
하지만, 전자파 차폐필름을 캐리어필름과 금속층이 합지된 상태에서, 금속층 상에 전도성 접착층을 도포 및 건조하고, 전도성 접착층에 보호필름을 라미네이팅하여 제조하는 경우에는, 상기 캐리어필름과 금속층의 결합력이 금속층과 전도성 접착층의 결합력에 비해 상대적으로 견고하기 때문에, 캐리어필름을 박리하는 과정에서 금속층이 캐리어필름에 부착된 상태로 전도성 접착층으로부터 박리되거나, 금속층과 전도성 접착층 사이가 이격되는 들뜸 현상이 발생하는 문제가 있다.However, when the electromagnetic wave shielding film is produced by applying and drying a conductive adhesive layer on the metal layer in the state that the carrier film and the metal layer are laminated and laminating a protective film on the conductive adhesive layer, There is a problem that the metal layer is peeled off from the conductive adhesive layer in a state where the metal layer is attached to the carrier film or peeling phenomenon occurs in which the metal layer and the conductive adhesive layer are separated from each other during the peeling of the carrier film .
뿐만 아니라, 최근에 생산되는 전자기기는 정밀하고 경박단소형으로 제작되고 있으며, 이러한 경향에 따라 회로패턴의 선폭과 간격이 좁아지게 되면서 그라운드(Ground)를 넓게 확보할 수 없기 때문에 인쇄회로기판 제조 시에 별도의 그라운드 필름을 사용해야 하는 문제가 있다. In addition, recently produced electronic devices are manufactured with precision, light weight and small size. Due to this tendency, the line width and spacing of the circuit patterns are narrowed, and the ground can not be ensured widely. There is a problem in that a separate ground film must be used.
따라서, 본 발명의 목적은, 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 인쇄회로기판에 부착되는 전자파 차폐필름의 접지면적을 넓게 확장시켜 그라운드필름을 생략할 수 있는 전자파 차폐필름, 인쇄회로기판 제조방법 및 전자파 차폐필름 제조방법을 제공함에 있다.SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an electromagnetic wave shielding film capable of eliminating a ground film by widening a ground area of an electromagnetic wave shielding film attached to a printed circuit board, And a method for manufacturing an electromagnetic wave shielding film.
또한, 본 발명의 목적은, 산화 방지 특성과 높은 내열성 특성을 갖는 고속 전송용 전자파 차폐필름, 인쇄회로기판 제조방법 및 전자파 차폐필름 제조방법을 제공할 수 있다.It is also an object of the present invention to provide an electromagnetic wave shielding film for high-speed transmission, a method of manufacturing a printed circuit board, and a method of manufacturing an electromagnetic wave shielding film having antioxidation characteristics and high heat resistance characteristics.
그리고, 전도성 접착층을 반경화시킨 상태에서 캐리어 필름을 박리함으로써 캐리어필름의 박리과정에서 금속층이 전도성 접착층으로부터 임의로 분리되는 것을 방지할 수 있는 전자파 차폐필름, 인쇄회로기판 제조방법 및 전자파 차폐필름 제조방법을 제공할 수 있다.A method of manufacturing an electromagnetic wave shielding film, a method of manufacturing a printed circuit board, and a method of manufacturing an electromagnetic wave shielding film, which can prevent the metal layer from being arbitrarily separated from the conductive adhesive layer in the peeling process of the carrier film by peeling the carrier film in a state where the conductive adhesive layer is semi-cured .
상기 목적은, 본 발명에 따라, 캐리어필름;과, 상기 캐리어필름의 일면에 형성된 전도성 금속층;과, 상기 금속층 상에 형성된 전도성 접착층; 및 상기 전도성 접착층 상에 형성된 보호필름;을 포함하는 전자파 차폐필름에 의해 달성된다.According to an aspect of the present invention, there is provided a semiconductor device comprising: a carrier film; a conductive metal layer formed on one surface of the carrier film; a conductive adhesive layer formed on the metal layer; And a protective film formed on the conductive adhesive layer.
여기서, 상기 전도성 접착층은 바인더 수지 및 전도성 필러를 포함하는 것이 바람직하다.Here, the conductive adhesive layer preferably includes a binder resin and a conductive filler.
또한, 상기 전도성 필러는 은, 구리, 알루미늄, 니켈, 금, 아연 또는 철 입자를 포함하며, 상기 입자는 판상(flake), 구상(spherical), 가지상(dendrite) 또는 그레뉼(granule)의 형태를 갖는 것이 바람직하다.The conductive filler may include silver, copper, aluminum, nickel, gold, zinc or iron particles, and the particles may be in the form of flake, spherical, dendrite or granule .
또한, 상기 입자는 3㎛~20㎛의 크기를 갖는 것이 바람직하다.Further, the particles preferably have a size of 3 mu m to 20 mu m.
또한, 상기 바인더 수지는, 폴리비닐부티랄, 셀룰로오스, 폴리우레탄, 폴리에스테르, 에폭시, 페녹시, 노볼락, 알키드, 아마이드, 이미드 수지 또는 이들의 변성물 중 적어도 하나인 것이 바람직하다.It is preferable that the binder resin is at least one of polyvinyl butyral, cellulose, polyurethane, polyester, epoxy, phenoxy, novolak, alkyd, amide, imide resin or modified products thereof.
또한, 상기 금속층과 전도성 접착층 사이에는 전도층이 개재되는 것이 바람직하다.In addition, it is preferable that a conductive layer is interposed between the metal layer and the conductive adhesive layer.
또한, 상기 전도층은 상기 금속층에 비해 상대적으로 전기전도율이 우수한 물질로 이루어지는 것이 바람직하다.In addition, it is preferable that the conductive layer is made of a material having an electrical conductivity higher than that of the metal layer.
또한, 상기 전도층은 은(Silver) 잉크를 금속층 상에 코팅하여 형성되는 것이 바람직하다.In addition, the conductive layer is preferably formed by coating a silver ink on a metal layer.
또한, 상기 금속층은, 니켈, 구리, 알루미늄, 아연 또는 이들의 합금으로부터 1종 이상 선택되는 것이 바람직하다.The metal layer is preferably at least one selected from the group consisting of nickel, copper, aluminum, zinc, and alloys thereof.
또한, 상기 금속층은 2㎛ ~ 10㎛의 두께를 갖는 호일(foil)로 이루어지는 것이 바람직하다.The metal layer is preferably formed of a foil having a thickness of 2 to 10 mu m.
본 발명의 목적은, 캐리어필름, 금속층, 전도성 접착층 및 보호필름이 차례로 적층된 차폐필름을 준비하는 차폐필름 준비 단계;와, 상기 차폐필름의 보호필름을 제거하는 보호필름 제거 단계;와, 상기 차폐필름의 전도성 접착층을 인쇄회로기판에 접합하는 접합 단계;와, 상기 차폐필름의 캐리어필름을 제거하는 캐리어필름 제거단계; 및 상기 인쇄회로기판의 그라운드 확장단자가 형성될 영역에 개구부가 형성된 절연층을 상기 차폐필름의 금속층 상에 형성하는 절연층 형성 단계;를 포함하는 인쇄회로기판 제조방법에 의해서도 달성될 수 있다.An object of the present invention is to provide a method of manufacturing a shielding film, comprising the steps of: preparing a shielding film in which a carrier film, a metal layer, a conductive adhesive layer and a protective film are sequentially laminated; a protective film removing step of removing the protective film of the shielding film; A bonding step of bonding the conductive adhesive layer of the film to the printed circuit board; removing the carrier film of the shielding film; And forming an insulation layer on the metal layer of the shielding film, the insulation layer having an opening formed in an area where the ground extension terminal of the printed circuit board is to be formed.
여기서, 상기 절연층 형성 단계에서는, 상기 금속층 상에 절연성 페이스트를 프린팅하여 절연층을 형성하는 것이 바람직하다.Here, in the insulating layer forming step, it is preferable that an insulating layer is formed by printing an insulating paste on the metal layer.
또한, 상기 절연층 형성 단계에서는, 개구부가 형성된 절연필름을 상기 금속층 상에 붙여 절연층을 형성하는 것이 바람직하다.In the insulating layer forming step, it is preferable to form an insulating layer by attaching an insulating film having openings on the metal layer.
또한, 상기 절연층 형성 단계는, 캐리어필름, 절연층, 접착층 및 보호필름이 순서대로 적층된 커버레이를 준비하는 커버레이 준비 단계;와, 상기 커버레이를 타발하여 상기 인쇄회로기판의 그라운드 확장단자가 형성될 영역에 개구부를 형성하는 타발단계;와, 상기 커버레이의 보호필름을 제거하는 보호필름 제거 단계; 및 상기 차폐필름의 금속층과 커버레이의 접착층을 합지하는 합지 단계;를 포함하는 것이 바람직하다.In addition, the insulating layer forming step may include: a coverlay preparing step of preparing a coverlay in which a carrier film, an insulating layer, an adhesive layer, and a protective film are laminated in order; A protective film removing step of removing the protective film of the coverlay; And a lapping step of lapping the metal layer of the shielding film and the adhesive layer of the coverlay.
또한, 상기 절연층의 개구부를 통해 노출된 금속층에 도금층을 형성하는 도금층 형성 단계;를 더 포함하는 것이 바람직하다.The method may further include forming a plating layer on the metal layer exposed through the opening of the insulating layer.
또한, 상기 도금층 형성 단계에 앞서, 상기 절연층의 개구부를 통해 노출된 금속층을 두께방향으로 일부 제거하는 금속층 일부 제거 단계;를 더 포함하는 것이 바람직하다.The method may further include removing a metal layer partially removing the metal layer exposed through the opening of the insulating layer in the thickness direction prior to the plating layer forming step.
또한, 상기 캐리어필름 제거단계에 앞서, 상기 전도성 접착층을 반경화시키는 전도성 접착층 반경화 단계;를 수행하는 것이 바람직하다.In addition, it is preferable to perform the semi-curing step of the conductive adhesive layer to semi-cure the conductive adhesive layer prior to the carrier film removing step.
또한, 상기 캐리어필름 제거단계 이후, 상기 전도성 접착층을 완전경화시키는 단계;를 수행하는 것이 바람직하다.Further, it is preferable to perform the step of completely curing the conductive adhesive layer after the step of removing the carrier film.
또한, 상기 합지 단계 이후, 상기 커버레이의 캐리어필름을 제거하는 커버레이 캐리어필름 제거단계;를 수행하는 것이 바람직하다.Further, it is preferable to perform a coverlay carrier film removing step of removing the carrier film of the coverlay after the lapping step.
또한, 상기 커버레이 캐리어필름 제거단계에 앞서, 상기 커버레이의 접착층을 반경화시키는 접착층 반경화 단계;를 수행하는 것이 바람직하다.It is also preferable to perform an adhesive layer semi-curing step of semi-curing the adhesive layer of the coverlay prior to the step of removing the coverlay carrier film.
또한, 상기 커버레이 캐리어필름 제거단계 이후, 상기 커버레이의 접착층을 완전경화시키는 접착층 완전경화 단계;를 수행하는 것이 바람직하다.Further, it is preferable to perform the step of completely curing the adhesive layer to completely cure the adhesive layer of the coverlay after the step of removing the coverlay carrier film.
또한, 상기 차폐필름 준비 단계에서는 상기 금속층과 전도성 접착층 사이에는 상기 금속층에 비해 상대적으로 전기전도율이 우수한 재질의 전도층을 형성하는 것이 바람직하다.In addition, in the shielding film preparation step, it is preferable to form a conductive layer of a material having a relatively higher electric conductivity than the metal layer between the metal layer and the conductive adhesive layer.
본 발명의 목적은, 박막 형태의 금속층을 준비하는 금속층 준비단계;와, 상기 금속층의 일면에 전도성 접착층을 형성하는 전도성 접착층 형성단계;와, 상기 전도성 접착층 상에 제1보호필름을 합지하는 제1보호필름 형성단계;와, 상기 금속층의 타면에 절연층을 형성하는 절연층 형성단계; 및 상기 절연층 상에 제2보호필름을 형성하는 제2보호필름 형성단계;를 포함하는 전자파 차폐필름 제조방법에 의해서도 달성될 수 있다.A conductive adhesive layer forming step of forming a conductive adhesive layer on one surface of the metal layer; a step of forming a conductive adhesive layer on the conductive adhesive layer, the conductive adhesive layer forming a first protective film on the conductive adhesive layer; Forming an insulating layer on the other surface of the metal layer; And a second protective film forming step of forming a second protective film on the insulating layer.
또한, 상기 전도성 접착층 형성단계에 앞서, 상기 금속층의 일면에 전도층을 형성하는 전도층 형성단계;를 수행하는 것이 바람직하다.In addition, it is preferable to perform a conductive layer forming step of forming a conductive layer on one surface of the metal layer prior to the step of forming the conductive adhesive layer.
또한, 상기 전도층은 상기 금속층에 비해 상대적으로 전기전도율이 우수한 물질로 이루어지는 것이 바람직하다.In addition, it is preferable that the conductive layer is made of a material having an electrical conductivity higher than that of the metal layer.
또한, 상기 전도층은 은(Silver) 잉크를 금속층 상에 코팅하여 형성되는 것이 바람직하다.In addition, the conductive layer is preferably formed by coating a silver ink on a metal layer.
본 발명에 따르면, 인쇄회로기판에 부착되는 전자파 차폐필름의 접지면적을 넓게 확장시켜 그라운드필름을 생략할 수 있는 전자파 차폐필름, 인쇄회로기판 제조방법 및 전자파 차폐필름 제조방법이 제공된다. 이에 미세 회로 기판의 제조 시 그라운드를 넓게 가져갈 수 없는 어려움을 해소할 수 있어, 미세 회로 기판의 제조의 용이성, 이에 따른 제조 공정 절감, 생산성 향상 및 제조비용 절감 효과를 제공할 수 있다. According to the present invention, there is provided an electromagnetic wave shielding film, a method of manufacturing a printed circuit board, and a method of manufacturing an electromagnetic wave shielding film, which can enlarge a ground area of an electromagnetic wave shielding film attached to a printed circuit board to eliminate a ground film. Therefore, it is possible to solve the difficulty that the ground can not be widened in manufacturing the microcircuit substrate, so that it is possible to provide a manufacturing effect of the microcircuit substrate, thereby reducing the manufacturing process, productivity, and manufacturing cost.
또한, 산화 방지 특성과 높은 내열성 특성을 갖는 고속 전송용 전자파 차폐필름이 적용된 인쇄회로기판을 제조할 수 있다. In addition, a printed circuit board to which an electromagnetic wave shielding film for high-speed transmission having anti-oxidation characteristics and high heat resistance characteristics are applied can be manufactured.
그리고, 전도성 접착층을 반경화시킨 상태에서 캐리어 필름을 박리함으로써 캐리어필름의 박리과정에서 금속층이 전도성 접착층으로부터 임의로 분리되는 것을 방지할 수 있게 된다.The carrier film is peeled off while the conductive adhesive layer is semi-cured, thereby preventing the metal layer from being separated from the conductive adhesive layer in the peeling process of the carrier film.
도 1은 본 발명의 제1실시예에 따른 전자파 차폐필름의 단면도, 1 is a cross-sectional view of an electromagnetic wave shielding film according to a first embodiment of the present invention,
도 2는 본 발명의 제2실시예에 따른 인쇄회로기판 제조방법의 공정별 단면도, 2 is a cross-sectional view of a process for manufacturing a printed circuit board according to a second embodiment of the present invention,
도 3은 본 발명의 제3실시예에 따른 인쇄회로기판 제조방법의 공정별 단면도,FIG. 3 is a cross-sectional view of a process for manufacturing a printed circuit board according to a third embodiment of the present invention,
도 4는 본 발명의 제4실시예에 따른 전자파 차폐필름의 단면도, 4 is a cross-sectional view of an electromagnetic wave shielding film according to a fourth embodiment of the present invention,
도 5는 본 발명의 제5실시예에 따른 인쇄회로기판 제조방법의 공정별 단면도, 5 is a cross-sectional view of a process for manufacturing a printed circuit board according to a fifth embodiment of the present invention,
도 6은 본 발명의 제6실시예에 따른 인쇄회로기판 제조방법의 공정별 단면도, 6 is a sectional view of a process for manufacturing a printed circuit board according to a sixth embodiment of the present invention,
도 7은 본 발명의 제7실시예에 따른 전자파 차폐필름 제조방법의 공정별 단면도, 7 is a cross-sectional view of a process for manufacturing an electromagnetic wave shielding film according to a seventh embodiment of the present invention,
도 8은 본 발명의 제8실시예에 따른 전자파 차폐필름 제조방법의 공정별 단면도, 8 is a cross-sectional view of an electromagnetic wave shielding film manufacturing method according to an eighth embodiment of the present invention,
도 9는 실시예 1~7 및 비교예 1~2의 적층 구조 및 두께 비교표, 9 is a laminate structure and thickness comparison charts of Examples 1 to 7 and Comparative Examples 1 and 2,
도 10은 전자파 차폐필름의 평가 결과표,10 is an evaluation result table of the electromagnetic wave shielding film,
도 11은 솔더 내열성 평가의 단차 적층도 및 표면 사진, 11 is a stepwise stacking view and a surface photograph of the solder heat resistance evaluation,
도 12는 단차 크랙 평가의 단차 적층도 및 표면 사진이고, 12 is a stepped stacked view and a surface photograph of a stepped crack evaluation,
도 13은 저항 테스트 쿠폰 이미지이다.13 is a resistance test coupon image.
설명에 앞서, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1실시예에서 설명하고, 그 외의 실시예에서는 제1실시예와 다른 구성에 대해서 설명하기로 한다.Prior to the description, components having the same configuration are denoted by the same reference numerals as those in the first embodiment. In other embodiments, configurations different from those of the first embodiment will be described do.
이하, 첨부한 도면을 참조하여 본 발명의 제1실시예에 따른 전자파 차폐필름에 대하여 상세하게 설명한다.Hereinafter, the electromagnetic wave shielding film according to the first embodiment of the present invention will be described in detail with reference to the accompanying drawings.
첨부도면 중, 도 1은 본 발명의 제1실시예에 따른 전자파 차폐필름의 단면도이다.1 is a cross-sectional view of an electromagnetic wave shielding film according to a first embodiment of the present invention.
본 발명의 제1실시예에 따른 전자파 차폐필름(10)은, 캐리어필름(11)과, 상기 캐리어필름(11)의 일면에 형성된 전도성 금속층(12)과, 상기 금속층(12) 상에 형성된 전도성 접착층(13) 및 상기 전도성 접착층(13) 상에 형성된 보호필름(14)을 포함한다.The electromagnetic wave shielding film 10 according to the first embodiment of the present invention comprises a carrier film 11, a conductive metal layer 12 formed on one side of the carrier film 11, a conductive metal layer 12 formed on the metal layer 12, And an adhesive layer (13) and a protective film (14) formed on the conductive adhesive layer (13).
상기 캐리어필름(11)은 PET 필름에 알루미늄 막이 라미네이션된 AL-PET(Aluminum-Laminated Polyethylene Terephthalate)의 형태로 제공되거나, PET 필름에 구리 막이 라미네이션된 Copper-PET(Copper-Laminated Polyethylene Terephthalate)의 형태로 제공될 수 있다. The carrier film 11 may be provided in the form of AL-PET (Aluminum-Laminated Polyethylene Terephthalate) laminated with an aluminum film on a PET film or in the form of Copper-Laminated Polyethylene Terephthalate Can be provided.
상기 금속층(12)은 니켈(Nikel), 구리(Copper), 알루미늄(Aluminium), 아연(Zinc)과 같은 전기전도율이 우수한 금속 재료 또는 이들의 합금 형태의 금속 재료로 이루어질 수 있으며, 2㎛ ~ 10㎛의 두께를 갖는 호일(foil) 형태로 구성될 수 있다. 상기 금속층(12)은, 캐리어필름(11)의 일면에 전도성 물질을 도금, 인쇄, 코팅, 증착과 같은 다양한 방법으로 형성할 수 있으며, 캐리어필름(11)의 일면에 박막 금속층(12)이 형성된 기성제품을 이용하는 것도 가능하다.The metal layer 12 may be made of a metal material having excellent electrical conductivity such as nickel, copper, aluminum, or zinc or a metal material of the alloy type, Lt; RTI ID = 0.0 > um. ≪ / RTI > The metal layer 12 may be formed on the carrier film 11 by a variety of methods such as plating, printing, coating, or vapor deposition of a conductive material. The metal layer 12 may be formed on one side of the carrier film 11, It is also possible to use ready made products.
상기 전도성 접착층(13)은 전도성 필러 및 바인더 수지, 경화제, 난연제 및 첨가제 등을 포함할 수 있으며, 전도성 접착 조성물을 금속층(12)에 도포하는 방법으로 전도성 접착층(13)을 형성할 수 있다.The conductive adhesive layer 13 may include a conductive filler and a binder resin, a curing agent, a flame retardant, and an additive. The conductive adhesive layer 13 may be formed by applying a conductive adhesive composition to the metal layer 12.
여기서, 상기 바인더 수지는 내열성과 내산성, 내알칼리성이 우수해야 하며 특히 접착력이 우수하고, 바인더의 특성으로 도전성 필러의 전도성에 영향을 낮게 미치는 것이 바람직하다.Here, the binder resin should be excellent in heat resistance, acid resistance, and alkali resistance, and it is particularly preferable that the binder resin is excellent in adhesion and lowers the influence on the conductivity of the conductive filler due to the characteristics of the binder.
수지의 내열성이 낮은 경우에는 인쇄회로기판 제조의 필수 공정인 솔더 공정에서 표면이 터지는 불량이 나타나거나, 열에 의한 저항 상승의 원인이 된다. 또한, 인쇄회로기판의 제조시에 회로의 저항을 낮추거나 부식 방지를 위해서 구리 도금 또는 금 도금을 할 수 있고, 이때 도금액이 강산 또는 강알칼리성이므로 우수한 내화학성과 내알칼리성이 요구된다. 또한, 솔더 전과 후에 표면 세정 및 플럭스(Flux) 제거를 위하여 알칼리 용액으로 세정 작업이 이루어질 수 있다. 경우에 따라서는 소프트 에칭(Soft Etching)을 행하여 도금의 균일성과 부착력을 향상시키는 공정을 수행할 수 있다. When the heat resistance of the resin is low, defects may occur in the surface of the solder process, which is an essential step in the manufacture of a printed circuit board, or the resistance may increase due to heat. In addition, copper plating or gold plating can be performed to lower circuit resistance or prevent corrosion at the time of manufacturing a printed circuit board. Since the plating solution is strongly acidic or strongly alkaline, excellent chemical resistance and alkali resistance are required. In addition, a cleaning operation may be performed with an alkaline solution for surface cleaning and flux removal before and after the solder. In some cases, soft etching may be performed to improve the uniformity and adhesion of the plating.
전도성 접착층(13)은 반경화(B-Stage)상태로 인쇄회로기판에 가접(Pre-Fix)된 후, 본접 공정으로 제공되어야 한다. 따라서 바인더 수지의 반경화 상태의 실온 유지성이 있어야 하며, 본접 공정에서 완전경화(C-Stage)되어야 한다.The conductive adhesive layer 13 should be pre-fixed on the printed circuit board in a B-stage state, and then be supplied to the main process. Therefore, the binder resin should have a semi-cured state at room temperature and should be fully cured in the main process.
상기 전도성 접착층(13)의 바인더 수지로는 폴리비닐부티랄(PVB; Polyvinyl Butyral), 셀룰로오스(Cellulose), 폴리우레탄(Polyurethane), 폴리에스테르(Polyester), 에폭시(Epoxy), 페녹시(Phenoxy), 노볼락(Novolac), 알키드(Alkyd), 아마이드(Amide), 이미드(Imide) 수지 또는 이들의 변성물을 사용할 수 있다. 본 실시예에서는 폴리에스테르수지의 변성물과 내열성 향상을 위하여 크레졸노볼락 수지를 혼용하였다. Examples of the binder resin of the conductive adhesive layer 13 include polyvinyl butyral (PVB), cellulose, polyurethane, polyester, epoxy, phenoxy, Novolac, Alkyd, Amide, Imide resins or their modifications can be used. In this embodiment, a cresol novolak resin was mixed with a denatured product of a polyester resin to improve heat resistance.
또한, 상기 도전성 필러(Conductive Filler)는 은(Silver), 구리(Copper), 알루미늄(Aluminium), 니켈(Nikel), 금(Gold), 아연(Zinc), 철(Iron) 등의 전도성 금속과 이들의 코팅 형태를 사용할 수 있다. 또한 이들의 형상은 판상(Flake), 구상(Spherical), 가지상(Dendrite), 그레뉼(Granule)과 같은 형태로 이루어질 수 있다. The conductive filler may be a conductive metal such as Silver, Copper, Aluminum, Nickel, Gold, Zinc and Iron, Can be used. These shapes may be in the form of Flake, Spherical, Dendrite, Granule, or the like.
상기 도전성 필러의 입자 사이즈는 30㎛이하의 것을 사용할 수 있다. 보다 적합하게는 3㎛ 이상 ~20㎛ 이하의 것이 바람직하다. 3㎛ 미만의 도전성 필러를 사용할 경우에는 수지에 의한 저항 상승으로 더 많은 금속입자를 사용하여야 하고, 저항 또한 높게 형성되는 문제가 있다. 또한, 20㎛를 초과하는 크기의 입자는 코팅 공정에서 도포방향으로 미 코팅(줄빠짐)이 나타나고 건조된 도막이 불균일하고 핀홀(Pin-hole)이 발생하는 문제가 있다. The conductive filler having a particle size of 30 mu m or less can be used. More preferably not less than 3 mu m and not more than 20 mu m. When a conductive filler of less than 3 mu m is used, the resistance of the resin increases, so that more metal particles must be used and the resistance is also increased. In addition, the particles having a size exceeding 20 mu m are uncoated in the coating direction in the coating process, the dried coating film is uneven, and pin-holes are generated.
상기 보호필름(14)은 실리콘 이형 코팅된 PET필름으로 이루어질 수 있으며, 상기 전도성 접착층(13)에 실리콘 이형처리된 보호필름(14)을 라미네이팅하는 방법으로 전도성 접착층(13)에 부착할 수 있다.The protective film 14 may be formed of a PET film coated with a silicon release coating and may be attached to the conductive adhesive layer 13 by a method of laminating a protective film 14 having a silicon release treatment on the conductive adhesive layer 13.
본 실시예의 전자파 차폐필름(10)은, 83㎛ 두께의 캐리어필름(11), 3㎛ 두께의 금속층(12), 6㎛ 두께의 전도성 접착층(13) 및 75㎛ 두께의 보호필름(14)으로 이루어질 수 있다. The electromagnetic wave shielding film 10 of the present embodiment has a carrier film 11 having a thickness of 83 탆, a metal layer 12 having a thickness of 3 탆, a conductive adhesive layer 13 having a thickness of 6 탆 and a protective film 14 having a thickness of 75 탆 Lt; / RTI >
이와 같이, 상기 구성을 갖는 전자파 차폐필름(10)의 경우, 금속층(12)이 형성된 캐리어필름(11)에 전도성 접착제를 코팅하여 전도성 접착층(13)을 형성한 후, 보호필름(14)를 부착하여 제조할 수도 있고, 또는 보호필름(14)에 전도성 접착제를 코팅하여 전도성 접착층(13)을 형성한 다음 금속층(12)이 형성된 캐리어필름(11)을 합지하는 방법으로 제조할 수도 있다. In the case of the electromagnetic wave shielding film 10 having the above-described structure, the conductive adhesive layer is formed on the carrier film 11 on which the metal layer 12 is formed to form the conductive adhesive layer 13, Alternatively, a conductive adhesive may be coated on the protective film 14 to form a conductive adhesive layer 13, followed by laminating the carrier film 11 on which the metal layer 12 is formed.
이하, 첨부한 도면을 참조하여 본 발명의 제2실시예에 따른 인쇄회로기판 제조방법에 대하여 상세하게 설명한다.Hereinafter, a method of manufacturing a printed circuit board according to a second embodiment of the present invention will be described in detail with reference to the accompanying drawings.
첨부도면 중, 도 2는 본 발명의 제2실시예에 따른 인쇄회로기판 제조방법의 공정별 단면도이다.2 is a cross-sectional view of a process for manufacturing a printed circuit board according to a second embodiment of the present invention.
본 발명의 제2실시예에 따른 인쇄회로기판 제조방법은, 차폐필름 준비 단계(S110), 차폐필름 타발 단계(S120), 보호필름 제거 단계(S130), 접합 단계(S140), 전도성 접착층 반경화 단계(S150), 캐리어필름 제거 단계(S160), 전도성 접착층 완전경화 단계(S170), 절연층 형성 단계(S180), 금속층 일부 제거 단계(S190) 및 도금층 형성 단계(S200)를 포함한다.The method of manufacturing a printed circuit board according to the second embodiment of the present invention may further include a step of preparing a shielding film (S110), a step of forming a shielding film (S120), a step of removing a protective film (S130), a bonding step (S140) Step S150, the carrier film removing step S160, the conductive adhesive layer complete curing step S170, the insulating layer forming step S180, the metal layer part removing step S190, and the plating layer forming step S200.
상기 차폐필름 준비 단계(S110)에서는 도 2의 (a)와 같이, 캐리어필름(11), 금속층(12), 전도성 접착층(13) 및 보호필름(14)이 순서대로 적층된 차폐필름(10)을 준비한다. 이러한 차폐필름(10)은 상술한 본 발명의 제1실시예의 전자파 차폐필름으로 이루어질 수 있다.2 (a), the shielding film 10 in which the carrier film 11, the metal layer 12, the conductive adhesive layer 13, and the protective film 14 are sequentially laminated is prepared in the step of preparing the shielding film (S110) . The shielding film 10 may be made of the electromagnetic wave shielding film of the first embodiment of the present invention.
상기 차폐필름 타발 단계(S120)에서는 도 2의 (b)와 같이, 시트형태의 차폐필름(10)을 부착 대상이 되는 인쇄회로기판(PCB)에 따라 타발한다. 상기 차폐필름(10)의 타발은 프레스 공정이나 레이저 커팅 공정 등에 의해 이루어질 수 있다. As shown in FIG. 2 (b), the shielding film 10 in a sheet form is stuck on a printed circuit board (PCB) to be attached in the shielding film punching step S120. The punching of the shielding film 10 may be performed by a pressing process or a laser cutting process.
상기 보호필름 제거 단계(S130)에서는 도 2의 (c)와 같이, 차폐필름(10)의 전도성 접착층(13)의 일면에 배치된 보호필름(14)을 제거한다. 상기 보호필름(14)은 전도성 접착층(13)에 대하여 적절한 이형력을 갖기 때문에 손쉽게 벗겨낼 수 있다. The protective film 14 disposed on one side of the conductive adhesive layer 13 of the shielding film 10 is removed in the step of removing the protective film S130 as shown in FIG. Since the protective film 14 has an appropriate releasing force with respect to the conductive adhesive layer 13, it can be easily peeled off.
상기 접합 단계(S140)에서는 도 2의 (d)와 같이, 차폐필름(10)의 전도성 접착층(13)을 인쇄회로기판(PCB)의 회로패턴이 형성된 면에 밀착시켜 접합한다.2 (d), the conductive adhesive layer 13 of the shielding film 10 is adhered to the surface of the printed circuit board (PCB) on which the circuit pattern is formed.
상기 전도성 접착층 반경화 단계(S150)에서는, 전도성 접착층(13)이 반경화(B-Stage)상태가 되도록 차폐필름(10)을 일정 시간동안 가열한다. 반경화 조건은 전도성 접착층(13)의 조성물에 따라 변경될 수 있으며, 본 실시예에서는 가접기를 이용하여 150℃의 온도, 3bar의 압력으로 20초 동안 가온가압하였다. 이러한 전도성 접착층(13)의 반경화에 의해 전도성 접착층(13)과 금속층(12)의 결합력이 증대된다. In the conductive adhesive layer semi-curing step S150, the shielding film 10 is heated for a predetermined time so that the conductive adhesive layer 13 is in a B-stage state. The semi-curing condition may be changed depending on the composition of the conductive adhesive layer 13, and in this embodiment, the temperature is raised at a temperature of 150 DEG C and a pressure of 3 bar for 20 seconds using a folding machine. The bonding strength between the conductive adhesive layer 13 and the metal layer 12 is increased by the semi-curing of the conductive adhesive layer 13.
상기 캐리어필름 제거 단계(S160)에서는 도 2의 (e)와 같이, 차폐필름(10)의 금속층(12)에 붙어있는 캐리어필름(11)을 제거한다. 이때, 상기 캐리어필름(11)이 붙어있는 금속층(12)은 전도성 접착층(13)이 반경화됨에 따라 전도성 접착층(13)과의 결합력이 증대된 상태이므로, 캐리어필름(11)을 제거하는 과정에서 상기 금속층(12)이 전도성 접착층(13)으로부터 박리되는 것을 방지할 수 있다.The carrier film 11 attached to the metal layer 12 of the shielding film 10 is removed in the step of removing the carrier film S160 as shown in FIG. At this time, the metal layer 12 to which the carrier film 11 is attached is in a state in which the bonding strength with the conductive adhesive layer 13 is increased as the conductive adhesive layer 13 is semi-cured. Therefore, in the process of removing the carrier film 11 It is possible to prevent the metal layer 12 from being peeled off from the conductive adhesive layer 13.
상기 전도성 접착층 완전경화 단계(S170)에서는, 전도성 접착층(13)이 완전경화(C-Stage)상태가 되도록 가열 및 가압한다. 여기서, 전도성 접착층(13)의 완전경화 조건은 전도성 접착층(13)의 조성물에 따라 변경될 수 있으며, 본 실시예에서는 핫프레스를 이용하여 150℃±10℃의 온도, 40kgf/□(면압)의 압력으로 60분 동안 가열 및 가압하였다.In the conductive adhesive layer full curing step S170, the conductive adhesive layer 13 is heated and pressed so as to be in a C-Stage state. Here, the complete curing conditions of the conductive adhesive layer 13 may be changed depending on the composition of the conductive adhesive layer 13. In this embodiment, the temperature of 150 占 폚 占 10 占 폚, 40kgf /? (Surface pressure) Lt; / RTI > for 60 minutes.
상기 절연층 형성 단계(S180)에서는 도 2의 (f)와 같이, 패턴에 맞춰 제판한 스크린을 통해 절연성 페이스트를 프린팅한 후 건조하여 절연층(22)을 형성할 수 있다. 이처럼 스크린 프린팅법을 이용하여 원하는 영역에 절연층(22)을 형성할 수 있으며, 이에 인쇄회로기판(PCB)의 그라운드 확장단자가 형성될 영역에 개구부(22a)가 형성된 절연층(22)을 상기 차폐필름(10)의 금속층(12) 상에 형성할 수 있게 된다. In the insulating layer forming step (S180), the insulating layer 22 may be formed by printing an insulating paste through a screen formed in accordance with a pattern and then drying the insulating paste as shown in FIG. 2 (f). The insulating layer 22 can be formed in a desired region by using the screen printing method and an insulating layer 22 having an opening 22a formed in a region where a ground expansion terminal of a printed circuit board So that it can be formed on the metal layer 12 of the shielding film 10.
한편, 본 실시예에서는 금속층(12) 상에 절연성 페이스트를 프린팅하는 것 이외에, 인쇄회로기판(PCB)의 그라운드 확장단자가 형성될 영역에 개구부(22a)가 형성되도록 절연필름(Coverlay)을 타발할 뒤, 금속층(12)에 붙여 절연층(22)을 형성하는 것도 가능할 것이다.In this embodiment, in addition to printing the insulating paste on the metal layer 12, an insulating film (Coverlay) is formed so that the opening 22a is formed in the area where the ground expansion terminal of the printed circuit board PCB is to be formed It is also possible to form the insulating layer 22 by attaching it to the metal layer 12 later.
차폐필름(10)의 금속층(12)이 전도성 접착층(13)을 통해 인쇄회로기판(PCB)의 그라운드 회로와 전기적으로 연결되면, 상기 절연층(22)의 개구부(22a)를 통해 노출되는 금속층(12)이 인쇄회로기판(PCB)의 그라운드 확장단자로 활용될 수 있다.The metal layer 12 of the shielding film 10 is electrically connected to the ground circuit of the printed circuit board PCB through the conductive adhesive layer 13 so that the metal layer 12 exposed through the opening 22a of the insulating layer 22 12 can be utilized as a ground expansion terminal of a printed circuit board (PCB).
상기 절연성 페이스트는 바인더 수지, 난연제, 착색제, 경화제 등을 포함할 수 있다. The insulating paste may include a binder resin, a flame retardant, a colorant, a curing agent, and the like.
상기 절연층(22)의 바인더 수지는 코팅이 가능하고 경화 후에 유연성이 높아야 하고, 인쇄회로기판의 외부에 위치하므로 내스크레치성(2H이상)을 가져야 한다.The binder resin of the insulating layer 22 should be capable of being coated, have high flexibility after curing, and should have a scratch resistance (2H or more) because it is located outside the printed circuit board.
절연층(22)은 인쇄회로기판의 제조 공정에서 노출되는 부위이므로 내열성, 내화학성, 내알칼리성, 내산성이 우수하여야 한다. Since the insulating layer 22 is exposed in the manufacturing process of the printed circuit board, the insulating layer 22 should have excellent heat resistance, chemical resistance, alkali resistance, and acid resistance.
특히 열에 직접적으로 노출되는 부위이므로 내열성(300℃)이 우수하여야 하며, 제조공정에서 표면오염이 있을 경우 알코올(Isopropyl alcohol)로 제거하기도 하므로 내화학성도 우수하여야 한다. Especially, since it is a region directly exposed to heat, it needs to be excellent in heat resistance (300 ° C.) and in case of surface contamination in the manufacturing process, it is removed with alcohol (isopropyl alcohol).
또한 절연층(22) 위에 다른 보강판 부착 및 마킹을 하여야 하므로 부착력이 우수하게 설계되어야 한다. 표면이 폴리이미드인 경우 적층 부착력에 문제가 있어 플라즈마(Plasma) 공정을 추가하는 경우도 있다. Further, since the other reinforcing plate is required to be attached and marked on the insulating layer 22, it should be designed to have excellent adhesion. When the surface is polyimide, there is a problem of lamination adhesion, and a plasma process may be added.
상기 금속층 일부 제거 단계(S190)에서는 도 2의 (g)와 같이, 절연층(22)의 개구부(22a)를 통해 노출된 금속층(12)을 소프트 에칭(Soft Etching)하여 두께방향으로 일부 제거함으로써 금속층(12)의 산화된 표면을 제거(0.3~1.0㎛)한다.2 (g), the metal layer 12 exposed through the opening 22a of the insulating layer 22 is soft-etched and partially removed in the thickness direction (S190) The oxidized surface of the metal layer 12 is removed (0.3 to 1.0 탆).
이어, 상기 도금층 형성 단계(S200)에서는 도 2의 (h)와 같이, 전해 도금 또는 무전해 도금 공정을 통해, 표면이 제거된 금속층(12)에 금(Au)과 같은 표면 산화 방지 전도성 물질을 도금함으로써 도금층(30)을 형성한다. 이러한 도금층(30)은 금속층(12)을 보호하는 동시에 인쇄회로기판(PCB)의 그라운드 회로와 전기적으로 연결되어 그라운드 확장단자로 이용될 수 있다.Next, in the plating layer forming step S200, a surface antioxidation conductive material such as gold (Au) is applied to the metal layer 12 whose surface has been removed through electroplating or electroless plating as shown in FIG. 2 (h) The plating layer 30 is formed by plating. The plating layer 30 may be used as a ground extension terminal while being electrically connected to the ground circuit of the printed circuit board (PCB) while protecting the metal layer 12.
이하, 첨부한 도면을 참조하여 본 발명의 제3실시예에 따른 인쇄회로기판 제조방법에 대하여 상세하게 설명한다.Hereinafter, a method of manufacturing a printed circuit board according to a third embodiment of the present invention will be described in detail with reference to the accompanying drawings.
첨부도면 중, 도 3은 본 발명의 제3실시예에 따른 인쇄회로기판 제조방법의 공정별 단면도이다.3 is a cross-sectional view of a process for manufacturing a printed circuit board according to a third embodiment of the present invention.
본 발명의 제3실시예에 따른 인쇄회로기판 제조방법은, 차폐필름 준비 단계(S110), 차폐필름 타발 단계(S120), 보호필름 제거 단계(S130), 접합 단계(S140), 전도성 접착층 반경화 단계(S150), 캐리어필름 제거 단계(S160), 절연층 형성 단계(S180'), 금속층 일부 제거 단계(S190) 및 도금층 형성 단계(S200)를 포함한다.A method of manufacturing a printed circuit board according to a third embodiment of the present invention includes a step of preparing a shielding film S110, a step of forming a shielding film S120, a step of removing a protective film S130, a bonding step S140, Step S150, carrier film removing step S160, insulating layer forming step S180 ', metal layer part removing step S190, and plating layer forming step S200.
본 발명의 제3실시예에서 상기 절연층 형성 단계(S180')를 제외한 나머지 단계는 제2실시예와 동일하므로, 동일한 단계에 대한 구체적인 설명은 생략한다.In the third embodiment of the present invention, the remaining steps except for the insulating layer forming step S180 'are the same as those of the second embodiment, so detailed description of the same steps will be omitted.
상기 절연층 형성 단계(S180')는, 커버레이 준비 단계(S181), 커버레이 타발 단계(S182), 보호필름 제거 단계(S183), 합지 단계(S184), 접착층 반경화 단계(S185), 캐리어필름 제거 단계(S186) 및 접착층 완전경화 단계(S187)를 포함한다.The insulating layer forming step S180 'may include a cover layer preparing step S181, a covering layer removing step S182, a protective film removing step S183, a lapping step S184, an adhesive layer semi-curing step S185, A film removal step (S186), and an adhesive layer full curing step (S187).
상기 커버레이 준비 단계(S181)에서는 도 3의 (f)와 같이, 캐리어필름(21), 절연층(22), 접착층(23) 및 보호필름(24)이 순서대로 적층된 커버레이(20)를 준비한다.3 (f), in the coverlay preparing step S181, the coverlay 20 in which the carrier film 21, the insulating layer 22, the adhesive layer 23, and the protective film 24 are laminated in this order, .
본 실시예에서, 상기 커버레이(20)는 55㎛ 두께의 캐리어필름(21), 7㎛ 두께의 절연층(22), 8㎛ 두께의 접착층(23) 및 75㎛ 두께의 보호필름(24)으로 이루어질 수 있다. 상기 커버레이(20)의 캐리어필름(21)은 세미-매트 PET(semi-matt PET)의 형태로 제공될 수 있으며, 상기 절연층(22) 및 접착층(23)은 광흡수 물질을 포함할 수 있다.In this embodiment, the coverlay 20 has a carrier film 21 having a thickness of 55 占 퐉, an insulating layer 22 having a thickness of 7 占 퐉, an adhesive layer 23 having a thickness of 8 占 퐉 and a protective film 24 having a thickness of 75 占 퐉, ≪ / RTI > The carrier film 21 of the coverlay 20 may be provided in the form of a semi-matt PET and the insulating layer 22 and the adhesive layer 23 may comprise a light absorbing material. have.
상기 커버레이 타발 단계(S182)에서는 도 3의 (g)와 같이, 상기 커버레이(20)를 타발하여 그라운드 확장단자가 형성될 영역에 도 3의 (j)의 개구부(22a)를 형성한다. 상기 커버레이(20)의 타발은 프레스 공정이나 레이저 커팅 공정 등에 의해 이루어질 수 있다. As shown in FIG. 3 (g), the coverlay 20 is formed in the coverlay punching step S182 to form the opening 22a of FIG. 3 (j) in a region where the ground extension terminal is to be formed. The punching of the coverlay 20 can be performed by a pressing process, a laser cutting process, or the like.
상기 보호필름 제거 단계(S183)에서는 도 3의 (h)와 같이, 커버레이(20)의 접착층(23)의 일면에 배치된 보호필름(24)을 제거한다. 상기 보호필름(24)은 접착층(23)에 대하여 적절한 이형력을 갖기 때문에 손쉽게 벗겨낼 수 있다. In step S183, the protective film 24 disposed on one side of the adhesive layer 23 of the coverlay 20 is removed as shown in FIG. 3 (h). Since the protective film 24 has an appropriate releasing force with respect to the adhesive layer 23, it can be easily peeled off.
상기 합지 단계(S184)에서는 도 3의 (i)와 같이, 커버레이(20)의 접착층(23)을 차폐필름(10)의 금속층(12)에 밀착시켜 접합한다.3 (i), the adhesive layer 23 of the coverlay 20 is adhered to the metal layer 12 of the shielding film 10 in close contact with each other.
상기 접착층 반경화 단계(S185)에서는, 커버레이(20)의 접착층(23)이 반경화(B-Stage)상태가 되도록 커버레이(20)를 일정 시간동안 가열한다. 반경화 조건은 접착층(23)의 조성물에 따라 변경될 수 있으며, 본 실시예에서는 가접기를 이용하여 150℃의 온도, 3bar의 압력으로 20초 동안 가온가압하였다. 이러한 접착층(23)의 반경화에 의해 접착층(23)과 금속층(12)의 결합력이 증대된다. In the adhesive layer semi-curing step (S185), the coverlay 20 is heated for a predetermined time so that the adhesive layer 23 of the coverlay 20 is in a B-stage state. The semi-curing conditions may be changed depending on the composition of the adhesive layer 23, and in this embodiment, the temperature is raised at a temperature of 150 DEG C and a pressure of 3 bar for 20 seconds using a folding machine. The bonding strength between the adhesive layer 23 and the metal layer 12 is increased by the semi-curing of the adhesive layer 23.
상기 캐리어필름 제거 단계(S186)에서는 도 3의 (j)와 같이, 커버레이(20)의 절연층(22)에 붙어있는 캐리어필름(21)을 제거한다. 이때, 상기 캐리어필름(21)이 붙어있는 절연층(22)은 접착층(23)이 반경화됨에 따라 접착층(23)과의 결합력이 증대된 상태이므로, 캐리어필름(21)을 제거하는 과정에서 상기 절연층(22)이 접착층(23)으로부터 박리되는 것을 방지할 수 있다. 아울러, 차폐필름(10)의 전도성 접착층(13) 역시 반경화되어 금속층(12) 및 인쇄회로기판(PCB)과의 결합력이 증대된 상태이므로, 상기 커버레이(20)의 캐리어필름(21)을 제거하는 과정에서 상기 금속층(12)과 전도성 접착층(13)의 접합면이 분리되거나 상기 전도성 접착층(13)과 인쇄회로기판(PCB)의 접합면이 분리되는 것을 방지할 수 있다. In the step of removing the carrier film (S186), the carrier film 21 attached to the insulating layer 22 of the coverlay 20 is removed as shown in FIG. 3 (j). At this time, the insulating layer 22 to which the carrier film 21 is attached is in a state in which the bonding strength with the adhesive layer 23 is increased as the adhesive layer 23 is semi-cured. Therefore, in the process of removing the carrier film 21, It is possible to prevent the insulating layer 22 from being peeled off from the adhesive layer 23. Since the conductive adhesive layer 13 of the shielding film 10 is also semi-cured to increase the bonding force between the metal layer 12 and the printed circuit board PCB, the carrier film 21 of the coverlay 20 The bonding surface between the metal layer 12 and the conductive adhesive layer 13 may be separated or the bonding surface between the conductive adhesive layer 13 and the printed circuit board PCB may be prevented from being separated.
상기 접착층 완전경화 단계(S187)에서는, 접착층(23)이 완전경화(C-Stage)상태가 되도록 가열 및 가압한다. 여기서, 접착층(23)의 완전경화 조건은 접착층(23)의 조성물에 따라 변경될 수 있으며, 본 실시예에서는 핫프레스를 이용하여 150℃±10℃의 온도, 40kgf/□(면압)의 압력으로 60분 동안 가열 및 가압하였다.In the adhesive layer full curing step (S187), the adhesive layer 23 is heated and pressed so as to be in a C-Stage state. Here, the complete curing condition of the adhesive layer 23 may be changed depending on the composition of the adhesive layer 23. In this embodiment, the temperature of 150 ° C ± 10 ° C and the pressure of 40 kgf / Heated and pressurized for 60 minutes.
한편, 본 실시예에서는 상기 접착층 완전경화 단계(S187)를 수행하는 과정에서, 상기 차폐필름(10)의 전도성 접착층(13)을 완전경화시킬 수 있으므로, 제2실시예에서의 전도성 접착층 완전경화 단계(S170)를 생략할 수 있다. 이를 위해 상기 커버레이(20)의 접착층(23)은 상기 차폐필름(10)의 전도성 접착층(13)과 동일한 조건에서 완전경화될 수 있도록 구성하는 것이 바람직하다. Meanwhile, in this embodiment, the conductive adhesive layer 13 of the shielding film 10 can be completely cured in the process of performing the adhesive layer full curing step (S187), so that the conductive adhesive layer completely cured in the second embodiment (S170) can be omitted. The adhesive layer 23 of the coverlay 20 may be completely cured under the same conditions as those of the conductive adhesive layer 13 of the shielding film 10.
상기와 같이, 차폐필름(10)의 금속층(12) 상측에 합지된 커버레이(20)의 절연층(22)에는, 인쇄회로기판(PCB)의 그라운드 확장단자가 형성될 영역에 개구부(22a)가 형성되어 있다. 즉, 차폐필름(10)의 금속층(12)은 전도성 접착층(13)을 통해 인쇄회로기판(PCB)의 그라운드 회로와 전기적으로 연결되고, 그라운드 회로와 연결된 금속층(12)은 상기 절연층(22)의 개구부(22a)를 통해 노출되므로, 노출된 금속층(12)을 인쇄회로기판(PCB)의 그라운드 확장단자로 활용할 수 있다.The opening 22a is formed in the insulating layer 22 of the coverlay 20 which is laminated on the metal layer 12 of the shielding film 10 so that the ground extension terminal of the printed circuit board PCB is to be formed, Respectively. That is, the metal layer 12 of the shielding film 10 is electrically connected to the ground circuit of the printed circuit board PCB through the conductive adhesive layer 13, and the metal layer 12 connected to the ground circuit is electrically connected to the insulating layer 22, The exposed metal layer 12 can be utilized as a ground extending terminal of the printed circuit board PCB.
한편, 상기 커버레이(20)의 절연층(22)은 제2실시예의 절연층(22)과 동일한 재질로 구성하는 것이 바람직하다.On the other hand, the insulating layer 22 of the coverlay 20 is preferably made of the same material as the insulating layer 22 of the second embodiment.
상기와 같이 차폐필름(10)의 상측에 절연층(22)을 적층한 이후에는, 도 3의 (k) 및 (l)과 같이 금속층 일부 제거 단계(S190) 및 도금층 형성 단계(S200)를 수행하여 절연층(22)의 개구부(22a)를 통해 노출된 금속층(12)에 도금층(30)을 형성한다.After the insulating layer 22 is laminated on the upper side of the shielding film 10 as described above, a metal layer part removing step (S190) and a plating layer forming step (S200) are performed as shown in (k) and (l) The plating layer 30 is formed on the exposed metal layer 12 through the opening 22a of the insulating layer 22. [
이와 같이, 커버레이(20)를 사용하는 경우, 본 실시예와 같이 차폐필름 준비 단계(S110) ~ 절연층 형성 단계(S180')까지 순차적으로 진행할 수도 있고, 상기 순서와 무관하게 차폐필름(10) 및 커버레이(20)를 각각 적층 프레스 하여 제작할 수도 있다.As described above, when the coverlay 20 is used, it may proceed sequentially from the step of preparing the shielding film (S110) to the step of forming the insulating layer (S180 ') as in the present embodiment, And the coverlay 20 may be laminated and pressed, respectively.
이하, 첨부한 도면을 참조하여 본 발명의 제4실시예에 따른 전자파 차폐필름에 대하여 상세하게 설명한다.Hereinafter, the electromagnetic wave shielding film according to the fourth embodiment of the present invention will be described in detail with reference to the accompanying drawings.
첨부도면 중, 도 4는 본 발명의 제4실시예에 따른 전자파 차폐필름의 단면도이다.4 is a cross-sectional view of an electromagnetic wave shielding film according to a fourth embodiment of the present invention.
본 발명의 제4실시예에 따른 전자파 차폐필름(10')은, 캐리어필름(11)과, 상기 캐리어필름(11)의 일면에 형성된 전도성 금속층(12)과, 상기 금속층(12) 상에 형성된 전도층(15)과, 상기 전도층(15) 상에 형성된 전도성 접착층(13) 및 상기 전도성 접착층(13) 상에 형성된 보호필름(14)을 포함한다.An electromagnetic wave shielding film 10 'according to a fourth embodiment of the present invention includes a carrier film 11, a conductive metal layer 12 formed on one side of the carrier film 11, A conductive layer 15 formed on the conductive layer 15 and a conductive adhesive layer 13 formed on the conductive layer 15 and a protective film 14 formed on the conductive adhesive layer 13.
상기 전도층(15)은 상기 금속층(12)보다 상대적으로 전기전도율이 우수한 재질로 이루어지는 것이 바람직하며, 상기 금속층(12) 상에 전기전도율이 우수한 은(Silver) 잉크를 코팅하여 형성될 수 있다. 상기 전도층(15)의 코팅방법으로는 그라비아 코팅, 스크린 프린팅, 슬롯다이, 스핀코팅 등이 이용될 수 있다. 이와 같이 금속층(12) 상에 전도층(15)을 형성하는 경우 전자파 차폐 효과를 더욱 향상시킬 수 있다. The conductive layer 15 is preferably made of a material having a relatively higher electrical conductivity than the metal layer 12 and may be formed by coating a silver ink having an excellent electrical conductivity on the metal layer 12. As the coating method of the conductive layer 15, gravure coating, screen printing, slot die, spin coating, or the like can be used. When the conductive layer 15 is formed on the metal layer 12 as described above, the electromagnetic wave shielding effect can be further improved.
한편, 상기 전도층(15)을 제외한 나머지 구성은 도 1에 도시된 제1실시예의 전자파 차폐필름과 동일하므로, 동일한 구성에 대한 구체적인 설명은 생략한다.Since the remaining structure except for the conductive layer 15 is the same as that of the electromagnetic wave shielding film of the first embodiment shown in FIG. 1, a detailed description of the same structure will be omitted.
이하, 첨부한 도면을 참조하여 본 발명의 제5실시예에 따른 인쇄회로기판 제조방법에 대하여 상세하게 설명한다.Hereinafter, a method of manufacturing a printed circuit board according to a fifth embodiment of the present invention will be described in detail with reference to the accompanying drawings.
첨부도면 중, 도 5는 본 발명의 제5실시예에 따른 인쇄회로기판 제조방법의 공정별 단면도이다. 5 is a cross-sectional view of a process for manufacturing a printed circuit board according to a fifth embodiment of the present invention.
도 5에 도시된 본 발명의 제5실시예에 따른 인쇄회로기판 제조방법은, 본 발명의 제4실시예의 전자파 차폐필름(10')을 이용하는 점에서 제2실시예의 인쇄회로기판 제조방법과 차이를 갖는다.The method for manufacturing a printed circuit board according to the fifth embodiment of the present invention shown in Fig. 5 differs from the method for manufacturing a printed circuit board of the second embodiment in that the electromagnetic wave shielding film 10 'of the fourth embodiment of the present invention is used, .
구체적으로, 도 5에 도시된 본 발명의 제5실시예에 따른 인쇄회로기판 제조방법은, 차폐필름 준비 단계(S110'), 차폐필름 타발 단계(S120), 보호필름 제거 단계(S130), 접합 단계(S140), 전도성 접착층 반경화 단계(S150), 캐리어필름 제거 단계(S160), 절연층 형성 단계(S180), 금속층 일부 제거 단계(S190) 및 도금층 형성 단계(S200)를 포함한다.5, the method for fabricating a printed circuit board according to the fifth embodiment of the present invention includes a step of preparing a shielding film S110 ', a step of forming a shielding film S120, a step of removing a protective film S130, The conductive adhesive layer semi-curing step S150, the carrier film removing step S160, the insulating layer forming step S180, the metal layer part removing step S190, and the plating layer forming step S200.
상기 차폐필름 준비 단계(S110')에서는 도 5의 (a)와 같이, 캐리어필름(11), 금속층(12), 전도층(15), 전도성 접착층(13) 및 보호필름(14)이 적층된 차폐필름(10')을 준비한다. 이러한 차폐필름(10')은 본 발명의 제4실시예의 전자파 차폐필름(10')으로 이루어질 수 있다.5A, the carrier film 11, the metal layer 12, the conductive layer 15, the conductive adhesive layer 13, and the protective film 14 are stacked in the shielding film preparing step S110 ' The shielding film 10 'is prepared. This shielding film 10 'can be made of the electromagnetic wave shielding film 10' of the fourth embodiment of the present invention.
상기 전도층(15)은 상기 금속층(12) 상에 금속층(12)보다 상대적으로 전기전도율이 우수한 은(Silver) 잉크를 코팅한 것으로서, 상기 은 잉크는 그라비아 코팅, 스크린 프린팅, 슬롯다이, 스핀코팅 등에 의해 금속층(12) 상에 코팅될 수 있다.The conductive layer 15 is formed on the metal layer 12 by coating a silver ink having a relatively higher electrical conductivity than the metal layer 12 on the metal layer 12. The silver ink may be gravure-coated, screen-printed, slot- Or the like on the metal layer 12.
본 실시예에서, 상기 차폐필름 준비 단계(S110')를 제외한 나머지 단계는 도 2에 도시된 제2실시예의 인쇄회로 제조방법과 동일하므로, 동일 단계에 대한 구체적인 설명은 생략한다.In this embodiment, the remaining steps except for the shielding film preparing step S110 'are the same as those of the second embodiment shown in FIG. 2, so that a detailed description of the same steps will be omitted.
아울러, 도 6은 본 발명의 제6실시예에 따른 인쇄회로기판 제조방법의 공정별 단면도이다.6 is a cross-sectional view of a process for manufacturing a printed circuit board according to a sixth embodiment of the present invention.
본 발명의 제6실시예에 따른 인쇄회로기판 제조방법은, 차폐필름 준비 단계(S110'), 차폐필름 타발 단계(S120), 보호필름 제거 단계(S130), 접합 단계(S140), 전도성 접착층 반경화 단계(S150), 캐리어필름 제거 단계(S160), 절연층 형성 단계(S180'), 금속층 일부 제거 단계(S190) 및 도금층 형성 단계(S200)를 포함한다.A method of manufacturing a printed circuit board according to a sixth embodiment of the present invention includes the steps of preparing a shielding film S110 ', removing a shielding film S120, removing a protective film S130, a bonding step S140, A carrier film removing step S160, an insulating layer forming step S180 ', a metal layer part removing step S190, and a plating layer forming step S200.
본 실시예에서, 상기 차폐필름 준비 단계(S110')는 도 5에 도시된 제5실시예의 차폐필름 준비 단계(S110')와 동일하고, 상기 차폐필름 준비 단계(S110')를 제외한 나머지 단계는 도 3에 도시된 제3실시예의 차폐필름 타발 단계(S120) 내지 도금층 형성 단계(S200)와 동일하므로, 동일 단계에 대한 구체적인 설명은 생략한다.In this embodiment, the step of preparing the shielding film (S110 ') is the same as the step of preparing the shielding film (S110') of the fifth embodiment shown in FIG. 5, and the remaining steps except for the step of preparing the shielding film (S 120) to the plating layer forming step (S 200) of the third embodiment shown in FIG. 3, detailed description of the same steps will be omitted.
이하, 첨부한 도면을 참조하여 본 발명의 제7실시예에 따른 전자파 차폐필름 제조방법에 대하여 상세하게 설명한다.Hereinafter, a method for manufacturing an electromagnetic wave shielding film according to a seventh embodiment of the present invention will be described in detail with reference to the accompanying drawings.
첨부도면 중, 도 7은 본 발명의 제7실시예에 따른 전자파 차폐필름 제조방법을 나타낸 공정별 단면도이다.In the accompanying drawings, FIG. 7 is a cross-sectional view showing a process for manufacturing an electromagnetic wave shielding film according to a seventh embodiment of the present invention.
본 발명의 제7실시예에 따른 전자파 차폐필름의 제조방법은, 금속층 준비단계(S210)와, 상기 금속층(12)의 일면에 전도성 접착층(13)을 형성하는 전도성 접착층 형성단계(S220)와, 상기 전도성 접착층(13) 상에 제1보호필름(14)을 합지하는 제1보호필름 형성단계(S230)와, 상기 금속층(12)의 타면에 절연층(22)을 형성하는 절연층 형성단계(S240) 및 상기 절연층(22) 상에 제2보호필름(14')을 형성하는 제2보호필름 형성단계(S250)를 포함한다.A conductive adhesive layer forming step S220 of forming a conductive adhesive layer 13 on one surface of the metal layer 12, a conductive adhesive layer forming step S220 of forming a conductive adhesive layer 13 on the surface of the metal layer 12, A first protective film forming step S230 for bonding the first protective film 14 on the conductive adhesive layer 13 and an insulating layer forming step 22 for forming an insulating layer 22 on the other surface of the metal layer 12 (S240) and forming a second protective film (14 ') on the insulating layer (22).
상기 금속층 준비단계(S210)에서는, 도 7의 (a)와 같이 전기전도율이 우수한 동박 포일(copper foil)형태로 제공되는 금속층(12)을 준비한다.In the metal layer preparing step S210, a metal layer 12 provided in the form of a copper foil excellent in electric conductivity is prepared as shown in FIG. 7A.
상기 전도성 접착층 형성단계(S220)에서는, 도 7의 (b)와 같이 상기 금속층(12)의 일면에 전도성 접착제를 코팅한 다음 건조시켜 전도성 접착층(13)을 형성한다. 여기서, 상기 전도성 접착층(13)은 전도성 필러 및 바인더 수지, 경화제, 난연제 및 첨가제 등을 포함할 수 있으며, 전도성 접착 조성물을 금속층(12)에 도포하는 방법으로 전도성 접착층(13)을 형성할 수 있다.In the conductive adhesive layer forming step S220, a conductive adhesive is coated on one surface of the metal layer 12 and then dried to form a conductive adhesive layer 13, as shown in FIG. 7 (b). The conductive adhesive layer 13 may include a conductive filler and a binder resin, a curing agent, a flame retardant, and an additive. The conductive adhesive layer 13 may be formed by applying a conductive adhesive composition to the metal layer 12 .
상기 제1보호필름 형성단계(S230)에서는, 도 7의 (c)와 같이 상기 전도성 접착층(13)에 실리콘 이형처리된 제1보호필름(14)을 라미네이팅하는 방법이 이용될 수 있다. 여기서, 상기 제1보호필름(14)은 실리콘 이형 코팅된 PET필름으로 이루어질 수 있다.In the step of forming the first protective film (S230), a method of laminating the first protective film (14) having a silicon release treatment on the conductive adhesive layer (13) may be used as shown in FIG. 7C. Here, the first protective film 14 may be formed of a PET film coated with a silicon release coating.
상기 절연층 형성단계(S240)에서는, 도 7의 (d)와 같이 상기 금속층(12)의 타면에 절연성 페이스트를 코팅한 후 건조하여 절연층(22)을 형성할 수 있다. 여기서, 상기 절연성 페이스트는 바인더 수지, 난연제, 착색제, 경화제 등을 포함할 수 있다.In the insulating layer forming step S240, an insulation layer 22 may be formed by coating an insulating paste on the other surface of the metal layer 12 and then drying the insulating paste as shown in FIG. 7D. Here, the insulating paste may include a binder resin, a flame retardant, a colorant, a curing agent, and the like.
상기 제2보호필름 형성단계(S250)에서는, 도 7의 (e)와 같이 상기 절연층(22)에 실리콘 이형처리된 제2보호필름(14')을 라미네이팅하는 방법이 이용될 수 있다. 여기서, 상기 제2보호필름(14')은 실리콘 이형 코팅된 PET필름으로 이루어질 수 있다.In the second protective film forming step S250, a method of laminating the second protective film 14 ', which has been subjected to the silicon release treatment, on the insulating layer 22 may be used as shown in FIG. 7E. Here, the second protective film 14 'may be a PET film coated with a silicon release coating.
상기와 같이 제조된 전자파 차폐필름은, 도 2의 (c) 내지 (e)에 도시된 보호필름 제거 단계(S130) 내지 전도성 접착층 완전경화 단계(S170)와 같이, 전도성 접착층(13)을 보호하는 제1보호필름(14)을 박리시켜 전도성 접착층(13)을 노출시키고, 노출된 전도성 접착층(13)을 인쇄회로기판에 접합한 상태에서 반경화시키고, 절연층(22)을 보호하고 있는 제2보호필름(14')을 제거한 다음, 전도성 접착층(13)을 완전경화시키는 단계를 통해, 전자파 차폐필름을 인쇄회로기판 상에 접합할 수 있다.The electromagnetic wave shielding film manufactured as described above may be used for protecting the conductive adhesive layer 13 from the step of removing the protective film (S130) to the step of completely hardening the conductive adhesive layer (S170) shown in FIGS. 2C to 2E The first protective film 14 is peeled to expose the conductive adhesive layer 13 and the exposed conductive adhesive layer 13 is semi-cured while being bonded to the printed circuit board, The electromagnetic wave shielding film can be bonded onto the printed circuit board through the step of completely curing the conductive adhesive layer 13 after removing the protective film 14 '.
즉, 전도성 접착층(13)을 반경화시킨 상태에서는 전도성 접착층(13)과 금속층(12)의 결합력이 증대되므로, 제2보호필름(14')의 박리 과정 중 금속층(12)과 전도성 접착층(13)의 접합면 또는 전도성 접착층(13)과 인쇄회로기판의 접합면이 분리되는 것을 방지할 수 있다.That is, since the bonding strength between the conductive adhesive layer 13 and the metal layer 12 is increased in the state where the conductive adhesive layer 13 is semi-cured, the metal layer 12 and the conductive adhesive layer 13 Or the bonding surface of the conductive adhesive layer 13 and the printed circuit board can be prevented from being separated from each other.
첨부도면 중, 도 8은 본 발명의 제8실시예에 따른 전자파 차폐필름의 제조방법을 나타낸 공정별 단면도이다.8 is a cross-sectional view of a process for manufacturing an electromagnetic wave shielding film according to an eighth embodiment of the present invention.
본 발명의 제8실시예에 따른 전자파 차폐필름의 제조방법은, 금속층 준비단계(S210)와, 금속층(12)의 일면에 전도층(15)을 형성하는 전도층 형성단계(S211)와, 상기 전도층(15) 상에 전도성 접착층(13)을 형성하는 전도성 접착층 형성단계(S220)와, 상기 전도성 접착층(13) 상에 제1보호필름(14)을 합지하는 제1보호필름 형성단계(S230) 와, 상기 금속층(12)의 타면에 절연층(22)을 형성하는 절연층 형성단계(S240) 및 상기 절연층(22) 상에 제2보호필름(14')을 형성하는 제2보호필름 형성단계(S250)를 포함한다.The method of manufacturing an electromagnetic wave shielding film according to an eighth embodiment of the present invention may include a metal layer preparing step S210, a conductive layer forming step S211 for forming a conductive layer 15 on one surface of the metal layer 12, A conductive adhesive layer forming step S220 for forming a conductive adhesive layer 13 on the conductive layer 15 and a first protective film forming step S230 for joining the first protective film 14 on the conductive adhesive layer 13 Forming an insulating layer 22 on the other surface of the metal layer 12 and forming a second protective film 14 'on the insulating layer 22, Forming step S250.
상기 전도층 형성단계(S211)에서는, 도 8의 (b)와 같이 금속층(12) 상에 전기전도율이 우수한 은(Silver) 잉크를 코팅하여 전도층(15)을 형성할 수 있다. 상기 전도층(15)의 코팅방법으로는 그라비아 코팅, 스크린 프린팅, 슬롯다이, 스핀코팅 등이 이용될 수 있다. 이와 같이 금속층(12) 상에 전도층(15)을 형성하는 경우 전자파 차폐 효과를 더욱 향상시킬 수 있다.In the conductive layer forming step S211, a silver ink having an excellent electrical conductivity may be coated on the metal layer 12 to form the conductive layer 15 as shown in FIG. 8B. As the coating method of the conductive layer 15, gravure coating, screen printing, slot die, spin coating, or the like can be used. When the conductive layer 15 is formed on the metal layer 12 as described above, the electromagnetic wave shielding effect can be further improved.
이어, 상기 전도성 접착층 형성단계(S230)에서는 도 8의 (c)와 같이 상기 전도층(15) 상에 전도성 접착제를 코팅한 다음 건조시켜 전도성 접착층(13)을 형성한다.Next, in the conductive adhesive layer forming step S230, a conductive adhesive is coated on the conductive layer 15 and then dried to form a conductive adhesive layer 13, as shown in FIG. 8C.
한편, 본 발명의 제8실시예에서, 상기 전도층 형성단계(S211)를 제외한 나머지 단계는 상술한 제7실시예와 동일하므로, 동일한 단계에 대한 구체적인 설명은 생략한다.In the eighth embodiment of the present invention, the remaining steps except for the conductive layer forming step S211 are the same as those of the seventh embodiment, so a detailed description of the same steps will be omitted.
이하에서는, 본 발명의 전자파 차폐필름, 인쇄회로기판 제조방법 및 전자파 차폐필름 제조방법의 우수성을 입증하기 위해 실시한 실시예 및 실험결과를 통하여 본 발명을 상세하게 설명한다. 그러나, 하기 실시예는 예시를 위한 것으로, 본 발명이 하기 실시예에 한정되는 것은 아니다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail through examples and experimental results for demonstrating the superiority of the electromagnetic wave shielding film, the method for producing a printed circuit board and the method for producing an electromagnetic wave shielding film of the present invention. However, the following examples are for illustrative purposes only, and the present invention is not limited to the following examples.
<실시예 1>&Lt; Example 1 >
교반기에 우레탄변성 폴리에스테르 수지(IT-5000, 노루페인트) 67중량부와 MIBK(Methyl isobutyl ketone)에 70% 고형분으로 용해한 크레졸노볼락 수지 용액 10중량부와, 용매로 사이클로헥사논(Cyclohexanone) 9중량부를 넣고 2시간 교반한 후, 도전성 필러로 은이 코팅된 구형의 평균입경 4um인 AgCu(S-403, JB칼텍사)을 14중량부 넣고 1시간 추가 교반하였다. 67 parts by weight of a urethane-modified polyester resin (IT-5000, Norou paint) and 10 parts by weight of a cresol novolak resin solution dissolved in 70% solids in MIBK (methyl isobutyl ketone) were added to a stirrer and cyclohexanone 9 14 parts by weight of AgCu (S-403, JB Caltech) having a spherical average particle diameter of 4 탆 and silver coated with a conductive filler was added thereto, followed by further stirring for 1 hour.
제조한 전도성 접착제를 SUS1000mesh의 필터로 여과하여 이방성 전도성(Anisotropy conductive) 접착제 조성물을 얻었다. The resulting conductive adhesive was filtered through a filter made of SUS 1000 mesh to obtain an anisotropy conductive adhesive composition.
제조한 이방성 전도성 접착제 조성물을 캐리어가 부착된 구리 호일(Copper foil, 구리두께 3㎛) 표면에 슬롯다이를 이용하여 코팅하고 150℃로 2분간 가열하여 건조 두께 3㎛의 이방 도전성 접착제층을 형성하였다. 이후 실리콘 이형처리된 50㎛두께의 PET보호필름을 이방 도전성접착제층에 라미네이팅하여 제조하였다.The anisotropic conductive adhesive composition thus prepared was coated on a copper foil (copper foil having a thickness of 3 mu m) with a carrier using a slot die and heated at 150 DEG C for 2 minutes to form an anisotropic conductive adhesive layer having a dry thickness of 3 mu m . Thereafter, a PET protective film having a thickness of 50 탆 and treated with silicone was laminated on the anisotropic conductive adhesive layer.
<실시예 2>&Lt; Example 2 >
교반기에 우레탄변성 폴리에스테르 수지(IT-5000, 노루페인트) 67중량부와 MIBK(Methyl isobutyl ketone)에 70% 고형분으로 용해한 크레졸노볼락 수지 용액 10중량부와, 용매로 사이클로헥사논(Cyclohexanone) 9중량부를 넣고 2시간 교반한 후, 도전성 필러로 은이 코팅된 구형의 평균입경 4um인 AgCu(S-403, JB칼텍사)을 14중량부 넣고 1시간 추가 교반하였다. 67 parts by weight of a urethane-modified polyester resin (IT-5000, Norou paint) and 10 parts by weight of a cresol novolak resin solution dissolved in 70% solids in MIBK (methyl isobutyl ketone) were added to a stirrer and cyclohexanone 9 14 parts by weight of AgCu (S-403, JB Caltech) having a spherical average particle diameter of 4 탆 and silver coated with a conductive filler was added thereto, followed by further stirring for 1 hour.
제조한 전도성 접착제를 SUS1000mesh의 필터로 여과하여 이방성 전도성(Anisotropy conductive) 접착제 조성물을 얻었다. The resulting conductive adhesive was filtered through a filter made of SUS 1000 mesh to obtain an anisotropy conductive adhesive composition.
제조한 이방성 전도성 접착제 조성물을 캐리어가 부착된 구리 호일(Copper foil, 구리두께 6㎛) 표면에 슬롯다이를 이용하여 코팅하고 150℃로 2분간 가열하여 건조 두께 3㎛의 이방 도전성 접착제층을 형성하였다. 이후 실리콘 이형처리된 50㎛두께의 PET보호필름을 이방 도전성 접착제층에 라미네이팅하여 제조하였다.The resulting anisotropic conductive adhesive composition was coated on a copper foil (copper foil 6 μm thick) having a carrier by a slot die and heated at 150 ° C. for 2 minutes to form an anisotropic conductive adhesive layer having a dry thickness of 3 μm . Thereafter, a PET protective film having a thickness of 50 탆 and treated with silicone was laminated on the anisotropic conductive adhesive layer.
<실시예 3>&Lt; Example 3 >
교반기에 우레탄변성 폴리에스테르 수지(IT-5000, 노루페인트) 67중량부와 MIBK(Methyl isobutyl ketone)에 70% 고형분으로 용해한 크레졸노볼락 수지 용액 10중량부와, 용매로 사이클로헥사논(Cyclohexanone) 9중량부를 넣고 2시간 교반한 후, 도전성 필러로 은이 코팅된 구형의 평균입경 4um인 AgCu(S-403, JB칼텍사)을 14중량부 넣고 1시간 추가 교반하였다. 67 parts by weight of a urethane-modified polyester resin (IT-5000, Norou paint) and 10 parts by weight of a cresol novolak resin solution dissolved in 70% solids in MIBK (methyl isobutyl ketone) were added to a stirrer and cyclohexanone 9 14 parts by weight of AgCu (S-403, JB Caltech) having a spherical average particle diameter of 4 탆 and silver coated with a conductive filler was added thereto, followed by further stirring for 1 hour.
제조한 전도성 접착제를 SUS1000mesh의 필터로 여과하여 이방성 전도성(Anisotropy conductive) 접착제 조성물을 얻었다. The resulting conductive adhesive was filtered through a filter made of SUS 1000 mesh to obtain an anisotropy conductive adhesive composition.
제조한 이방성 전도성 접착제 조성물을 캐리어가 부착된 구리 호일(Copper foil, 구리두께 10㎛) 표면에 슬롯다이를 이용하여 코팅하고 150℃로 2분간 가열하여 건조 두께 3㎛의 이방 도전성 접착제층을 형성하였다. 이후 실리콘 이형처리된 50㎛두께의 PET보호필름을 이방 도전성 접착제층에 라미네이팅하여 제조하였다.The anisotropic conductive adhesive composition thus prepared was coated on a copper foil (copper foil having a thickness of 10 mu m) coated with a carrier using a slot die and heated at 150 DEG C for 2 minutes to form an anisotropic conductive adhesive layer having a dry thickness of 3 mu m . Thereafter, a PET protective film having a thickness of 50 탆 and treated with silicone was laminated on the anisotropic conductive adhesive layer.
<실시예 4><Example 4>
교반기에 우레탄변성 폴리에스테르 수지(IT-180, 노루페인트) 67중량부와 MIBK(Methyl isobutyl ketone)에 70% 고형분으로 용해한 크레졸노볼락 수지 용액 10중량부와, 용매로 사이클로헥사논(Cyclohexanone) 9중량부를 넣고 2시간 교반한 후, 도전성 필러로 은이 코팅된 가지상의 평균입경 7um인 AgCu(ACBY-2F, Mitsui금속)을 14중량부 넣고 1시간 추가 교반하였다. 67 parts by weight of a urethane-modified polyester resin (IT-180, Noru paint) and 10 parts by weight of a cresol novolak resin solution dissolved in 70% solids in methyl isobutyl ketone (MIBK) were mixed in a stirrer and cyclohexanone 9 (ACBY-2F, Mitsui Metals) having an average particle diameter of 7 mu m on a branch coated with silver as a conductive filler were put in 14 parts by weight and further stirred for 1 hour.
제조한 전도성 접착제를 SUS1000mesh의 필터로 여과하여 등방성 전도성(Anisotropy conductive) 접착제 조성물을 얻었다. The conductive adhesive thus prepared was filtered with a filter made of SUS 1000 mesh to obtain an isotropic conductive adhesive composition.
제조한 등방성 전도성 접착제 조성물을 캐리어가 부착된 구리 호일(Copper foil, 구리두께 3㎛) 표면에 슬롯다이를 이용하여 코팅하고 150℃로 2분간 가열하여 건조 두께 7㎛의 등방 도전성 접착제층을 형성하였다. 이후 아크릴 점착처리된 50㎛두께의 PET보호필름을 등방 도전성 접착제층에 라미네이팅하여 제조하였다.The isotropic conductive adhesive composition thus prepared was coated on a surface of a copper foil (copper foil having a thickness of 3 mu m) with a carrier using a slot die and heated at 150 DEG C for 2 minutes to form an isotropic conductive adhesive layer having a dry thickness of 7 mu m . Thereafter, an acrylic adhesive-treated PET protective film having a thickness of 50 탆 was laminated on the isotropic conductive adhesive layer.
<실시예 5>&Lt; Example 5 >
캐리어필름이 부착된 구리 호일(Copper foil, 구리두께 3㎛) 표면에 실버 잉크(TEC-CO-021, 잉크테크사)를 마이크로 그라비아코터로 코팅 후 150℃로 4분간 가온 소결하여 두께 0.5㎛의 은금속층을 제조하였다.A silver ink (TEC-CO-021, manufactured by InkTec Co., Ltd.) was coated on the surface of a copper foil (copper foil having a copper thickness of 3 mu m) having a carrier film attached thereto by a micro gravure coater and then heated and sintered at 150 DEG C for 4 minutes, Silver metal layer.
또한 교반기에 우레탄변성 폴리에스테르 수지(IT-5000, 노루페인트) 67중량부와 MIBK(Methyl isobutyl ketone)에 70% 고형분으로 용해한 크레졸노볼락 수지 용액 10중량부와, 용매로 사이클로헥사논(Cyclohexanone) 9중량부를 넣고 2시간 교반한 후, 도전성 필러로 은이 코팅된 구형의 평균입경 4um인 AgCu(S-403, JB칼텍사)을 14중량부 넣고 1시간 추가 교반하였다. In addition, 67 parts by weight of a urethane-modified polyester resin (IT-5000, Norou paint), 10 parts by weight of a cresol novolak resin solution dissolved in 70% solids in methyl isobutyl ketone (MIBK) and 10 parts by weight of cyclohexanone, And stirring for 2 hours, 14 parts by weight of AgCu (S-403, JB Caltech) having a spherical average particle size of 4 um and silver coated with a conductive filler was added and further stirred for 1 hour.
제조한 전도성 접착제를 SUS1000mesh의 필터로 여과하여 이방 전도성(Anisotropy conductive) 접착제 조성물을 얻었다. The conductive adhesive thus prepared was filtered through a SUS 1000 mesh filter to obtain an anisotropy conductive adhesive composition.
제조한 이방성 전도성 접착제 조성물을 캐리어가 부착된 구리 호일(Copper foil, 구리두께 3㎛) 표면에 슬롯다이를 이용하여 코팅하고 150℃로 2분간 가열하여 건조 두께 3㎛의 이방 도전성 접착제층을 형성하였다. 이후 실리콘 이형처리된 50㎛두께의 PET보호필름을 이방 도전성접착제층에 라미네이팅하여 제조하였다.The anisotropic conductive adhesive composition thus prepared was coated on a copper foil (copper foil having a thickness of 3 mu m) with a carrier using a slot die and heated at 150 DEG C for 2 minutes to form an anisotropic conductive adhesive layer having a dry thickness of 3 mu m . Thereafter, a PET protective film having a thickness of 50 탆 and treated with silicone was laminated on the anisotropic conductive adhesive layer.
<실시예 6>&Lt; Example 6 >
교반기에 우레탄변성 폴리에스테르 수지(IT-5000, 노루페인트) 67중량부와 MIBK(Methyl isobutyl ketone)에 70% 고형분으로 용해한 크레졸노볼락 수지 용액 10중량부와, 용매로 사이클로헥사논(Cyclohexanone) 9중량부를 넣고 2시간 교반한 후, 도전성 필러로 은이 코팅된 구형의 평균입경 4um인 AgCu(S-403, JB칼텍사)을 14중량부 넣고 1시간 추가 교반하였다. 67 parts by weight of a urethane-modified polyester resin (IT-5000, Norou paint) and 10 parts by weight of a cresol novolak resin solution dissolved in 70% solids in MIBK (methyl isobutyl ketone) were added to a stirrer and cyclohexanone 9 14 parts by weight of AgCu (S-403, JB Caltech) having a spherical average particle diameter of 4 탆 and silver coated with a conductive filler was added thereto, followed by further stirring for 1 hour.
제조한 전도성 접착제를 SUS1000mesh의 필터로 여과하여 이방성 전도성(Anisotropy conductive) 접착제 조성물을 얻었다. The resulting conductive adhesive was filtered through a filter made of SUS 1000 mesh to obtain an anisotropy conductive adhesive composition.
제조한 이방성 전도성 접착제 조성물을 캐리어가 부착된 구리 호일(Copper foil, 구리두께 3㎛) 표면에 슬롯다이를 이용하여 코팅하고 150℃로 2분간 가열하여 건조 두께 3㎛의 이방 도전성 접착제층을 형성하였다. 이후 실리콘 이형처리된 50㎛두께의 PET보호필름을 이방 도전성 접착제층에 라미네이팅하여 제조하였다.The anisotropic conductive adhesive composition thus prepared was coated on a copper foil (copper foil having a thickness of 3 mu m) with a carrier using a slot die and heated at 150 DEG C for 2 minutes to form an anisotropic conductive adhesive layer having a dry thickness of 3 mu m . Thereafter, a PET protective film having a thickness of 50 탆 and treated with silicone was laminated on the anisotropic conductive adhesive layer.
또한 폴리이미드 변성수지(HPC-9000-21, Hitachi chemical) 50중량부에 난연성 필러 수산화알루미늄(OSDH-3, 오성기업) 3중량부와 분산제(BYK-167, 바이엘사) 2중량부를 넣고 용매로 사이클로헥사논(Cyclohexanone) 45중량부를 넣고 20분간 교반하였다. 교반한 혼합 용액을 지로코니아 비즈 5㎛를 넣은 바스켓밀(DWS-25, 대원에스텍)에 넣고 1,500rpm으로 10분간 분산한 후 상온으로 냉각하였다. 3 parts by weight of flame retardant filler aluminum hydroxide (OSDH-3, manufactured by Ohseong Company) and 2 parts by weight of a dispersant (BYK-167, manufactured by Bayer AG) were added to 50 parts by weight of a polyimide modified resin (HPC-9000-21, Hitachi chemical) 45 parts by weight of cyclohexanone were added and stirred for 20 minutes. The mixed solution was added to a basket mill (DWS-25, Daewon Estek) containing 5 탆 of zirconia beads, dispersed at 1,500 rpm for 10 minutes, and then cooled to room temperature.
이 분산액 100중량부에 변성 에폭시 수지(Arakid-9201N, 아라카와 케미칼사) 5중량부를 넣고 1시간 저속 교반 후, SUS1000mesh로 여과하여 절연층 조성물을 얻었다. 5 parts by weight of a modified epoxy resin (Arakid-9201N, Arakawa Chemical Industries, Ltd.) was added to 100 parts by weight of this dispersion, and the mixture was stirred at a low speed for 1 hour and filtered through SUS1000 mesh to obtain an insulating layer composition.
상기에 제조한 이방도전성 전자파 차폐필름의 캐리어필름을 제거한 후, 절연층 조성물을 슬롯다이를 이용하여 코팅하고 150℃로 5분간 가열하여 건조 두께 5㎛절연층을 형성하여 실시예 6의 전자파 차폐필름을 제조 하였다. After removing the carrier film of the anisotropic conductive electromagnetic wave shielding film prepared above, the insulating layer composition was coated using a slot die and heated at 150 DEG C for 5 minutes to form an insulation layer having a dry thickness of 5 mu m, .
<실시예 7> &Lt; Example 7 >
교반기에 우레탄변성 폴리에스테르 수지(IT-180, 노루페인트) 67중량부와 MIBK(Methyl isobutyl ketone)에 70% 고형분으로 용해한 크레졸노볼락 수지 용액 10중량부와, 용매로 사이클로헥사논(Cyclohexanone) 9중량부를 넣고 2시간 교반한 후, 도전성 필러로 은이 코팅된 가지상의 평균입경 7um인 AgCu(ACBY-2F, Mitsui금속)을 14중량부 넣고 1시간 추가 교반하였다. 67 parts by weight of a urethane-modified polyester resin (IT-180, Noru paint) and 10 parts by weight of a cresol novolak resin solution dissolved in 70% solids in methyl isobutyl ketone (MIBK) were mixed in a stirrer and cyclohexanone 9 (ACBY-2F, Mitsui Metals) having an average particle diameter of 7 mu m on a branch coated with silver as a conductive filler were put in 14 parts by weight and further stirred for 1 hour.
제조한 전도성 접착제를 SUS1000mesh의 필터로 여과하여 등방성 전도성(Anisotropy conductive) 접착제 조성물을 얻었다. The conductive adhesive thus prepared was filtered with a filter made of SUS 1000 mesh to obtain an isotropic conductive adhesive composition.
제조한 등방성 전도성 접착제 조성물을 캐리어가 부착된 구리 호일(Copper foil, 구리두께 3㎛) 표면에 슬롯다이를 이용하여 코팅하고 150℃로 2분간 가열하여 건조 두께 7㎛의 등방 도전성 접착제층을 형성하였다. 이후 아크릴 점착처리된 50㎛두께의 PET보호필름을 등방 도전성 접착제층에 라미네이팅하여 제조하였다.The isotropic conductive adhesive composition thus prepared was coated on a surface of a copper foil (copper foil having a thickness of 3 mu m) with a carrier using a slot die and heated at 150 DEG C for 2 minutes to form an isotropic conductive adhesive layer having a dry thickness of 7 mu m . Thereafter, an acrylic adhesive-treated PET protective film having a thickness of 50 탆 was laminated on the isotropic conductive adhesive layer.
또한 폴리이미드 변성수지(HPC-9000-21, Hitachi chemical) 50중량부에 난연성 필러 수산화알루미늄(OSDH-3, 오성기업) 3중량부와 분산제(BYK-167, 바이엘사) 2중량부를 넣고 용매로 사이클로헥사논(Cyclohexanone) 45중량부를 넣고 20분간 교반하였다. 교반한 혼합 용액을 지로코니아 비즈 5㎛를 넣은 바스켓밀(DWS-25, 대원에스텍)에 넣고 1,500rpm으로 10분간 분산한 후 상온으로 냉각하였다. 3 parts by weight of flame retardant filler aluminum hydroxide (OSDH-3, manufactured by Ohseong Company) and 2 parts by weight of a dispersant (BYK-167, manufactured by Bayer AG) were added to 50 parts by weight of a polyimide modified resin (HPC-9000-21, Hitachi chemical) 45 parts by weight of cyclohexanone were added and stirred for 20 minutes. The mixed solution was added to a basket mill (DWS-25, Daewon Estek) containing 5 탆 of zirconia beads, dispersed at 1,500 rpm for 10 minutes, and then cooled to room temperature.
이 분산액 100중량부에 변성 에폭시 수지(Arakid-9201N, 아라카와 케미칼사) 5중량부를 넣고 1시간 저속 교반 후, SUS1000mesh로 여과하여 절연층 조성물을 얻었다. 5 parts by weight of a modified epoxy resin (Arakid-9201N, Arakawa Chemical Industries, Ltd.) was added to 100 parts by weight of this dispersion, and the mixture was stirred at a low speed for 1 hour and filtered through SUS1000 mesh to obtain an insulating layer composition.
상기에 제조한 이방도전성 전자파 차폐필름의 캐리어필름을 제거한 후, 절연층 조성물을 슬롯다이를 이용하여 코팅하고 150℃로 5분간 가열하여 건조 두께 5㎛절연층을 형성하여 실시예 7의 전자파 차폐필름을 제조 하였다. After removing the carrier film of the anisotropically conductive electromagnetic wave shielding film prepared above, the insulating layer composition was coated using a slot die and heated at 150 DEG C for 5 minutes to form an insulation layer having a dry thickness of 5 mu m, .
<비교예 1>&Lt; Comparative Example 1 &
폴리이미드 변성수지(HPC-9000-21, Hitachi chemical) 50중량부에 난연성 필러 수산화알루미늄(OSDH-3, 오성기업) 3중량부와 분산제(BYK-167, 바이엘사) 2중량부를 넣고 용매로 사이클로헥사논(Cyclohexanone) 45중량부를 넣고 20분간 교반하였다. 교반한 혼합 용액을 지로코니아 비즈 5㎛를 넣은 바스켓밀(DWS-25, 대원에스텍)에 넣고 1,500rpm으로 10분간 분산한 후 상온으로 냉각하였다. 3 parts by weight of flame-retardant filler aluminum hydroxide (OSDH-3, manufactured by Ohseong Company) and 2 parts by weight of a dispersant (BYK-167, manufactured by Bayer AG) were added to 50 parts by weight of a polyimide modified resin (HPC-9000-21, Hitachi chemical) And 45 parts by weight of hexanol (Cyclohexanone) were added thereto, followed by stirring for 20 minutes. The mixed solution was added to a basket mill (DWS-25, Daewon Estek) containing 5 탆 of zirconia beads, dispersed at 1,500 rpm for 10 minutes, and then cooled to room temperature.
이 분산액 100중량부에 변성 에폭시 수지(Arakid-9201N, 아라카와 케미칼사) 5중량부를 넣고 1시간 저속 교반 후, SUS1000mesh로 여과하여 절연층 조성물을 얻었다. 5 parts by weight of a modified epoxy resin (Arakid-9201N, Arakawa Chemical Industries, Ltd.) was added to 100 parts by weight of this dispersion, and the mixture was stirred at a low speed for 1 hour and filtered through SUS1000 mesh to obtain an insulating layer composition.
절연층 조성물을 실리콘 이형처리된 50㎛두께의 PET필름에 도포하여 150℃로 2분간 건조하여 건조두께 7㎛의 도막을 얻었다. The insulating layer composition was applied to a 50 mu m-thick PET film treated with silicone and then dried at 150 DEG C for 2 minutes to obtain a coating film having a dry thickness of 7 mu m.
이 절연층 위에 은(Silver)를 스퍼터링 방식으로 두께 0.2㎛의 실버 메탈층을 형성하였다. A silver metal layer having a thickness of 0.2 占 퐉 was formed on the insulating layer by sputtering.
또한 교반기에 우레탄변성 폴리에스테르 수지(IT-5000, 노루페인트) 67중량부와 MIBK(Methyl isobutyl ketone)에 70% 고형분으로 용해한 크레졸노볼락 수지 용액 10중량부와, 용매로 사이클로헥사논(Cyclohexanone) 9중량부를 넣고 2시간 교반한 후, 도전성 필러로 은이 코팅된 구형의 평균입경 4um인 AgCu(S-403, JB칼텍사)을 14중량부 넣고 1시간 추가 교반하였다. In addition, 67 parts by weight of a urethane-modified polyester resin (IT-5000, Norou paint), 10 parts by weight of a cresol novolak resin solution dissolved in 70% solids in methyl isobutyl ketone (MIBK) and 10 parts by weight of cyclohexanone, And stirring for 2 hours, 14 parts by weight of AgCu (S-403, JB Caltech) having a spherical average particle size of 4 um and silver coated with a conductive filler was added and further stirred for 1 hour.
제조한 전도성 접착제를 SUS1000mesh의 필터로 여과하여 이방성 전도성(Anisotropy conductive) 접착제 조성물을 얻었다. The resulting conductive adhesive was filtered through a filter made of SUS 1000 mesh to obtain an anisotropy conductive adhesive composition.
제조한 이방성 전도성 접착제 조성물을 실버 메탈층 표면에 슬롯다이를 이용하여 코팅하고 150℃로 2분간 가열하여 건조 두께 3㎛의 이방 도전성 접착제층을 형성하였다. 이후 실리콘 이형처리된 50㎛두께의 PET보호필름을 이방 도전성 접착제층에 라미네이팅하여 제조하여 비교예1을 제조 하였다.The prepared anisotropic conductive adhesive composition was coated on the surface of the silver metal layer using a slot die and heated at 150 DEG C for 2 minutes to form an anisotropic conductive adhesive layer having a dry thickness of 3 mu m. Then, a 50 μm thick PET protective film treated with silicone was laminated to an anisotropic conductive adhesive layer to prepare Comparative Example 1. [
<비교예 2>&Lt; Comparative Example 2 &
폴리이미드 변성수지(HPC-9000-21, Hitachi chemical) 50중량부에 난연성 필러 수산화알루미늄(OSDH-3, 오성기업) 3중량부와 분산제(BYK-167, 바이엘사) 2중량부를 넣고 용매로 사이클로헥사논(Cyclohexanone) 45중량부를 넣고 20분간 교반하였다. 교반한 혼합 용액을 지로코니아 비즈 5㎛를 넣은 바스켓밀(DWS-25, 대원에스텍)에 넣고 1,500rpm으로 10분간 분산한 후 상온으로 냉각하였다. 3 parts by weight of flame-retardant filler aluminum hydroxide (OSDH-3, manufactured by Ohseong Company) and 2 parts by weight of a dispersant (BYK-167, manufactured by Bayer AG) were added to 50 parts by weight of a polyimide modified resin (HPC-9000-21, Hitachi chemical) And 45 parts by weight of hexanol (Cyclohexanone) were added thereto, followed by stirring for 20 minutes. The mixed solution was added to a basket mill (DWS-25, Daewon Estek) containing 5 탆 of zirconia beads, dispersed at 1,500 rpm for 10 minutes, and then cooled to room temperature.
이 분산액 100중량부에 변성 에폭시 수지(Arakid-9201N, 아라카와 케미칼사) 5중량부를 넣고 1시간 저속 교반 후, SUS1000mesh로 여과하여 절연층 조성물을 얻었다. 5 parts by weight of a modified epoxy resin (Arakid-9201N, Arakawa Chemical Industries, Ltd.) was added to 100 parts by weight of this dispersion, and the mixture was stirred at a low speed for 1 hour and filtered through SUS1000 mesh to obtain an insulating layer composition.
절연층 조성물을 실리콘 이형처리된 50㎛두께의 PET필름에 도포하여 150℃로 2분간 건조하여 건조두께 7㎛의 도막을 얻었다. The insulating layer composition was applied to a 50 mu m-thick PET film treated with silicone and then dried at 150 DEG C for 2 minutes to obtain a coating film having a dry thickness of 7 mu m.
또한 교반기에 우레탄변성 폴리에스테르 수지(IT-180, 노루페인트) 67중량부와 MIBK(Methyl isobutyl ketone)에 70% 고형분으로 용해한 크레졸노볼락 수지 용액 10중량부와, 용매로 사이클로헥사논(Cyclohexanone) 9중량부를 넣고 2시간 교반한 후, 도전성 필러로 은이 코팅된 가지상의 평균입경 7um인 AgCu(ACBY-2F, Mitsui금속)을 14중량부 넣고 1시간 추가 교반하였다. Further, 67 parts by weight of a urethane-modified polyester resin (IT-180, Noru paint) and 10 parts by weight of a cresol novolak resin solution dissolved in 70% solids in MIBK (methyl isobutyl ketone) were added to a stirrer, , And stirred for 2 hours. 14 parts by weight of AgCu (ACBY-2F, Mitsui Metal) having an average particle diameter of 7 mu m on a branch coated with silver as a conductive filler was added and further stirred for 1 hour.
제조한 전도성 접착제를 SUS1000mesh의 필터로 여과하여 등방성 전도성(Anisotropy conductive) 접착제 조성물을 얻었다. The conductive adhesive thus prepared was filtered with a filter made of SUS 1000 mesh to obtain an isotropic conductive adhesive composition.
제조한 등방성 전도성 접착제 조성물을 실리콘 이형처리된 PET이형필름 표면에 슬롯다이를 이용하여 코팅하고 150℃로 3분간 가열하여 건조 두께 12㎛의 등방 도전성 접착제층을 형성하여 실리콘 이형 PET film에 절연층을 형성한 필름하고 온도 100℃, 압력 7bar로 롤 라미네이팅하여 비교예2를 제조하였다.The isotropic conductive adhesive composition thus prepared was coated on the surface of a PET release film of a silicon release mold using a slot die and heated at 150 캜 for 3 minutes to form an isotropic conductive adhesive layer having a dry thickness of 12 탆 to form an insulating layer on the silicone release PET film Comparative Example 2 was prepared by roll lamination at a temperature of 100 캜 and a pressure of 7 bar.
상기 실시예 1~7 및 비교예 1~2의 적층 구조 및 두께를 도 9에 나타내었다.The lamination structure and thicknesses of Examples 1 to 7 and Comparative Examples 1 and 2 are shown in Fig.
또한 제조한 전자파 차폐필름을 다음과 같은 방법으로 평가 시료를 제작하였고, 그 결과를 도 10에 나타내었다.An evaluation sample was prepared for the electromagnetic wave shielding film by the following method, and the results are shown in FIG.
<전자파 차폐필름의 평가 방법>&Lt; Evaluation method of electromagnetic wave shielding film &
1) 전자파 차폐필름의 층간 부착력1) Interlayer adhesion of electromagnetic wave shielding film
측정 시료를 폭 25.4mm 길이 25cm의 크기로 절단한 후 도전성접착제층의 보호필름을 제거하고 그 일면에 25㎛ 두께의 PI film(Kapton, 듀폰사)을 놓고 가접기를 이용하여(온도 150℃, 압력 3bar, 20초)붙인 후 캐리어필름을 제거한 구리표면 또는 절연층면에 두께 25㎛ 본딩시트(Bonding sheet)를 적층하여 Hot Press(프레스 조건: 온도 150℃, 압력 40kgf/cm2, 시간 60분)로 가온, 가압 하에서 접착제층을 완전경화(C-stage)시켰다. 25℃, 50%RH 분위기하에서 인장속도 58.8M/min, 180도 인장강도를 측정하였다. 동일 시료를 3회 실험하여 그 평균값을 표기하였다. The test sample was cut to a size of 25.4 mm in length and 25 cm in length and then the protective film of the conductive adhesive layer was removed, and a 25 μm thick PI film (Kapton, DuPont) was placed on one surface thereof. (Pressure: 3 bar, 20 seconds), and then a 25 μm thick bonding sheet was laminated on the copper surface or the insulating layer surface from which the carrier film was removed, and hot press (press condition: temperature: 150 ° C., pressure: 40 kgf / cm 2, time: 60 minutes) The adhesive layer was fully cured (C-stage) under heating and pressurization. And the tensile strength at a tensile rate of 58.8 M / min and a 180 degree was measured under an atmosphere of 25 ° C and 50% RH. The same sample was tested 3 times and the average value was indicated.
2) Solder 내열성2) Solder heat resistance
도 11의 단차 적층도와 같이 전자파 차폐필름의 보호필름을 제거하고 25㎛ 두께의 PI film(Kapton, 듀폰사)을 가접기를 이용하여(온도 150℃, 압력 3bar, 20초)붙인 후 실시예 1~4는 캐리어를 제거하고 절연필름(BT-012, 잉크테크사)를 적층하고 Hot Press(프레스 조건: 온도 150℃, 압력 40kgf/cm2, 시간 60분)로 가온 가압하여 접착제층을 완전경화(C-stage)시켰다. 경화한 시료를 295℃ 솔더(Solder)에 1분간, 2회씩 띄어서 육안 관찰하여 기포, 들뜸 및 외관 색상변화 유무를 평가하였다. 각 시료를 5개씩 시험하여 외관불량 발생 개수를 표기하였다.The protective film of the electromagnetic wave shielding film was removed and a PI film (Kapton, DuPont) having a thickness of 25 mu m was attached by using a folding machine (temperature: 150 DEG C, pressure 3 bar, 20 seconds) To 4 were prepared by completely removing the carrier and laminating an insulating film (BT-012, manufactured by InkTec Co., Ltd.) and heating and pressurizing the adhesive layer by Hot Press (press condition: temperature: 150 캜, pressure: 40 kgf / C-stage). The cured samples were visually observed at 295 ° C solder for 1 minute and 2 times, and evaluated for bubble, lifting, and appearance color change. Five samples of each sample were tested to indicate the number of appearance defects.
3) 단차 크랙3) Step crack
도 12의 단차 적층도와 같이 단차로 사용할 FRP 막대(폭 5mm, 길이 25cm)를 두께 100㎛, 200㎛, 300㎛, 400㎛을 25㎛ 두께의 PI film(Kapton, 듀폰사) 위에 올려 양 끝단을 내열 테이프로 고정하고 그 위에 차폐필름의 이형필름을 제거하여 올려 놓고 가접기를 이용하여(온도 150℃, 압력 3bar, 20초)붙인 후 실시예 1~4는 캐리어를 제거하고 절연필름(BT-012, 잉크테크사)를 적층하고 Hot Press(프레스 조건: 온도 150℃, 압력 40kgf/cm2, 시간 60분)로 가온 가압하여 접착제층을 완전경화(C-stage)시켰다. A FRP rod (width 5 mm, length 25 cm) to be used as a level step as shown in Fig. 12 was placed on a PI film (Kapton, DuPont) having a thickness of 100 탆, 200 탆, 300 탆 and 400 탆, (Temperature: 150 ° C, pressure: 3 bar, 20 seconds), and then the carrier was removed and the insulating film (BT- 012, manufactured by InkTec Co., Ltd.) was laminated and pressurized by a hot press (press condition: temperature: 150 DEG C, pressure: 40 kgf / cm2, time: 60 minutes) to completely cure the adhesive layer (C-stage).
시료의 절연층 표면을 핸드 마이크로스코프(Hand Microscope)로 단차 부위의 크랙을 관찰하였다.(도 12의 표면 사진 참조) 평가 시료를 5개씩 제조하여 단차 두께별로 크랙 발생 개수를 표기하였다.The surface of the insulating layer of the sample was observed with a hand microscope for cracks at the stepped portions (see the photograph of the surface of FIG. 12). Five evaluation samples were prepared, and the number of cracks was indicated by the step thickness.
4) 신뢰성4) Reliability
전자파 차폐필름의 보호필름을 제거하고 저항 테스트 쿠폰(도 13, 잉크테크사)에 가접기를 이용하여(온도 150℃, 압력 3bar, 20초)붙인 후 실시예 1~4는 캐리어를 제거하고 절연필름(BT-012, 잉크테크사)를 적층하고 Hot Press(프레스 조건: 온도 150℃, 압력 40kgf/cm2, 시간 60분)로 가온 가압하여 접착제층을 완전경화(C-stage)시켰다.After the protective film of the electromagnetic wave shielding film was removed and attached to a resistance test coupon (Fig. 13, InkTec Co., Ltd.) using a folding machine (temperature: 150 DEG C, pressure: 3 bar, 20 seconds) (BT-012, manufactured by InkTech Co., Ltd.) was laminated and pressurized by hot press (press condition: temperature: 150 DEG C, pressure: 40 kgf / cm2, time: 60 minutes) to completely cure the adhesive layer (C-stage).
제조한 시료를 85℃, 습도 85%RH 챔버에 72시간 방치 후 외관 및 저항 변화를 측정하였다.The prepared sample was allowed to stand in a 85 ° C and 85% RH chamber for 72 hours, and the appearance and resistance change were measured.
5) 전자파 차폐율 측정5) Measurement of electromagnetic wave shielding rate
전자파 차폐필름의 보호필름을 제거하고 25㎛ 두께의 PI film(Kapton, 듀폰사)을 핫플레이트로 120℃에서 2초간 눌러 붙인 후 실시예 1~4는 캐리어를 제거하고 절연필름(BT-012, 잉크테크사)를 적층하고 Hot Press(프레스 조건: 온도 150℃, 압력 40kgf/cm2, 시간 60분)로 가온 가압하여 접착제층을 완전경화(C-stage)시켰다.After removing the protective film of the electromagnetic wave shielding film, the PI film (Kapton, DuPont) having a thickness of 25 탆 was pressed on the hot plate at 120 캜 for 2 seconds. Then, in Examples 1 to 4, the carrier was removed, Ltd.) was laminated and pressurized by hot pressing (press condition: temperature: 150 占 폚, pressure: 40 kgf / cm2, time: 60 minutes) to completely cure the adhesive layer (C-stage).
시료를 ASTM D4935(평면재료의 차폐효과 표준 측정시험방법) 규격에 준하여 테스트하였다.Samples were tested according to ASTM D4935 (Standard Test Method for Shielding Effectiveness of Flat Materials).
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiments, but may be embodied in various forms of embodiments within the scope of the appended claims. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.
[부호의 설명][Description of Symbols]
10:차폐필름, 11:캐리어필름, 12:금속층, 10: shielding film, 11: carrier film, 12: metal layer,
13:전도성 접착층, 14:보호필름, 15:전도층,13: conductive adhesive layer, 14: protective film, 15: conductive layer,
20:커버레이, 21:캐리어필름, 22:절연층, 20: coverlay, 21: carrier film, 22: insulating layer,
22a:개구부, 23:접착층, 24:보호필름, 22a: opening, 23: adhesive layer, 24: protective film,
30:도금층, PCB:인쇄회로기판30: Plated layer, PCB: Printed circuit board

Claims (26)

  1. 캐리어필름;Carrier film;
    상기 캐리어필름의 일면에 형성된 전도성 금속층;A conductive metal layer formed on one surface of the carrier film;
    상기 금속층 상에 형성된 전도성 접착층; 및 A conductive adhesive layer formed on the metal layer; And
    상기 전도성 접착층 상에 형성된 보호필름;을 포함하는 전자파 차폐필름.And a protective film formed on the conductive adhesive layer.
  2. 제 1항에 있어서, The method according to claim 1,
    상기 전도성 접착층은 바인더 수지 및 전도성 필러를 포함하는 전자파 차폐필름.Wherein the conductive adhesive layer comprises a binder resin and a conductive filler.
  3. 제 2항에 있어서, 3. The method of claim 2,
    상기 전도성 필러는 은, 구리, 알루미늄, 니켈, 금, 아연 또는 철 입자를 포함하며, 상기 입자는 판상(flake), 구상(spherical), 가지상(dendrite) 또는 그레뉼(granule)의 형태를 갖는 것을 특징으로 하는 전자파 차폐필름.Wherein the conductive filler comprises silver, copper, aluminum, nickel, gold, zinc or iron particles, wherein the particles are in the form of flake, spherical, dendrite or granule Wherein the electromagnetic wave shielding film is made of a metal.
  4. 제 3항에 있어서, The method of claim 3,
    상기 입자는 3㎛~20㎛의 크기를 갖는 것을 특징으로 하는 전자파 차폐필름.Wherein the particles have a size of 3 mu m to 20 mu m.
  5. 제 2항에 있어서, 3. The method of claim 2,
    상기 바인더 수지는, 폴리비닐부티랄, 셀룰로오스, 폴리우레탄, 폴리에스테르, 에폭시, 페녹시, 노볼락, 알키드, 아마이드, 이미드 수지 또는 이들의 변성물 중 적어도 하나인 것을 특징으로 하는 전자파 차폐필름.Wherein the binder resin is at least one of polyvinyl butyral, cellulose, polyurethane, polyester, epoxy, phenoxy, novolac, alkyd, amide, imide resin or modified products thereof.
  6. 제 1항에 있어서, The method according to claim 1,
    상기 금속층과 전도성 접착층 사이에는 전도층이 개재되는 것을 특징으로 하는 전자파 차폐필름.Wherein a conductive layer is interposed between the metal layer and the conductive adhesive layer.
  7. 제 6항에 있어서, The method according to claim 6,
    상기 전도층은 상기 금속층에 비해 상대적으로 전기전도율이 우수한 물질로 이루어지는 것을 특징으로 하는 전자파 차폐필름.Wherein the conductive layer is made of a material having a relatively higher electrical conductivity than the metal layer.
  8. 제 7항에 있어서, 8. The method of claim 7,
    상기 전도층은 은(Silver) 잉크를 금속층 상에 코팅하여 형성되는 것을 특징으로 하는 전자파 차폐필름.Wherein the conductive layer is formed by coating a silver ink on a metal layer.
  9. 제 1항에 있어서, The method according to claim 1,
    상기 금속층은, 니켈, 구리, 알루미늄, 아연 또는 이들의 합금으로부터 1종 이상 선택되는 것을 특징으로 하는 전자파 차폐필름.Wherein the metal layer is at least one selected from the group consisting of nickel, copper, aluminum, zinc, and alloys thereof.
  10. 제 9항에 있어서, 10. The method of claim 9,
    상기 금속층은 2㎛ ~ 10㎛의 두께를 갖는 호일(foil)로 이루어지는 것을 특징으로 하는 전자파 차폐필름.Wherein the metal layer is formed of a foil having a thickness of 2 占 퐉 to 10 占 퐉.
  11. 캐리어필름, 금속층, 전도성 접착층 및 보호필름이 차례로 적층된 차폐필름을 준비하는 차폐필름 준비 단계;A shielding film preparing step of preparing a shielding film in which a carrier film, a metal layer, a conductive adhesive layer and a protective film are sequentially stacked;
    상기 차폐필름의 보호필름을 제거하는 보호필름 제거 단계;A protective film removing step of removing the protective film of the shielding film;
    상기 차폐필름의 전도성 접착층을 인쇄회로기판에 접합하는 접합 단계;A bonding step of bonding the conductive adhesive layer of the shielding film to a printed circuit board;
    상기 차폐필름의 캐리어필름을 제거하는 캐리어필름 제거단계; 및 A carrier film removing step of removing the carrier film of the shielding film; And
    상기 인쇄회로기판의 그라운드 확장단자가 형성될 영역에 개구부가 형성된 절연층을 상기 차폐필름의 금속층 상에 형성하는 절연층 형성 단계;를 포함하는 인쇄회로기판 제조방법.And forming an insulating layer on the metal layer of the shielding film, the opening being formed in a region where the ground extension terminal of the printed circuit board is to be formed.
  12. 제 11항에 있어서, 12. The method of claim 11,
    상기 절연층 형성 단계에서는, 상기 금속층 상에 절연성 페이스트를 프린팅하여 절연층을 형성하는 것을 특징으로 하는 인쇄회로기판 제조방법.Wherein the insulating layer is formed by printing an insulating paste on the metal layer in the insulating layer forming step.
  13. 제 11항에 있어서, 12. The method of claim 11,
    상기 절연층 형성 단계에서는, 개구부가 형성된 절연필름을 상기 금속층 상에 붙여 절연층을 형성하는 것을 특징으로 하는 인쇄회로기판 제조방법.Wherein in the step of forming an insulating layer, an insulating film on which an opening is formed is adhered to the metal layer to form an insulating layer.
  14. 제 11항에 있어서, 12. The method of claim 11,
    상기 절연층 형성 단계는, In the insulating layer forming step,
    캐리어필름, 절연층, 접착층 및 보호필름이 순서대로 적층된 커버레이를 준비하는 커버레이 준비 단계;A coverlay preparation step of preparing a coverlay in which a carrier film, an insulating layer, an adhesive layer and a protective film are stacked in this order;
    상기 커버레이를 타발하여 상기 인쇄회로기판의 그라운드 확장단자가 형성될 영역에 개구부를 형성하는 타발단계;A punching step of punching the coverlay to form an opening in an area where a ground expansion terminal of the printed circuit board is to be formed;
    상기 커버레이의 보호필름을 제거하는 보호필름 제거 단계; 및 A protective film removing step of removing the protective film of the coverlay; And
    상기 차폐필름의 금속층과 커버레이의 접착층을 합지하는 합지 단계;를 포함하는 인쇄회로 기판 제조방법.And laminating a metal layer of the shielding film and an adhesive layer of the coverlay.
  15. 제 11항 또는 제 14항에 있어서, 15. The method according to claim 11 or 14,
    상기 절연층의 개구부를 통해 노출된 금속층에 도금층을 형성하는 도금층 형성 단계;를 더 포함하는 인쇄회로기판 제조방법.And forming a plating layer on the metal layer exposed through the opening of the insulating layer.
  16. 제 15항에 있어서, 16. The method of claim 15,
    상기 도금층 형성 단계에 앞서, 상기 절연층의 개구부를 통해 노출된 금속층을 두께방향으로 일부 제거하는 금속층 일부 제거 단계;를 더 포함하는 것을 인쇄회로기판 제조방법.And removing the metal layer partially removing the metal layer exposed through the opening of the insulating layer in the thickness direction prior to the plating layer forming step.
  17. 제 11항 또는 제 14항에 있어서, 15. The method according to claim 11 or 14,
    상기 캐리어필름 제거단계에 앞서, 상기 전도성 접착층을 반경화시키는 전도성 접착층 반경화 단계;를 수행하는 것을 특징으로 하는 인쇄회로기판 제조방법.Wherein the step of semi-curing the conductive adhesive layer comprises semi-curing the conductive adhesive layer prior to the step of removing the carrier film.
  18. 제 17항에 있어서, 18. The method of claim 17,
    상기 캐리어필름 제거단계 이후, 상기 전도성 접착층을 완전경화시키는 단계;를 수행하는 것을 특징으로 하는 인쇄회로기판 제조방법.And completely curing the conductive adhesive layer after the removal of the carrier film.
  19. 제 14항에 있어서, 15. The method of claim 14,
    상기 합지 단계 이후, 상기 커버레이의 캐리어필름을 제거하는 커버레이 캐리어필름 제거단계;를 수행하는 것을 특징으로 하는 인쇄회로기판 제조방법.And removing the cover film carrier film from the cover film after the lapping step.
  20. 제 19항에 있어서, 20. The method of claim 19,
    상기 커버레이 캐리어필름 제거단계에 앞서, 상기 커버레이의 접착층을 반경화시키는 접착층 반경화 단계;를 수행하는 것을 특징으로 하는 인쇄회로기판 제조방법.Curing an adhesive layer semi-curing step of semi-curing the adhesive layer of the coverlay prior to the step of removing the coverlay carrier film.
  21. 제 20항에 있어서, 21. The method of claim 20,
    상기 커버레이 캐리어필름 제거단계 이후, 상기 커버레이의 접착층을 완전경화시키는 접착층 완전경화 단계;를 수행하는 것을 특징으로 하는 인쇄회로기판 제조방법.Wherein the adhesive layer is completely cured after the step of removing the coverlay carrier film to completely cure the adhesive layer of the coverlay.
  22. 제 11항에 있어서, 12. The method of claim 11,
    상기 차폐필름 준비 단계에서는 상기 금속층과 전도성 접착층 사이에는 상기 금속층에 비해 상대적으로 전기전도율이 우수한 재질의 전도층을 형성하는 것을 특징으로 하는 인쇄회로기판 제조방법.Wherein in the step of preparing the shielding film, a conductive layer having a higher electrical conductivity than the metal layer is formed between the metal layer and the conductive adhesive layer.
  23. 박막 형태의 금속층을 준비하는 금속층 준비단계;A metal layer preparation step of preparing a thin metal layer;
    상기 금속층의 일면에 전도성 접착층을 형성하는 전도성 접착층 형성단계;A conductive adhesive layer forming step of forming a conductive adhesive layer on one surface of the metal layer;
    상기 전도성 접착층 상에 제1보호필름을 합지하는 제1보호필름 형성단계;A first protective film forming step of forming a first protective film on the conductive adhesive layer;
    상기 금속층의 타면에 절연층을 형성하는 절연층 형성단계; 및 Forming an insulating layer on the other surface of the metal layer; And
    상기 절연층 상에 제2보호필름을 형성하는 제2보호필름 형성단계;를 포함하는 전자파 차폐필름 제조방법.And a second protective film forming step of forming a second protective film on the insulating layer.
  24. 제 23항에 있어서,24. The method of claim 23,
    상기 전도성 접착층 형성단계에 앞서, Prior to the step of forming the conductive adhesive layer,
    상기 금속층의 일면에 전도층을 형성하는 전도층 형성단계;를 수행하는 것을 특징으로 하는 전자파 차폐필름 제조방법.And forming a conductive layer on one side of the metal layer.
  25. 제 24항에 있어서, 25. The method of claim 24,
    상기 전도층은 상기 금속층에 비해 상대적으로 전기전도율이 우수한 물질로 이루어지는 것을 특징으로 하는 전자파 차폐필름 제조방법.Wherein the conductive layer is made of a material having a relatively higher electrical conductivity than the metal layer.
  26. 제 25항에 있어서, 26. The method of claim 25,
    상기 전도층은 은(Silver) 잉크를 금속층 상에 코팅하여 형성되는 것을 특징으로 하는 전자파 차폐필름 제조방법.Wherein the conductive layer is formed by coating a silver ink on a metal layer.
PCT/KR2018/000662 2017-12-18 2018-01-15 Electromagnetic wave shielding film, method for manufacturing printed circuit board, and method for manufacturing electromagnetic wave shielding film WO2019124624A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0174287 2017-12-18
KR1020170174287A KR102197471B1 (en) 2017-12-18 2017-12-18 Electromagnetic wave shield film, manufacturing method for printed circuit board and manufacturing method for electromagnetic wave shield film

Publications (1)

Publication Number Publication Date
WO2019124624A1 true WO2019124624A1 (en) 2019-06-27

Family

ID=63317166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000662 WO2019124624A1 (en) 2017-12-18 2018-01-15 Electromagnetic wave shielding film, method for manufacturing printed circuit board, and method for manufacturing electromagnetic wave shielding film

Country Status (5)

Country Link
JP (1) JP6724054B2 (en)
KR (1) KR102197471B1 (en)
CN (1) CN108495543B (en)
TW (1) TWI707940B (en)
WO (1) WO2019124624A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6497477B1 (en) * 2018-10-03 2019-04-10 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet and electronic component mounting board
CN112406217B (en) * 2020-10-27 2022-04-26 瑞声精密制造科技(常州)有限公司 Metal plastic composite film and preparation method and application thereof
JP7232995B2 (en) * 2021-03-19 2023-03-06 東洋インキScホールディングス株式会社 Electromagnetic wave shielding sheet, manufacturing method thereof, shielding wiring board, and electronic device
JP7001187B1 (en) 2021-03-19 2022-01-19 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet and its manufacturing method, shielded wiring board, and electronic equipment
TW202237716A (en) * 2021-03-26 2022-10-01 日商拓自達電線股份有限公司 Electroconductive adhesive layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130115431A (en) * 2012-04-12 2013-10-22 한화엘앤씨 주식회사 Electromagnetic wave shield film and printed circuited board attached said film and the manufacturing method thereof
KR101487227B1 (en) * 2014-12-15 2015-01-29 두성산업 주식회사 An Electromagnetic wave shield tape and manufacturing method thereof
KR20160078058A (en) * 2014-12-24 2016-07-04 주식회사 두산 Preparation method of electromagnetic wave shielding film for flexible printed circuit board
KR20170069181A (en) * 2014-01-14 2017-06-20 광저우 팡 방 일렉트로닉 컴퍼니, 리미티드 Electromagnetic wave shielding film and method of manufacturing circuit board with same
KR20170119421A (en) * 2016-04-19 2017-10-27 전자부품연구원 EMI shielding film and manufacturing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3434021B2 (en) 1993-06-03 2003-08-04 住友電気工業株式会社 Shield flexible printed wiring board
US7321496B2 (en) * 2004-03-19 2008-01-22 Matsushita Electric Industrial Co., Ltd. Flexible substrate, multilayer flexible substrate and process for producing the same
JP4319167B2 (en) * 2005-05-13 2009-08-26 タツタ システム・エレクトロニクス株式会社 Shield film, shield printed wiring board, shield flexible printed wiring board, shield film manufacturing method, and shield printed wiring board manufacturing method
JP2009289840A (en) * 2008-05-28 2009-12-10 Toyo Ink Mfg Co Ltd Electromagnetic wave shieldable adhesive film
JP2010067806A (en) * 2008-09-11 2010-03-25 Toray Advanced Film Co Ltd Filter for display
JP2010204332A (en) * 2009-03-03 2010-09-16 Toray Advanced Film Co Ltd Filter for display and manufacturing method thereof
CN103120042B (en) * 2010-06-23 2016-03-23 印可得株式会社 The preparation method of electromagnetic shielding film and electromagnetic shielding film prepared therefrom
KR20190107768A (en) * 2011-11-24 2019-09-20 타츠타 전선 주식회사 Shield film, shielded printed wiring board, and method for manufacturing shield film
KR20160014456A (en) * 2014-07-29 2016-02-11 삼성전기주식회사 Flexible printed circuit board and manufacturing method thereof
JP6187568B2 (en) * 2015-09-17 2017-08-30 東洋インキScホールディングス株式会社 Laminated body for electromagnetic wave shield, electromagnetic wave shield laminated body, electronic device and manufacturing method thereof
JP6709669B2 (en) * 2016-04-20 2020-06-17 信越ポリマー株式会社 Electromagnetic wave shield film and printed wiring board with electromagnetic wave shield film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130115431A (en) * 2012-04-12 2013-10-22 한화엘앤씨 주식회사 Electromagnetic wave shield film and printed circuited board attached said film and the manufacturing method thereof
KR20170069181A (en) * 2014-01-14 2017-06-20 광저우 팡 방 일렉트로닉 컴퍼니, 리미티드 Electromagnetic wave shielding film and method of manufacturing circuit board with same
KR101487227B1 (en) * 2014-12-15 2015-01-29 두성산업 주식회사 An Electromagnetic wave shield tape and manufacturing method thereof
KR20160078058A (en) * 2014-12-24 2016-07-04 주식회사 두산 Preparation method of electromagnetic wave shielding film for flexible printed circuit board
KR20170119421A (en) * 2016-04-19 2017-10-27 전자부품연구원 EMI shielding film and manufacturing method thereof

Also Published As

Publication number Publication date
KR20190073037A (en) 2019-06-26
TWI707940B (en) 2020-10-21
JP6724054B2 (en) 2020-07-15
TW201927968A (en) 2019-07-16
CN108495543B (en) 2020-03-31
JP2019110282A (en) 2019-07-04
KR102197471B1 (en) 2021-01-04
CN108495543A (en) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2019124624A1 (en) Electromagnetic wave shielding film, method for manufacturing printed circuit board, and method for manufacturing electromagnetic wave shielding film
WO2018044053A1 (en) Method for manufacturing flexible printed circuit board and flexible printed circuit board manufactured by same
WO2015106480A1 (en) Electromagnetic wave shielding film and fabrication method of circuit board comprising shielding film
WO2017111254A1 (en) Electromagnetic wave shielding film and manufacturing method therefor
WO2012087058A2 (en) Printed circuit board and method for manufacturing the same
WO2014178639A1 (en) Flexible printed circuit board and method for manufacturing same
WO2016105131A1 (en) Method for manufacturing electromagnetic wave shielding film for flexible printed circuit board
WO2018101503A1 (en) Method for manufacturing printed circuit board and printed circuit board manufactured thereby
WO2018151578A1 (en) Method for manufacturing transfer film including seed layer, method for manufacturing circuit board by selectively etching seed layer, and etching solution composite
WO2012087059A2 (en) Printed circuit board and method for manufacturing the same
WO2015105340A1 (en) Electromagnetic wave shielding film for flexible printed circuit board and manufacturing method therefor
WO2012011701A2 (en) Radiant heat circuit board and method for manufacturing the same
WO2019035697A1 (en) Emi shielding film
WO2018117564A1 (en) Metal composite sheet
WO2012087060A2 (en) Printed circuit board and method for manufacturing the same
WO2018221876A1 (en) Method for manufacturing flexible printed circuit board and flexible printed circuit board manufactured by same
WO2013176520A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2021145664A1 (en) Circuit board
WO2019231028A1 (en) Insulation film and method for manufacturing insulation film
WO2015099451A1 (en) Insulation resin sheet for forming flexible printed circuit board, method for manufacturing same, and printed circuit board comprising same
WO2015156540A1 (en) Double-sided flexible copper clad laminate for micro-wiring, manufacturing method therefor, and printed circuit board for micro-wiring
WO2018004190A1 (en) Primer coating-copper clad and copper clad laminate
WO2021091303A1 (en) Heat dissipation sheet for low-frequency antenna, method for manufacturing same, and electronic device comprising same
WO2014092428A1 (en) Multilayer printed circuit board, and method for manufacturing same
WO2022045663A1 (en) Resin composition for semiconductor package and copper foil-attached resin comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892561

Country of ref document: EP

Kind code of ref document: A1