WO2019119407A1 - 平衡车电机安全控制方法及装置 - Google Patents

平衡车电机安全控制方法及装置 Download PDF

Info

Publication number
WO2019119407A1
WO2019119407A1 PCT/CN2017/117959 CN2017117959W WO2019119407A1 WO 2019119407 A1 WO2019119407 A1 WO 2019119407A1 CN 2017117959 W CN2017117959 W CN 2017117959W WO 2019119407 A1 WO2019119407 A1 WO 2019119407A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
motor
threshold
speed
alarm
Prior art date
Application number
PCT/CN2017/117959
Other languages
English (en)
French (fr)
Inventor
李一鹏
Original Assignee
深圳天轮科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳天轮科技有限公司 filed Critical 深圳天轮科技有限公司
Priority to PCT/CN2017/117959 priority Critical patent/WO2019119407A1/zh
Publication of WO2019119407A1 publication Critical patent/WO2019119407A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the technical field of balance vehicles, in particular to a safety control method for a balance motor.
  • the two-wheel balance car and the unicycle balance car are used as the means of transportation.
  • the gyroscope is used to detect the change of the attitude of the car body, and the control system is used to accurately drive the motor to adjust in real time to ensure that the center of gravity of the car body is always within the controllable range. .
  • the balance car needs to reserve a certain amount of power through the safety control system to cope with various emergencies, such as rapid acceleration, upper steps, uphill, over-pitched roads or artificial motion disturbances. If the motor does not reserve enough power to increase the speed and torque in the event of an emergency, it is easy to cause the vehicle to lose balance due to insufficient motor power, and the user may fall into an accident.
  • the control system when the balance vehicle runs to a relatively fast speed, the control system must perform speed limit control to avoid excessive power or insufficient reserved power of the motor.
  • speed limit control depending on the speed to determine whether the motor reserves enough power, it cannot handle all situations. For example, when the load is heavy or when climbing a steep slope, the motor is under a heavy load, and at a low speed, a large driving current and power may have been generated, which is already close to the limit of the output power of the motor. .
  • the mechanism of speed limit protection by speed does not effectively protect the motor.
  • the current of the motor can also be current-limited to reserve enough power under high load and low speed operating conditions.
  • a safety control method for a balance motor the balance vehicle includes a motor, and the method includes:
  • the threshold steps include:
  • the safe working curve of the motor is obtained.
  • the actual operating state is within the safe operating state range defined by the safe working curve, it is determined that the residual torque is less than the torque threshold, and the remaining rotational speed is less than the rotational speed threshold. Otherwise, it is determined that the residual torque is less than the torque threshold, or the remaining speed is less than the speed threshold.
  • the threshold steps include:
  • the speed threshold and/or torque threshold are fixed values.
  • the magnitude of the torque threshold and/or the speed threshold is adjusted according to the set safety level.
  • the magnitude of the torque threshold and/or the speed threshold is adjusted according to the set security level, including:
  • the level update command is generated by the user operating an external smart mobile terminal or an interactive device of the balance vehicle itself.
  • the method further includes:
  • the method further includes:
  • the balance car performs an alarm action according to the alarm command.
  • the alarm action includes at least one of an audible alarm reminder, a visual alarm reminder, and a tactile alarm reminder.
  • the method further includes:
  • the alarm command is sent to the smart mobile terminal to cause the smart terminal to perform a reminder action.
  • the method further includes: automatically taking a speed limit measure according to the alarm command to limit the speed of the balance vehicle.
  • the method further includes:
  • the limit operating curve is adjusted to narrow the range of operational states of the motor defined by the limit operating curve.
  • the method further includes:
  • the set rated torque is reduced to obtain the corrected rated torque.
  • the method further includes:
  • a balance car motor safety control device performs a safety control method for a balance car motor, and the balance car includes a motor, and the device includes:
  • a speed sensor for detecting and obtaining the actual operating speed in the actual operating state of the motor.
  • a torque sensor for detecting and obtaining the actual operating torque in the actual operating state of the motor.
  • the storage module is configured to store data corresponding to the limit working curve of the motor when operating at maximum power.
  • the control module is configured to determine, according to the actual operating state and the limit working curve, whether the residual torque and the residual speed of the motor in the actual operating state are respectively less than the set torque threshold and the speed threshold.
  • the apparatus further includes:
  • a power detection module for detecting and obtaining the balance value of the balance vehicle.
  • the control module is further configured to adjust the limit working curve according to the degree of decrease of the electric quantity value to narrow the operable state range of the motor defined by the limit working curve.
  • the apparatus further includes at least one of an audible alarm module, a visual alarm module, and a haptic alarm module.
  • the audible alarm module is used to generate an alarm sound according to an alarm command.
  • the visual alarm module is used to generate an alarm light according to an alarm command.
  • the haptic alarm module is used to generate an alarm vibration according to an alarm command.
  • control module is operative to adjust the magnitude of the torque threshold and/or the speed threshold based on the set safety level.
  • the device further includes: a communication module, wherein the communication module is configured to receive an external level update command to update the set security level.
  • the above method and device can flexibly reserve a certain motor power reserve for different operating states by setting corresponding speed threshold and torque threshold for the remaining speed and residual torque, thereby improving the utilization rate of the motor.
  • Figure 1 is a schematic diagram of a conventional motor running speed curve and a speed limiting strategy
  • FIG. 2 is a flow chart of a safety control method for a balance motor of an embodiment
  • 3 is a schematic diagram showing the relationship between the running state of the motor and the limit working curve according to an embodiment
  • FIG. 4 is a schematic diagram showing a range of safe operating state range of a motor according to an embodiment
  • FIG. 5 is a flow chart of a method for adjusting a limit working curve of a balance motor according to an embodiment
  • FIG. 6 is a schematic diagram of a safe operating state range of a motor after considering a rated operating point parameter according to an embodiment
  • FIG. 7 is a flow chart of a method for introducing a rated torque protection principle according to an embodiment
  • Figure 8 is a flow chart of a method for adjusting the rated torque of an embodiment
  • FIG. 9 is a schematic diagram showing a range of safe operating states of a motor when a battery is low in an embodiment
  • Fig. 10 is a block diagram showing the module of the balance motor safety control device of an embodiment.
  • the method adopted is to determine whether the motor reserves a certain power through the control system, and react accordingly when the remaining power does not meet the set condition to ensure that the motor has sufficient residual power. Used to respond to unexpected situations.
  • the DC brushless motor is taken as an example to illustrate the safety control method of the balance motor in each embodiment. It can be understood that in other similar motors, this method can also be used to improve the motor utilization.
  • the ordinate is the motor speed n
  • the abscissa is the motor torque T or the drive current I.
  • the drive current is proportional to the motor torque, and the trend between the two is similar to the motor speed, so the abscissa can represent both the motor torque and the drive current.
  • the extreme operating curve 110 of the motor represents a series of extreme operating points (provided by the manufacturer of the motor) when the motor is operating at maximum power. Wherein, when the load approaches 0 (ie, the torque or current approaches 0), the speed at this time approaches the no-load speed n0. As the load increases, the torque and current output from the motor increase, and the speed decreases.
  • the limit working curve 110 decreases linearly (extended line as indicated by the dashed line in the figure), and finally intersects the abscissa, the rotational speed at the intersection is 0, and the torque and drive current are maximum.
  • the intersection of the limit working curve 110 and the abscissa is actually T0.
  • T0 is called the stall point
  • the corresponding torque is the stall torque.
  • the limited range of the above-mentioned limit working curve 110 and the abscissa and ordinate is the range of potential operating states that the motor can provide.
  • the speed limit measure commonly used in the balance car field is to set a speed threshold corresponding to the n-max horizontal line 113. When the running speed of the motor exceeds the speed threshold, the overspeed alarm is triggered.
  • the rated current value is generally set. The rated current corresponds to the Ir vertical line 115. When the driving current of the motor exceeds the rated current value, the over temperature alarm is triggered. Therefore, the range of potential operating states of the motor is further narrowed to the safe operating range by the n-max horizontal line 113 and the Ir vertical line 115 (see the shaded portion in the figure).
  • the following embodiment provides a safety control method for a balance motor, as shown in FIG. 2, the method includes:
  • Step S100 detecting and acquiring the actual running state of the motor.
  • Step S500 According to the actual running state and the corresponding limit working curve when the motor is running at the maximum power, determine whether the residual torque and the remaining speed of the motor in the actual running state are respectively smaller than the set torque threshold and the speed threshold.
  • Step S600 If the residual torque is less than the torque threshold, or the remaining speed is less than the speed threshold, an alarm command is generated and sent.
  • step S100 detecting and acquiring the actual operating state of the motor.
  • the actual operating conditions include the operating speed and torque of the motor.
  • the torque and speed of the motor during a certain period of time can be detected by a speed sensor and a torque sensor connected to the motor.
  • the torque sensor can be a current sensor.
  • the motor running current is proportional to the torque, so the motor running torque can be estimated by detecting the motor running current.
  • the speed sensor and the torque sensor can be sampled and operated hundreds of times per second during the test to measure the running speed and torque of the motor in real time.
  • the test can be closed under preset conditions to meet the needs of high-level players to maximize the potential of the motor.
  • the preset condition can be: the user opens the limit mode.
  • the invention is not limited thereto.
  • Step S500 According to the actual running state and the corresponding limit working curve when the motor is running at the maximum power, determine whether the residual torque and the remaining speed of the motor in the actual running state are respectively smaller than the set torque threshold and the speed threshold.
  • the limit operating points on the limit working curve indicate the limit states of the motor when operating at the maximum power, wherein the limit states include the limit speed and the limit. Torque. From the foregoing analysis, the motor can be operated at a certain operating point within the range of potential operating conditions, which is referred to as the operating operating point.
  • the residual torque ⁇ T of the operating operating point refers to a value obtained by bringing the operating torque and the corresponding limit torque into the torque residual function.
  • the corresponding limit torque is specifically the limit torque of the limit working point which is the same as the rotation speed of the working point on the limit working curve.
  • the remaining rotational speed ⁇ n of the operating operating point refers to the value obtained by bringing the operating rotational speed and the corresponding limit rotational speed into the residual function of the rotational speed.
  • the corresponding limit rotation speed is specifically the limit rotation speed of the limit working point which is the same as the torque of the working point on the limit working curve.
  • the residual function may be a ratio function, a difference function or a log ratio function or the like.
  • the motor runs at operating point A, the operating speed at point A is n A , the operating torque is T A , and the same limit operating point as the operating point A torque is A' point, A' point
  • the limit speed is n A'
  • the limit operating point is the same as the running speed of the operating point A
  • the limit torque of the point A is T A.
  • the motor should respond to sudden changes in the speed of the road surface, the user's misoperation and other sudden changes in the speed value and torque value are limited, through a large number of tests in the laboratory, to obtain a suitable residual torque threshold With the remaining speed threshold, you can cope with most of the unexpected situations encountered during daily driving.
  • the method for determining whether the residual torque and the remaining rotational speed of the motor in the actual operating state are respectively less than the set torque threshold and the rotational speed threshold are: according to the torque threshold, the rotational speed threshold, and the maximum power of the motor.
  • the corresponding limit working curve at runtime is obtained to obtain the safe working curve of the motor. If the actual running state is within the safe operating state range defined by the safe working curve, it is determined that the residual torque is less than the torque threshold, and the remaining speed is less than the speed threshold; otherwise, the remaining torque is determined to be less than the torque threshold, or the remaining speed is less than Speed threshold. As shown in FIG.
  • the residual function is set as a difference function, and both the speed threshold and the torque threshold are constant values, so that a safe working curve 410 and a safe operating state range 420 are available. If the operating operating point A (not shown) is located in the safe operating state range 420, it is determined that the residual torque is less than the torque threshold, and the remaining speed is less than the speed threshold; otherwise, determining that the residual torque is less than the torque threshold, or The remaining speed is less than the speed threshold.
  • the method for determining whether the residual torque and the remaining rotational speed of the motor in the actual operating state are respectively less than the set torque threshold and the rotational speed threshold is: corresponding to the actual operating state and the motor operating at the maximum power.
  • the limit working curve directly obtains the residual torque and residual speed of the motor under actual operating conditions. It is judged whether the residual torque and the remaining rotational speed in the actual running state are respectively smaller than the set torque threshold and the rotational speed threshold.
  • the speed threshold or the torque threshold may be a fixed value, or the value of the speed threshold or the speed threshold may be adjusted according to the set safety level.
  • the security level is divided into five levels, corresponding to five speed thresholds and torque thresholds respectively.
  • the speed threshold and the torque threshold are adjusted to the maximum of the five speed thresholds and The maximum of the five torque thresholds; the adjusted speed threshold and the torque threshold are the minimum of the five speed thresholds and the minimum of the five torque thresholds when the first level is at the lowest safety level.
  • an external level update command may also be received to update the set security level.
  • the level update command can be generated by the user operating an external smart mobile terminal or an interactive device of the balance car itself.
  • the residual torque value and the residual speed value may often exceed the set threshold. It can be seen that the purpose of the reserved torque threshold and the speed threshold is not Avoid the residual torque value and the residual speed value to exceed the threshold. Instead, limit the motor to a safe operating state to reserve a certain residual torque and residual speed before encountering an emergency condition, so as to avoid an emergency.
  • the torque threshold and speed threshold must be increased.
  • the torque threshold is increased.
  • the directly obtained remaining rotational speed is less than the set second adjustment threshold, and if so, the rotational speed threshold is increased.
  • mountain roads are more rugged.
  • the residual torque or residual speed is likely to approach or exceed the limit value, which is likely to cause the user to fall, indicating the currently set speed threshold.
  • the torque threshold is not enough to ensure driving safety, and the road segment that the user travels every day has a certain repeatability.
  • the residual torque can be too close to the limit value (ie, the residual torque is less than the set first).
  • the adjustment process of the remaining speed is the same. Therefore, the torque threshold and the speed threshold can be flexibly adjusted according to the actual road surface conditions.
  • Step S600 If the residual torque is less than the torque threshold, or the remaining speed is less than the speed threshold, an alarm command is generated and sent.
  • the balance vehicle can be caused to perform an alarm action based on the alarm command.
  • the alarm action includes at least one of an audible alarm reminder, a visual alarm reminder, and a tactile alarm reminder.
  • the audible alarm can be a voice prompt or an alert ring to alert the user that the user is currently operating in a dangerous state.
  • the visual alarm reminder can be a flashing light that emits a different color.
  • the tactile alarm reminder can be that the car body emits vibration, and the car body instantaneously accelerates.
  • an alert command can be sent to the smart mobile terminal to cause the smart terminal to perform a reminder action.
  • the smart terminal can be a smart phone carried by the user, etc. When the user is in a dangerous state, the smart phone receives an alarm message to remind the user.
  • speed limiting measures can be automatically taken based on the alarm command to limit the speed of the balance vehicle.
  • the speed limit measure can be to limit the user's movements, the vehicle body to lean back, etc., thereby limiting the user to further increase the motor running torque or the rotational speed by leaning forward.
  • the balance motor safety control method further includes:
  • Step S201 detecting and obtaining the electric quantity value of the balance car.
  • Step S202 When the electric quantity value decreases, the limit working curve is adjusted to narrow the operable state range of the motor defined by the limit working curve.
  • the limit operating curve 110 is adjusted to the second limit operating curve 610.
  • the origin -n1-T1 is one of the safe operating state ranges in which the motor can work for a long time.
  • the balance motor safety control method further includes:
  • Step S301 determining whether the actual running torque corresponding to the actual running state is greater than the set rated torque.
  • Step S302 If it is greater than the rated torque, jump to the step of generating and transmitting an alarm command.
  • the above steps further limit the rated torque Tr in consideration of the rated operating parameters of the motor, thereby limiting the motor to an area that can be safely operated for a long period of time, increasing the life and safety of the motor.
  • vertical line 630 represents the rated torque Tr.
  • the origin - Tr-E-n1 is one of the safe operating state ranges in which the motor can operate for a long period of time.
  • the balance motor safety control method further includes:
  • Step S401 Detect and acquire the electric quantity value of the balance car.
  • Step S402 When the electric quantity value decreases, the set rated torque is decreased to obtain the corrected rated torque.
  • Step S403 Detect and determine whether the actual running torque corresponding to the actual running state is greater than the corrected rated torque.
  • Step S404 If it is greater than the corrected rated torque, jump to the step of generating and transmitting an alarm command.
  • the battery that supplies the motor will have a limited voltage and current output when it is low. Specifically, when the battery is near the depleted low state, the output voltage will decrease to some extent due to the increase of the internal resistance, and the available current will decrease. As shown in Figure 9, the voltage drop further reduces the safe operating range defined by the second limit operating curve 610 of the motor, but the slope may remain the same, the maximum speed is further reduced to n2, and the rated torque is reduced from Tr to T2. Then the area enclosed by the origin -T2-F-n2 is one of the safe operating state ranges of the motor when the battery is low.
  • the above several methods for limiting the safe working state range of the motor may be different when different motors are different batteries, and the safe working area of the motor is determined by the minimum range that the two limits are common to.
  • a balance motor safety control device As shown in Figure 10, it includes:
  • the rotational speed sensor 810 is configured to detect and acquire the actual operating rotational speed in the actual operating state of the motor.
  • a torque sensor 811 is used to detect and acquire the actual operating torque in the actual operating state of the motor.
  • the storage module 813 is configured to store data corresponding to the limit working curve when the motor is operated at the maximum power.
  • the control module 820 is configured to: determine, according to the actual operating state and the limit working curve, whether the residual torque and the remaining rotational speed of the motor in the actual operating state are respectively less than a set torque threshold and a speed threshold.
  • the torque sensor can be a current sensor.
  • the motor running current is proportional to the torque, so the motor running torque can be estimated by detecting the motor running current.
  • the apparatus further comprises:
  • the power detecting module 815 is configured to detect and obtain a power value of the balance car.
  • the control module 820 is further configured to adjust the limit working curve according to the degree of decrease of the electric quantity value to narrow the operable state range of the motor defined by the limit working curve.
  • the apparatus further comprises:
  • At least one of an audible alarm module 816, a visual alarm module 817, and a haptic alarm module 818 is provided.
  • the audible alarm module 816 is configured to generate an alarm sound according to an alarm command.
  • the visual alarm module 817 is configured to generate an alarm light according to the alarm command.
  • the haptic alarm module 818 is for generating an alarm vibration according to an alarm command.
  • control module 820 is configured to adjust the magnitude of the torque threshold and/or the speed threshold based on the set safety level.
  • the device further includes a communication module 819 for receiving an external level update command to update the set security level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种平衡车电机安全控制方法,平衡车包括电机,方法包括:检测并获取电机的实际运行状态。根据实际运行状态、电机在最大功率下运行时对应的极限工作曲线,判断电机在实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值。若剩余转矩小于转矩阈值,或,剩余转速小于转速阈值,生成并发送报警指令。

Description

平衡车电机安全控制方法及装置 技术领域
本发明涉及平衡车技术领域,特别是涉及平衡车电机的安全控制方法。
背景技术
双轮平衡车和独轮平衡车作为代步工具,都利用陀螺仪检测车体姿态的变化,并利用控制系统精确地驱动电机实时进行相应的调整以确保车体的重心始终在可控的范围内。相较于汽车等代步工具,平衡车需通过安全控制系统预留一定的功率以应对各种突发状况,比如急加速,上台阶,上坡,过坑洼路面或人为的动作扰动等。若出现突发状况时电机没有预留足够的功率以提高转速和转矩,则容易导致因电机动力不足车体失去平衡,进而发生用户摔倒的意外事故。
传统技术中,当平衡车运行到较快速度时,控制系统必须进行限速控制,以避免速度过高导致电机预留的功率不足或无预留功率。然而,依靠速度来判断电机是否预留足够的功率的方式,并不能应对所有情况。例如,当载重很重或者在爬陡坡时,电机处于很重的负载之下,可能在并不高的速度的时候,就已经产生很大的驱动电流和功率,早已接近电机可输出功率的极限。此时依靠速度进行限速保护的机制并不能对电机进行有效的保护。针对这种情况,还可对电机的电流进行限流控制,从而在大负载、低速的运行条件下预留足够的功率。
但上述做法存在的问题是,为保证行车安全性需预留大量的功率,导致电机的利用率不高。
发明内容
基于此,有必要针对电机利用率不高的问题,提供一种在保证行车安全的前提下,提高电机利用率的平衡车电机安全控制方法。
此外,还提供一种平衡车电机安全控制装置。
一种平衡车电机安全控制方法,平衡车包括电机,方法包括:
检测并获取电机的实际运行状态。
根据实际运行状态、电机在最大功率下运行时对应的极限工作曲线,判断电机在实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值。
若剩余转矩小于转矩阈值,或,剩余转速小于转速阈值,生成并发送报警指令。
在其中一个实施例中,根据实际运行状态、电机在最大功率下运行时对应的极限工作曲线,判断电机在实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值的步骤,包括:
根据转矩阈值、转速阈值,以及电机在最大功率下运行时对应的极限工作曲线,获取电机的安全工作曲线。
若实际运行状态位于安全工作曲线限定的安全运行状态范围内,则判定剩余转矩小于转矩阈值,且,剩余转速小于转速阈值。否则,判定剩余转矩小于转矩阈值,或,剩余转速小于转速阈值。
在其中一个实施例中,根据实际运行状态、电机在最大功率下运行时对应的极限工作曲线,判断电机在实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值的步骤,包括:
根据实际运行状态、电机在最大功率下运行时对应的极限工作曲线,直接获取电机在实际运行状态下的剩余转矩和剩余转速。
判断实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值。
在其中一个实施例中,转速阈值和/或转矩阈值为定值。或
根据设定的安全等级调节转矩阈值和/或转速阈值的数值大小。
在其中一个实施例中,根据设定的安全等级调节转矩阈值和/或转速阈值的数值大小,包括:
接收外界的等级更新指令,以更新设定的安全等级。
在其中一个实施例中,等级更新指令通过用户操作外界智能移动终端或平衡车自身的交互装置生成。
在其中一个实施例中,还包括:
判断直接获取的剩余转矩是否小于设定的第一调节阈值,若是则调高转矩阈值;或
判断直接获取的剩余转速是否小于设定的第二调节阈值,若是则调高转速阈值。
在其中一个实施例中,还包括:
根据报警指令使平衡车执行报警动作。报警动作包括声音报警提醒、视觉报警提醒、触觉报警提醒中的至少一种。
在其中一个实施例中,还包括:
将报警指令发送至智能移动终端以使智能终端执行提醒动作。
在其中一个实施例中,还包括:根据报警指令自动采取限速措施以限制平衡车的速度。
在其中一个实施例中,还包括:
检测并获取平衡车的电量值。
当电量值降低时,调节极限工作曲线以缩小极限工作曲线限定的电机的可运行状态范围。
在其中一个实施例中,还包括:
检测并获取平衡车的电量值。
当电量值降低时,减小设定的额定转矩以获得修正额定转矩。
检测并判断实际运行状态对应的实际运行转矩是否大于修正额定转矩。
若大于修正额定转矩,跳转至生成并发送报警指令的步骤。
在其中一个实施例中,还包括:
一种平衡车电机安全控制装置,执行平衡车电机安全控制方法,平衡车包括电机,装置包括:
转速传感器,用于检测并获取电机的实际运行状态中的实际运行转速。
转矩传感器,用于检测并获取电机的实际运行状态中的实际运行转矩。
存储模块,用于存储电机在最大功率下运行时对应的极限工作曲线对应的数据。
控制模块,用于根据实际运行状态、极限工作曲线,判断电机在实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值。
若剩余转矩小于转矩阈值,或,剩余转速小于转速阈值,生成并发送报警指令。
在其中一个实施例中,装置还包括:
电量检测模块,用于检测并获取平衡车的电量值。
控制模块还用于根据电量值的减小程度,调节极限工作曲线以缩小极限工作曲线限定的电机的可运行状态范围。
在其中一个实施例中,装置还包括:声音报警模块、视觉报警模块、触觉报警模块中的至少一种。
声音报警模块用于根据报警指令产生报警声音。
视觉报警模块用于根据报警指令产生报警灯光。
触觉报警模块用于根据报警指令产生报警振动。
在其中一个实施例中,控制模块用于根据设定的安全等级调节转矩阈值和/或转速阈值的数值大小。装置还包括:通讯模块,通讯模块用于接收外界的等级更新指令以更新设定的安全等级。
上述方法及装置,通过为剩余转速和剩余转矩设置对应的转速阈值和转矩阈值,从而针对不同运行状态,灵活预留了一定的电机功率储备,提高了电机的利用率。
附图说明
图1为常规电机运转速度曲线以及限速策略示意图;
图2为一实施例的平衡车电机安全控制方法流程图;
图3为一实施例的电机运行状态与极限工作曲线关系示意图;
图4为一实施例的电机安全运行状态范围限定示意图;
图5为一实施例的平衡电机极限工作曲线调整方法流程图;
图6为一实施例的考虑额定工作点参数后的电机安全运行状态范围示意图;
图7为一实施例的引入额定转矩保护原理的方法流程图;
图8为一实施例的额定转矩调整的方法流程图;
图9为一实施例的电池低电量时电机安全运行状态范围示意图;
图10为一实施例的平衡车电机安全控制装置的模块简图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的 组合。
在进行平衡车电机安全控制时,采用的方法是通过控制系统,判断电机是否预留一定的功率,并在剩余功率不满足设定条件时做出相应的反应,以保证电机具有足够的剩余功率用于应对突发状况。
以下以直流无刷电机为例说明各实施例中平衡车电机的安全控制方法。可以理解,在其他类似的电机中,也可以采用该方法提高电机利用率。
如图1所示,图中纵坐标为电机转速n,横坐标为电机转矩T或者驱动电流I。驱动电流与电机转矩成正比,二者与电机转速之间的变化趋势相似,因此横坐标既可表示电机转矩也可表示驱动电流。电机的极限工作曲线110表示电机在最大功率下运行时的一系列极限工作点(由电机的制造商来提供)。其中,当负载趋近0时(即转矩或电流趋近于0时),此时的转速趋近空载转速n0。随着负载的增大,电机输出的转矩及电流随之增大,转速则降低。在理想条件下,极限工作曲线110呈直线趋势下降(如图中虚线所示的延长线),并最终与横坐标相交,交点处转速为0,转矩和驱动电流为最大值。而真实电机中,由于内部磁饱和现象的存在,极限工作曲线110与横坐标的交点实际为T0,此时,T0称为堵转点,对应的转矩为堵转转矩。上述极限工作曲线110与横坐标、纵坐标包围的有限范围即为电机可提供的潜在运行状态范围。
平衡车领域常用的限速措施,是通过设置一个转速阈值,该转速阈值对应n-max横线113,当电机的运行转速超过转速阈值时,就触发超速警报。此外,为了避免电机长时间运行在高电流状态烧坏电机,一般还设置有额定电流值,该额定电流对应Ir竖线115,当电机的驱动电流超过额定电流值时,就触发超温报警。因此,电机的潜在运行状态范围进一步通过n-max横线113、Ir竖线115缩小到安全运行状态范围(见图中斜线阴影部分)。但从图中可看出,电机运行在右上角的范围内时,电机接近了极限工作状态,无剩余的转速转矩可输出。此时若遭遇突发状况,电机无足够的剩余功率,易发生危险。为避免该情况,一般采用简单降低n-max值和Ir值的方式,使电机运行在更 小的安全运行状态内,但该方式直接导致了电机利用率大幅降低。
以下实施例提供一种平衡车电机安全控制方法,如图2所示,该方法包括:
步骤S100:检测并获取电机的实际运行状态。
步骤S500:根据实际运行状态、电机在最大功率下运行时对应的极限工作曲线,判断电机在实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值。
步骤S600:若剩余转矩小于转矩阈值,或,剩余转速小于转速阈值,生成并发送报警指令。
其中,步骤S100:检测并获取电机的实际运行状态。
实际运行状态包括电机的运行转速和转矩。可以通过与电机连接的转速传感器和转矩传感器检测电机在某一时间段内的转矩和转速。其中,转矩传感器可以是电流传感器。理论上,电机运转电流与转矩成正比,因此可通过检测电机运转电流以推算电机运行转矩。转速传感器和转矩传感器在进行检测时可以每秒采样运算上百次,以实时测量电机的运行转速和转矩。鉴于用户需求不同,检测可以在预设条件下关闭,以适应高水平玩家欲发挥电机最大潜力的需求,预设条件可以是:用户开启极限模式。但本发明不限于此。
步骤S500:根据实际运行状态、电机在最大功率下运行时对应的极限工作曲线,判断电机在实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值。
在横坐标为转矩T或电流I,纵坐标为转速n的坐标系内,极限工作曲线上各极限工作点表示电机在最大功率下运行时各极限状态,其中,极限状态包括极限转速和极限转矩。由前述分析可得,电机可运行在潜在运行状态范围内某一工作点上,该工作点称为运行工作点。
该运行工作点的剩余转矩ΔT,指,将运行转矩与对应的极限转矩带入转矩剩余函数中求得的数值。其中,对应的极限转矩具体是,极限工作曲线上,与该工作点转速相同的极限工作点的极限转矩。
该运行工作点的剩余转速Δn,指,将运行转速与对应的极限转速带入转速剩余函数中求得的数值。其中,对应的极限转速具体是,极限工作曲线上,与该工作点转矩相同的极限工作点的极限转速。
其中,剩余函数可以是比值函数、差值函数或对数比函数等。
如图3所示,例如电机运行在工作点A,A点运行转速为n A,运行转矩为T A,与运行工作点A转矩相同的极限工作点为A’点,A’点的极限转速为n A’,与运行工作点A转速相同的极限工作点为A”,A”点的极限转矩为T A”。若剩余函数为比值函数,则Δn=n A′/n A;ΔT=T A″/T A。若剩余函数为差值函数,则Δn=n A′-n A;ΔT=T A″-T A。剩余转速和剩余转矩的数值越大,表明电机预留的转矩转速储备越多,电机应对突发状况时维持稳定的能力越强。
一般情况下,电机应对路面减速带颠簸、用户的误操作等突发状况而改变的转速值和转矩值都是有限的,可通过实验室中的大量测试,获得较为合适的剩余转矩阈值和剩余转速阈值,即可应对日常行驶时遇到的大部分突发状况。
在一个实施例中,判断电机在实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值的方法为:根据转矩阈值、转速阈值,以及电机在最大功率下运行时对应的极限工作曲线,获取电机的安全工作曲线。若实际运行状态位于安全工作曲线限定的安全运行状态范围内,则判定剩余转矩小于转矩阈值,且,剩余转速小于转速阈值;否则,判定剩余转矩小于转矩阈值,或,剩余转速小于转速阈值。如图4所示,剩余函数设为差值函数,转速阈值和转矩阈值皆为定值,从而可得安全工作曲线410,以及安全运行状态范围420。若运行工作点A(图中未示出)位于安全运行状态范围420内,则判定剩余转矩小于转矩阈值,且,剩余转速小于转速阈值;否则,判定剩余转矩小于转矩阈值,或,剩余转速小于转速阈值。
在一个实施例中,判断电机在实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值的方法为:根据实际运行状态、电机在最大功率下运行时对应的极限工作曲线,直接获取电机在实际运行状态下 的剩余转矩和剩余转速。判断实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值。
在一个实施例中,转速阈值或转矩阈值可以为定值,也可以根据设定的安全等级调节转速阈值或转速阈值的数值大小。例如,将安全等级分为五级,分别对应五个转速阈值和转矩阈值,在位于最高安全等级一一第五级时,转速阈值和转矩阈值调整为五个转速阈值中的最大值和五个转矩阈值中的最大值;在位于最低安全等级一一第一级时,调整转速阈值和转矩阈值为五个转速阈值中的最小值和五个转矩阈值中的最小值。
在一个实施例中,还可接收外界的等级更新指令,以更新设定的安全等级。该等级更新指令可通过用户操作外界智能移动终端或平衡车自身的交互装置生成。
平衡车运行在限定的安全运行状态范围内时,遭遇到突发状况,剩余转矩值和剩余转速值往往可能超过设定的阈值,由此可见,预留转矩阈值和转速阈值的目的不是避免剩余转矩值和剩余转速值突破阈值,而是尽可能使电机在遭遇突发状况前,限制其运行在安全运行状态以预留一定的剩余转矩和剩余转速,从而避免遭遇突发状况后电机的剩余转矩值和剩余转速值逼近或达到极限值。若剩余函数为差值函数时,极限值ΔT=0;Δn=0。若剩余函数为比值函数,极限值ΔT=1;Δn=1。若电机在运行过程中,剩余转矩和剩余转速逼近或到达极限值,则表明此时设定转速阈值和转矩阈值不足以保障平衡车的运行安全,需调高转矩阈值和转速阈值。
据此原理,可以判断上述直接获取的剩余转矩是否小于设定的第一调节阈值,若是,则调高转矩阈值。同理,可以判断上述直接获取的剩余转速是否小于设定的第二调节阈值,若是,则调高转速阈值。例如,山区道路较为崎岖不平,当用户高速行驶越过大石块等障碍物时,剩余转矩或剩余转速很可能趋近甚至超过的极限值,容易导致用户跌倒,这表明当前设定的转速阈值和转矩阈值不足以保障行车安全,且用户每天行驶的路段有一定重复性,为避免此种情况再次发生,可以在剩余转矩过于趋近极限值(即剩余转矩小 于设定的第一调节阈值)时,适当调高转矩阈值。剩余转速的调节过程同理。从而使得转矩阈值和转速阈值可以根据实际路面情况灵活调整
步骤S600:若剩余转矩小于转矩阈值,或,剩余转速小于转速阈值,生成并发送报警指令。
在一个实施例中,可根据报警指令使平衡车执行报警动作。报警动作包括声音报警提醒、视觉报警提醒、触觉报警提醒中的至少一种。声音报警可以是发出语音提示或发出预警铃声提醒用户目前运行在危险状态下。视觉报警提醒可以是发出不同颜色的闪烁的灯光。触觉报警提醒可以是车体发出振动、车体瞬间加速等。
在一个实施例中,可将报警指令发送至智能移动终端以使智能终端执行提醒动作。智能终端可以是用户随身携带的智能手机等,当用户运行在危险状态时,智能手机接收报警消息从而提醒用户。
在一个实施例中,可根据报警指令自动采取限速措施以限制平衡车的速度。限速措施可以是限制用户动作、车体后仰等,以此限制用户通过身体前倾进一步提高电机运行转矩或转速。
基于上述方法,进一步考虑电量、电机工作参数条件等对电机安全运行状态范围的影响。
在一个实施例中,如图5所示,步骤S500之前,平衡车电机安全控制方法还包括:
步骤S201:检测并获取平衡车的电量值。
步骤S202:当电量值降低时,调节极限工作曲线以缩小极限工作曲线限定的电机的可运行状态范围。
如图6所示,电量降低时,极限工作曲线110调整为第二极限工作曲线610。此时原点-n1-T1为电机可长期工作的安全运行状态范围之一。
在一个实施例中,如图7所示,步骤S100之后,该平衡车电机安全控制方法还包括:
步骤S301:判断实际运行状态对应的实际运行转矩是否大于设定的额定 转矩。
步骤S302:若大于额定转矩,跳转至生成并发送报警指令的步骤。
上述步骤考虑到电机的额定工作参数,进一步限定额定转矩Tr,从而将电机限定在可长期安全工作的区域,增加了电机的寿命和安全性。重新参见图6,竖线630代表额定转矩Tr。进一步限定原点-Tr-E-n1为电机可长期工作的安全运行状态范围之一。
在一个实施例中,如图8所示,步骤S100之后,该平衡车电机安全控制方法还包括:
步骤S401:检测并获取平衡车的电量值。
步骤S402:当电量值降低时,减小设定的额定转矩以获得修正额定转矩。
步骤S403:检测并判断实际运行状态对应的实际运行转矩是否大于修正额定转矩。
步骤S404:若大于修正额定转矩,跳转至生成并发送报警指令的步骤。
为电机供电的电池,其在低电量时输出的电压和电流会受到限制。具体为,在电池接近耗尽的低电量状态时,由于内阻增加,输出电压会有一定程度的降低,可用电流会随着降低。如图9所示,电压降低会进一步缩小电机的第二极限工作曲线610限定的安全工作状态范围,但斜率可能保持不变,最高转速进一步降低至n2,额定转矩由Tr降低至T2。则原点-T2-F-n2包围的面积为,电池电量不足时电机的安全运行状态范围之一。
需要说明的是,以上几种对电机安全工作状态范围的限定方法在不同电机不同电池时可能会有不同,电机工作的安全区域以这几种限制所共同达到的最小范围为准。
基于相同发明构思,以下提供一种平衡车电机安全控制装置。如图10所示,包括:
转速传感器810,用于检测并获取电机的实际运行状态中的实际运行转速。
转矩传感器811,用于检测并获取电机的实际运行状态中的实际运行转 矩。
存储模块813,用于存储电机在最大功率下运行时对应的极限工作曲线对应的数据。
控制模块820,用于:根据实际运行状态、极限工作曲线,判断电机在实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值。
若剩余转矩小于转矩阈值,或,剩余转速小于转速阈值,生成并发送报警指令。
控制模块820的工作过程可以参考上述实施例的步骤S213。转速传感器810和转矩传感器811的工作过程可以参考上述实施例的步骤S211。其中,转矩传感器可以是电流传感器。理论上,电机运转电流与转矩成正比,因此可通过检测电机运转电流以推算电机运行转矩。
在一个实施例中,该装置还包括:
电量检测模块815,用于检测并获取平衡车的电量值。
控制模块820还用于根据电量值的减小程度,调节极限工作曲线以缩小极限工作曲线限定的电机的可运行状态范围。
在一个实施例中,该装置还包括:
声音报警模块816、视觉报警模块817、触觉报警模块818中的至少一种。
声音报警模块816用于根据报警指令产生报警声音。
视觉报警模块817用于根据报警指令产生报警灯光。
触觉报警模块818用于根据报警指令产生报警振动。
在一个实施例中,控制模块820用于根据设定的安全等级调节所述转矩阈值和/或转速阈值的数值大小。该装置还包括:通讯模块819,通讯模块819用于接收外界的等级更新指令以更新设定的安全等级。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种平衡车电机安全控制方法,平衡车包括电机,所述方法包括:
    检测并获取所述电机的实际运行状态;
    根据所述实际运行状态、所述电机在最大功率下运行时对应的极限工作曲线,判断所述电机在所述实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值;
    若所述剩余转矩小于所述转矩阈值,或,所述剩余转速小于所述转速阈值,生成并发送报警指令。
  2. 根据权利要求1所述的方法,其中,所述根据所述实际运行状态、所述电机在最大功率下运行时对应的极限工作曲线,判断所述电机在所述实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值的步骤,包括:
    根据所述转矩阈值、转速阈值,以及所述电机在最大功率下运行时对应的极限工作曲线,获取所述电机的安全工作曲线;
    若所述实际运行状态位于所述安全工作曲线限定的安全运行状态范围内,则判定所述剩余转矩小于所述转矩阈值,且,所述剩余转速小于所述转速阈值;否则,判定所述剩余转矩小于所述转矩阈值,或,所述剩余转速小于所述转速阈值。
  3. 根据权利要求1所述的方法,其中,所述根据所述实际运行状态、所述电机在最大功率下运行时对应的极限工作曲线,判断所述电机在所述实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值的步骤,包括:
    根据所述实际运行状态、所述电机在最大功率下运行时对应的极限工作曲线,直接获取所述电机在所述实际运行状态下的剩余转矩和剩余转速;
    判断所述实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值。
  4. 根据权利要求1所述的方法,其中,所述转速阈值和/或转矩阈值为 定值;或
    根据设定的安全等级调节所述转矩阈值和/或转速阈值的数值大小。
  5. 根据权利要求4所述的方法,其中,所述根据设定的安全等级调节所述转矩阈值和/或转速阈值的数值大小,包括:
    接收外界的等级更新指令,以更新所述设定的安全等级。
  6. 根据权利要求5所述的方法,其中,所述等级更新指令通过用户操作外界智能移动终端或平衡车自身的交互装置生成。
  7. 根据权利要求3所述的方法,其中,还包括:
    判断所述直接获取的所述剩余转矩是否小于设定的第一调节阈值,若是则调高所述转矩阈值;或
    判断所述直接获取的所述剩余转速是否小于设定的第二调节阈值,若是则调高所述转速阈值。
  8. 根据权利要求1所述的方法,其中,还包括:
    根据所述报警指令使所述平衡车执行报警动作;所述报警动作包括声音报警提醒、视觉报警提醒、触觉报警提醒中的至少一种。
  9. 根据权利要求1所述的方法,其中,还包括:根据所述报警指令自动采取限速措施以限制所述平衡车的速度。
  10. 根据权利要求1所述的方法,其中,还包括:
    检测并获取所述平衡车的电量值;
    当所述电量值降低时,调节所述极限工作曲线以缩小所述极限工作曲线限定的所述电机的可运行状态范围。
  11. 根据权利要求1所述的方法,其中,还包括:
    检测并获取所述平衡车的电量值;
    当所述电量值降低时,减小设定的额定转矩以获得修正额定转矩。
    判断所述实际运行状态对应的实际运行转矩是否大于所述修正额定转矩;
    若大于所述修正额定转矩,跳转至所述生成并发送报警指令的步骤。
  12. 一种平衡车电机安全控制装置,执行平衡车电机安全控制方法,平衡车包括电机,所述装置包括:
    转速传感器,用于检测并获取所述电机的实际运行状态中的实际运行转速;
    转矩传感器,用于检测并获取所述电机的实际运行状态中的实际运行转矩;
    存储模块,用于存储所述电机在最大功率下运行时对应的极限工作曲线对应的数据;
    控制模块,用于根据所述实际运行状态、所述极限工作曲线,判断所述电机在所述实际运行状态下的剩余转矩和剩余转速是否分别小于设定的转矩阈值和转速阈值;
    若所述剩余转矩小于所述转矩阈值,或,所述剩余转速小于所述转速阈值,生成并发送报警指令。
  13. 根据权利要求12所述的装置,其中,还包括:
    电量检测模块,用于检测并获取所述平衡车的电量值;
    所述控制模块还用于根据所述电量值的减小程度,调节所述极限工作曲线以缩小所述极限工作曲线限定的所述电机的可运行状态范围。
  14. 根据权利要求12所述的装置,其中,还包括:声音报警模块、视觉报警模块、触觉报警模块中的至少一种;
    所述声音报警模块用于根据报警指令产生报警声音;
    所述视觉报警模块用于根据报警指令产生报警灯光;
    所述触觉报警模块用于根据报警指令产生报警振动。
  15. 根据权利要求12所述的装置,其中,控制模块用于根据设定的安全等级调节所述转矩阈值和/或转速阈值的数值大小;
    所述装置还包括:通讯模块,所述通讯模块用于接收外界的等级更新指令以更新所述设定的安全等级。
PCT/CN2017/117959 2017-12-22 2017-12-22 平衡车电机安全控制方法及装置 WO2019119407A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117959 WO2019119407A1 (zh) 2017-12-22 2017-12-22 平衡车电机安全控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117959 WO2019119407A1 (zh) 2017-12-22 2017-12-22 平衡车电机安全控制方法及装置

Publications (1)

Publication Number Publication Date
WO2019119407A1 true WO2019119407A1 (zh) 2019-06-27

Family

ID=66992915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117959 WO2019119407A1 (zh) 2017-12-22 2017-12-22 平衡车电机安全控制方法及装置

Country Status (1)

Country Link
WO (1) WO2019119407A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736265B2 (en) * 2004-12-28 2010-06-15 Toyota Jidosha Kabushiki Kaisha Power output apparatus
CN102393733A (zh) * 2011-10-28 2012-03-28 北京清佰华通科技有限公司 故障诊断方法、故障诊断仪及其系统、新能源汽车
CN106487291A (zh) * 2016-12-08 2017-03-08 江苏富威能源有限公司 一种锂电驱动控制系统
CN106788076A (zh) * 2016-11-18 2017-05-31 广东高标电子科技有限公司 一种平衡车控制方法、装置及系统
CN107128189A (zh) * 2017-04-26 2017-09-05 纳恩博(北京)科技有限公司 电池控制方法、装置及电动车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736265B2 (en) * 2004-12-28 2010-06-15 Toyota Jidosha Kabushiki Kaisha Power output apparatus
CN102393733A (zh) * 2011-10-28 2012-03-28 北京清佰华通科技有限公司 故障诊断方法、故障诊断仪及其系统、新能源汽车
CN106788076A (zh) * 2016-11-18 2017-05-31 广东高标电子科技有限公司 一种平衡车控制方法、装置及系统
CN106487291A (zh) * 2016-12-08 2017-03-08 江苏富威能源有限公司 一种锂电驱动控制系统
CN107128189A (zh) * 2017-04-26 2017-09-05 纳恩博(北京)科技有限公司 电池控制方法、装置及电动车辆

Similar Documents

Publication Publication Date Title
US11794722B2 (en) Mobility device
CN109572705B (zh) 一种驾驶员情绪管理方法、设备及存储设备
US8089234B2 (en) Motor control device, motored vehicle equipped therewith, and method of controlling a motor
CN106123941B (zh) 无人机旋翼检测方法与装置
US10075012B2 (en) Remote power control and monitoring of a vehicle power system
JPH10288654A (ja) バッテリ残容量検出装置
JP2011188597A (ja) 電流検出装置
CN108216461A (zh) 平衡车电机安全控制方法及装置
CN103762918B (zh) 汽车电源管理系统及汽车电源管理方法
US20190369629A1 (en) Automatic working system, self-moving apparatus and control method thereof
CN108016393A (zh) 车辆落水车窗控制系统、车辆落水车窗控制方法
EP3219535A1 (en) Controlling apparatus for vehicle
CN111267614B (zh) 一种车辆主动限速控制方法及装置
WO2019119407A1 (zh) 平衡车电机安全控制方法及装置
US9667082B2 (en) Method for monitoring utilization of an electrochemical energy storage device in a motor vehicle, and motor vehicle
CN103386976A (zh) 起重机、车辆行驶速度的控制方法及控制装置
CN108813789B (zh) 防鞋体踏空的警示方法及装置
KR101308690B1 (ko) 모터 구동 전기 차량용 운행 제어 시스템
CN206076424U (zh) 一种电动车电池电量控制管理系统
JP2019139999A (ja) 二次電池の制御装置
JP6225691B2 (ja) バッテリ制御装置
CN113650507B (zh) 一种自动行走车辆的驻车方法及终端
KR20200102594A (ko) 모터 제어기 및 그 제어 방법
CN213228315U (zh) 环控系统及环控总成
CN204077391U (zh) 电动车侧向倾斜或倾倒时调速器自动断开的电路装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935803

Country of ref document: EP

Kind code of ref document: A1