WO2019119818A1 - 风道结构、风机和抽油烟机 - Google Patents

风道结构、风机和抽油烟机 Download PDF

Info

Publication number
WO2019119818A1
WO2019119818A1 PCT/CN2018/099088 CN2018099088W WO2019119818A1 WO 2019119818 A1 WO2019119818 A1 WO 2019119818A1 CN 2018099088 W CN2018099088 W CN 2018099088W WO 2019119818 A1 WO2019119818 A1 WO 2019119818A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
air inlet
ventilation duct
substrate
air
Prior art date
Application number
PCT/CN2018/099088
Other languages
English (en)
French (fr)
Inventor
汪耀东
张辉
杨柱
胡小文
蓝渊
谭发刚
Original Assignee
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的集团股份有限公司 filed Critical 美的集团股份有限公司
Publication of WO2019119818A1 publication Critical patent/WO2019119818A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes

Definitions

  • the invention relates to the technical field of range hoods, in particular to a duct structure, a fan and a range hood.
  • the range hood is basically popularized in the market.
  • the range hood in the market is increasingly moving toward the trend of high air volume and high back pressure, so as to improve the vacuum coverage of the smoke suction port.
  • it can overcome the soot phenomenon that may be caused by the high resistance of the exhaust pipes of high-rise buildings.
  • the smoke hood is placed on the side of the range hood.
  • the flow rate will increase, and the flow rate will increase when flowing through the suction port into the range hood.
  • the present invention aims to solve at least one of the technical problems existing in the prior art or related art.
  • Another object of the present invention is to provide a fan.
  • the technical solution of the first aspect of the present invention provides a duct structure for a fan, comprising: a ventilation duct, one end of the ventilation duct is fixedly connected with the fan and communicates with the fan, and the other end of the ventilation duct is closed;
  • the ventilation duct comprises: an air inlet, which is disposed on the side wall of the ventilation duct and penetrates the side wall;
  • the upper deflector is disposed at the closed end of the air inlet near the ventilation duct and the upper deflector is fixedly connected with the ventilation duct, and the upper deflector
  • the lower deflector is disposed at a side of the air inlet close to the fan and the lower deflector is fixedly connected with the ventilation duct;
  • the lower deflector comprises: a deflector substrate, and
  • the ventilation duct is fixedly connected to limit the flow direction of the fluid;
  • the concave-convex structure is fixed on the side of the deflecting substrate away from the air inlet, wherein the lower deflector
  • the fluid enters the fan through the ventilation duct. Since the air inlet is disposed on the side wall of the ventilation duct, the flow direction of the fluid after passing through the air inlet is changed by 90 degrees, and the fluid enters the ventilation duct through the air inlet.
  • the upper baffle restricts the flow of the fluid entering the ventilation duct from the side of the air inlet near the closed end through the surface of the upper deflector near the side of the lower deflector, and guides the flow of fluid to the end of the ventilation duct connected to the fan, reducing The possibility of partial eddy current is generated on the side of the air inlet near the closed end; at the same time, the surface of the lower deflector passing through the side of the deflecting substrate close to the upper deflector restricts the flow of fluid entering the air duct from the side of the air inlet near the fan, reducing the fluid The flow direction changes excessively, thereby reducing the possibility of local eddy currents on the side of the air inlet near the fan.
  • the upper deflector and the deflector cooperate to reduce the possibility of local eddy currents around the air inlet.
  • it can reduce the aerodynamic drag generated by the local eddy current, thereby reducing the aerodynamic drag loss around the air inlet, increasing the pass Aerodynamic performance of the conduit, on the other hand, by reducing local vortices, reduce the noise generated by the eddy current, so that the ventilation duct quieter in operation, but also to a certain extent reduces the noise generated due to vibration, increase the reliability of the ventilation duct.
  • the concave-convex structure on the side of the flow guiding substrate away from the air inlet can adjust the flow direction of the fluid flowing through the side of the lower deflector away from the air inlet, so that the flow velocity distribution of the fluid is more uniform, and the local pressure in the ventilation duct is reduced.
  • the possibility of mutation thereby reducing the aerodynamic noise of the fluid.
  • the lower deflector can block the noise from the fan in a part of the ventilation duct, thereby reducing the noise of the fan propagating outside the ventilation duct and making the fan work quieter.
  • the concave-convex structure comprises: a substrate fixedly connected to the flow guiding substrate, the substrate comprises: a plurality of grooves, the groove is disposed on a side of the substrate away from the flow guiding substrate and penetrates the substrate, the groove comprises: a first side, one end of the first side is located on a side of the substrate away from the flow guiding substrate; the second side, one end of the second side is located at a side of the substrate away from the flow guiding substrate; and the bottom surface is connected by the bottom surface of the first side and the second side Wherein the bottom surface comprises at least one plane and/or at least one curved surface.
  • the concave-convex structure adjusts a flow direction of a fluid flowing through a side of the lower baffle away from the air inlet through a plurality of grooves on the substrate and the substrate, thereby reducing aerodynamic noise, wherein the groove passes through A side surface, a second side surface and a bottom surface adjust the fluid flow direction, wherein the bottom surface may be at least one plane, or may be at least one curved surface, or may be a combination of at least one plane and at least one curved surface.
  • At least two adjacent grooves intersect at a side of the substrate away from the flow guiding substrate.
  • the plurality of grooves are evenly distributed.
  • a plurality of grooves are evenly distributed on the substrate, which facilitates the manufacture of the lower baffle on the one hand, and facilitates uniform flow of the lower baffle from the side of the air inlet on the other hand, reducing the occurrence of local eddy currents. possibility.
  • the intersection line of the first side and the substrate away from the first surface of the upper baffle intersects the first projection line at the intersection of the air inlet and the sidewall and the intersection of the second side and the first surface
  • the angle of the angle between the second projection line of the line on the intersection of the air inlet and the side wall ranges from 5° to 180°.
  • the angle between the first projection line corresponding to the first side and the second projection line corresponding to the second surface ranges from 5° to 180°, and the groove can flow through the range
  • the flow direction of the lower deflector away from the air inlet is relatively effectively adjusted to make the flow velocity distribution more uniform, reducing the possibility of sudden pressure changes in the local area of the ventilation duct, thereby reducing the aerodynamic noise of the fluid.
  • the first projection line and the second projection line are equal in length.
  • the first projection line and the second projection line are equal in length, so that the shape of the groove is more regular, and the fluid flowing through the side of the lower baffle far away from the air inlet is relatively effectively adjusted to make the fluid
  • the flow velocity distribution is more uniform, reducing the possibility of sudden changes in pressure in the local area of the ventilation duct, thereby reducing the aerodynamic noise of the fluid.
  • the first projection line and the second projection line are unequal in length.
  • the lengths of the first projection line and the second projection line are not equal, so that the adjustment effects of the first side surface and the second side surface on the fluid flow direction are different, and the difference between the adjustment effects of the first side surface and the second side surface is adopted.
  • the values of the lengths of the first projection line and the second projection line range from 1 mm to 100 mm.
  • the values of the lengths of the first projection line and the second projection line range from 1 mm to 100 mm, and the groove can be relatively effective for the fluid flowing through the side of the lower baffle away from the air inlet. Adjust to reduce aerodynamic noise.
  • the upper deflector comprises: an upper connecting portion fixedly connected to the ventilation duct; and an upper guiding portion fixedly connected with the upper connecting portion for restricting a flow direction of the fluid entering the ventilation duct from the air inlet
  • the upper baffle adjusts the flow direction of the fluid flowing through the upper baffle near the opening side through the upper connecting portion.
  • the upper baffle restricts the flow of the fluid entering the ventilation duct from the air inlet to the closed end side through the upper air guiding portion, and adjusts the flow through the upper deflector to the opening through the upper connecting portion.
  • the flow direction of the fluid on one side can not only adjust the fluid in the ventilation duct, but also adjust the flow direction of the fluid outside the air inlet, thereby improving the distribution of the fluid outside the air inlet, and improving the air suction performance of the ventilation duct.
  • the side of the upper flow guiding portion away from the upper connecting portion is in close contact with the ventilation duct.
  • the side of the upper flow guiding portion away from the upper connecting portion is in close contact with the ventilation duct, that is, one side of the upper guiding portion is fixedly connected with the opening, and one side is closely fitted with the inner wall of the ventilation duct, thereby being able to prevent
  • the flow of fluid to the closed end after contact with the inner wall of the ventilation duct causes the possibility of local eddy currents to occur, thereby reducing noise due to local eddy currents and loss of aerodynamic drag.
  • the side of the upper flow guiding portion close to the lower baffle is curved or includes at least one plane.
  • the upper flow guiding portion restricts the flow direction of the fluid by the side of the upper guiding portion close to the lower deflector
  • the side of the upper guiding portion close to the lower deflector may be a curved surface, and may also include at least one Plane, as long as it can limit the flow direction of the fluid.
  • the upper flow guiding portion is curved or includes at least two planes, preferably, the upper flow guiding portion is recessed toward the closed end side near the side of the lower deflector.
  • the upper deflector has a uniform thickness.
  • the flow guiding substrate comprises: a lower connecting portion fixedly connected to the ventilation duct; and a lower guiding portion fixedly connected to the lower connecting portion and the concave-convex structure for restricting the fluid entering the ventilation duct from the air inlet In the flow direction, the flow guiding substrate adjusts the flow direction of the fluid flowing through the side of the flow guiding substrate near the opening through the lower connecting portion.
  • the flow guiding substrate restricts the flow of the fluid entering the ventilation duct from the air inlet to the closed end side through the lower air guiding portion, and adjusts the flow through the lower deflector to the opening through the lower connecting portion.
  • the flow direction of the side fluid can not only adjust the fluid in the ventilation duct, but also adjust the flow direction of the fluid outside the air inlet, thereby improving the distribution of the fluid outside the air inlet, and improving the air suction performance of the ventilation duct.
  • the side of the lower flow guiding portion close to the upper deflector is curved or includes at least one plane.
  • the lower flow guiding portion restricts the flow direction of the fluid by the side of the lower flow guiding portion close to the upper deflector
  • the side surface of the lower guiding portion close to the upper deflector may be a curved surface, and may also include at least one Plane, as long as it can limit the flow direction of the fluid.
  • the lower flow guiding portion is curved or includes at least two planes, preferably, the lower flow guiding portion is recessed toward the closed end side near the side of the upper deflector.
  • the thickness of the flow guiding substrate is uniform.
  • the technical solution of the second aspect of the present invention provides a fan, comprising: a housing, the housing includes: an air outlet, and the air outlet passes through the housing; and any air duct structure in the first aspect of the present invention is fixed to the housing
  • the connection is connected to the interior of the casing; the flow guiding device is fixed inside the casing, and the flow guiding device is configured to drive the fluid to enter the interior of the casing through the air passage structure and be discharged from the air outlet.
  • the flow guiding device drives the fluid to enter the inside of the casing through the air passage structure and is discharged from the air outlet, and the fluid enters the fan through the ventilation duct.
  • the local vortex is reduced and the aerodynamic noise is reduced.
  • the noise generated by the eddy current and the loss of the aerodynamic drag can be reduced, so that the fan is quieter when working, and the unnecessary energy consumption of the fan is reduced.
  • the housing further includes: an auxiliary air duct, the side of the housing adjacent to the air duct structure is fixedly connected with the air duct structure, and the auxiliary air duct is connected with the air duct structure, wherein the auxiliary wind
  • the cross-sectional area of the flow area of the channel fluid is greater than the cross-sectional area of the fluid flow area of the duct structure.
  • the fluid is sucked from the air inlet and flows through the ventilation duct and the auxiliary air duct, and finally enters into the casing. Since the cross-sectional area of the fluid passage area of the auxiliary air passage is larger than the cross-sectional area of the fluid flow area of the ventilation duct, When the fluid enters the auxiliary air duct from the ventilation duct, the volume increases and the fluid pressure decreases, which facilitates the rapid entry of the fluid from the ventilation duct into the auxiliary air duct, thereby facilitating the improvement of the suction performance of the fan.
  • the technical solution of the third aspect of the present invention provides a range hood, comprising: the fan in any one of the above technical solutions.
  • the fan guides the fluid into the range hood, and when the fan is working, the eddy current when the fluid enters the fan can be reduced.
  • reducing eddy current can not only reduce the noise generated by eddy current, but also reduce the loss of aerodynamic drag, making the range hood more quiet and energy-saving.
  • Figure 1 is a cross-sectional view showing a structure of a duct according to Embodiment 1 of the present invention
  • Figure 2 is a partial enlarged view of the air inlet portion of the air duct structure of Figure 1;
  • FIG. 3 is a block diagram showing the structure of an embodiment 8 according to the present invention.
  • Figure 4 is a partial enlarged view of the portion of the deflector under the air passage structure of Figure 3;
  • FIG. 5 is a block diagram showing the structure of Embodiment 8 according to the present invention.
  • Figure 6 is a partial enlarged view of the portion of the deflector under the air passage structure of Figure 5;
  • Figure 7 is a side view showing a concavo-convex structure according to Embodiment 8 of the present invention.
  • Figure 8 is a block diagram showing the structure of a fan according to Embodiment 10 of the present invention.
  • Figure 9 is a cross-sectional view showing a partial structure of a fan according to Embodiment 10 of the present invention.
  • the air duct structure 10 is provided for the fan 20, and includes: a ventilation duct 102.
  • One end of the ventilation duct 102 is fixedly connected to the fan 20 and communicates with the fan 20, and the other end of the ventilation duct 102 is closed.
  • the ventilation duct 102 is closed.
  • the air inlet 1022 is disposed on the side wall of the ventilation duct 102 and penetrates the side wall.
  • the upper deflector 104 is disposed at the air inlet 1022 adjacent to the closed end 1024 of the ventilation duct 102 and the upper deflector 104 is fixed to the ventilation duct 102.
  • the upper baffle 104 is used to restrict the flow of the fluid entering the ventilation duct 102 from the air inlet 1022; the lower baffle 106 is disposed on the side of the air inlet 1022 adjacent to the fan 20 and the lower baffle 106 and the ventilation duct 102.
  • the lower baffle 106 includes a flow guiding substrate 1062 fixedly connected to the ventilation duct 102 for restricting the flow direction of the fluid, and a concave-convex structure 1068 fixed on a side of the deflecting substrate 1062 away from the air inlet 1022, wherein The lower baffle 106 adjusts the flow direction of the fluid flowing through the side of the lower baffle 106 away from the air inlet 1022 by the concavo-convex structure 1068.
  • FIG. 1 is a cross-sectional view showing the air duct structure 10 of the present embodiment
  • FIG. 2 is a partially enlarged view showing a portion of the air inlet 1022 of the duct structure 10 of FIG.
  • the fluid enters the inside of the fan 20 through the ventilation duct 102. Since the air inlet 1022 is disposed on the side wall, the flow direction of the fluid after passing through the air inlet 1022 is changed by 90 degrees. During the passage of the fluid into the ventilation duct 102 via the air inlet 1022, the upper deflector 104 is restricted from entering the ventilation duct 102 from the air inlet 1022 toward the closed end 1024 by the surface of the upper deflector 104 near the lower deflector 106 side.
  • the flow direction of the fluid directs the flow of fluid to the end of the ventilation duct 102 connected to the fan 20, reducing the possibility of local eddy currents on the side of the air inlet 1022 near the closed end 1024; while the lower deflector 106 is close to the upper guide through the deflector 1062
  • the surface on one side of the flow plate 104 restricts the flow of the fluid entering the ventilation duct 102 from the side of the air inlet 1022 near the fan 20, reducing the possibility that the flow direction of the fluid changes excessively, thereby reducing the locality of the air inlet 1022 near the side of the fan 20.
  • the possibility of eddy current at this time, the interaction of the upper baffle 104 and the deflector substrate 1062 reduces the possibility of local eddy currents around the air inlet 1022, and on the other hand reduces the number of
  • the aerodynamic drag generated by the eddy current reduces the aerodynamic drag loss around the air inlet 1022, increases the aerodynamic performance of the ventilation duct 102, and on the other hand, reduces the noise generated by the eddy current by reducing the local eddy current, making the ventilation duct 102 quieter during operation.
  • the vibration generated by the noise is also reduced to some extent, and the reliability of the ventilation duct 102 is increased.
  • the concave-convex structure 1068 on the side of the flow guiding substrate 1062 away from the air inlet 1022 can adjust the flow direction of the fluid flowing through the side of the lower deflector 106 away from the air inlet 1022, so that the flow velocity distribution of the fluid is more uniform and ventilation is reduced.
  • the possibility of a sudden change in local pressure in the conduit 102 reduces the aerodynamic noise of the fluid.
  • the uneven structure 1068 includes a substrate 1070 fixedly connected to the flow guiding substrate 1062.
  • the substrate 1070 includes a plurality of grooves 1072 disposed on a side of the substrate 1070 away from the flow guiding substrate 1062.
  • the recess 1072 includes a first side surface 1074.
  • One end of the first side surface 1074 is located on a side of the substrate 1070 away from the flow guiding substrate 1062.
  • the second side surface 1076 has one end of the second side surface 1076 located at the substrate 1070 away from the flow guiding substrate.
  • One side of the 1062; the bottom surface 1078, the first side surface 1074 and the second side surface 1076 are connected by a bottom surface 1078, wherein the bottom surface 1078 is a flat surface.
  • the concave-convex structure 1068 adjusts the flow direction of the fluid flowing through the side of the lower baffle 106 away from the air inlet 1022 through the plurality of grooves 1072 on the substrate 1070 and the substrate 1070, thereby reducing aerodynamic noise, wherein
  • the groove 1072 adjusts the fluid flow direction through the first side surface 1074, the second side surface 1076 and the bottom surface 1078.
  • the bottom surface 1078 is a flat surface, which can reduce the resistance when the fluid passes, so that the concave-convex structure 1068 can not only flow through the lower flow.
  • the flow direction of the fluid of the plate 106 away from the side of the air inlet 1022 is adjusted, and the flow resistance loss of the fluid can also be reduced.
  • the bottom surface 1078 includes two planes.
  • the bottom surface 1078 includes two planes, and the adjustment effect of the bottom surface 1078 on the fluid can be adjusted by adjusting the angles of the two planes, thereby adjusting the angle between the two planes according to different working conditions, and increasing Applicability of the duct structure 10.
  • the grooves 1072 are evenly distributed and the adjacent grooves 1072 intersect on the side of the substrate 1070 away from the flow guiding substrate 1062.
  • the grooves 1072 are evenly distributed and intersect on the side of the substrate 1070 away from the flow guiding substrate 1062.
  • the adjustment of the fluid by the concave-convex structure 1068 makes the flow velocity distribution of the fluid more uniform, and reduces the local pressure in the ventilation duct 102.
  • the first projection line and the second side surface 1076 and the intersection of the first side surface 1074 and the substrate 1070 away from the first surface of the upper baffle 104 on the intersection surface of the air inlet 1022 and the side wall The angle of intersection of one side of the intersection line at the intersection of the air inlet 1022 and the second projection line on the side wall is 5°, and the lengths of the first projection line and the second projection line are not equal.
  • the angle between the first projection line corresponding to the first side surface 1074 and the second projection line corresponding to the second surface is 5°, and corresponding to the angle value, the groove 1072 can pass through the pair.
  • the adjustment of the flow direction of the fluid of the deflector 106 away from the air inlet 1022 makes the flow velocity distribution of the fluid more uniform, reducing the possibility of sudden changes in pressure in the local area of the ventilation duct 102, thereby reducing the aerodynamic noise of the fluid.
  • the angle between the first projection line and the second projection line is 175°
  • the upper deflector 104 includes: an upper connecting portion 1042, which is fixedly connected to the ventilation duct 102; and an upper guiding portion 1044, and The upper connecting portion 1042 is fixedly connected for restricting the flow of the fluid entering the ventilation duct 102 from the air inlet 1022, wherein the upper deflector 104 adjusts the fluid flowing through the upper deflector 104 toward the opening side through the upper connecting portion 1042.
  • the side of the upper deflector 1044 near the lower baffle 106 includes two planes.
  • the angle between the first projection line and the second projection line is 175°, and corresponding to the angle value, the groove 1072 can converge the flow direction of the fluid flowing on the side of the lower baffle 106 away from the air inlet 1022.
  • the adjustment makes the flow velocity distribution of the fluid more uniform, reducing the possibility of sudden changes in pressure in the local area of the ventilation duct 102, thereby reducing the aerodynamic noise of the fluid.
  • the upper baffle 104 restricts the flow of the fluid entering the ventilation duct 102 from the air inlet 1022 toward the closed end 1024 side through the upper deflector 1044, and adjusts the flow through the upper deflector through the upper connecting portion 1042.
  • the flow direction of the fluid near the opening side of the opening 104 can not only adjust the fluid in the ventilation duct 102, but also adjust the flow direction of the fluid outside the air inlet 1022, thereby improving the distribution of the fluid outside the air inlet 1022 and facilitating the improvement of the ventilation duct.
  • the inspiratory performance of 102 is not only adjust the fluid in the ventilation duct 102, but also adjust the flow direction of the fluid outside the air inlet 1022, thereby improving the distribution of the fluid outside the air inlet 1022 and facilitating the improvement of the ventilation duct.
  • the flow guiding substrate 1062 includes a lower connecting portion 1064 fixedly connected to the ventilation duct 102, and a lower guiding portion 1066 fixedly connected to the lower connecting portion 1064 and the concave-convex structure 1068 for limiting
  • the air inlet 1022 enters the flow direction of the fluid in the ventilation duct 102.
  • the flow guiding substrate 1062 adjusts the flow direction of the fluid flowing through the side of the flow guiding substrate 1062 near the opening through the lower connecting portion 1064, and the lower guiding portion 1066 approaches the upper deflector 104.
  • the sides include three planes.
  • the flow guiding substrate 1062 restricts the flow of the fluid entering the ventilation duct 102 from the air inlet 1022 toward the closed end 1024 side through the lower air guiding portion 1066, and adjusts the flow through the lower connecting portion 1064 through the lower connecting portion 1064.
  • the flow direction of the fluid near the opening side of the flow plate 106 not only adjusts the fluid in the ventilation duct 102, but also adjusts the flow direction of the fluid outside the air inlet 1022, thereby improving the distribution of the fluid outside the air inlet 1022, thereby facilitating the improvement.
  • the suction performance of the ventilation duct 102 The suction performance of the ventilation duct 102.
  • the air duct structure 10 is provided for the fan 20, and includes: a ventilation duct 102.
  • One end of the ventilation duct 102 is fixedly connected to the fan 20 and communicates with the fan 20, and the other end of the ventilation duct 102 is closed.
  • the ventilation duct 102 is closed.
  • the air inlet 1022 is disposed on the side wall of the ventilation duct 102 and penetrates the side wall.
  • the upper deflector 104 is disposed at the air inlet 1022 adjacent to the closed end 1024 of the ventilation duct 102 and the upper deflector 104 is fixed to the ventilation duct 102.
  • the upper deflector 104 includes an upper connecting portion 1042 that is fixedly coupled to the ventilation duct 102.
  • the upper deflecting portion 1044 is fixedly coupled to the upper connecting portion 1042 for restricting the flow of fluid entering the air duct 102 through the air inlet 1022.
  • the upper baffle 104 adjusts the flow direction of the fluid flowing through the upper baffle 104 near the opening through the upper connecting portion 1042, and the side of the upper baffle 1044 near the lower baffle 106 is a curved surface; the lower baffle
  • the lower air deflector 106 is fixedly connected to the air duct 102, and the lower air deflector 106 includes a deflecting substrate 1062 fixedly connected to the air duct 102 for restricting fluid.
  • the flow substrate 1062 includes a lower connection portion 1064 that is fixedly coupled to the ventilation duct 102, and a lower flow guide portion 1066 that is fixedly coupled to the lower connection portion 1064 and the concave-convex structure 1068 for restricting the flow of the fluid entering the ventilation duct 102 from the air inlet 1022.
  • the flow guiding substrate 1062 adjusts the flow direction of the fluid flowing through the flow guiding substrate 1062 near the opening through the lower connecting portion 1064, and the side surface of the lower guiding portion 1066 close to the upper deflector 104 is a curved surface.
  • the uneven structure 1068 is fixed to the side of the flow guiding substrate 1062 away from the air inlet 1022, and the lower deflector 106 adjusts the flow of the fluid flowing through the side of the lower deflector 106 away from the air inlet 1022 by the uneven structure 1068.
  • the concave-convex structure 1068 includes a substrate 1070 fixedly connected to the flow-guiding substrate 1062.
  • the substrate 1070 includes a plurality of grooves 1072.
  • the groove 1072 is disposed on a side of the substrate 1070 away from the flow-conducting substrate 1062 and penetrates the substrate 1070.
  • the groove 1072 is uniform.
  • the distributed and adjacent recesses 1072 intersect at a side of the substrate 1070 away from the flow guiding substrate 1062.
  • the recess 1072 includes a first side surface 1074, and one end of the first side surface 1074 is located on a side of the substrate 1070 away from the flow guiding substrate 1062.
  • Two sides 1076, one end of the second side surface 1076 is located on a side of the substrate 1070 away from the flow guiding substrate 1062; the bottom surface 1078, the first side surface 1074 and the second side surface 1076 are connected by the bottom surface 1078 and the bottom surface 1078 is a curved surface, the first side surface 1074 and the substrate
  • the intersecting line of 1070 away from the first surface of the upper baffle 104 on the intersection of the air inlet 1022 and the sidewall intersects the intersection of the second side 1076 and the first surface at the air inlet 1022 and the sidewall.
  • the angle of the angle of the second projection line is 120°, and the length of the first projection line is equal to the length of the second projection line, wherein the bottom surface 1078 is a curved surface, and the upper baffle 104 and the flow guiding substrate 1062 are uniform in thickness.
  • FIG. 3 is a schematic structural view of the present embodiment
  • FIG. 4 is a partial enlarged view of a portion of the lower deflector 106 of the air duct structure 10 of FIG. 3
  • FIG. 5 is a schematic structural view of the present embodiment
  • Fig. 7 is a side view of the uneven structure 1068 of the present embodiment.
  • the body enters the interior of the fan 20 through the ventilation duct 102. Since the air inlet 1022 is disposed on the side wall of the ventilation duct 102, the flow direction of the fluid after passing through the air inlet 1022 is changed. At 90 degrees, during the flow of fluid into the venting duct 102 via the air inlet 1022, the upper deflector 104 restricts the flow of fluid entering the venting duct 102 from the side of the air inlet 1022 near the closed end 1024 through the upper deflecting portion 1044, guiding the fluid.
  • the upper baffle 104 is adjusted by the upper connecting portion 1042 to flow through the upper deflector 104.
  • the flow direction of the fluid on one side of the opening can not only adjust the fluid in the ventilation duct 102, but also adjust the flow direction of the fluid outside the air inlet 1022, thereby improving the distribution of the fluid outside the air inlet 1022, and facilitating the improvement of the ventilation duct 102. Inhalation performance.
  • the lower deflector 106 restricts the flow of the fluid entering the ventilation duct 102 from the air inlet 1022 toward the closed end 1024 side through the lower deflector 1066, thereby reducing the possibility that the flow direction of the fluid changes excessively, thereby reducing the The tuyere 1022 is near the side of the fan 20 to generate a partial eddy current.
  • the upper baffle 104 and the deflector 1062 cooperate to reduce the possibility of local eddy current around the air inlet 1022; the upper deflector 1044 side Fixedly connected to the opening, one side is in close contact with the inner wall of the ventilation duct 102, thereby preventing the possibility that the flow of the fluid to the closed end 1024 after the contact with the inner wall of the ventilation duct 102 causes the occurrence of local eddy current, thereby reducing the locality Noise generated by eddy currents and loss of aerodynamic drag.
  • the lower baffle 106 adjusts the flow direction of the fluid flowing through the lower baffle 106 near the opening through the lower connecting portion 1064, and can not only adjust the fluid in the ventilation duct 102, but also the fluid outside the air inlet 1022.
  • the flow direction is adjusted to improve the distribution of the fluid outside the air inlet 1022, thereby facilitating the improvement of the suction performance of the ventilation duct 102.
  • the loss increases the aerodynamic performance of the ventilation duct 102.
  • the noise generated by the eddy current is reduced, the ventilation duct 102 is quieter during operation, and the vibration generated by the noise is also reduced to some extent, and the ventilation is increased.
  • the lower baffle 106 can block noise from the fan 20 within a portion of the venting duct 102, thereby reducing noise that propagates to the fan 20 outside of the venting duct 102, making the fan 20 quieter when operating.
  • the concave-convex structure 1068 disposed on the side of the flow guiding substrate 1062 away from the air inlet 1022 can realize the flow direction of the fluid flowing to the side of the lower deflector 106 away from the air inlet 1022 through the plurality of grooves 1072 on the substrate 1070 and the substrate 1070.
  • the adjustment is made to reduce the aerodynamic noise, wherein the groove 1072 adjusts the fluid flow direction through the first side surface 1074, the second side surface 1076 and the bottom surface 1078, wherein the bottom surface 1078 can be a curved surface, and the bottom surface 1078 is a curved surface that can flow in the opposite direction.
  • the fluid flow resistance of the bottom surface 1078 is reduced, that is, the power loss of the fluid flowing through the groove 1072 is reduced.
  • An angle corresponding to an angle between the first projection line of the first side surface 1074 and the second projection line corresponding to the second surface is 120°, and corresponding to the angle value, the groove 1072 can pass through the lower flow guiding plate 106
  • the adjustment of the flow direction of the fluid on one side of the air inlet 1022 makes the flow velocity distribution of the fluid more uniform, reducing the possibility of sudden changes in pressure in the local area of the ventilation duct 102, thereby reducing the aerodynamic noise of the fluid.
  • the first projection line and the second projection line are equal, so that the grooves 1072 are evenly distributed while being equal in size, which can make the flow velocity distribution of the fluid more uniform, reduce the possibility of sudden pressure change in the local area of the ventilation duct 102, thereby reducing the fluid. Pneumatic noise.
  • the flow direction of the fluid entering the ventilation duct 102 with the air inlet 1022 is adjusted by the upper deflector 104 and the lower deflector 106, thereby reducing the possibility of local eddy current generation, thereby reducing the aerodynamic drag loss of the fluid. It can also reduce the noise generated by local eddy currents.
  • the adjustment of the fluid by the relief structure 1068 through the substrate 1070 and the recess 1072 results in a more uniform fluid distribution, attenuating the aerodynamic noise of the fluid.
  • the embodiment of the present invention provides a fan 20, including a housing 202.
  • the housing 202 includes an air outlet 2022, and the air outlet 2022 extends through the housing 202.
  • the air duct structure 10 of any of the above embodiments is fixed to the housing 202. Connected and communicated with the interior of the housing 202; a flow guiding device is secured within the housing 202 for driving fluid through the air duct structure 10 into the interior of the housing 202 and out of the air outlet 2022.
  • the fan 20 adopts the ventilation duct 102 in any of the above embodiments.
  • the deflector drives the fluid to enter the interior of the casing 202 through the air duct structure 10 and is discharged from the air outlet 2022.
  • the local vortex is reduced and the aerodynamic noise is reduced by adjusting the fluid flow direction, and the noise generated by the eddy current and the aerodynamic drag loss can be reduced by reducing the local eddy current, so that the fan 20 is quieter when working, and at the same time Reduce unnecessary energy consumption of the fan 20.
  • the housing 202 further includes an auxiliary air duct 2024, and is provided with a side of the housing 202 adjacent to the air duct structure 10 and fixedly connected with the air duct structure 10, and the auxiliary air duct 2024 and the air duct structure 10 In communication, the cross-sectional area of the fluid passage area of the auxiliary duct 2024 is greater than the cross-sectional area of the fluid passage area of the duct structure 10.
  • Fig. 8 is a view showing the structure of the blower 20 of the present embodiment
  • Fig. 9 is a cross-sectional view showing a part of the structure of the blower 20 of the present embodiment.
  • the fluid is sucked from the air inlet 1022 and flows through the ventilation duct 102 and the auxiliary duct 2024, and finally enters the casing 202 due to the cross section of the fluid passage area of the auxiliary duct 2024.
  • the area is larger than the cross-sectional area of the fluid circulation area of the ventilation duct 102, so that when the fluid enters the auxiliary duct 2024 from the ventilation duct 102, the volume increases, and the fluid pressure decreases, so that the fluid can quickly enter the auxiliary duct 2024 from the ventilation duct 102, thereby It is convenient to improve the suction performance of the fan 20.
  • the embodiment provides a range hood, comprising: the fan 20 in any of the above embodiments.
  • the fan 20 when the range hood is in operation, the fan 20 directs the fluid into the range hood, and when the fan 20 is in operation, the eddy current when the fluid enters the fan 20 can be reduced and Pneumatic noise, reducing eddy current can not only reduce the noise generated by eddy current, but also reduce the loss of aerodynamic drag, making the range hood more quiet and energy-saving.
  • the flow direction of the outlet air outlet is restricted by the deflecting substrate of the upper deflector and the lower deflector, and the local eddy current is reduced.
  • the possibility on the one hand, reduces the noise generated by the local eddy current, and on the other hand reduces the aerodynamic drag loss; at the same time, the lower baffle adjusts the flow direction of the fluid flowing through the lower baffle away from the air inlet side through the concave-convex structure, so that the fluid
  • the flow velocity distribution is more uniform, reducing the possibility of sudden changes in pressure in the local area of the ventilation duct, thereby reducing the aerodynamic noise of the fluid.
  • the terms “first”, “second”, and “third” are used for the purpose of description only, and are not to be construed as indicating or implying relative importance; the term “plurality” means two or two. Above, unless otherwise explicitly defined.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like should be understood broadly. For example, “connected” may be a fixed connection, a detachable connection, or an integral connection; “connected” may They are directly connected or indirectly connected through an intermediary. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the description of the terms “one embodiment”, “some embodiments”, “specific embodiments” and the like means that the specific features, structures, materials, or characteristics described in connection with the embodiments or examples are included in the present invention. At least one embodiment or example.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Flow Control Members (AREA)

Abstract

一种风道结构(10)、风机(20)以及抽油烟机,用于风机(20)的风道结构(10)包括一端与风机(20)连通并固定连接且另一端封闭的通风管道(102)。通风管道(102)包括进风口(1022)、上导流板(104)和下导流板(106)。进风口(1022)设于通风管道(102)的侧壁上且贯穿侧壁,上导流板(104)设于进风口(1022)靠近通风管道(102)的封闭端且与通风管道(102)固定连接,下导流板(106)设于进风口(1022)靠近风机(20)的一侧且与通风管道(102)固定连接。下导流板(106)包括导流基板(1062)和凹凸结构(1068)。导流基板(1062)与通风管道(102)固定连接,用于限制流体的流向,凹凸结构(1068)固设于导流基板(1062)远离进风口(1022)的一侧。下导流板(106)通过凹凸结构(1068)调整流经下导流板(106)远离进风口(1022)一侧的流体的流向。该结构能够减弱涡流并减少噪声。

Description

风道结构、风机和抽油烟机
本申请要求2017年12月20日在中国国家知识产权局提交的申请号为201711383256.5、发明名称为“风道结构、风机和抽油烟机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及抽油烟机技术领域,具体而言,涉及一种风道结构、一种风机以及一种抽油烟机。
背景技术
抽油烟机目前在市场上基本进入普及状态,市场上抽油烟机为了获得更好的抽油烟效果,日益朝着大风量,高背压的趋势发展,以此提升油烟吸口的负压覆盖范围,同时克服高层楼宇排烟管道高阻力可能引起的油烟现象。当风量提高以后,对于油烟吸口结构安置在侧面的抽油烟机,风量的提高除了带来噪声问题,而且流速也会增加,在流经吸口进入到抽油烟机流道中时,由于空气流向发生突变,导致局部产生涡流,由于局部涡流的存在,一方面造成了额外的气动噪声,降低用户体验;另一方面,增加了流道的气动阻力损失,使进风量并没有随着风机转速的提高而明显增加,影响吸除油烟的效果。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
有鉴于此,本发明的一个目的在提供了一种风道结构。
本发明的另一个目的在于提供一种风机。
本发明的又一个目的在于提供一种抽油烟机。
为了实现上述目的,本发明第一方面的技术方案提供了一种风道结构, 用于风机,包括:通风管道,通风管道的一端与风机固定连接且与风机连通,通风管道的另一端封闭;通风管道包括:进风口,设于通风管道的侧壁上且贯穿侧壁;上导流板,设于进风口靠近通风管道的封闭端且上导流板与通风管道固定连接,上导流板用于限制由进风口进入通风管道的流体的流向;下导流板,设于进风口靠近风机的一侧且下导流板与通风管道固定连接;下导流板包括:导流基板,与通风管道固定连接,用于限制流体的流向;凹凸结构,固设于导流基板远离进风口的一侧,其中,下导流板通过凹凸结构调整流经下导流板远离进风口的一侧的流体的流向。
在该技术方案中,流体通过通风管道进入风机内部,由于进风口设于通风管道的侧壁上,因此,流体通过进风口后流动方向要改变90度,在流体经由进风口进入通风管道的过程中,上导流板通过上导流板靠近下导流板一侧的表面限制从进风口靠近封闭端一侧进入通风管道的流体的流向,引导流体向通风管道与风机连接的一端流动,减少进风口近封闭端一侧产生局部涡流的可能性;同时下导流板通过导流基板靠近上导流板一侧的表面限制从进风口靠近风机一侧进入通风管道的流体的流向,减少流体的流动方向变化过大的可能性,从而减少进风口靠近风机一侧产生局部涡流的可能性,此时,上导流板和导流基板的共同作用,减少进风口周围产生局部涡流的可能性,一方面能够减少局部涡流产生的气动阻力,进而减少进风口周围的气动阻力损失,增加通风管道的气动性能,另一方面,通过减少局部涡流,减少了涡流产生的噪声,使通风管道在工作时更加安静,也一定程度上减少了因噪声产生的振动,增加通风管道的可靠性。同时,在导流基板远离进风口一侧的凹凸结构能够对流经下导流板远离进风口的一侧的流体的流动方向进行调整,使流体的流速分布更加均匀,减少通风管道中局部区域压力突变的可能性,从而减少流体的气动噪声。还需要指出的是,下导流板可以阻隔一部分通风管道内来自于风机的噪声,从而减少传播到通风管道外的风机的噪声,使风机工作时更加安静。
在上述技术方案中,优选地,凹凸结构包括:基板,与导流基板固定连接,基板包括:多个凹槽,凹槽设于基板远离导流基板的一侧且贯穿基板,凹槽包括:第一侧面,第一侧面的一端位于基板远离导流基板的一侧; 第二侧面,第二侧面的一端位于基板远离导流基板的一侧;底面,第一侧面与第二侧面通过底面连接,其中,底面包括至少一个平面和/或至少一个曲面。
在该技术方案中,凹凸结构通过基板和基板上的多个凹槽实现对流经下导流板远离进风口的一侧的流体的流动方向进行调整,从而减少气动噪声,其中,凹槽通过第一侧面、第二侧面和底面对流体流动方向进行调整,其中,底面可以为至少一个平面,也可以为至少一个曲面,也可以为至少一个平面和至少一个曲面的组合。
在上述技术方案中,优选地,至少两个相邻的凹槽在基板远离导流基板的一侧相交。
在该技术方案中,至少存在两个连续的凹槽,以便于凹槽对流经下导流板远离进风口的一侧的流体的流动方向进行调整,从而减少气动噪声。
在上述技术方案中,优选地,多个凹槽均匀分布。
在该技术方案中,多个凹槽在基板上均匀分布,一方面便于下导流板的制造,另一方面便于使下导流板远离进风口一侧的流体流动均匀,减少局部涡流产生的可能性。
在上述技术方案中,优选地,第一侧面与基板远离上导流板的第一面的相交线在进风口与侧壁相交面上的第一投影线与第二侧面与第一面的相交线在进风口与侧壁相交面上的第二投影线的夹角的角度范围为5°-180°。
在该技术方案中,对应于第一侧面的第一投影线与对应于第二面的第二投影线的夹角的角度范围为5°-180°,在该范围内,凹槽能够对流经下导流板远离进风口的一侧流体的流动方向进行相对有效的调整,使流体的流速分布更加均匀,减少通风管道中局部区域压力突变的可能性,从而减少流体的气动噪声。
在上述技术方案中,优选地,第一投影线与第二投影线长度相等。
在该技术方案中,第一投影线与第二投影线长度相等,使凹槽的形状更加规则,便于对流经下导流板远离进风口的一侧的流体进行相对有效的调整,使流体的流速分布更加均匀,减少通风管道中局部区域压力突变的可能性,从而减少流体的气动噪声。
在上述技术方案中,优选地,第一投影线与第二投影线长度不等。
在该技术方案中,第一投影线与第二投影线长度不等,使第一侧面和第二侧面对流体流动方向的调整作用有差异,通过第一侧面和第二侧面的调整作用的差异,能够通过对流经下导流板远离进风口的一侧的流体流动方向的调整,使流体的流速分布更加均匀,减少通风管道中局部区域压力突变的可能性,从而减少流体的气动噪声。
在上述技术方案中,优选地,第一投影线与第二投影线长度的数值范围为1mm-100mm。
在该技术方案中,第一投影线与第二投影线长度的数值范围为1mm-100mm,在该范围内,凹槽能够对流经下导流板远离进风口的一侧的流体进行相对有效的调整,从而减少气动噪声。
在上述技术方案中,优选地,上导流板包括:上连接部,与通风管道固定连接;上导流部,与上连接部固定连接,用于限制由进风口进入通风管道的流体的流向,其中,上导流板通过上连接部调整流经上导流板靠近开口一侧的流体的流向。
在该技术方案中,上导流板一方面通过上导流部限制从进风口靠近封闭端一侧进入通风管道的流体的流向,另一方面通过上连接部调整流经上导流板靠近开口一侧的流体的流向,既能对通风管道内的流体进行调整,又能对进风口外的流体的流向进行调整,从而改善进风口外流体的分布,便于提高通风管道的吸气性能。
在上述技术方案中,优选地,上导流部远离上连接部的一侧与通风管道紧密贴合。
在该技术方案中,上导流部远离上连接部的一侧与通风管道紧密贴合,即上导流部一侧与开口固定连接,一侧与通风管道的内壁紧密贴合,从而能够防止流体在与通风管道的内壁接触之后向封闭端流动导致局部涡流产生的情况发生的可能性,进而减少由于局部涡流产生的噪声以及气动阻力损失。
在上述技术方案中,优选地,上导流部靠近下导流板的侧面为曲面或包括至少一个平面。
在该技术方案中,上导流部通过上导流部靠近下导流板的侧面对流体的流动方向进行限制,上导流部靠近下导流板的侧面可以为曲面,也可以包括至少一个平面,只要能够对流体的流动方向起到限制作用即可。当上导流部为曲面或包括至少两个平面时,优选地,上导流部靠近下导流板的侧面向封闭端一侧凹陷。
其中,优选地,上导流板厚度均匀。
在上述技术方案中,优选地,导流基板包括:下连接部,与通风管道固定连接;下导流部,与下连接部以及凹凸结构固定连接,用于限制由进风口进入通风管道的流体的流向,其中,导流基板通过下连接部调整流经导流基板靠近开口一侧的流体的流向。
在该技术方案中,导流基板一方面通过下导流部限制从进风口靠近封闭端一侧进入通风管道的流体的流向,另一方面通过下连接部调整流经下导流板靠近开口一侧的流体的流向,既能对通风管道内的流体进行调整,又能对进风口外的流体的流向进行调整,从而改善进风口外流体的分布,便于提高通风管道的吸气性能。
在上述技术方案中,优选地,下导流部靠近上导流板的侧面为曲面或包括至少一个平面。
在该技术方案中,下导流部通过下导流部靠近上导流板的侧面对流体的流动方向进行限制,下导流部靠近上导流板的侧面可以为曲面,也可以包括至少一个平面,只要能够对流体的流动方向起到限制作用即可。当下导流部为曲面或包括至少两个平面时,优选地,下导流部靠近上导流板的侧面向封闭端一侧凹陷。
其中,优选地,导流基板厚度均匀。
本发明第二方面的技术方案提供了一种风机,包括:壳体,壳体包括:出风口,出风口贯穿壳体;上述第一方面技术方案中的任一风道结构,与壳体固定连接且与壳体内部连通;导流装置,固设于壳体内部,导流装置用于驱动流体通过风道结构进入壳体内部并从出风口排出。
在该技术方案中,通过采用上述任一项技术方案的风道结构,在风机工作时,导流装置驱动流体通过风道结构进入壳体内部并从出风口排出, 流体通过通风管道进入风机内部的过程中,通过对流体流向的调节,减少局部涡并减弱气动噪声,通过减少局部涡流能够减少涡流产生的噪声以及气动阻力损失,使风机工作时更加安静,同时减少风机不必要的耗能。
在上述技术方案中,优选地,壳体还包括:辅助风道,设有壳体靠近风道结构的一侧且与风道结构固定连接,辅助风道与风道结构连通,其中,辅助风道流体流通区域的横截面积大于风道结构流体流通区域的横街面积。
在该技术方案中,流体从进风口吸入后流经通风管道和辅助风道,最终进入壳体中,由于辅助风道流体流通区域的横截面积大于通风管道流体流通区域的横截面积,使流体在从通风管道进入辅助风道时,体积增加,流体压力减小,便于流体快速从通风管道进入辅助风道中,进而便于提高风机的吸气性能。
本发明第三方面的技术方案提供了一种抽油烟机,包括:上述任一技术方案中的风机。
在该技术方案中,通过采用上述第二方面的技术方案中的任一风机,在抽油烟机工作时,风机引导流体进入抽油烟机中,风机工作时,能够减少流体进入风机中时的涡流以及气动噪声,减少涡流既能够减少涡流产生的噪声,又能够减少气动阻力损失,使抽油烟机工作时更加静音节能。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
图1示出了根据本发明的实施例1的风道结构的剖面图;
图2示出了图1中风道结构进风口部位的局部放大图;
图3示出了根据本发明的实施例8的结构示意图;
图4示出了图3中风道结构下导流板部位的局部放大图;
图5示出了根据本发明的实施例8的结构示意图;
图6示出了图5中风道结构下导流板部位的局部放大图;
图7示出了根据本发明的实施例8的凹凸结构的侧视图;
图8示出了根据本发明的实施例10的风机的结构示意图;
图9示出了根据本发明的实施例10的风机的部分结构的剖面图。
其中,图1至图9中附图标记与部件名称之间的对应关系为:
10风道结构,102通风管道,1022进风口,1024封闭端,104上导流板,1042上连接部,1044上导流部,106下导流板,1062导流基板,1064下连接部,1066下导流部,1068凹凸结构,1070基板,1072凹槽,1074第一侧面,1076第二侧面,1078底面,20风机,202壳体,2022出风口,2024辅助风道。
具体实施方式
为了可以更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图9描述根据本发明的一些实施例。
实施例1:
本实施例提供了一种风道结构10,用于风机20,包括:通风管道102,通风管道102的一端与风机20固定连接且与风机20连通,通风管道102的另一端封闭;通风管道102包括:进风口1022,设于通风管道102的侧壁上且贯穿侧壁;上导流板104,设于进风口1022靠近通风管道102的封闭端1024且上导流板104与通风管道102固定连接,上导流板104用于限制由进风口1022进入通风管道102的流体的流向;下导流板106,设于进风口1022靠近风机20的一侧且下导流板106与通风管道102固定连接;下导流板106包括:导流基板1062,与通风管道102固定连接,用于限制流体的流向;凹凸结构1068,固设于导流基板1062远离进风口1022的一侧,其中,下导流板106通过凹凸结构1068调整流经下导流板106远离进风口1022的一侧的流体的流向。
图1示出了本实施例的风道结构10的剖面图,图2示出了图1中风道结构10进风口1022部位的局部放大图。
如图1和图2所示,本实施例中,流体通过通风管道102进入风机20内部,由于进风口1022设于的侧壁上,因此,流体通过进风口1022后流动方向要改变90度,在流体经由进风口1022进入通风管道102的过程中,上导流板104通过上导流板104靠近下导流板106一侧的表面限制从进风口1022靠近封闭端1024一侧进入通风管道102的流体的流向,引导流体向通风管道102与风机20连接的一端流动,减少进风口1022近封闭端1024一侧产生局部涡流的可能性;同时下导流板106通过导流基板1062靠近上导流板104一侧的表面限制从进风口1022靠近风机20一侧进入通风管道102的流体的流向,减少流体的流动方向变化过大的可能性,从而减少进风口1022靠近风机20一侧产生局部涡流的可能性,此时,上导流板104和导流基板1062的共同作用,减少进风口1022周围产生局部涡流的可能性,一方面能够减少局部涡流产生的气动阻力,进而减少进风口1022周围的气动阻力损失,增加通风管道102的气动性能,另一方面,通过减少局部涡流,减少了涡流产生的噪声,使通风管道102在工作时更加安静,也一定程度上减少了因噪声产生的振动,增加通风管道102的可靠性。同时,在导流基板1062远离进风口1022一侧的凹凸结构1068能够对流经下导流板106远离进风口1022的一侧的流体的流动方向进行调整,使流体的流速分布更加均匀,减少通风管道102中局部区域压力突变的可能性,从而减少流体的气动噪声。
实施例2:
在实施例1的基础上,凹凸结构1068包括:基板1070,与导流基板1062固定连接,基板1070包括:多个凹槽1072,凹槽1072设于基板1070远离导流基板1062的一侧且贯穿基板1070,凹槽1072包括:第一侧面1074,第一侧面1074的一端位于基板1070远离导流基板1062的一侧;第二侧面1076,第二侧面1076的一端位于基板1070远离导流基板1062的一侧;底面1078,第一侧面1074与第二侧面1076通过底面1078连接,其中,底面1078为平面。
本实施例中,凹凸结构1068通过基板1070和基板1070上的多个凹槽 1072实现对流经下导流板106远离进风口1022的一侧的流体的流动方向进行调整,从而减少气动噪声,其中,凹槽1072通过第一侧面1074、第二侧面1076和底面1078对流体流动方向进行调整,其中,底面1078为平面,可以减少流体经过时的阻力,使凹凸结构1068不仅能对流经下导流板106远离进风口1022的一侧的流体的流动方向进行调整,还能够减少流体的流动阻力损失。
实施例3:
在实施例2的基础上,底面1078包括两个平面。
本实施例中,底面1078包括两个平面,通过调整两个平面的角度可以调整底面1078对流体的调节作用,从而可以实现根据不同的工况对两个平面之间的夹角进行调整,增加风道结构10的适用性。
实施例4:
在实施例2的基础上,凹槽1072均匀分布且相邻的凹槽1072在基板1070远离导流基板1062的一侧相交。
本实施例中,凹槽1072在基板1070远离导流基板1062的一侧均匀分布且相交,通过凹凸结构1068对流体的调节作用,使流体的流速分布更加均匀,减少通风管道102中局部区域压力突变的可能性,从而减少流体的气动噪声。
实施例5:
在实施例4的基础上,第一侧面1074与基板1070远离上导流板104的第一面的相交线在进风口1022与侧壁相交面上的第一投影线与第二侧面1076与第一面的相交线在进风口1022与侧壁相交面上的第二投影线的夹角的角度为5°,且第一投影线与第二投影线长度不等。
本实施例中,对应于第一侧面1074的第一投影线与对应于第二面的第二投影线的夹角的角度为5°,对应于该角度值,凹槽1072能够通过对流经下导流板106远离进风口1022的一侧流体的流动方向的调整,使流体的流速分布更加均匀,减少通风管道102中局部区域压力突变的可能性,从而减少流体的气动噪声。
实施例6:
在实施例5的基础上,第一投影线和第二投影线的夹角为175°,上导流 板104包括:上连接部1042,与通风管道102固定连接;上导流部1044,与上连接部1042固定连接,用于限制由进风口1022进入通风管道102的流体的流向,其中,上导流板104通过上连接部1042调整流经上导流板104靠近开口一侧的流体的流向,上导流部1044靠近下导流板106的侧面包括两个平面。
本实施例中,第一投影线和第二投影线的夹角为175°,对应于该角度值,凹槽1072能够铜鼓对流经下导流板106远离进风口1022的一侧流体的流动方向的调整,使流体的流速分布更加均匀,减少通风管道102中局部区域压力突变的可能性,从而减少流体的气动噪声。同时,上导流板104一方面通过上导流部1044限制从进风口1022靠近封闭端1024一侧进入通风管道102的流体的流向,另一方面通过上连接部1042调整流经上导流板104靠近开口一侧的流体的流向,不仅能对通风管道102内的流体进行调整,还能对进风口1022外的流体的流向进行调整,从而改善进风口1022外流体的分布,便于提高通风管道102的吸气性能。
实施例7:
在上述任一实施例的基础上,导流基板1062包括:下连接部1064,与通风管道102固定连接;下导流部1066,与下连接部1064以及凹凸结构1068固定连接,用于限制由进风口1022进入通风管道102的流体的流向,其中,导流基板1062通过下连接部1064调整流经导流基板1062靠近开口一侧的流体的流向,下导流部1066靠近上导流板104的侧面包括三个平面。
本实施例中,导流基板1062一方面通过下导流部1066限制从进风口1022靠近封闭端1024一侧进入通风管道102的流体的流向,另一方面通过下连接部1064调整流经下导流板106靠近开口一侧的流体的流向,不仅能对通风管道102内的流体进行调整,还能对进风口1022外的流体的流向进行调整,从而改善进风口1022外流体的分布,便于提高通风管道102的吸气性能。
实施例8:
本实施例提出了一种风道结构10,用于风机20,包括:通风管道102,通风管道102的一端与风机20固定连接且与风机20连通,通风管道102的另一端封闭;通风管道102包括:进风口1022,设于通风管道102的侧壁上 且贯穿侧壁;上导流板104,设于进风口1022靠近通风管道102的封闭端1024且上导流板104与通风管道102固定连接,上导流板104包括:上连接部1042,与通风管道102固定连接;上导流部1044,与上连接部1042固定连接,用于限制由进风口1022进入通风管道102的流体的流向,其中,上导流板104通过上连接部1042调整流经上导流板104靠近开口一侧的流体的流向,上导流部1044靠近下导流板106的侧面为曲面;下导流板106,设于进风口1022靠近风机20的一侧且下导流板106与通风管道102固定连接;下导流板106包括:导流基板1062,与通风管道102固定连接,用于限制流体的流向,导流基板1062包括:下连接部1064,与通风管道102固定连接;下导流部1066,与下连接部1064以及凹凸结构1068固定连接,用于限制由进风口1022进入通风管道102的流体的流向,其中,导流基板1062通过下连接部1064调整流经导流基板1062靠近开口一侧的流体的流向,下导流部1066靠近上导流板104的侧面为曲面。凹凸结构1068,固设于导流基板1062远离进风口1022的一侧,下导流板106通过凹凸结构1068调整流经下导流板106远离进风口1022的一侧的流体的流向。凹凸结构1068包括:基板1070,与导流基板1062固定连接,基板1070包括:多个凹槽1072,凹槽1072设于基板1070远离导流基板1062的一侧且贯穿基板1070,凹槽1072均匀分布且相邻的凹槽1072在基板1070远离导流基板1062的一侧相交,凹槽1072包括:第一侧面1074,第一侧面1074的一端位于基板1070远离导流基板1062的一侧;第二侧面1076,第二侧面1076的一端位于基板1070远离导流基板1062的一侧;底面1078,第一侧面1074与第二侧面1076通过底面1078连接且底面1078为曲面,第一侧面1074与基板1070远离上导流板104的第一面的相交线在进风口1022与侧壁相交面上的第一投影线与第二侧面1076与第一面的相交线在进风口1022与侧壁相交面上的第二投影线的夹角的角度为120°,且第一投影线与第二投影线长度相等,其中,底面1078为曲面,上导流板104和导流基板1062厚度均匀。
图3示出了本实施例的结构示意图;图4示出了图3中风道结构10下导流板106部位的局部放大图;图5示出了本实施例的结构示意图;图6示出了图5中风道结构10下导流板106部位的局部放大图;图7示出了本实施例 的凹凸结构1068的侧视图。
如图3至图7所示,本实施例中,体通过通风管道102进入风机20内部,由于进风口1022设于通风管道102的侧壁上,因此,流体通过进风口1022后流动方向要改变90度,在流体经由进风口1022进入通风管道102的过程中,上导流板104通过上导流部1044限制从进风口1022靠近封闭端1024一侧进入通风管道102的流体的流向,引导流体向通风管道102与风机20连接的一端流动,减少进风口1022近封闭端1024一侧产生局部涡流的可能性,同时,上导流板104通过上连接部1042调整流经上导流板104靠近开口一侧的流体的流向,不仅能对通风管道102内的流体进行调整,还能对进风口1022外的流体的流向进行调整,从而改善进风口1022外流体的分布,便于提高通风管道102的吸气性能。与此同时,下导流板106通过下导流部1066限制从进风口1022靠近封闭端1024一侧进入通风管道102的流体的流向,减少流体的流动方向变化过大的可能性,从而减少进风口1022靠近风机20一侧产生局部涡流的可能性,此时,上导流板104和导流基板1062的共同作用,减少进风口1022周围产生局部涡流的可能性;上导流部1044一侧与开口固定连接,一侧与通风管道102的内壁紧密贴合,从而能够防止流体在与通风管道102的内壁接触之后向封闭端1024流动导致局部涡流产生的情况发生的可能性,进而减少由于局部涡流产生的噪声以及气动阻力损失。同时,下导流板106通过下连接部1064调整流经下导流板106靠近开口一侧的流体的流向,不仅能对通风管道102内的流体进行调整,还能对进风口1022外的流体的流向进行调整,从而改善进风口1022外流体的分布,便于提高通风管道102的吸气性能。通过厚度均匀的上导流板104和导流基板1062的共同作用,减少进风口1022周围产生局部涡流的可能性,一方面能够减少局部涡流产生的气动阻力,进而减少进风口1022周围的气动阻力损失,增加通风管道102的气动性能,另一方面,通过减少局部涡流,减少了涡流产生的噪声,使通风管道102在工作时更加安静,也一定程度上减少了因噪声产生的振动,增加通风管道102的可靠性。下导流板106可以阻隔一部分通风管道102内来自于风机20的噪声,从而减少传播到通风管道102外的风机20的噪声,使风机20工作时更加安静。设于导流基板1062远离进风口1022一侧的凹凸 结构1068,通过基板1070和基板1070上的多个凹槽1072实现对流经下导流板106远离进风口1022的一侧的流体的流动方向进行调整,从而减少气动噪声,其中,凹槽1072通过第一侧面1074、第二侧面1076和底面1078对流体流动方向进行调整,其中,底面1078可以为一个曲面,底面1078为曲面可以在对流经凹槽1072的流体进行调节的同时,减少底面1078的流体流动阻力,即减少流体流经凹槽1072的动力损失。对应于第一侧面1074的第一投影线与对应于第二面的第二投影线的夹角的角度为120°,对应于该角度值,凹槽1072能够通过对流经下导流板106远离进风口1022的一侧流体的流动方向的调整,使流体的流速分布更加均匀,减少通风管道102中局部区域压力突变的可能性,从而减少流体的气动噪声。同时第一投影线和第二投影线相等,使凹槽1072均匀分布的同时大小均相等,能够使流体的流速分布更加均匀,减少通风管道102中局部区域压力突变的可能性,从而减少流体的气动噪声。
本实施例中,通过上导流板104和下导流板106对同进风口1022进入通风管道102的流体的流向进行调整,进而减少局部涡流产生的可能性,既能减少流体的气动阻力损失又能减弱局部涡流产生的噪声。凹凸结构1068通过基板1070和凹槽1072对流体的调节使流体分布更加均匀,减弱流体的气动噪声。
实施例9:
本实施例提供了一种风机20,包括:壳体202,壳体202包括:出风口2022,出风口2022贯穿壳体202;上述任一实施例中的风道结构10,与壳体202固定连接且与壳体202内部连通;导流装置,固设于壳体202内部,导流装置用于驱动流体通过风道结构10进入壳体202内部并从出风口2022排出。
本实施例中,风机20通过采用上述任一实施例中的通风管道102,在风机20工作时,导流装置驱动流体通过风道结构10进入壳体202内部并从出风口2022排出,流体通过通风管道102进入风机20内部的过程中,通过对流体流向的调节,减少局部涡并减弱气动噪声,通过减少局部涡流能够减少涡流产生的噪声以及气动阻力损失,使风机20工作时更加安静,同时减少风 机20不必要的耗能。
实施例10:
在实施例9的基础上,壳体202还包括:辅助风道2024,设有壳体202靠近风道结构10的一侧且与风道结构10固定连接,辅助风道2024与风道结构10连通,其中,辅助风道2024流体流通区域的横截面积大于风道结构10流体流通区域的横街面积。
图8示出了本实施例的风机20的结构示意图;图9示出了本实施例的风机20的部分结构的剖面图。
如图8和图9所示,本实施例中,流体从进风口1022吸入后流经通风管道102和辅助风道2024,最终进入壳体202中,由于辅助风道2024流体流通区域的横截面积大于通风管道102流体流通区域的横截面积,使流体在从通风管道102进入辅助风道2024时,体积增加,流体压力减小,便于流体快速从通风管道102进入辅助风道2024中,进而便于提高风机20的吸气性能。
实施例11:
本实施例提供了一种抽油烟机,包括:上述任一实施例中的风机20。
本实施例中,通过采用上述任一项实施例的风机20,在抽油烟机工作时,风机20引导流体进入抽油烟机中,风机20工作时,能够减少流体进入风机20中时的涡流以及气动噪声,减少涡流既能够减少涡流产生的噪声,又能够减少气动阻力损失,使抽油烟机工作时更加静音节能。
以上结合附图详细说明了本发明的技术方案,通过本发明的技术方案,通过上导流板和下导流板的导流基板对进风口出流体的流动方向进行限制,减少局部涡流产生的可能性,一方面减少局部涡流产生的噪声,另一方面减少气动阻力损失;同时,下导流板通过凹凸结构对流经下导流板远离进风口一侧的流体的流向进行调整,使流体的流速分布更加均匀,减少通风管道中局部区域压力突变的可能性,从而减少流体的气动噪声。
在本发明中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连” 可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本发明的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种风道结构,用于风机,其特征在于,包括:
    通风管道,所述通风管道的一端与所述风机固定连接且与所述风机连通,所述通风管道的另一端封闭;
    所述通风管道包括:
    进风口,设于所述通风管道的侧壁上且贯穿所述侧壁;
    上导流板,设于所述进风口靠近所述通风管道的封闭端且所述上导流板与所述通风管道固定连接,所述上导流板用于限制由所述进风口进入所述通风管道的流体的流向;
    下导流板,设于所述进风口靠近所述风机的一侧且所述下导流板与所述通风管道固定连接;
    所述下导流板包括:
    导流基板,与所述通风管道固定连接,用于限制所述流体的流向;
    凹凸结构,固设于所述导流基板远离所述进风口的一侧,
    其中,所述下导流板通过所述凹凸结构调整流经所述下导流板远离所述进风口的一侧的流体的流向。
  2. 根据权利要求1所述的风道结构,其特征在于,所述凹凸结构包括:
    基板,与所述导流基板固定连接,所述基板包括:
    多个凹槽,所述凹槽设于所述基板远离所述导流基板的一侧且贯穿所述基板,所述凹槽包括:
    第一侧面,所述第一侧面的一端位于所述基板远离所述导流基板的一侧;
    第二侧面,所述第二侧面的一端位于所述基板远离所述导流基板的一侧;
    底面,所述第一侧面与所述第二侧面通过所述底面连接,
    其中,所述底面包括至少一个平面和/或至少一个曲面。
  3. 根据权利要求2所述的风道结构,其特征在于,至少两个相邻的 所述凹槽在所述基板远离所述导流基板的一侧相交。
  4. 根据权利要求2或3所述的风道结构,其特征在于,多个所述凹槽均匀分布。
  5. 根据权利要求2或3所述的风道结构,其特征在于,所述第一侧面与所述基板远离所述上导流板的第一面的相交线在所述进风口与所述侧壁相交面上的第一投影线与所述第二侧面与所述第一面的相交线在所述进风口与所述侧壁相交面上的第二投影线的夹角的角度范围为5°-180°。
  6. 根据权利要求5所述的风道结构,其特征在于,所述第一投影线与所述第二投影线长度相等。
  7. 根据权利要求5所述的风道结构,其特征在于,所述第一投影线与所述第二投影线长度不等。
  8. 根据权利要求5所述的风道结构,其特征在于,所述第一投影线与所述第二投影线长度的数值范围为1mm-100mm。
  9. 根据权利要求1所述的风道结构,其特征在于,所述上导流板包括:
    上连接部,与所述通风管道固定连接;
    上导流部,与所述上连接部固定连接,用于限制所述由所述进风口进入所述通风管道的流体的流向,
    其中,所述上导流板通过所述上连接部调整流经所述上导流板靠近所述开口一侧的流体的流向。
  10. 根据权利要求9所述的风道结构,其特征在于,所述上导流部远离所述上连接部的一侧与所述通风管道紧密贴合。
  11. 根据权利要求9所述的风道结构,其特征在于,所述上导流部靠近所述下导流板的侧面为曲面或包括至少一个平面。
  12. 根据权利要求1所述的风道结构,其特征在于,所述导流基板包括:
    下连接部,与所述通风管道固定连接;
    下导流部,与所述下连接部以及所述凹凸结构固定连接,用于限制所述由所述进风口进入所述通风管道的流体的流向,
    其中,所述导流基板通过所述下连接部调整流经所述导流基板靠近所述开口一侧的流体的流向。
  13. 根据权利要求12所述的风道结构,其特征在于,所述下导流部靠近所述上导流板的侧面为曲面或包括至少一个平面。
  14. 一种风机,其特征在于,包括:
    壳体,所述壳体包括:
    出风口,所述出风口贯穿所述壳体;
    如权利要求1至13中任一项所述的风道结构,与所述壳体固定连接且与所述壳体内部连通;
    导流装置,固设于所述壳体内部,所述导流装置用于驱动流体通过所述风道结构进入所述壳体内部并从所述出风口排出。
  15. 根据权利要求14所述的风机,其特征在于,所述壳体还包括:
    辅助风道,设有所述壳体靠近所述风道结构的一侧且与所述风道结构固定连接,所述辅助风道与所述风道结构连通,
    其中,所述辅助风道流体流通区域的横截面积大于所述风道结构流体流通区域的横街面积。
  16. 一种抽油烟机,其特征在于,包括如权利要求14或15所述的风机。
PCT/CN2018/099088 2017-12-20 2018-08-07 风道结构、风机和抽油烟机 WO2019119818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711383256.5A CN109945255A (zh) 2017-12-20 2017-12-20 风道结构、风机和抽油烟机
CN201711383256.5 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019119818A1 true WO2019119818A1 (zh) 2019-06-27

Family

ID=66993026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099088 WO2019119818A1 (zh) 2017-12-20 2018-08-07 风道结构、风机和抽油烟机

Country Status (2)

Country Link
CN (1) CN109945255A (zh)
WO (1) WO2019119818A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116479606B (zh) * 2023-05-24 2023-11-07 东华大学 一种定型机风道结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941398A (en) * 1981-06-03 1990-07-17 Bowles Fluidics Corporation Oscillating reed and method
US4945891A (en) * 1989-03-30 1990-08-07 General Electric Company Drive mechanism for retractable down draft vent
US5755214A (en) * 1996-11-12 1998-05-26 Ming-Jeong Lin Ventilator hood for a cooker
JPH10220858A (ja) * 1997-02-06 1998-08-21 Fujitsu General Ltd 空気調和機
JPH11153342A (ja) * 1997-11-25 1999-06-08 Daikin Ind Ltd 通風部の気流制御構造
CN202253784U (zh) * 2011-08-08 2012-05-30 魏川人 嵌入式集成环保灶
CN205191675U (zh) * 2015-10-14 2016-04-27 浙江亿田电器有限公司 一种具有导流功能的集成灶
CN205299672U (zh) * 2015-12-11 2016-06-08 浙江一佳厨卫科技有限公司 带有油烟过滤装置的集成灶

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338793A3 (en) * 2002-02-22 2010-09-01 Mitsubishi Heavy Industries, Ltd. Serrated wind turbine blade trailing edge
CN202361452U (zh) * 2011-12-08 2012-08-01 钱德进 一种新型上吸下排自卸式吸油烟机的集烟、导风装置
CN202885002U (zh) * 2012-11-13 2013-04-17 魏川人 嵌入式集成灶
CN105351995B (zh) * 2015-12-11 2017-12-15 浙江一佳厨卫科技有限公司 一种带有油烟过滤装置的集成灶

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941398A (en) * 1981-06-03 1990-07-17 Bowles Fluidics Corporation Oscillating reed and method
US4945891A (en) * 1989-03-30 1990-08-07 General Electric Company Drive mechanism for retractable down draft vent
US5755214A (en) * 1996-11-12 1998-05-26 Ming-Jeong Lin Ventilator hood for a cooker
JPH10220858A (ja) * 1997-02-06 1998-08-21 Fujitsu General Ltd 空気調和機
JPH11153342A (ja) * 1997-11-25 1999-06-08 Daikin Ind Ltd 通風部の気流制御構造
CN202253784U (zh) * 2011-08-08 2012-05-30 魏川人 嵌入式集成环保灶
CN205191675U (zh) * 2015-10-14 2016-04-27 浙江亿田电器有限公司 一种具有导流功能的集成灶
CN205299672U (zh) * 2015-12-11 2016-06-08 浙江一佳厨卫科技有限公司 带有油烟过滤装置的集成灶

Also Published As

Publication number Publication date
CN109945255A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
AU2018250394B2 (en) Ceiling-mounted air-conditioner indoor-unit system
JP3110194U (ja) 天井カセット形空調機の流路構造
CN105674399A (zh) 一种混合出风空调室内机
WO2022012055A1 (zh) 立式空调室内机
WO2023093881A1 (zh) 一种新风模块、空调室内机及空调器
WO2019119818A1 (zh) 风道结构、风机和抽油烟机
CN207420981U (zh) 降噪装置及烹饪器具
CN105020757B (zh) 一种可形成人造龙卷风的吸油烟机风机结构
CN218495109U (zh) 新风组件及新风空调
WO2023142932A1 (zh) 风道组件和具有其的空气调节设备
WO2023279817A1 (zh) 风机组件和空调器
CN207420973U (zh) 空调器、轴流风机及其风道
WO2019148994A1 (zh) 吸油烟机
CN210141214U (zh) 一种出风组件及空调器
WO2017049465A1 (zh) 一种分体壁挂式空调
CN208332476U (zh) 风道结构、出风装置和空调
WO2019148871A1 (zh) 空调室内挂机和具有其的空调器
CN101957026A (zh) 室外侧带有冷却水防溅结构的窗式空调
JP2014081147A (ja) 空気調和機の室外ユニット
CN214370859U (zh) 风口组件、出风组件和空调系统
CN217899960U (zh) 一种油烟机
CN220567363U (zh) 落地式空调室内机和空调器
CN113203111B (zh) 一种吸油烟机及其降噪控制方法
CN102865653A (zh) 一种移动空调的集风罩结构
CN216769586U (zh) 一种风道结构及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892111

Country of ref document: EP

Kind code of ref document: A1