WO2019120789A1 - Dispositif capteur pour la détection de particules d'un gaz de mesure dans un espace de gaz de mesure et procédé de détection de particules d'un gaz de mesure dans un espace de gaz de mesure - Google Patents

Dispositif capteur pour la détection de particules d'un gaz de mesure dans un espace de gaz de mesure et procédé de détection de particules d'un gaz de mesure dans un espace de gaz de mesure Download PDF

Info

Publication number
WO2019120789A1
WO2019120789A1 PCT/EP2018/081397 EP2018081397W WO2019120789A1 WO 2019120789 A1 WO2019120789 A1 WO 2019120789A1 EP 2018081397 W EP2018081397 W EP 2018081397W WO 2019120789 A1 WO2019120789 A1 WO 2019120789A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode structure
signal
particles
test
measuring
Prior art date
Application number
PCT/EP2018/081397
Other languages
German (de)
English (en)
Inventor
Mathias Klenk
Denis Kunz
Roman Siefert
Michael Scholl
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2019120789A1 publication Critical patent/WO2019120789A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Definitions

  • the prior art discloses a multiplicity of sensor arrangements for detecting particles of a measurement gas in a measurement gas space.
  • the measuring gas may be an exhaust gas of a
  • the particles may be soot or dust particles.
  • the invention will be described below without limiting further embodiments and applications, in particular with reference to sensor elements for the detection of soot particles.
  • Two or more metallic electrodes may be mounted on an electrically insulating support.
  • the electrodes are usually baked by means of an integrated heating element. As a rule, they value
  • Particle sensors the changed due to the particle accumulation electrical properties of an electrode structure. For example, a decreasing resistance or current at constant applied voltage can be measured.
  • Embodiments such as, for example, DE 10 2005 053 120 A1, DE 103 19 664 A1, DE10 2004 0468 82A1, DE 10 2006 042 362 A1, DE 103 53 860 A1, DE 101 49 333 Al and WO 2003/006976 A2.
  • the configured as soot sensors sensor assemblies are commonly used to monitor diesel particulate filters.
  • the particle sensors of the type described are usually included in a protective tube, which at the same time, for example, the flow through the
  • a continuous monitoring preferably with a fixed predetermined minimum frequency, such as
  • a monitor with at least 2 Hz often provides one
  • the sensor arrangement comprises at least one sensor element with at least one first electrode structure and at least one second electrode structure.
  • the first electrode structure has at least one first supply line.
  • the sensor arrangement comprises at least one
  • the control unit comprises at least one measuring device.
  • the measuring device is set up to detect a change in electrical properties of the sensor element caused by an accumulation of the particles on the electrode structure by measuring a voltage drop across at least one measuring resistor on the second electrode structure.
  • the control unit may further comprise at least one measuring resistor.
  • the term "measuring resistor” basically denotes any one measuring resistor.
  • Resistor which can be used for a measurement of an electric current.
  • An electric current which is established by the
  • the measuring resistor can therefore cause a proportional to a magnitude of the electric current voltage drop.
  • the measuring resistor may have an AC resistance of 10 k ⁇ to 1000 k ⁇ , preferably 50 k ⁇ to 500 k ⁇ , particularly preferably 100 k ⁇ .
  • the measuring resistor can therefore also be called a measuring resistor, shunt or measuring shunt.
  • the measuring resistor can be at least one
  • operational amplifier basically refers to any electronic amplifier having a gain of 1 or greater than 1.
  • the measuring device may be configured to detect the voltage drop by means of the operational amplifier.
  • control unit comprises at least a first test device.
  • the first test device is set up to apply a first test signal to the first electrode structure via the first supply line and a first test device
  • Control unit comprise at least a second test device.
  • a second test device can be set up to apply a second test signal to the second electrode structure and to detect a second response signal of the second electrode structure, in particular to detect it continuously.
  • a “sensor arrangement” can basically be understood to mean any device which is set up to detect at least one measured variable of the measurement gas.
  • “sensor arrangement for detecting particles of a measurement gas” can in principle be understood as any device which is suitable for qualitatively and / or quantitatively detecting the particles in the measurement gas and which, for example, with the aid of a suitable drive unit and suitably configured
  • Electrodes can generate at least one electrical measurement signal corresponding to the detected particles, such as a voltage or a current.
  • the detected particles may in particular be soot particles and / or dust particles.
  • DC signals and / or AC signals can be used.
  • a resistive component and / or a capacitive component can be used for signal evaluation from the impedance.
  • the sensor arrangement can be set up in particular for use in a motor vehicle.
  • the measuring gas may be an exhaust gas of the motor vehicle.
  • gases and gas mixtures are possible in principle.
  • an exhaust gas is understood in particular to mean gaseous waste products in a combustion process, which may also include solid and / or liquid admixtures, for example in the form of particles and / or droplets.
  • Measuring gas space can basically be any, open or closed space in which the measuring gas is received and / or which is flowed through by the measuring gas.
  • the measuring gas space may be an exhaust gas tract of an internal combustion engine, for example an internal combustion engine.
  • Can support or carry out the combustion process may be a device with at least one combustion chamber.
  • it may be a heat engine, by means of which by combustion of at least one fuel chemical energy is converted into mechanical energy.
  • a heat engine by means of which by combustion of at least one fuel chemical energy is converted into mechanical energy.
  • internal combustion engines are mentioned, especially diesel engines. Also other types of
  • particles within the scope of the invention are generally particles which have a small dimension in comparison with the system under consideration, in particular the internal combustion engine or an exhaust system of the same.
  • the particles may have a particle size or average particle size of less than one millimeter, typically less than 1 micrometer.
  • the particles may be particles with an average particle size of 20 nanometers to 300 nanometers.
  • these may be electrically insulating and / or electrically conductive particles, such as soot or dust particles.
  • carbon black can be a black solid that consists largely of carbon.
  • a “sensor element” can basically be understood to mean any device which can be used as a device
  • Function unit for example, for a sensor arrangement, can serve and as such can generate at least one measurement signal, for example, the
  • an “electrode structure” can basically be understood as meaning any one or more electrical conductors which are suitable for current measurement and / or voltage measurement and / or which have at least one element in contact with the electrode structure with a voltage and / or can apply a current.
  • the electrode structure may in particular comprise one or more electrode fingers.
  • an “electrode finger” can basically be understood to mean any shape of the electrode structure whose dimensions in one dimension clearly exceed a dimension in at least one other dimension, for example at least a factor of 2, preferably at least a factor of 3 preferably at least a factor of 5.
  • the electrode finger may in particular have an electrode finger shape.
  • the electrode finger mold may comprise at least one of the following shapes: a loop, in particular an open or closed loop; a loop, in particular an open or closed loop; a turn; a snake shape; an S-shape; a meander shape.
  • a loop can in the context of the present invention basically understood a form be that has a bend. In particular, this may be a strong bend, so that the object having the bend has a circular or spiral shape.
  • the first electrode structure and / or the second electrode structure may in particular be formed as continuous loops.
  • first electrode structure and “second electrode structure” are to be regarded as mere descriptions, without an order or
  • Electrode structures or in each case exactly one type can be provided.
  • additional electrode structures for example one or more third electrode structures may be present.
  • the second electrode structure may be configured for at least one
  • the sensor element may further comprise at least one further device.
  • the further device may in particular be a heating device.
  • the further device may be at least one temperature measuring device.
  • the second electrode structure may comprise all or part of the further device. In particular, the second electrode structure, and the further device may be placed in a common ground path.
  • the second electrode structure may be configured for detecting the particles of the measurement gas in the
  • the second electrode structure can be set up for a temperature measurement.
  • a particular desired functionality can be adjusted by means of switching, for example by means of a switch, in particular by means of a semiconductor switch.
  • first lead and second lead are as pure
  • supply line basically denotes any electrical line which for a Transport of electrical energy is set up. In particular, it may be a conductive connection between electrical components.
  • the supply line may in particular comprise one or more metallic electrical conductors, usually in the form of wires or strands, but also of strips or rails, for example of copper or aluminum. Others too
  • a “measuring device” can basically be understood to mean any device which is set up to detect at least one electrical signal.
  • the measuring signal may be at least one measuring signal of the sensor arrangement, in particular of the sensor element, corresponding to the detected measured variable.
  • the measuring signal may be at least one electrical measuring signal, for example a voltage or a current, corresponding to the detected particles.
  • the measuring device can be set up to the first electrode structure and / or the second
  • the first test device and / or the second test device can be coupled to the measuring device, so that can be superimposed on the electrical signal to the test signal from an electrical base signal generated by the measuring device.
  • an "electrical property" of a device may in principle be understood to be any feature or arbitrary nature of the device which influences at least one electrical variable, for example a voltage or a current flow, if the device is part of an electrical circuit ,
  • the electrical property may be one
  • Resistor or act on an impedance Resistor or act on an impedance.
  • electrically conductive soot bridges between the electrode devices can influence the electrical properties of the electrode structure, in particular its resistance.
  • test device may in principle be understood to mean any device which is set up at least one property, in particular the functional state, one other device, in particular a device electrically connected to the testing device to control or monitor.
  • first tester and second tester are to be considered as pure descriptions without indicating any order or ranking, for example, without precluding the possibility that several types of first test apparatuses and / or second test apparatuses, or just one type in each case, may be provided. Furthermore, additional test devices, for example, one or more third test devices may be present.
  • the first test device and / or the second test device can be any suitable test device.
  • a "defect" of a device can basically be understood to mean a restriction or a failure of the functional capability of the device.
  • a "defect of the first electrode structure or of the second electrode structure” can be understood as meaning that the sensor element can not produce the at least one measurement signal, for example the at least one electrical measurement signal corresponding to the detected particles, for example delayed, not in the provided strength or not according to the particles to be detected.
  • test signal may in principle be any electrical signal, in particular a
  • the first test signal and / or the second test signal can be time-changeable or even constant.
  • the first test device and / or the second test device may be configured to generate a response signal of the first electrode structure or of the second test device
  • the present invention basically an electrical signal of a
  • the electrical signal preceding the response signal in time may be the test signal.
  • the term "continuously detect a signal” basically refers to any signal acquisition in which a signal is detected continuously during a defined period of time.
  • the first test device and the first electrode device can therefore be connected to one another in an electrically conductive manner.
  • the first test device can be at least a first
  • first voltage divider and “second voltage divider” are to be regarded as pure descriptions without indicating an order or ranking and excluding, for example, without the possibility that several types of first voltage dividers and / or second voltage dividers or just one type may be provided. Furthermore, additional voltage dividers, for example one or more third voltage dividers may be present.
  • voltage divider basically refers to any series connection of passive electrical
  • the voltage divider may comprise a series connection of two ohmic resistors.
  • the first voltage divider may be configured to continuously detect the first test signal.
  • the control unit can furthermore comprise the second test device.
  • the second test device can be set up to apply a second test signal to the second electrode structure and to detect, in particular continuously detect, a second response signal of the second electrode structure.
  • the second test device may have at least one second voltage divider.
  • the second voltage divider may be configured to continuously detect the second test signal.
  • the sensor arrangement comprises, as already stated above, the control unit.
  • the control unit comprises, as already stated above, the measuring device, the first test device and the second test device. Furthermore, the
  • Control unit at least one electrical energy source and at least one processor or circuit having a control function and / or Evaluation function of at least one with the sensor array, in particular with the sensor element, generated measuring signal and / or response signal can exercise.
  • the measuring device can be set up to apply a basic electrical signal to the first electrode structure and / or the second electrode structure, wherein the time-varying first test signal or the time-varying second test signal corresponds to the second test signal
  • Basic signal can be understood in the context of the present invention basically any electrical signal, in particular a
  • the electrical base signal can serve to control the electrical properties of the sensor element, in particular the electrode structure, and thus also the change in the electrical properties of the sensor element, in particular the
  • Electrode structure to capture Since the changes in the electrical properties of the sensor element, in particular the electrode structure, caused by the attachment of the particles to the electrode structure serve to detect the particles, the electrical base signal can serve in particular for generating an electrical measurement signal according to the detected particles.
  • the basic electric signal may in particular be a continuous electrical signal.
  • the measuring device can comprise at least one voltage source for applying a base voltage to the electrode structure and at least one current measuring device for measuring a current
  • the base voltage may be the electrical base signal.
  • the first test device and / or the second test device may have at least one electrical energy source.
  • first test device and / or the second test device may have at least one electrical energy source.
  • Test device and / or the second test device at least one
  • test signal and / or voltage source in particular a pulsed electrical energy source, for generating the test signal.
  • first test signal and / or the second test signal can be at least one
  • the first test signal and / or the second test signal may have a frequency of at least 2 Hz.
  • the first test device and / or the second test device may further comprise at least one detection device for detecting the response signal, in particular a voltage measuring device and / or a current measuring device.
  • Test apparatus may further comprise at least one electrical element selected from the group consisting of: a capacitor; a capacity; a resistance; a coil; a coil pair.
  • the electrical element can couple the test device to the measuring device and / or the electrode structure, so that the test signal can be superimposed on the electrical base signal generated by the measuring device via the electrical element.
  • a meander-shaped course can basically be understood to mean any course which has at least one S-shape or at least one snake-shape or at least one turn.
  • the electrode finders can be designed in particular as continuous loops.
  • the sensor assembly may be configured to monitor an electrical continuity of the electrodes.
  • the sensor element may comprise a heater.
  • the heater may be arranged, the sensor element, in particular the first
  • the first electrode finger and the second electrode finger may each be connected via at least one capacitor to at least one element selected from the group consisting of: the heater; a meander of temperature.
  • a temperature meander can basically be understood as meaning a printed conductor, in particular a platinum-containing printed conductor, which changes its resistance as a function of temperature and has a meandering shape.
  • the condenser can be arranged in particular in a region separated from the measurement gas, in particular the exhaust gas, for example in a cable harness or in the control unit.
  • the method comprises a use of the sensor arrangement, as has already been described or will be described below.
  • the method comprises the following steps, preferably in the order given. Also a different order is possible.
  • One or more or all of the procedural steps may also be carried out repeatedly. Furthermore, two or more of the
  • Procedural steps are also wholly or partially overlapping in time or performed simultaneously.
  • the method may include, in addition to the mentioned procedural steps, also other procedures.
  • the procedure includes the following passage:
  • Measuring signal is detected by an accumulation of the particles on the electrode structure change in electrical properties of the sensor element can be detected
  • Electrode structure the second electrode structure.
  • Step b) may in particular include the following: i. Applying a first test signal to the first electrode structure;
  • step b) may include the following:
  • the letter l.-lll. can be performed in particular during a temperature measurement.
  • the temporally variable first test signal and / or the time-varying second test signal in step i. or I. can in particular include at least one voltage signal. In particular, that can
  • Voltage signal comprise at least one element selected from the group consisting of: a capacitively generated voltage signal; an electrically, in particular resistively, generated voltage signal; an inductively generated voltage signal. Furthermore, the application of the first
  • Electrode structure and / or second electrode structure with a first and second test signal in step i. or I. be carried out with a frequency of at least 2 Hz.
  • the response signal in step ii. or II. comprise at least one capacitive signal.
  • the evaluation of the response signal in step iii. or III. comprising comparing the response signal with a predetermined response threshold.
  • the first electrode structure and the second electrode structure are classified as intact when the response signal is greater than the predetermined threshold, and the first electrode structure and the second electrode structure can be classified as erroneous if the response signal is less than or equal to the predetermined response threshold.
  • the sensor arrangement according to the invention and the described methods have numerous advantages over conventional sensor arrangements and methods of the type mentioned.
  • the sensor arrangement according to the present invention can basically meet the legal CARB specification "2 Hz diagnosis”. Furthermore, a Rußmessumble be checked.
  • Already known sensor arrangements can basically one
  • an actual sensor signal can be superimposed on one with a high leakage current or offset, which is caused by the
  • Terminating resistor may be conditional. This can lead to a higher variance of a sensor trip time.
  • the method for detecting particles of a measuring gas in a measuring gas chamber according to the present invention may have the possibility to place the second electrode device, in particular a negative IDE electrode in a common ground branch, in particular a heater and / or Temperaturmäander- mass branch and second supply line
  • the first electrode device can be used as a liberated line for an IDE loop diagnosis.
  • Each desired functionality such as a soot measurement, a temperature measurement, heating, can mitels switching, for example mitels a semiconductor switch, are made possible. Another legal requirement is basically the so-called "monitoring capability". After that should basically per
  • Self-diagnosis can be detected whether a soot measurement capability and thus the sensitivity of the sensor device is limited.
  • the electrode device can be designed as a continuous snake structure. A possible interruption of individual subregions can be recognized immediately.
  • Figure 1 shows an embodiment of an inventive
  • Figure 2 is a flow chart of an inventive
  • Figure 1 shows an embodiment of an inventive
  • the sensor arrangement 110 for detecting particles of a measuring gas in a measuring gas space.
  • the sensor arrangement 110 comprises a sensor element 112, as indicated in FIG. 1 by the dashed rectangle.
  • the sensor element 112 may include at least one soot path 114.
  • the sensor element 112 comprises at least one first electrode structure 116 and at least one second electrode structure 120.
  • the first electrode structure 116 comprises a first supply line 118 and a second supply line 122.
  • the sensor arrangement 110 furthermore comprises a control unit 124.
  • the control unit 124 has at least one measuring device 126, wherein the measuring device 126 is set up to detect a change in electrical properties of the sensor element 112 caused by an accumulation of the particles on the second electrode structure 120.
  • a measuring resistor can be used.
  • the control unit 124 further comprises at least one first test device 128, which is set up to act on the first electrode device 116 with at least one first test signal and a
  • the control unit 124 may further comprise at least a second
  • Test apparatus 130 which is set up, the second
  • the second electrode structure 120 may in particular have at least one third feed line 119 and at least one fourth feed line 121.
  • control unit 124 may comprise at least one electrical energy source, in particular a current source and / or a voltage source 132, as well as at least one processor or circuit, which has a
  • Control function and / or evaluation function of at least one with the sensor array 110, in particular with the sensor element 112, generated measuring signal and / or response signal can exercise.
  • the measuring device 126 and the test device 128 may each be formed completely or only partially on a common microcontroller 134, which may comprise the processor and / or the circuit.
  • electrically conductive soot bridges can form between the first electrode structure 116 and the second electrode structure 120, which can facilitate a current flow between the first electrode structure 116 and the second electrode structure 120.
  • This situation is illustrated in FIG. 1 by a resistor 136 connecting the first electrode structure 116 and the second electrode structure 120.
  • Sensor element 112 has a heating resistor 138 and a
  • Temperature measuring resistor 139 include.
  • the first resistor 139 includes the resistor 139 and the resistor 139 .
  • Heating resistor 138 may be configured to free the sensor element 112, in particular the first electrode structure 116 and the second electrode structure 120 of the particles, in particular the soot particles. Also, the first test device 128 may be at least one electrical
  • test apparatus 128 may be the test apparatus 128
  • Voltage source 132 for generating the first test signal.
  • the first test signal may comprise at least one voltage signal.
  • the first test signal may have a frequency of at least 2 Hz.
  • the first test device 128 may further comprise at least one detection device for detecting the response signal, in particular a voltage measurement device and / or a current measurement device.
  • the first test device 128 may include at least a first voltage divider 140 that is configured, the first one
  • Test signal continuously detect.
  • the control unit 124 in particular the first test device 128 and / or the second test device 130 and / or the measuring device 126, may in particular comprise at least one DC / DC converter 143 and / or at least one amplifier 145 and / or at least one diode.
  • FIG. 2 shows a flow chart of a method according to the invention for detecting particles of a measuring gas in a measuring gas space.
  • a sensor arrangement 110 which at least partially corresponds to the sensor arrangement according to FIG. It can therefore be made to the description of Figure 1 above.
  • step 146 at least one measurement signal is detected, wherein by means of the
  • Measuring signal is determined by an attachment of the particles to the electrode structure change electrical properties of the sensor element can be detected. Subsequently, at least one check of a functional state of the electrode structure is carried out. The check comprises, in step 148, applying a first test signal to the first electrode structure. Step 150 may be carried out, which comprises subjecting the second electrode structure to a second test signal. After step 148, a response signal to the first test signal may be detected, shown as step 152. It may be checked after step 152 if a threshold
  • step 154 is exceeded, shown as step 154.
  • Response signal can be detected on the second test signal, shown as step 156. It can be checked after step 156, whether a threshold
  • step 158 is exceeded, shown as step 158.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

L'invention concerne un dispositif capteur (110) pour la détection de particules d'un gaz échantillon dans un espace de gaz échantillon. Le dispositif capteur (110) comprend : - au moins un élément capteur (112) ayant au moins une première structure d'électrode (116) et au moins une seconde structure d'électrode (120), la première structure d'électrode (116) comportant au moins un premier conducteur (118) et au moins un second conducteur (122) ; - au moins une unité de commande (124), l'unité de commande (124) comprenant au moins un dispositif de mesure (126) ; caractérisé en ce que le dispositif de mesure (126) est agencé pour détecter une modification des propriétés électriques de l'élément capteur (112) provoquée par une fixation des particules entre la première structure d'électrode (116) et la seconde structure d'électrode (120) par mesure d'une chute de tension à au moins une résistance de mesure de la seconde structure d'électrode (120) ; et l'unité de commande (124) comprend en outre au moins un premier dispositif de test (128), le premier dispositif de test (128) étant agencé pour appliquer un premier signal de test à la première structure d'électrode (116) via la première ligne d'alimentation (118) et pour détecter un premier signal de réponse de la première structure d'électrode (116) via la seconde ligne d'alimentation (122).
PCT/EP2018/081397 2017-12-19 2018-11-15 Dispositif capteur pour la détection de particules d'un gaz de mesure dans un espace de gaz de mesure et procédé de détection de particules d'un gaz de mesure dans un espace de gaz de mesure WO2019120789A1 (fr)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE102017223292 2017-12-19
DE102017223292.7 2017-12-19
DE102018207527 2018-05-15
DE102018207526.3 2018-05-15
DE102018207527.1 2018-05-15
DE102018207526 2018-05-15
DE102018207784.3 2018-05-17
DE102018207784.3A DE102018207784A1 (de) 2017-12-19 2018-05-17 Sensoranordnung zur Erfassung von Partikeln eines Messgases in einem Messgasraum und Verfahren zur Erfassung von Partikeln eines Messgases in einem Messgasraum

Publications (1)

Publication Number Publication Date
WO2019120789A1 true WO2019120789A1 (fr) 2019-06-27

Family

ID=66675004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/081397 WO2019120789A1 (fr) 2017-12-19 2018-11-15 Dispositif capteur pour la détection de particules d'un gaz de mesure dans un espace de gaz de mesure et procédé de détection de particules d'un gaz de mesure dans un espace de gaz de mesure

Country Status (2)

Country Link
DE (1) DE102018207784A1 (fr)
WO (1) WO2019120789A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115663A (zh) * 2017-06-23 2019-01-01 曼·胡默尔有限公司 过滤器元件分析系统及相关方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006976A2 (fr) 2001-07-10 2003-01-23 Robert Bosch Gmbh Detecteur servant a la detection de particules, et procede de reglage de son fonctionnement
DE10149333A1 (de) 2001-10-06 2003-05-08 Bosch Gmbh Robert Sensorvorrichtung zur Messung der Feuchtigkeit von Gasen
DE10319664A1 (de) 2003-05-02 2004-11-18 Robert Bosch Gmbh Sensor zur Detektion von Teilchen
DE10353860A1 (de) 2003-11-18 2005-06-09 Robert Bosch Gmbh Sensor zum Erfassen von Partikeln in einem Gasstrom, sowie Verfahren zu seiner Herstellung
DE102004046882A1 (de) 2004-09-28 2006-04-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, sowie Sensoreinrichtung zur Erfassung einer Zustandsgröße im Abgas der Brennkraftmaschine
DE102005053120A1 (de) 2005-11-08 2007-05-10 Robert Bosch Gmbh Sensorelement für Gassensoren und Verfahren zum Betrieb desselben
DE102006042362A1 (de) 2006-09-08 2008-03-27 Robert Bosch Gmbh Sensorelement für Gassensoren und Verfahren zum Betrieb desselben
DE102007046096A1 (de) 2007-09-26 2009-04-02 Robert Bosch Gmbh Verfahren zur Eigendiagnose eines Partikelsensors, zur Durchführung des Verfahrens geeignete Partikelsensoren sowie deren Verwendung
DE102009028239A1 (de) 2009-08-05 2011-02-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Eigendiagnose eines Partikelsensors
DE102009028283A1 (de) 2009-08-06 2011-02-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Eigendiagnose eines Partikelsensors
DE102011079710A1 (de) * 2010-07-26 2012-02-23 Denso Corporation Feinstaub-Erfassungssensor, Steuereinheit zur Steuerung desselben und Verfahren zum Erfassen eines anormalen Zustands desselben
US20120119759A1 (en) 2010-11-17 2012-05-17 Delphi Technologies, Inc. Self diagnostics of a particulate matter sensor
WO2012162685A1 (fr) * 2011-05-26 2012-11-29 Stoneridge, Inc. Système de capteur de suie
DE102012206524A1 (de) * 2011-04-21 2012-12-20 Denso Corporation Gerät zur erfasssung von partikeln und korrekturverfahren eines geräts zur erfassung von partikeln
DE102013215123A1 (de) * 2012-08-02 2014-02-06 Denso Corporation Detektionselement für partikuläre materie, detektionssensor für partikuläre materie, der damit ausgestattet ist, und herstellungsverfahren dafür
DE102013110291A1 (de) * 2013-03-06 2014-09-11 Heraeus Sensor Technology Gmbh Verfahren zur Herstellung eines Rußsensors mit einem Laserstrahl

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006976A2 (fr) 2001-07-10 2003-01-23 Robert Bosch Gmbh Detecteur servant a la detection de particules, et procede de reglage de son fonctionnement
DE10149333A1 (de) 2001-10-06 2003-05-08 Bosch Gmbh Robert Sensorvorrichtung zur Messung der Feuchtigkeit von Gasen
DE10319664A1 (de) 2003-05-02 2004-11-18 Robert Bosch Gmbh Sensor zur Detektion von Teilchen
DE10353860A1 (de) 2003-11-18 2005-06-09 Robert Bosch Gmbh Sensor zum Erfassen von Partikeln in einem Gasstrom, sowie Verfahren zu seiner Herstellung
DE102004046882A1 (de) 2004-09-28 2006-04-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, sowie Sensoreinrichtung zur Erfassung einer Zustandsgröße im Abgas der Brennkraftmaschine
DE102005053120A1 (de) 2005-11-08 2007-05-10 Robert Bosch Gmbh Sensorelement für Gassensoren und Verfahren zum Betrieb desselben
DE102006042362A1 (de) 2006-09-08 2008-03-27 Robert Bosch Gmbh Sensorelement für Gassensoren und Verfahren zum Betrieb desselben
DE102007046096A1 (de) 2007-09-26 2009-04-02 Robert Bosch Gmbh Verfahren zur Eigendiagnose eines Partikelsensors, zur Durchführung des Verfahrens geeignete Partikelsensoren sowie deren Verwendung
DE102009028239A1 (de) 2009-08-05 2011-02-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Eigendiagnose eines Partikelsensors
DE102009028283A1 (de) 2009-08-06 2011-02-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Eigendiagnose eines Partikelsensors
DE102011079710A1 (de) * 2010-07-26 2012-02-23 Denso Corporation Feinstaub-Erfassungssensor, Steuereinheit zur Steuerung desselben und Verfahren zum Erfassen eines anormalen Zustands desselben
US20120119759A1 (en) 2010-11-17 2012-05-17 Delphi Technologies, Inc. Self diagnostics of a particulate matter sensor
DE102012206524A1 (de) * 2011-04-21 2012-12-20 Denso Corporation Gerät zur erfasssung von partikeln und korrekturverfahren eines geräts zur erfassung von partikeln
WO2012162685A1 (fr) * 2011-05-26 2012-11-29 Stoneridge, Inc. Système de capteur de suie
DE102013215123A1 (de) * 2012-08-02 2014-02-06 Denso Corporation Detektionselement für partikuläre materie, detektionssensor für partikuläre materie, der damit ausgestattet ist, und herstellungsverfahren dafür
DE102013110291A1 (de) * 2013-03-06 2014-09-11 Heraeus Sensor Technology Gmbh Verfahren zur Herstellung eines Rußsensors mit einem Laserstrahl

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115663A (zh) * 2017-06-23 2019-01-01 曼·胡默尔有限公司 过滤器元件分析系统及相关方法

Also Published As

Publication number Publication date
DE102018207784A1 (de) 2019-06-19

Similar Documents

Publication Publication Date Title
EP2864757B1 (fr) Procédé pour le contrôle du fonctionnement d'un capteur servant à la détection de particules et capteur servant à la détection de particules
DE102009028283B4 (de) Verfahren und Vorrichtung zur Eigendiagnose eines Partikelsensors
DE102009028239A1 (de) Verfahren und Vorrichtung zur Eigendiagnose eines Partikelsensors
DE102006055520A1 (de) Vorrichtung und Verfahren zur Überprüfung der Funktionsfähigkeit bzw. zur Plausibilisierung eines auf einem interdigitalen Elektrodensystem basierenden Sensors sowie ein Sensor zur Detektion von Teilchen in einem Gasstrom und dessen Verwendung
EP3391024B1 (fr) Capteur de suie électrostatique
EP3204750B1 (fr) Procédé pour le contrôle de la fonction d'un capteur pour la détection de particules, programme informatique, support d'enregistrement électronique et appareil de commande électronique
WO2020030324A1 (fr) Procédé de fonctionnement d'un capteur pour la détection de particules dans un gaz de mesure
DE102007046099A1 (de) Sensorelement zur Detektion von Partikeln in einem Gasstrom und Verfahren zur Bestimmung und Kompensation des Nebenschlusswiderstands von Sensorelementen
EP4150318A1 (fr) Capteur destiné à l'acquisition d'au moins une propriété d'un gaz à mesurer et procédé pour faire fonctionner un capteur
WO2012110385A1 (fr) Procédé et dispositif servant à diagnostiquer la mise en contact électrique d'un capteur de gaz d'échappement
WO2019120789A1 (fr) Dispositif capteur pour la détection de particules d'un gaz de mesure dans un espace de gaz de mesure et procédé de détection de particules d'un gaz de mesure dans un espace de gaz de mesure
DE102015225739B4 (de) Verfahren zum Betreiben eines elektrostatischen Rußsensors
DE102009046315A1 (de) Verfahren und Vorrichtung zum Betreiben eines Partikelsensors
DE102016225420A1 (de) Sensor zur Erfassung mindestens einer Eigenschaft eines Messgases
DE102012001044A1 (de) Verfahren zum Überwachen eines Rußsensors
WO2019120790A1 (fr) Dispositif capteur pour la détection de particules d'un gaz de mesure dans un espace de gaz de mesure et procédé pour la détection de particules d'un gaz de mesure dans un espace de gaz de mesure
WO2017029074A1 (fr) Procédé de surveillance du fonctionnement d'un capteur de suie électrostatique
EP3729051B1 (fr) Procédé de détection de particules d'un gaz de mesure dans une chambre de gaz de mesure et ensemble capteur pour la détection de particules d'un gaz de mesure dans une chambre de gaz de mesure
DE102018212863A1 (de) Sensoranordnung zur Erfassung von Partikeln eines Messgases in einem Messgasraum und Verfahren zur Erfassung von Partikeln eines Messgases in einem Messgasraum
DE102013216899A1 (de) Verfahren und Vorrichtung zum Betrieb eines sammelnden Partikelsensors
DE102013216227A1 (de) Kapazitive Eigendiagnose des Elektrodensystems eines Partikelsensors
DE102009000077A1 (de) Partikelsensor mit Referenzmesszelle
DE102017209392A1 (de) Sensorelement zur Erfassung von Partikeln eines Messgases in einem Messgasraum
WO2018077615A1 (fr) Élément capteur destiné à détecter des particules d'un gaz de mesure dans une chambre de mesure
DE102020215456A1 (de) Verfahren zur Funktionskontrolle eines Sensors zur Detektion von Rußpartikeln in einem Abgas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18804574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18804574

Country of ref document: EP

Kind code of ref document: A1