WO2019124219A1 - 1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法 - Google Patents

1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法 Download PDF

Info

Publication number
WO2019124219A1
WO2019124219A1 PCT/JP2018/045928 JP2018045928W WO2019124219A1 WO 2019124219 A1 WO2019124219 A1 WO 2019124219A1 JP 2018045928 W JP2018045928 W JP 2018045928W WO 2019124219 A1 WO2019124219 A1 WO 2019124219A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloro
reaction
heptafluoropentene
producing
base
Prior art date
Application number
PCT/JP2018/045928
Other languages
English (en)
French (fr)
Inventor
厚史 藤森
真理 市野川
卓也 岩瀬
岡本 秀一
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN201880081556.4A priority Critical patent/CN111479793A/zh
Priority to JP2019561023A priority patent/JP7331700B2/ja
Publication of WO2019124219A1 publication Critical patent/WO2019124219A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a process for the preparation of 1-chloro-2,3,3,4,4,5,5-heptafluoropentene.
  • 1-chloro-2,3,3,4,4,5,5-heptafluoropentene (HCFO-1437dycc) is a compound of 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC- Cleaning agents, refrigerants, blowing agents, solvents and aerosols that have a low global warming potential (GWP) to replace 225 ca) and 1,3-dichloro-1,1,2,2,3 pentafluoropropane (HCFC-225 cb) It is expected as a useful compound for use.
  • HCFC- Cleaning agents 3,3-dichloro-1,1,1,2,2-pentafluoropropane
  • GWP global warming potential
  • 1,3-dichloro-1,1,2,2,3 pentafluoropropane (HCFC-225 cb) It is expected as
  • Non-patent Document 1 discloses that 2,2,3,3,4,4,5,5-octafluoropentanol (OFPO) is reacted with dichlorotriphenylphosphorane, HCFC-448occc is obtained by reacting HCFC-448occc with sodium methoxide after obtaining 5-chloro-1,1,2,2,3,3,4,4-octafluoropentane (HCFC-448occc).
  • OFPO 2,2,3,3,4,4,5,5-octafluoropentanol
  • Non-Patent Document 1 it is considered that the target substance HCFO-1437dycc reacts with sodium methoxide, and as a result, the yield of HCFO-1437dycc is as low as about 50%. For this reason, it can not be said that it is an industrially useful manufacturing method.
  • the present invention is to provide an efficient method for producing HCFO-1437dycc which can produce HCFO-1437dycc with high selectivity and high yield by an industrially advantageous method using easily available raw materials. To aim.
  • the present invention provides the following method for producing HCFO-1437dycc.
  • 5-Chloro-1,2,2,3,3,4,4-octafluoropentane is dehydrofluorinated in an aqueous solution of a base to give 1-chloro-2,3,3,
  • [3] The process for producing 1-chloro-2,3,3,4,4,5,5-heptafluoropentene according to [2], wherein the reaction temperature of the dehydrofluorination reaction is 0 to 60 ° C. .
  • the base is selected from the group consisting of alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal oxides, alkaline earth metal oxides, alkali metal carbonates, and alkaline earth metal carbonates
  • the amount of the base is 0.5 to 10.0 moles relative to 1 mole of the 5-chloro-1,1,2,2,3,3,4,4-octafluoropentane
  • phase transfer catalyst which is at least one selected from the group consisting of quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, sulfonium salts and crown ethers.
  • Process for producing 1-chloro-2,3,3,4,4,5,5-heptafluoropentene [9] The 1-chloro-2,3,3,4,5,4 according to any of [1] to [8], wherein the dehydrofluorination reaction is carried out in the presence of a water-soluble organic solvent. Method for producing 5-heptafluoropentene.
  • 1437 dycc has geometric isomers Z form and E form depending on the position of the substituent bonded to the carbon having a double bond.
  • any ratio of the Z form or the E form, or the Z form and the E form Indicates a mixture of When (Z) or (E) is added after the compound name or the abbreviation of the compound, it indicates that it is the Z form or the E form of the respective compound.
  • 1 437 dycc can be produced with high selectivity and high yield.
  • the process for producing 1-chloro-2,3,3,4,4,5,5-heptafluoropentene (1437 dycc) of the present invention is 5-chloro-1,1,2,2,3,3,4,5.
  • Dehydrofluorination of 4-octafluoropentane (448 occc) in an aqueous solution of a base gives 1437 dycc.
  • reaction relating to the method for producing 1437 dycc of this embodiment is represented by the following formula (1).
  • the 1437 dycc obtained by the manufacturing method of the present embodiment has a high proportion of halogen which suppresses the flammability and has a carbon-carbon double bond which is easily decomposed by OH radicals in the atmosphere in the molecule, Have low impact on the ozone layer and low impact on global warming. Therefore, the usefulness as a solvent, a working medium (a heat medium used for heat exchange etc., a working medium used for a heat cycle system etc., etc.) is high.
  • the 1437 dy s cc obtained by the manufacturing method of the present embodiment may be only the Z form, the E only, or a mixture of the Z form and the E form.
  • the Z form, 1437 dycc (Z) has higher chemical stability than the E form, 1437 dycc (E), and is more preferable as a solvent or a working medium.
  • 1437 dycc can be manufactured efficiently.
  • 1437 dycc in which the content ratio of 1437 dycc (Z) is higher than that of 1 437 dycc (E) can be obtained.
  • the method for producing 1437 dycc of the present embodiment is a method in which 448 occc is dehydrofluorinated in an aqueous solution of a base. is there.
  • any material containing 448 occc may be used, and for example, a crude solution containing 448 occc obtained by the production method described in Non-Patent Document 1 may be used as it is, this crude solution May be purified by a known method before use.
  • a crude solution containing 448 occc obtained by the production method described in Non-Patent Document 1 may be used as it is, this crude solution May be purified by a known method before use.
  • the starting material of the reaction (1) one not containing impurities in addition to 448 occc is preferable, but from the viewpoint of economy, it may contain impurities.
  • the impurity is preferably a compound that does not inhibit 448 occc's dehydrofluorination reaction.
  • impurities 1437 dycc, 2,2,3,3,4,4,5,5-octafluoropentanol (hereinafter also referred to as OFPO), N, N-dimethylformamide (hereinafter also referred to as DMF), etc. Is illustrated.
  • the ratio of 448 occc to the total amount of impurities and 448 occc is preferably 85% by mass to less than 100% by mass, and more preferably 90% by mass to 99% by mass.
  • the ratio of the total amount of 1437 dycc, OFPO and DMF is to efficiently produce 1437 dycc. More than 0 mass% and 15 mass% or less are preferable with respect to the total amount, and 0.1 mass% or more and 7 mass% or less are more preferable.
  • the starting material of the reaction (1) contains OFPO
  • the content ratio of OFPO is preferably more than 0% by mass and 3% by mass or less with respect to the total amount of the starting materials, 0.1% by mass or more and 1% by mass or less More preferable. If the content of OFPO is within the above range, the manufacturing cost can be suppressed and the selectivity of 1437 dycc is further improved.
  • the base in the reaction (1) is not particularly limited as long as it is a base that can carry out the dehydrofluorination reaction of the reaction (1).
  • the base is preferably at least one selected from the group consisting of metal hydroxides, metal oxides and metal carbonates.
  • Examples of the metal hydroxide include alkaline earth metal hydroxides and alkali metal hydroxides.
  • As the alkaline earth metal hydroxide magnesium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide are preferable, and as the alkali metal hydroxide, lithium hydroxide, sodium hydroxide and potassium hydroxide are preferable.
  • the metal hydroxide may be one type, or two or more types.
  • the metal oxide examples include alkali metal oxides and alkaline earth metal oxides.
  • alkali metal oxide sodium oxide is preferable, and as the alkaline earth metal oxide, calcium oxide is preferable.
  • the metal oxide may be of one type, two or more types, or a complex oxide of two or more types of metals.
  • metal carbonates examples include alkali metal carbonates and alkaline earth metal carbonates.
  • the alkali metal carbonates include carbonates of lithium, sodium, potassium, rubidium, cesium or francium.
  • Alkaline earth metal carbonates include carbonates of beryllium, magnesium, calcium, strontium, barium or radium.
  • the metal carbonate may be one type, or two or more types.
  • the metal hydroxide is preferably at least one selected from potassium hydroxide and sodium hydroxide. Potassium hydroxide or sodium hydroxide may be used alone, or potassium hydroxide and sodium hydroxide may be used in combination.
  • the amount of the base relative to 448 occc is preferably 0.5 to 10 mol, more preferably 0.5 to 5.0 mol per mol of 448 occc, 0.5 to 2.5 mol is more preferable, and 0.5 to 2.0 mol is most preferable.
  • a base is used as an aqueous solution of a base.
  • the aqueous solution of the base is preferably an aqueous alkali metal hydroxide solution, more preferably an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
  • the amount of the base relative to the total amount of the aqueous solution of the base is preferably 0.5 to 40% by mass, and more preferably 10 to 40% by mass.
  • the amount of the base relative to the total amount of the aqueous solution of the base is 0.5% by mass or more, a sufficient reaction rate can be easily obtained, and the separation of the desired product by two-layer separation can be easily performed.
  • the amount of the base relative to the total amount of the aqueous solution of the base is 40% by mass or less, the base is easily dissolved and the metal salt is less likely to precipitate, which is advantageous in industrial processes.
  • the amount of the base relative to the total amount of the aqueous solution of the base is more preferably 20 to 38% by mass, and most preferably 20 to 35% by mass. When the amount of the base relative to the total amount of the aqueous solution of the base is 20% by mass or more, the conversion rate of 448 occc becomes higher, and the reaction rate becomes faster.
  • 448 occc is accommodated in advance for the compound involved in the base aqueous solution stored in the raw material tank (denoted by reference numeral 12) and other reactions used as needed. It supplies to the reactor 11 which carried out, and makes it react.
  • the composition containing the produced 1437 dycc is recovered from the reactor 11, but is cooled via the cooler 13 as necessary. Furthermore, it is preferable to recover from the inside of the recovery tank 15 containing the product from which water has been removed by passing through the dewatering tower 14 as necessary.
  • the reactor 11 is preferably a known reactor used for the dehydrofluorination reaction in the liquid phase reaction.
  • the material of the reactor 11 include iron, nickel, an alloy containing these as a main component, and glass. If necessary, lining treatment such as resin lining or glass lining may be performed on the reactor 11.
  • the reaction temperature in the reaction (1) is preferably 0 to 80 ° C., more preferably 0 to 60 ° C., still more preferably 10 to 50 ° C., and particularly preferably 20 to 40 ° C.
  • the reaction temperature is the temperature in the reactor, more specifically, the temperature of the liquid phase in the reactor. In the apparatus shown in FIG. 1, the temperature in the reactor 11 is the reaction temperature.
  • the pressure in the reactor during the reaction is not particularly limited, but is preferably ⁇ 0.1 to 10 MPa, more preferably 0 to 5 MPa, and still more preferably 0 to 1 MPa.
  • the pressure in the reactor is preferably at least 448 occc vapor pressure at the reaction temperature.
  • the reaction (1) can be carried out either semi-continuously, batchwise or continuously.
  • reaction time can be suitably adjusted with a general method by each system.
  • the reaction time is preferably 1 to 50 hours in the case of a batch system, and is preferably 1 to 20 hours in the case of a continuous system, since the conversion of 448 occc and the selectivity of 1437 dycc which are raw materials can be easily controlled.
  • the residence time of the raw material in the reactor is regarded as the reaction time.
  • the reaction (1) is preferably carried out in the presence of a phase transfer catalyst so that the raw material 448 ccc and the aqueous solution of the base can be efficiently contacted. Moreover, you may carry out in presence of water-soluble organic solvents, such as a tetraglyme, in the range which does not affect reaction. In order to speed up the reaction, it is preferred to use a phase transfer catalyst.
  • phase transfer catalysts include quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, sulfonium salts, crown ethers and the like, and quaternary ammonium salts, quaternary phosphonium salts and quaternary arsonium Salts and sulfonium salts are preferred, and quaternary ammonium salts are more preferred.
  • R 11 ⁇ R 14 each independently represents a monovalent hydrocarbon group or a monovalent hydrocarbon group inert functional group bonded to the reaction,
  • Y 1 - represents a monovalent anion
  • R 11 to R 14 are a hydrocarbon group, examples thereof include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group and an aryl group, with an alkyl group and an aryl group being preferable.
  • the number of carbon atoms in each of R 11 to R 14 is preferably 1 to 100, and more preferably 4 to 30.
  • R 11 to R 14 may be the same or different from each other.
  • R 11 to R 14 are a monovalent hydrocarbon group to which a functional group inert to the reaction is bonded is appropriately selected depending on the reaction conditions, but a halogen atom, an alkoxycarbonyl group, an acyloxy Groups, nitrile groups, acyl groups, carboxyl groups, alkoxyl groups and the like.
  • the compound represented by the above formula (i) is preferably a combination of the following quaternary ammonium (R 11 R 12 R 13 R 14 N + ) and the following Y 1- .
  • Y 1 ⁇ fluorine ion, chloride ion, bromine ion, iodine ion, hydroxide ion.
  • TBAC tetra-n-butylammonium chloride
  • TBAB tetra-n-butylammonium bromide
  • TOMAC chlorides
  • R 21 to R 24 each independently represent a monovalent hydrocarbon group, and Y 2- represents a monovalent anion.
  • R 21 to R 24 represent Each may be the same group or may be different groups.
  • the hydrocarbon group in R 21 to R 24 includes an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an aryl group and the like, and an alkyl group and an aryl group are preferable.
  • tetraethyl phosphonium, tetra-n-butyl phosphonium, ethyl tri-n-octyl phosphonium, cetyl triethyl phosphonium, cetyl tri-n- Examples include butyl phosphonium, n-butyl triphenyl phosphonium, n-amyl triphenyl phosphonium, methyl triphenyl phosphonium, benzyl triphenyl phosphonium, tetraphenyl phosphonium and the like.
  • the quaternary phosphonium salt is preferably at least one selected from the group consisting of tetra-n-butylphosphonium chloride and tetra-n-butylphosphonium fluoride from the viewpoint of industrial availability.
  • a quaternary arsonium salt the compound represented by the following Formula (iii) is mentioned.
  • R 31 to R 34 are the same as R 21 to R 24 in the formula (ii), and preferred embodiments are also the same.
  • Y 3- represents a monovalent anion.
  • a halogen ion is preferable, and a fluorine ion, a chlorine ion, and a bromine ion are more preferable.
  • Examples of the quaternary arsonium salt represented by the above formula (iii) include triphenylmethylarsonium fluoride, tetraphenylarsonium fluoride, triphenylmethylarsonium chloride, tetraphenylarsonium chloride, tetraphenylarsonium bromide and the like. Can be mentioned. As the quaternary arsonium salt, triphenylmethylarsonium chloride is preferred.
  • di-n-butylmethylsulfonium iodide tri-n-butylsulfonium tetrafluoroborate, dihexylmethylsulfonium iodide, dicyclohexylmethylsulfonium iodide, dodecylmethylethylsulfonium Chloride, tris (diethylamino) sulfonium difluorotrimethyl silicate and the like can be mentioned.
  • the sulfonium salt dodecyl methyl ethyl sulfonium chloride is preferred.
  • crown ethers examples include 18-crown-6, dibenzo-18-crown-6, and dicyclohexyl-18-crown-6.
  • phase transfer catalysts TBAC, TBAB, and TOMAC are preferable in terms of industrial availability, price, and ease of handling.
  • the amount of phase transfer catalyst is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5.0 parts by mass, and further 0.1 to 2.0 parts by mass with respect to 100 parts by mass of 448 occc. Preferably, 0.1 to 1.5 parts by mass is particularly preferable.
  • the amount of phase transfer catalyst is most preferably 0.1 to 1.0 parts by mass with respect to 100 parts by mass of 448 occc, because the selectivity and the yield of 1437 dycc are high.
  • reaction process When using a phase transfer catalyst, the reaction process, the reactor, and the materials of the reactor may be the same as in the case where the phase transfer catalyst is not used.
  • reaction conditions such as the concentration of the base, the amount used, and the reaction temperature may be the same as in the case where the phase transfer catalyst is not used.
  • reaction (1) for example, 448 occc, an aqueous solution of a base, optionally a water-soluble organic solvent and / or a compound involved in a reaction such as a phase transfer catalyst are supplied to the reactor and stirred to make them uniform. It is possible to proceed by setting the desired temperature condition and pressure condition.
  • the reaction (1) may be carried out by compatibilizing the aqueous phase and the organic phase using a water-soluble organic solvent instead of the phase transfer catalyst.
  • a water-soluble organic solvent it is preferable to carry out sufficient stirring in order to make the compound involved in the reaction in the reaction system homogeneous.
  • the water-soluble organic solvent include dimethyl sulfoxide, tetraglyme, and acetonitrile. Among these, dimethylsulfoxide and tetraglyme are preferable because they have a boiling point suitable for the reaction (1).
  • a phase transfer catalyst and a water-soluble organic solvent may be used in combination.
  • the reaction solution after completion of the reaction When the reaction solution after completion of the reaction is allowed to stand, it separates into an organic phase and an aqueous phase.
  • the organic phase may contain by-products in addition to unreacted 448 occc and 1437 dycc of the target product.
  • 1-chloro-3,3,4,4,5,5-hexafluoropentine, 5-chloro-1,1,2,3,3,4,4-heptafluoropentene HCFO -1437 cycc, hereinafter referred to as "1437 cycc").
  • 2,3,3,4,4,5,5-heptafluoro-1- (1-2) represented by the following chemical formula (v) as a by-product 2,2,3,3,4,4,5,5-octafluoropentoxy) pentene etc. may be contained.
  • the desired product other than 1437 dycc can be easily removed by known methods such as separation by distillation. Unreacted 448 occc can be reused again as the starting material for reaction (1). At that time, the crude solution after separating 1437 dycc from the reaction product may be used as it is, or unreacted 448 occc may be purified from the crude solution and used.
  • 1437 cycc is mentioned as a by-product as described above, in the dehydrofluorination reaction in this reaction (1), 1437 cycc by-product is sufficiently suppressed, and, for example, it is contained in the reaction product. Can be reduced to 100 ppm or less. Therefore, the production method of the present embodiment is an excellent method capable of selectively producing the target compound 1437dycc.
  • composition analysis of the obtained reaction composition was performed using gas chromatography (GC) in manufacture of the following various compounds.
  • GC gas chromatography
  • DB-1301 length 60 m ⁇ inner diameter 250 ⁇ m ⁇ thickness 1 ⁇ m, manufactured by Agilent Technologies, Inc.
  • Example 1 A 10 liter of 448 occc, tetra-n-butylammonium bromide (TBAB) obtained by the method described in Non-Patent Document 1 in a 0.2 liter four-necked flask equipped with a stirrer and a Dimroth condenser 1.0 g was charged and the flask was cooled to 10 ° C. The reaction temperature was maintained at 10 ° C., and 153.9 g of a 34 mass% aqueous potassium hydroxide (KOH) solution was added dropwise over 30 minutes. Then, stirring was continued for 38 hours, and the organic layer was recovered.
  • KOH a 34 mass% aqueous potassium hydroxide
  • the recovered organic layer is washed with water and analyzed by gas chromatography.
  • the results are shown in Table 1.
  • the conversion rate of 448 occc is the ratio (mol%) of the amount of 448 occc consumed in the reaction to the total amount of 448 occc fed to the reactor.
  • the selectivity of each compound is the ratio (mol%) of each component generated to 448 occc converted, and was calculated from the result of GC analysis.
  • Table 1 also shows the actual preparation amount and the reaction conditions.
  • "TBAB / 448 occc" represents the preparation amount (parts by mass) of TBAB with respect to 100 parts by mass of 448 occc.
  • Examples 2 to 4 As shown in Table 1, the reaction was carried out in the same manner as in Example 1 except that the actual preparation amount and the reaction temperature were changed, respectively, to obtain a composition containing 1437 dycc. In Examples 3 and 4, the operation was terminated when there was a large amount of solid deposition and no change in the conversion of 448 occc due to the reaction start time was observed. Incidentally, the reaction end point was the point at which the conversion rate of 448 occc was 99% or more.
  • the target 1437 dycc could be produced with high selectivity and high yield while suppressing the amount of solid matter generated. It was also found that the lower the reaction temperature, the smaller the amount of solid content produced, and it is possible to increase both the selectivity and the yield of 1437 dycc.
  • Example 5 As shown in Table 2, the reaction was carried out in the same manner as in Example 1 except that the preparation amount of TBAB and the preparation amount of TBAB were changed, respectively, to obtain a composition containing 1437 dycc. In Example 5, the operation was ended when no change in the conversion rate of 448 occc due to the reaction start time was observed. Table 2 also shows Example 3 having the same reaction temperature for reference.
  • Example 6 As shown in Table 2, the reaction was carried out in the same manner as in Example 1 except that the preparation amount and the preparation amount of KOH were changed, respectively, to obtain a composition containing 1437 dycc.
  • the reaction end point was the point at which the conversion of 448 occc was 99% or more.
  • Example 8 As shown in Table 2, the reaction was carried out in the same manner as in Example 1 except that the actual preparation amount and the concentration of KOH were changed, respectively, to obtain a composition containing 1437 dycc. The operation was terminated when no change in the conversion of 448 occc due to the reaction start time was observed.
  • Example 5 As can be seen from Example 5 in Table 2, it can be seen that the reaction time can be further shortened as the amount of TBAB charged is larger. It was also found that 1437 dycc can be produced without any change in 1437 dycc selectivity and yield by securing a sufficient reaction time even when the amount of TBAB charged is small.
  • the target 1437 dycc can be produced with high selectivity and high yield while suppressing the formation of solid content by reducing the preparation amount of KOH.
  • the productivity is improved because the volumetric efficiency is also improved by the reduction of the preparation amount of KOH.
  • the manufacturing method of 1437 dycc in a present Example can manufacture 1437 dycc efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)

Abstract

入手容易な原料を用いて、工業的に有利な方法で、HCFO-1437dyccを高選択率かつ高収率で製造できる、効率的なHCFO-1437dyccの製造方法を提供する。5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタン(HCFC-448occc)を、塩基の水溶液中で、脱フッ化水素反応させて1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテン(HCFO-1437dycc)を得ることを特徴とする、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。

Description

1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法
 本発明は、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法に関する。
 1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテン(HCFO-1437dycc)は、3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(HCFC-225ca)や1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(HCFC-225cb)に代わる地球温暖化係数(GWP)の小さい、洗浄剤、冷媒、発泡剤、溶剤およびエアゾール用途に有用な化合物として期待されている。
 このHCFO-1437dyccを製造する方法として、非特許文献1には、2,2,3,3,4,4,5,5-オクタフルオロペンタノール(OFPO)をジクロロトリフェニルホスホランと反応させ、5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタン(HCFC-448occc)を得たのち、HCFC-448occcをナトリウムメトキシドと反応させることにより、HCFC-448occcを脱フッ化水素反応させてHCFO-1437dyccを得る方法が開示されている。
Zhurnal Organicheskoi Khimii, (ロシア),1988年,24巻,8号,1626-1633頁
 しかしながら、HCFO-1437dyccの製造方法については、未だ十分な検討がなされていない。非特許文献1に記載の方法では、目的物であるHCFO-1437dyccとナトリウムメトキシドが反応すると考えられるため、結果としてHCFO-1437dyccの収率が50%程度と低い。このため、工業的に有用な製法であるとは言い難い。
 そこで、本発明は、入手容易な原料を用いて、工業的に有利な方法で、HCFO-1437dyccを高選択率かつ高収率で製造できる効率的なHCFO-1437dyccの製造方法を提供することを目的とする。
 本発明は、下記のHCFO-1437dyccの製造方法を提供する。
 [1]5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタンを、塩基の水溶液中で、脱フッ化水素反応させることにより1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンを得ることを特徴とする、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
 [2]前記脱フッ化水素反応の反応温度が0~80℃である、[1]に記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
 [3]前記脱フッ化水素反応の反応温度が0~60度である、[2]に記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
 [4]前記塩基が、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属酸化物、アルカリ土類金属酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩からなる群より選ばれる少なくとも1種である、[1]~[3]のいずれかに記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
 [5]前記塩基の量が、前記5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタンの1モルに対して、0.5~10.0モルである、[1]~[4]のいずれかに記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
 [6]前記塩基の量が、前記塩基の水溶液の総量に対して、0.5~40.0質量%である、[1]~[5]のいずれかに記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
 [7]前記脱フッ化水素反応を、相間移動触媒の存在下に行う、[1]~[6]のいずれかに記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
 [8]前記相間移動触媒が、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩、クラウンエーテルからなる群より選ばれる少なくとも1種である、[7]に記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
 [9]前記脱フッ化水素反応を、水溶性有機溶媒の存在下に行う、[1]~[8]のいずれかに記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
 なお、本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、必要に応じて化合物名に代えてその略称を用いる。また、略称として、ハイフン(-)より後ろの数字およびアルファベット小文字部分だけ(例えば、「HCFO-1437dycc」においては「1437dycc」)を用いることがある。
 また、1437dyccは、二重結合を有する炭素に結合された置換基の位置により、幾何異性体であるZ体とE体が存在する。本明細書中で、Z体とE体が存在する化合物について、特に断らずに化合物名や化合物の略称を用いた場合には、Z体もしくはE体、またはZ体とE体の任意の割合の混合物を示す。化合物名や化合物の略称の後ろに(Z)または(E)を付した場合には、それぞれの化合物のZ体またはE体であることを示す。
 本発明の1437dyccの製造方法によれば、高選択率および高収率で1437dyccを製造することができる。
本発明の第1の実施形態に用いる反応装置の一例の概略構成を示した図である。
 本発明の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテン(1437dycc)の製造方法は、5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタン(448occc)を、塩基の水溶液中で脱フッ化水素反応させることにより1437dyccを得るものである。
 以下、本発明について、実施形態を参照しながら詳細に説明する。本実施形態の1437dyccの製造方法に係る反応は、以下の式(1)で示される。
Figure JPOXMLDOC01-appb-C000001
 本実施形態の製造方法で得られる1437dyccは、燃焼性を抑えるハロゲンの割合が高いうえに、大気中のOHラジカルによって分解され易い炭素-炭素二重結合を分子内に有しており、燃焼性が低く、オゾン層への影響が少なく、かつ地球温暖化への影響が少ない。したがって、溶剤や、作動媒体(熱交換等に用いる熱媒体、熱サイクルシステム等に用いる作動媒体等)としての有用性が高い。
 本実施形態の製造方法で得られる1437dyccは、Z体のみであってもE体のみであってもZ体とE体の混合物であってもよい。Z体である1437dycc(Z)は、E体である1437dycc(E)よりも化学的安定性が高く、溶剤や作動媒体としてより好ましい。そして、本実施形態の製造方法によれば、1437dyccを効率的に製造できる。さらに、本実施形態の製造方法によれば、1437dycc(E)に比べて1437dycc(Z)の含有割合が高い1437dyccを得ることができる。
 本実施形態の1437dyccの製造方法は、上記のように、式(1)で示される反応(以下、反応(1)という。)に従い、塩基の水溶液中で448occcを脱フッ化水素反応させるものである。
 反応(1)の出発原料としては、448occcを含有するものであればよく、例えば、非特許文献1等に記載の製造方法により得られる448occcを含む粗液をそのまま用いてもよく、該粗液を公知の方法により精製してから用いてもよい。
 反応(1)の出発原料としては、448occcの他に不純物を含まないものが好ましいが、経済性の観点からは、不純物を含んでもよい。不純物は、448occcの脱フッ化水素反応を阻害しないような化合物が好ましい。不純物としては、1437dycc、2,2,3,3,4,4,5,5-オクタフルオロペンタノール(以下、OFPOともいう。)、N,N-ジメチルホルムアミド(以下、DMFともいう。)等が例示される。
 出発原料が不純物を含む場合の、不純物と448occcの総量に対する448occcの割合は、85質量%以上100質量%未満が好ましく、90質量%以上99質量%以下がより好ましい。
 また、反応(1)の出発原料が1437dycc、OFPOおよびDMFから選ばれる少なくとも1種の化合物を含む場合、1437dycc、OFPOおよびDMFの総量の割合は、効率よく1437dyccを製造するために、出発原料の総量に対して、0質量%超15質量%以下が好ましく、0.1質量%以上7質量%以下がより好ましい。
 反応(1)の出発原料がOFPOを含む場合、OFPOの含有割合は出発原料の総量に対して0質量%超3質量%以下であることが好ましく、0.1質量%以上1質量%以下がより好ましい。OFPOの含有量が上記範囲内であれば、製造コストを抑えられ、かつ1437dyccの選択率がさらに向上する。
 反応(1)における塩基としては、反応(1)の脱フッ化水素反応が実行可能な塩基であれば、特に限定されない。塩基は、金属水酸化物、金属酸化物および金属炭酸塩からなる群より選ばれる少なくとも1種が好ましい。
 金属水酸化物としては、アルカリ土類金属水酸化物、アルカリ金属水酸化物などが挙げられる。アルカリ土類金属水酸化物としては、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムが好ましく、アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが好ましい。金属水酸化物は、1種であってもよく、2種以上であってもよい。
 金属酸化物としては、アルカリ金属酸化物、アルカリ土類金属酸化物などが挙げられる。アルカリ金属酸化物としては、酸化ナトリウムが好ましく、アルカリ土類金属酸化物としては、酸化カルシウムが好ましい。
 また金属酸化物は、1種であってもよく、2種以上であってもよく、さらには、2種以上の金属の複合酸化物であってもよい。
 金属炭酸塩としては、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩などが挙げられる。アルカリ金属炭酸塩としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムまたはフランシウムの炭酸塩が挙げられる。アルカリ土類金属炭酸塩としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムまたはラジウムの炭酸塩が挙げられる。金属炭酸塩は、1種であってもよく、2種以上であってもよい。
 上記した塩基のうち、金属水酸化物を用いることが好ましい。金属水酸化物としては、水酸化カリウムおよび水酸化ナトリウムから選ばれる少なくとも1種が好ましい。水酸化カリウムまたは水酸化ナトリウムを単独で用いてもよく、水酸化カリウムおよび水酸化ナトリウムを併用してもよい。
 448occcに対する塩基の量は、448occcの転化率および1437dyccの選択率を向上させる観点から、448occcの1モルに対して0.5~10モルが好ましく、0.5~5.0モルがより好ましく、0.5~2.5モルがさらに好ましく、0.5~2.0モルが最も好ましい。
 反応(1)において、塩基は、塩基の水溶液として用いられる。塩基の水溶液としては、アルカリ金属水酸化物水溶液が好ましく、水酸化ナトリウム水溶液または水酸化カリウム水溶液がより好ましい。
 塩基の水溶液の総量に対する塩基の量は、0.5~40質量%が好ましく、10~40質量%がより好ましい。塩基の水溶液の総量に対する塩基の量が0.5質量%以上であれば、十分な反応速度が得られやすく、2層分離による目的物の分離を行いやすい。塩基の水溶液の総量に対する塩基の量が40質量%以下であれば、塩基が十分に溶解されやすく、金属塩が析出しにくいため、工業的なプロセスにおいて有利になりやすい。また、塩基の水溶液の総量に対する塩基の量は、20~38質量%がさらに好ましく、20~35質量%が最も好ましい。塩基の水溶液の総量に対する塩基の量が20質量%以上であれば、448occcの転化率がより高くなり、反応速度が速くなる。
 本実施形態の製造方法においては、図1に示すように、原料タンク(符号12で示す。)に収容された塩基水溶液および必要に応じて用いる他の反応に関与する化合物を、あらかじめ448occcを収容した反応器11に供給し、反応させる。生成した1437dyccを含む組成物は、反応器11から回収するが、必要に応じて、冷却器13を経由して冷却する。さらに、必要に応じて脱水塔14に通して水分を取り除いた生成物を収容する回収タンク15内から回収するのが好ましい。
 反応器11としては、液相反応での脱フッ化水素反応に用いる公知の反応器が好ましい。反応器11の材質としては、鉄、ニッケル、これらを主成分とする合金、ガラス等が挙げられる。必要に応じて、樹脂ライニング、ガラスライニング等のライニング処理を反応器11に行ってもよい。また、反応系において原料や生成物、塩基、溶媒等が均一に分布している状態で反応が行われるように、反応器11に撹拌手段を設け、撹拌しながら反応を行うことが好ましい。
 反応(1)における反応温度は、0~80℃が好ましく、0~60℃がより好ましく、10~50℃がさらに好ましく、20~40℃が特に好ましい。反応温度を上記範囲にすることにより、副生物の生成を抑制でき、448occcの転化率を向上させ、1437dyccの収率及び選択率を向上させることができる。さらに、1437dyccの異性体のうち、Z体を選択的に得ることもできる。ここで、反応温度とは、反応器内の温度であり、より具体的には反応器内の液相の温度のことである。図1に示す装置においては、反応器11内の温度が反応温度である。
 反応中の反応器内の圧力は、特に限定されないが、-0.1~10MPaが好ましく、0~5MPaがより好ましく、0~1MPaがさらに好ましい。反応器内の圧力は、反応温度における448occcの蒸気圧以上であることが好ましい。
 反応(1)は、半連続式、バッチ式、連続式のいずれの方法でも実行可能である。なお、反応時間は各方式により一般的な方法で適宜調整することができる。反応時間は、原料である448occcの転化率および1437dyccの選択率を制御しやすいため、バッチ式であれば1~50時間が好ましく、連続式であれば1~20時間が好ましい。なお、連続式の場合は、反応器内での原料の滞留時間を反応時間とみなす。
 反応(1)は、原料である448оcccと塩基の水溶液とが効率よく接触できるようにするために相間移動触媒の存在下で行うことが好ましい。また、反応に影響を与えない範囲で、テトラグライム等の水溶性有機溶媒の存在下で行ってもよい。反応速度を上げるために、相間移動触媒を用いることが好ましい。
 相間移動触媒としては、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩、クラウンエーテルなどが挙げられ、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩が好ましく、第4級アンモニウム塩がより好ましい。
 第4級アンモニウム塩としては、下式(i)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
(ただし、式(i)中、R11~R14は、それぞれ独立して、1価の炭化水素基、または反応に不活性な官能基が結合した1価の炭化水素基を表し、Y1-は、1価の陰イオンを表す。)
 R11~R14が炭化水素基である場合、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基などが挙げられ、アルキル基、アリール基が好ましい。R11~R14の各炭素原子数は、1~100が好ましく、4~30がより好ましい。R11~R14は、それぞれ同じ基であってもよいし、異なる基であってもよい。
 R11~R14が、反応に不活性な官能基が結合した1価の炭化水素基である場合の官能基は、反応条件に応じて適宜選択されるが、ハロゲン原子、アルコキシカルボニル基、アシルオキシ基、ニトリル基、アシル基、カルボキシル基、アルコキシル基などが挙げられる。
 上記式(i)における第4級アンモニウム(R11121314)としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラ-n-プロピルアンモニウム、テトラ-n-ブチルアンモニウム、メチルトリ-n-オクチルアンモニウム、セチルトリメチルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、セチルベンジルジメチルアンモニウム、セチルピリジニウム、n-ドデシルピリジニウム、フェニルトリメチルアンモニウム、フェニルトリエチルアンモニウム、N-ベンジルピコリニウム、ペンタメトニウム、ヘキサメトニウムなどが挙げられる。
 上記式(i)におけるY1-としては、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、硝酸イオン、リン酸イオン、過塩素酸イオン、硫酸水素イオン、水酸化物イオン、酢酸イオン、安息香酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオンなどが挙げられ、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、硫酸水素イオン、水酸化物イオンが好ましく、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、水酸化物イオンがより好ましく、塩素イオンまたは臭素イオンがさらに好ましい。
 上記式(i)で表される化合物としては、汎用性および反応性の観点から、下記第4級アンモニウム(R11121314)と、下記Y1-との組合せが好ましい。
 第4級アンモニウム(R11121314):テトラメチルアンモニウム、テトラエチルアンモニウム、テトラ-n-プロピルアンモニウム、テトラ-n-ブチルアンモニウム、メチルトリ-n-オクチルアンモニウム。
 Y1-:フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、水酸化物イオン。
 第4級アンモニウム塩としては、工業的入手容易さや価格、扱いやすさの点から、テトラ-n-ブチルアンモニウムクロリド(TBAC)、テトラ-n-ブチルアンモニウムブロミド(TBAB)、メチルトリ-n-オクチルアンモニウムクロリド(TOMAC)からなる群より選ばれる少なくとも1種であることが好ましい。
 第4級ホスホニウム塩としては、下式(ii)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(ただし、式(ii)中、R21~R24は、それぞれ独立して、1価の炭化水素基を表し、Y2-は、1価の陰イオンを表す。R21~R24は、それぞれ同じ基であってもよいし、異なる基であってもよい。)
 R21~R24における炭化水素基としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基などが挙げられ、アルキル基、アリール基が好ましい。
 上記式(ii)における第4級ホスホニウム(R21222324)としては、テトラエチルホスホニウム、テトラ-n-ブチルホスホニウム、エチルトリ-n-オクチルホスホニウム、セチルトリエチルホスホニウム、セチルトリ-n-ブチルホスホニウム、n-ブチルトリフェニルホスホニウム、n-アミルトリフェニルホスホニウム、メチルトリフェニルホスホニウム、ベンジルトリフェニルホスホニウム、テトラフェニルホスホニウムなどが挙げられる。
 Y2-としては、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、硝酸イオン、リン酸イオン、過塩素酸イオン、硫酸水素イオン、水酸化物イオン、酢酸イオン、安息香酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオンなどが挙げられ、フッ素イオン、塩素イオン、臭素イオンが好ましい。
 第4級ホスホニウム塩としては、工業的入手容易さの点からテトラ-n-ブチルホスホニウムクロライド、テトラ-n-ブチルホスホニウムフルオリドからなる群より選ばれる少なくとも1種であることが好ましい。
 第4級アルソニウム塩としては、下式(iii)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 ただし、式(iii)中、R31~R34は、式(ii)におけるR21~R24と同様であり、好ましい態様も同様である。Y3-は1価の陰イオンを表す。Y3-としては、ハロゲンイオンが好ましく、フッ素イオン、塩素イオン、臭素イオンがより好ましい。
 上記式(iii)で表わされる第4級アルソニウム塩としては、トリフェニルメチルアルソニウムフロライド、テトラフェニルアルソニウムフロライド、トリフェニルメチルアルソニウムクロライド、テトラフェニルアルソニウムクロライド、テトラフェニルアルソニウムブロマイドなどが挙げられる。
 第4級アルソニウム塩としては、トリフェニルメチルアルソニウムクロライドが好ましい。
 スルホニウム塩としては、下式(iv)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(ただし、式(iv)中、R41~R43およびY4-は、式(iii)におけるR31~R34およびY3-と同様であり、好ましい態様も同様である。)
 上記式(iv)で表されるスルホニウム塩としては、ジ-n-ブチルメチルスルホニウムアイオダイド、トリ-n-ブチルスルホニウムテトラフルオロボレート、ジヘキシルメチルスルホニウムアイオダイド、ジシクロヘキシルメチルスルホニウムアイオダイド、ドデシルメチルエチルスルホニウムクロライド、トリス(ジエチルアミノ)スルホニウムジフルオロトリメチルシリケートなどが挙げられる。
 スルホニウム塩としては、ドデシルメチルエチルスルホニウムクロライドが好ましい。
 クラウンエーテルとしては、18-クラウン-6、ジベンゾ-18-クラウン-6、ジシクロヘキシル-18-クラウン-6などが挙げられる。
 上記した相間移動触媒のうち、工業的入手容易さや価格、扱いやすさの点から、TBAC,TBAB、TOMACが好ましい。
 相間移動触媒の量は、448occcの100質量部に対して、0.01~10質量部が好ましく、0.05~5.0質量部がより好ましく、0.1~2.0質量部がさらに好ましく、0.1~1.5質量部が特に好ましい。相間移動触媒の量が上記範囲内であると、十分な反応速度が得られやすい。上記範囲外であると反応促進効果は得られにくく、コスト面で不利になりやすい。相間移動触媒を使用する場合、予め相間移動触媒を448occcに混合しておき、448occcとの混合液の状態で反応器に供給することが好ましい。また、相間移動触媒の量は、448occcの100質量部に対して0.1~1.0質量部であると、1437dyccの選択率および収率が高いため、最も好ましい。
 相間移動触媒を使用する場合の、反応工程、反応装置、および反応器の材質は、相間移動触媒を使用しない場合と同様であってよい。また、塩基の濃度、使用量、および反応温度などの反応条件も、相間移動触媒を使用しない場合と同様であってよい。
 反応(1)は、例えば、448occc、塩基の水溶液、必要に応じて水溶性有機溶媒および/または相間移動触媒などの反応に関与する化合物を反応器に供給し、これらが均一になるように撹拌し、所望の温度条件、圧力条件にすることで進行させうる。
 反応(1)において、相間移動触媒の代わりに水溶性有機溶媒を用いて、水相と有機相とを相溶化することにより、反応(1)を行ってもよい。水溶性有機溶媒を用いる場合は、反応系中の反応に関与する化合物を均一な状態にするために、撹拌を十分に行うのが好ましい。
 水溶性有機溶媒としては、ジメチルスルホキシド、テトラグライム、アセトニトリル等が挙げられる。なかでも、反応(1)に適した沸点を有する点から、ジメチルスルホキシドやテトラグライムが好ましい。また、反応(1)において相間移動触媒と水溶性有機溶媒とを併用してもよい。
 反応終了後の反応液を静置すると、有機相と水相に分離する。有機相中には、未反応の448occc、目的生成物の1437dycc以外に、副生物が含まれ得る。副生物としては、1-クロロ-3,3,4,4,5,5-ヘキサフルオロペンチン、5-クロロ-1,1,2,3,3,4,4-へプタフルオロペンテン(HCFO-1437cycc、以下「1437cycc」とも記す。)が挙げられる。また、原料として、448occcと不純物を含む組成物を使用した場合は、副生物として、下記化学式(v)に示される2,3,3,4,4,5,5-ヘプタフルオロ-1-(2,2,3,3,4,4,5,5-オクタフルオロペントキシ)ペンテン等が含まれる場合がある。
Figure JPOXMLDOC01-appb-C000006
 目的生成物である1437dycc以外は、蒸留による分離等の公知の方法により、容易に除去することができる。未反応の448occcは再度反応(1)の出発原料として再利用することができる。その際、反応生成物から1437dyccを分離した後の粗液をそのまま使用してもよいし、粗液から未反応の448occcを精製して用いてもよい。
 なお、上記のように副生成物として1437cyccを挙げているが、この反応(1)における脱フッ化水素反応では、1437cyccの副生が十分に抑制されており、例えば、反応生成物中に含まれる1437cyccを100ppm以下とできる。そのため、本実施形態の製造方法は目的化合物である1437dyccを選択的に生成できる優れた方法である。
 本実施形態の製造方法によれば、工業的に実施可能な経済的に有利な方法で、448occcから、地球温暖化係数の小さい溶剤および作動媒体として有用な1437dyccを、高選択率かつ高収率で得られる。
 以下に、本発明を実施例(例1~8)によって具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。
[ガスクロマトグラフィーの条件]
 以下の各種化合物の製造において、得られた反応組成物の組成分析はガスクロマトグラフィー(GC)を用いて行った。カラムはDB-1301(長さ60m×内径250μm×厚み1μm、アジレント・テクノロジー株式会社製)を用いた。
(例1)
 撹拌機、ジムロート冷却器を設置した0.2リットル四つ口フラスコに、非特許文献1記載の方法により製造して得られた448occcの100.7g、テトラ-n-ブチルアンモニウムブロミド(TBAB)の1.0gを入れ、フラスコを10℃に冷却した。反応温度を10℃に維持し、34質量%水酸化カリウム(KOH)水溶液の153.9gを30分かけて滴下した。その後、38時間撹拌を続け、有機層を回収した。
 回収した有機層を水洗した後、ガスクロマトグラフィーを用いて分析した結果を表1に示す。表中、448occcの転化率は、反応器に供給した448occcの全量に対する、反応で消費された448occcの量の割合(モル%)である。また、各化合物の選択率は、転化した448occcに対する、生じた各成分の割合(モル%)であり、GC分析結果から算出した。また、表1には、実仕込み量、反応条件も併せて示した。なお、表1中、「TBAB/448occc」は、448occcの100質量部に対する、TBABの仕込み量(質量部)を表している。
(例2~4)
 表1に示したように、実仕込み量、反応温度をそれぞれ変更した以外は、例1と同様の操作により反応させ、1437dyccを含む組成物を得た。
 なお、例3、4では、固体析出量が多く、また、反応開始時間による448occcの転化率の変動が見られなくなったところで操作を終了した。ちなみに、反応終点は448occcの転化率が99%以上となったところであった。
Figure JPOXMLDOC01-appb-T000007
 表1からわかるように、例1~4によれば、固形分の生成量を抑制しながら、高選択率かつ高収率で、目的とする1437dyccを製造できた。なお、反応温度が低いほど、固形分の生成量が少なく、1437dyccの選択率及び収率を共に高めることができることもわかった。
(例5)
 表2に示したように、実仕込み量、TBABの仕込み量をそれぞれ変更した以外は、例1と同様の操作により反応させ、1437dyccを含む組成物を得た。
 なお、例5では、反応開始時間による448occcの転化率の変動が見られなくなったところで操作を終了した。また、表2には、参考のため反応温度が同一の例3を併せて示した。
(例6,7)
 表2に示したように、実仕込み量、KOHの仕込み量をそれぞれ変更した以外は、例1と同様の操作により反応させ、1437dyccを含む組成物を得た。
 反応終点は448occcの転化率が99%以上となったところであった。
(例8)
 表2に示したように、実仕込み量、KOHの濃度をそれぞれ変更した以外は、例1と同様の操作により反応させ、1437dyccを含む組成物を得た。
 反応開始時間による448occcの転化率の変動が見られなくなったところで操作を終了した。
Figure JPOXMLDOC01-appb-T000008
 表2の例5からわかるように、TBABの仕込み量が多い方がより反応時間を短縮できることがわかる。なお、TBABの仕込み量が少ない場合でも反応時間を十分に確保することで、1437dyccの選択率及び収率に変化なく1437dyccを製造できることもわかった。
 表2の例6~7からわかるように、KOHの仕込み量を減らすことで、より固形分の生成量を抑制しながら、高選択率かつ高収率で目的とする1437dyccを製造できることがわかる。また、KOHの仕込み量が減ることによって、容積効率も向上するため、生産性が向上することがわかる。
 表2の例8からわかるように、KOH濃度が高い方が、より448оcccの転化率が高く、反応速度が速くなることがわかる。
 以上より、本実施例における1437dyccの製造方法は、1437dyccを効率的に製造できる。
 11…反応器、12…原料タンク、13…冷却器、14…脱水塔、15…回収タンク。

Claims (9)

  1.  5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタンを、塩基の水溶液中で、脱フッ化水素反応させることにより1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンを得ることを特徴とする、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
  2.  前記脱フッ化水素反応の反応温度が0~80℃である、請求項1に記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
  3.  前記脱フッ化水素反応の反応温度が0~60℃である、請求項2に記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
  4.  前記塩基が、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属酸化物、アルカリ土類金属酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩からなる群より選ばれる少なくとも1種である、請求項1~3のいずれか一項に記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
  5.  前記塩基の量が、前記5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタンの1モルに対して、0.5~10.0モルである、請求項1~4のいずれか一項に記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
  6.  前記塩基の量が、前記塩基の水溶液の総量に対して、0.5~40.0質量%である、請求項1~5のいずれか一項に記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
  7.  前記脱フッ化水素反応を、相間移動触媒の存在下に行う、請求項1~6のいずれか一項に記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
  8.  前記相間移動触媒が、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩、クラウンエーテルからなる群より選ばれる少なくとも1種である、請求項7に記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
  9.  前記脱フッ化水素反応を、水溶性有機溶媒の存在下に行う、請求項1~8のいずれか一項に記載の1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法。
PCT/JP2018/045928 2017-12-19 2018-12-13 1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法 WO2019124219A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880081556.4A CN111479793A (zh) 2017-12-19 2018-12-13 1-氯-2,3,3,4,4,5,5-七氟戊烯的制造方法
JP2019561023A JP7331700B2 (ja) 2017-12-19 2018-12-13 1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017242571 2017-12-19
JP2017-242571 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019124219A1 true WO2019124219A1 (ja) 2019-06-27

Family

ID=66994506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045928 WO2019124219A1 (ja) 2017-12-19 2018-12-13 1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法

Country Status (3)

Country Link
JP (1) JP7331700B2 (ja)
CN (1) CN111479793A (ja)
WO (1) WO2019124219A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046630B2 (en) * 2018-05-15 2021-06-29 AGC Inc. Method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene, and composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020218336A1 (ja) * 2019-04-25 2020-10-29

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136744A1 (ja) * 2015-02-27 2016-09-01 ダイキン工業株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
WO2017018412A1 (ja) * 2015-07-27 2017-02-02 旭硝子株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120043B2 (ja) * 1998-04-01 2008-07-16 日本ゼオン株式会社 フッ素化不飽和炭化水素の製造方法
US7829747B2 (en) 2008-04-24 2010-11-09 Honeywell International Inc. Process for dehydrofluorination of 3-chloro-1,1,1,3-tetrafluoropropane to 1-chloro-3,3,3-trifluoropropene
WO2017018010A1 (ja) * 2015-07-27 2017-02-02 旭硝子株式会社 溶剤組成物、洗浄方法、塗膜の形成方法、熱移動媒体および熱サイクルシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136744A1 (ja) * 2015-02-27 2016-09-01 ダイキン工業株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
WO2017018412A1 (ja) * 2015-07-27 2017-02-02 旭硝子株式会社 1-クロロ-2,3,3-トリフルオロプロペンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZAPEVALOV, A. YA. ET AL.: "alpha, alpha-Disubsti tuted polyfluoroalkenes", ZHURNAL ORGANICHESKOI KHIMII, vol. 24, no. 8, 1988, pages 1626 - 1633, ISSN: 0514-7492 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046630B2 (en) * 2018-05-15 2021-06-29 AGC Inc. Method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene, and composition

Also Published As

Publication number Publication date
JPWO2019124219A1 (ja) 2020-12-10
CN111479793A (zh) 2020-07-31
JP7331700B2 (ja) 2023-08-23

Similar Documents

Publication Publication Date Title
JP6860057B2 (ja) 1−クロロ−2,3,3−トリフルオロプロペンの製造方法
JP6812988B2 (ja) 1−クロロ−2,3,3,3−テトラフルオロプロペンの製造方法
CN107382657B (zh) 制备四氟丙烯的方法
WO2011162336A1 (ja) 1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンおよび2,3,3,3-テトラフルオロプロペンの製造方法
WO2016136744A1 (ja) 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
JP2015509912A (ja) 塩素化プロパン及びプロペンの製造方法
JP2015120670A (ja) 1−クロロ−1,2−ジフルオロエチレンの製造方法
JPWO2019189024A1 (ja) 1−クロロ−2,3,3−トリフルオロプロペンの製造方法
WO2019203318A1 (ja) フルオロオレフィンの製造方法
WO2019124219A1 (ja) 1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法
JP2017001990A (ja) 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
JP2016124847A (ja) トリフルオロエチレンの製造方法
JP7259764B2 (ja) 5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタンの製造方法及び1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロペンテンの製造方法
JP6550927B2 (ja) ヨウ化アルキル化合物の製造方法
JP2013018723A (ja) 1−クロロ−3,3,3−トリフルオロプロピンの製造方法
JPWO2017033813A1 (ja) アルケニルハライドの製造方法
WO2021132390A1 (ja) 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
JP2016079101A (ja) 1,1−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
JP2013018722A (ja) 1−クロロ−3,3,3−トリフルオロプロピンの製造方法
JP2015224236A (ja) (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561023

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891281

Country of ref document: EP

Kind code of ref document: A1