WO2019116817A1 - 荷重センサおよび電動ブレーキ - Google Patents

荷重センサおよび電動ブレーキ Download PDF

Info

Publication number
WO2019116817A1
WO2019116817A1 PCT/JP2018/042228 JP2018042228W WO2019116817A1 WO 2019116817 A1 WO2019116817 A1 WO 2019116817A1 JP 2018042228 W JP2018042228 W JP 2018042228W WO 2019116817 A1 WO2019116817 A1 WO 2019116817A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
strain
generating body
strain generating
sensor
Prior art date
Application number
PCT/JP2018/042228
Other languages
English (en)
French (fr)
Inventor
木下 康
金丸 昌敏
健悟 鈴木
隆史 松村
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019116817A1 publication Critical patent/WO2019116817A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers

Definitions

  • the present invention relates to a load sensor that detects a load by strain, and an electric brake equipped with the same.
  • Patent No. 5513164 gazette
  • Patent Document 1 describes a configuration in which a thrust load is applied to a washer-type load cell via a bearing and a transmission member.
  • a thrust load when a thrust load is applied, a slight slip occurs on the contact surface of the washer-type load cell and the transmission member, and the load increases due to the frictional force generated by the slip.
  • the deformation of the washer-type load cell and the deformation of the washer-type load cell at the time of load reduction may be irreversible, which may cause hysteresis in the load-strain characteristics of the washer-type load cell. Therefore, when the configuration of Patent Document 1 is applied to an electric brake in which the thrust load frequently changes, there is a problem that it becomes difficult to measure an accurate thrust load.
  • An object of the present invention is to provide a load sensor with reduced load-strain hysteresis and an electric brake using the same.
  • a load sensor includes a first strain sensor, a first straining body on which the first strain sensor is mounted, and a first straining body. And a second strain generating body disposed in series in a load direction, wherein the first strain generating body is configured to load toward the second strain generating body along the load direction. And a pair of first support portions arranged at positions separated from each other in a direction intersecting the load input direction from the first input portion and facing the second strain generating body A second input unit to which a load is input toward the first elastic body along the load direction, and an input direction of the load from the second input unit. Are arranged at mutually separated positions in a cross direction crossing the first and second contact members respectively facing the first strain generating body and in contact with the pair of first supports. And having a second support portion of the.
  • Sectional drawing which shows the structure of the electrically-driven brake by which this invention was mounted.
  • BRIEF DESCRIPTION OF THE DRAWINGS The perspective sectional view which shows the structure of the load sensor of this invention.
  • the load sensor of this invention WHEREIN: Explanatory drawing of the balance of the force concerning a strain body in the process which increases load.
  • the load sensor of this invention WHEREIN: Explanatory drawing of balance of the force concerning a strain body in the process which reduces load.
  • the perspective sectional view which shows an example of a structure of the load sensor of this invention.
  • the load sensor of this invention WHEREIN: Explanatory drawing of the balance of the force concerning a strain body in the process which increases load.
  • the load sensor of this invention WHEREIN: Explanatory drawing of balance of the force concerning a strain body in the process which reduces load.
  • BRIEF DESCRIPTION OF THE DRAWINGS The perspective sectional view which shows an example of a structure of the load sensor of this invention.
  • the perspective view sectional drawing which shows an example of a structure of a load sensor without a support surface.
  • the electric brake 1 of FIG. 1 is a device that applies a braking force to the disk 10 by pressing the brake pad 8 against the disk 10 using the electric motor 3 as a drive source.
  • the electric motor 3 is driven by a current signal or a voltage signal from an external controller to rotate the motor shaft.
  • the rotation of the motor shaft is decelerated by the reduction gear 4 to become a large rotational force and transmitted to the lead screw 5.
  • the lead screw 5 constitutes a linear movement mechanism together with the nut 6, and the rotation of the lead screw 5 is converted into an axial translational force.
  • the load sensor 9 contacts the nut 6, receives the reaction force applied to the nut 6 on one side, and contacts the inner wall of the caliper casing 2 on the other side.
  • the load sensor 9 receives a load from the nut 6 and is deformed to output a voltage signal corresponding to the load to the outside.
  • FIG. 2 is a perspective sectional view showing the structure of the load sensor 9 of the present invention.
  • 9 is a load sensor
  • 91 is a first strain generating body
  • 92 is a second strain generating body
  • 93 is a strain sensor
  • 94 is a relay substrate
  • 95 is a wiring.
  • the first strain generating body 91 is provided with a bank portion 91 a and a pressure receiving portion 91 b.
  • the second strain generating body 92 is provided with a support surface 92 b.
  • the second strain body 92 includes a support surface (second input portion) 92 b to which a load is input toward the first strain body 91 along the load direction, and a support surface (second input portion).
  • a pair of contact surfaces disposed at mutually separated positions in a cross direction crossing the load input direction from 92b and facing the first strain generating body 91 and contacting the pair of bank portions (first support portions) 91a respectively And (second support portion) 92c.
  • the first strain generating body 91 is provided with two pressure receiving portions 91 b on the bottom surface.
  • the pressure receiving portion 91 b has a shape that protrudes one step beyond the bottom surface, and is a contact point with the nut 6. Since the load is concentrated on the pressure receiving portion 91b, the pressure receiving portion 91b is designed to have an area not exceeding the yield limit of the material at the maximum load.
  • the pressure receiving portion 91b is provided on the first strain generating body 91, but may be provided on the nut 6 side. In that case, the rotation stopper of the nut 6 provided in the caliper casing 2 is configured to reduce the backlash so as not to cause the positional displacement of the load point with respect to the first strain generating body 91.
  • the first strain generating body 91 On the upper surface of the first strain generating body 91, two bank portions 91a are provided. In addition, a strain sensor 93, a relay substrate 94, and a wire 95 are mounted in a recess between the two bank portions 91a. A space is formed between the first strain generating body 91 and the second strain generating body 92 by the bank portion 91a, and the strain sensor 93, the relay substrate 94, and the wiring 95 can be mounted in the space.
  • the first strain generating body 91 is made of a high strength steel because it is used under a high load. In addition, surface treatment or the like may be performed to improve resistance.
  • the second strain generating body 92 is provided on the lower surface with a contact surface 92 c in contact with the bank portion 91 a of the first strain generating body 91. Further, a support surface 92 b in contact with the inner wall of the caliper casing 2 is provided on the upper surface. The support surface 92 b is shaped to project one step higher than the upper surface, and is a contact point with the caliper housing 2.
  • the second strain body 92 is disposed in series with the first strain body 91 in the load direction, and is a first strain body as a protective cap of the strain sensor 93 or the like mounted on the first strain body 91. It is put on 91. Since a high load is also applied to the second strain generating body 92, the second strain generating body 92 is made of a high strength steel material.
  • the strain sensor 93 is, for example, a strain IC. Piezoresistors for detecting strain are formed in the center of the upper surface of a silicon chip, and a Wheatstone bridge, an amplification circuit, a temperature assurance circuit, etc. are formed around the periphery by semiconductor processing. The strain sensor 93 captures the strain applied to the strain sensor 93 as a resistance change by using the piezoresistance effect.
  • the strain sensor 93 is mounted at an intermediate position between the two bank portions 91a of the first strain generating body 91, and a strain component in a linear direction connecting the bank portions 91a and a strain component in a radial direction orthogonal thereto are detected. Furthermore, the strain sensor 93 produces and outputs a voltage signal corresponding to the magnitude of the difference between the two strain components.
  • the strain sensor 93 may be configured by a strain gauge or the like.
  • the relay substrate 94 is, for example, a glass epoxy substrate.
  • An electrode pad is formed on the relay substrate 94, and wiring is performed by wire bonding with the strain sensor 93 using this pad, and a signal is extracted from the strain sensor 93. Further, the relay substrate 94 is provided with an electrode for extracting a signal to the outside. A wire 95 made of a coated cable is directly soldered to this electrode, or a connector is provided to draw a signal to the outside.
  • the first strain generating body 91 has a three-point bending structure in which the pressure receiving portion 91b is a load point and the bank portion 91a is a support point.
  • the first strain generating body 91 causes bending deformation, and the depression between the two bank portions 91a is raised in a convex shape.
  • the strain sensor 93 joined to the surface of the first strain body 91 deforms in accordance with the first strain body 91, and outputs a voltage signal corresponding to the magnitude of strain.
  • the signal output from the strain sensor 93 is output to the outside through the wiring 95 via the relay substrate 94.
  • the support surface 92b is provided on the second strain body 92, and the second strain body 92 is deformed to improve the sensor output characteristics (load-strain characteristics). ing.
  • the problem of the structure without the support surface 92b will be described with reference to FIG. 11 to FIG.
  • FIG. 12 is a diagram for explaining the balance of forces applied to the first strain generating body 91 in the process of increasing the load N in the load sensor 9 without the support surface 92b.
  • N is a load
  • is a friction coefficient
  • F is a friction force.
  • Thin arrows in the figure indicate the position and direction of application of force. The thick arrows indicate the displacement direction of the bank portion 91 a of the first strain generating body 91.
  • a load N indicated by an upward arrow is applied to the center of the lower surface of the first strain generating body 91.
  • a drag N / 2 against a load N is applied to the bank portion 91a of the first strain generating body 91.
  • the first strain generating body 91 is subjected to three-point bending with a load N and a resistance N / 2. By the three-point bending, the first strain generating body 91 causes a bending deformation in which the central portion is bent in a convex shape.
  • the frictional force F is expressed by the product of the coefficient of friction ⁇ and the drag N / 2, and if the coefficient of friction ⁇ is zero, no frictional force F is generated, but if the coefficient of friction ⁇ is not zero, the frictional force F acts and It prevents the deformation of the first strain generating body 91.
  • FIG. 13 is a view for explaining the balance of forces applied to the first strain generating body 91 in the process of decreasing the load N in the load sensor 9 without the support surface 92b.
  • the direction of the thick arrow and the direction of the frictional force F are different.
  • the deformation of the first strain generating body 91 becomes smaller, and the bank portion 91a is displaced so as to close in the direction of the thick arrow in the figure. Due to this displacement, relative displacement occurs between the bank portion 91a of the first strain generating body 91 and the contact surface of the second strain generating body 92, and slippage occurs on the contact surface. At this time, since the frictional force F accompanying the slip is generated in the direction to prevent the displacement of the bank portion 91a, the deformation of the first strain generating body 91 becomes difficult to return.
  • FIG. 14 is a view showing the load-strain characteristic of the load sensor 9 without the support surface 92b.
  • the solid line shows the load-strain characteristic when the friction coefficient ⁇ is not zero.
  • Arrows in the figure indicate a process of increasing the load N (A characteristic) and a process of decreasing the load N (B characteristic).
  • the dotted line shows the load-strain characteristic when the coefficient of friction ⁇ is zero.
  • the first strain generating body 91 In the process of increasing the load N, the first strain generating body 91 is less likely to be deformed by the frictional force F, so that the slope is smaller than the load-strain characteristic when the friction coefficient ⁇ shown by the dotted line is zero. Change. In the process of decreasing the load N, the deformation of the strain generating body 91 becomes difficult to return due to the frictional force F, and therefore, the transition is made along the B characteristic having a larger inclination than the load-strain characteristic when the friction coefficient ⁇ is zero. At the switching of the increase and decrease of the load, the transition from the line of the A characteristic to the line of the B characteristic, and from the line of the B characteristic to the line of the A characteristic is made. In switching between the A characteristic and the B characteristic, the load-strain characteristic exhibits the influence of hysteresis of load increase / decrease (hysteresis).
  • the load sensor 9 without the support surface 92b is difficult to obtain an accurate value because the load value is affected by the hysteresis when the load increases or decreases.
  • the load sensor 9 is applied to the electric brake 1, the measured value of the load changes depending on the history of braking, so that the braking force can not be finely controlled, and the advantage of using the load sensor may not be obtained. .
  • FIG. 3 is a view for explaining the balance of forces applied to the first strain generating body 91 and the second strain generating body 92 in the process of increasing the load N in the load sensor 9 of the present invention.
  • N is a load
  • is a coefficient of friction
  • F is a frictional force.
  • Arrows in the figure indicate the position and direction of the force applied to the strain generating bodies 91 and 92.
  • thick arrows indicate the displacement directions of the contact surfaces of the strain generating bodies 91 and 92.
  • the solid line indicates the force and displacement applied to the first strain generating body 91
  • the dotted line indicates the force applied to the second strain generating body 92.
  • a load N indicated by an upward arrow is applied to the center of the lower surface of the first strain generating body 91.
  • a drag N / 2 against a load N is applied to the bank portion 91a of the first strain generating body 91.
  • the first strain generating body 91 is subjected to three-point bending with a load N and a resistance N / 2. By the three-point bending, the first strain generating body 91 causes a bending deformation in which the central portion is bent in a convex shape.
  • the load N is further increased from this state, the deformation of the first strain generating body 91 becomes large, and the bank portion 91a is displaced so as to open in the direction of the thick arrow.
  • the second strain body 92 receives a load N / 2 at the contact surface of the first strain body 91 with the bank portion 91a, and receives a reaction force N against the load N from the caliper housing 2 at the support surface 92b. Three-point bending is performed. By the three-point bending, the second strain generating body 92 causes a bending deformation in which the central portion is depressed downward. When the load N is further increased from this state, the deformation of the second strain body 92 becomes large, and the contact surface of the first strain body 91 with the bank portion 91 a opens in the direction of the thick dotted arrow. Displace.
  • the displacement of the bank portion 91a of the first strain generating body 91 and the displacement of the contact surface of the second strain generating body 92 have the same displacement direction, so that the relative displacement is reduced.
  • the load-strain characteristic (A characteristic) can maintain the inclination when the friction coefficient ⁇ is zero.
  • FIG. 4 illustrates the balance of forces applied to the first strain generating body 91 and the second strain generating body 92 in the process of decreasing the load N in the load sensor 9 of the present invention provided with the support surface 92 b. It is.
  • the deformation of the first strain generating body 91 becomes smaller, and the bank portion 91a is displaced so as to close in the direction of the thick arrow in the figure. Further, the deformation of the second strain generating body 92 is also reduced, and the contact surface of the first strain generating body 91 with the bank portion 91a is displaced so as to close in the direction of the thick dotted arrow. At this time, the displacement of the bank portion 91a of the first strain generating body 91 and the displacement of the contact surface of the second strain generating body 92 can be reduced in relative displacement because the displacement directions become the same.
  • the load-strain characteristic (B characteristic) can maintain the inclination when the friction coefficient ⁇ is zero.
  • FIG. 5 is a view showing the load-strain characteristic of the load sensor 9 of the present invention provided with the support surface 92b. If the displacement of the bank portion 91 a of the first strain generating body 9 and the displacement of the contact portion of the second strain generating body 92 can be made to completely coincide with each other, the relative displacement becomes zero and the first strain generating body 91 Frictional force F due to slippage that prevents deformation does not occur. Therefore, both the A characteristics at the time of load increase and the B characteristics at the time of load decrease become consistent with the load-strain characteristics at the time when the friction coefficient ⁇ is zero, and since they are reversible, no hysteresis occurs.
  • FIG. 6 is an explanatory view for explaining the deformation of the second strain generating body 92 of the load sensor 9 of the present invention.
  • the two loads N / 2 represent the loads received from the bank portion 91 a of the first strain generating body 91.
  • the support point represents a support surface 92 b provided on the second strain generating body 92.
  • L is the distance between the load point and the support point
  • ⁇ x is the displacement of the contact surface of the second strain body 92
  • t1 is the distance in the thickness direction from the neutral plane NS of the second strain member 92 to the contact surface
  • EI shows bending rigidity.
  • the second strain generating body 92 has a three-point bending structure due to the load and the support point.
  • the second strain generating body 92 undergoes a bending deformation in which the central portion is depressed downward.
  • the neutral plane NS of the second strain generating body 92 does not cause displacement in the lateral direction of the figure, but since the upper surface and the lower surface away from the neutral plane NS are inclined by the deflection angle, Displacement occurs.
  • displacement occurs in the direction of closing in the center, and on the lower surface (contact surface), displacement occurs in the direction of opening outward from the center.
  • the displacement ⁇ x of the contact surface of the second strain generating body 92 is influenced by the distance t1 from the neutral surface NS to the lower surface.
  • the thickness is also changed in conjunction. Since the bending rigidity EI is proportional to the cube of the thickness, for example, if the thickness of the second strain generating body 92 is reduced, the deflection deformation becomes dramatically large and the displacement ⁇ x of the contact surface becomes large.
  • the displacement ⁇ x of the contact surface of the second strain generating body 92 is also influenced by the support conditions.
  • the distance L between the load point of the second strain generating body 92 and the support point is increased, so the deflection angle of the contact point is increased, so the displacement ⁇ x due to the distance t1 from the neutral plane NS to the lower surface is increased.
  • the thickness of the second strain generating body 92 is made thinner than the thickness of the first strain generating body 91 is shown.
  • the bending rigidity EI of the second strain body 92 becomes low and it becomes easy to be deformed.
  • the displacement ⁇ x 92 is larger than the displacement of the bank portion 91 a of the first strain generating body 91, which causes hysteresis. Therefore, the deflection angle is reduced by shortening the distance L between the load point and the support point by widening the width of the support surface 92b provided on the second strain generating body 92, and the displacement ⁇ x is suppressed small.
  • the displacement ⁇ x of the contact surface of the second strain generating body 92 is estimated by structural analysis using the finite element method, and the bank portion 91 a of the first strain generating body 91 It should be designed with the value when it agrees with the displacement of.
  • the load sensor 9 and the electric brake 1 include the strain sensor 93, the first straining body 91 having the strain sensor 93 mounted thereon, and the first straining body 91 in series in the load direction.
  • the load sensor 9 having the second strain generating body 92 disposed when the load N acts, the first strain generating body so that the displacement direction on the contact surface of the first strain forming body 91 is on the outer side while setting the deformation shape of 91, the deformation shape of the second strain generating body 92 was set so that the displacement direction on the contact surface of the second strain generating body 92 was on the outside.
  • the displacement direction of the bank portion 91a of the first strain generating body 91 and the displacement direction of the contact portion of the second strain generating body 92 are made to coincide with each other to reduce the relative displacement. Since the hysteresis generated in the load-strain characteristic can be reduced, the load N can be measured with high accuracy. Further, since the load N can be accurately measured, the braking force control of the electric brake 1 can be set finely, which can contribute to the improvement of the ride quality of the vehicle.
  • the first strain body 91 and the second strain body 92 are arranged in series in the thrust load direction, and the displacement of the first strain body 91 when the thrust load is received on the contact surface thereof. Since the deformation shapes of the strain generating bodies 91 and 92 are set so that the displacement of the second strain generating body 92 is in the same direction, the relative displacement on the contact surface can be reduced. Therefore, the hysteresis can be reduced, and the load N can be measured with high accuracy.
  • FIG. 7 is a perspective sectional view showing the configuration of the load sensor 9 of the present invention.
  • the present embodiment shown in FIG. 7 differs from the configuration of FIG. 2 in the shape of the second strain generating body 92.
  • the configuration other than the second strain generating body 92 will be omitted because it will be described again.
  • the second strain body 92 has the same shape as the first strain body 91, and is arranged to be plane-symmetrical. By forming the first strain generating body 91 and the second strain generating body 92 with the same parts, the same deformation can be obtained when the load N is applied, and mass production can be performed rather than providing parts of different shapes. An effect is obtained.
  • the second strain body 92 has the bank portion (second support portion) 92a facing the bank portion (first support portion) 91a of the first strain body 91, and has a mirror image relative to the contact surface. Arrange as follows.
  • the strain sensor 93, the relay substrate 94, and the wiring 95 are provided on at least one of the strain generating members.
  • the strain sensor 93 is provided on each straining body, even if one of the strain sensors 93 breaks down and no output can be obtained, the other output which is not broken can be obtained, so fail safe is realized. Can contribute to the improvement of reliability.
  • the strain sensor 93 is provided on each of the two straining bodies, thereby achieving one more yield than mounting two strain sensors 93. Since the yield to be mounted is higher, it can lead to improvement in productivity.
  • FIGS. 8 and 9 are diagrams for explaining the balance of forces applied to the first strain generating body 91 and the second strain generating body 92 according to the present invention.
  • FIG. 8 shows the force balance in the process of increasing the load N.
  • the load N from the nut 6 is applied to a pressure receiving portion 91 b provided to the first strain generating body 91.
  • the first strain generating body 91 receives a resistance N / 2 at the bank portion 91a and has a three-point bending structure.
  • the first strain generating body 91 causes bending deformation in a direction in which the bank portion 91a opens outward as shown by a thick arrow when a load N is applied.
  • the second strain body 92 receives a load N / 2 from the first strain body 91 to the two bank portions 92a.
  • the second strain body 92 is supported by the support surface 92 b on the inner wall of the caliper casing 2 and has a three-point bending structure.
  • the second strain generating body 92 causes bending deformation in a direction in which the bank portion 92a opens outward as shown by a thick dotted arrow by applying a load N.
  • the displacement of the contact surface of the bank portion 91a of the first strain generating body 91 and the displacement of the contact surface of the bank portion 92a of the second strain generating body 92 are the same displacement and direction, they are relative displacements. There is no slippage. Since the frictional force F generated by the slip is not generated, the force for preventing the deformation of the first strain generating body 91 does not work, and the load-strain characteristic has the same inclination as when the friction coefficient ⁇ is zero.
  • FIG. 9 shows the force balance in the process of reducing the load N.
  • the first strain generating body 91 and the second strain generating body 92 both displace in a direction in which the bank portions 91a and 92a close toward the center as indicated by thick arrows.
  • the displacement that occurs here is also the same displacement and direction, so there is no relative displacement and no slippage occurs. For this reason, since the frictional force F generated by the slip is not generated, the force for preventing the deformation of the first strain generating body 91 does not work, and the load-strain characteristic has the same inclination as the friction coefficient ⁇ is zero.
  • the load-distortion characteristics have the same slope, so that the occurrence of hysteresis can be suppressed.
  • the load sensor 9 and the electric brake 1 include the strain sensor 93, the first straining body 91 having the strain sensor 93 mounted thereon, and the first straining body 91 in series in the load direction.
  • the load sensor 9 having the second strain generating body 92 disposed when the load N acts, the first strain generating body so that the displacement direction on the contact surface of the first strain forming body 91 is on the outer side
  • the deformation shape of 91 is set, and the second strain body 92 has the same shape as the first strain body 91 so that the displacement direction on the contact surface of the second strain body 92 is the outer side.
  • the load sensor 9 is reduced by reducing the relative displacement. Since it is possible to reduce the hysteresis generated in the load-distortion characteristics, it is possible to measure the load N with high accuracy. Further, since the load N can be accurately measured, the braking force control of the electric brake 1 can be set finely, which can contribute to the improvement of the ride quality of the vehicle.
  • FIG. 10 is a perspective sectional view showing the configuration of the load sensor 9 of the present invention.
  • an intermediate member 96 is provided between the first strain generating body 92 and the second strain generating body 92.
  • the intermediate member 96 is an elastic body such as rubber, for example.
  • the intermediate member 96 may be an elongated cylindrical roller, a bearing, or a spring member.
  • the middle member 96 is set to have a Young's modulus and a thickness such that the thickness remains without being completely crushed when the maximum load is applied.
  • the effect of absorbing the relative displacement of the contact surface between the bank portion 91a of the first strain generating body 91 and the second strain generating body 92 due to the shear deformation of the intermediate member 96, and the thickness of the intermediate member 96 thus, the first strain generating body 91 and the second strain generating body 92 are separated to obtain an effect of not generating a frictional force.
  • the load-strain characteristic of the load sensor 9 can be obtained without hysteresis.
  • the load sensor 9 and the electric brake 1 include the strain sensor 93, the first straining body 91 having the strain sensor 93 mounted thereon, and the first straining body 91 in series in the load direction.
  • the intermediate member 96 is provided between the bank portion 91 a of the first strain body 91 and the second strain body 92.
  • the braking force control of the electric brake 1 can be set finely, which can contribute to the improvement of the ride quality of the vehicle.
  • the present invention is not limited to the above-mentioned embodiment, and various designs are possible in the range which does not deviate from the spirit of the present invention described in the claim. It is possible to make changes.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Reference Signs List 1 electric brake 2 caliper housing 3 electric motor 4 reduction gear 5 lead screw 6 nut 7 piston 8 brake pad 9 load sensor 91 first straining body 91a bank portion (first support portion) 91b Pressure receiving unit (first input unit) 92 second strain generating body 92a bank portion (second support portion) 92b Support surface (second input part) 92c Contact surface (second support) 93 strain sensor (first strain sensor) 94 relay board 95 wiring 96 intermediate member 10 disc N load ⁇ friction coefficient F friction force

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Force In General (AREA)

Abstract

荷重履歴の影響を受けない荷重センサおよびこれを用いた電動ブレーキを得ること。 本発明の荷重センサ9は、第1の歪センサ93と、第1の歪センサが搭載される第1の起歪体91と、第1の起歪体に対して荷重方向に直列に配置される第2の起歪体92を備える。第1の起歪体は、荷重方向に沿って第2の起歪体に向かって荷重が入力される受圧部91bと、受圧部91bから荷重の入力方向に交差する方向に互いに離れた位置に配置されて第2の起歪体92に対向する一対の土手部91aとを有する。第2の起歪体92は、荷重方向に沿って第1の起歪体91に向かって荷重が入力される支持面92bと、支持面92bから荷重の入力方向に交差する交差方向に互いに離れた位置に配置されて第1の起歪体91に対向して一つの土手部91aにそれぞれ接触する一対の接触面92cと有する。

Description

荷重センサおよび電動ブレーキ
 本発明は、ひずみにより荷重を検出する荷重センサ、およびそれを搭載した電動ブレーキに関する。
 スラスト荷重を検出する荷重センサの構成が特許文献1に記載されている。この特許文献1には、「前記貫入ロッドには環状を成すワッシャ型ロードセルが挿入され、当該ワッシャ型ロードセルと前記軸受けとの間には、当該軸受けに作用する貫入ロッドのスラスト荷重をワッシャ型ロードセルへ伝達する伝達部材が介在し、これら軸受け及び伝達部材を介して貫入ロッドのスラスト荷重がワッシャ型ロードセルに伝達され、当該貫入ロッドのスラスト荷重に応じて歪むワッシャ型ロードセルの歪み量から貫入ロッドにかかるスラスト荷重を検出するよう構成されている」と記載されている。
特許第5513164号公報
 特許文献1には、軸受および伝達部材を介してワッシャ型ロードセルにスラスト荷重をかける構成が記載されている。しかし、特許文献1に記載されたワッシャ型ロードセルは、スラスト荷重がかかったときにワッシャ型ロードセルと伝達部材の接触面に微小な滑りが発生し、その滑りによって発生する摩擦力の影響で荷重増加時のワッシャ型ロードセルの変形と荷重減少時のワッシャ型ロードセルの変形が不可逆となり、ワッシャ型ロードセルの荷重-歪特性にヒステリシスを生じるおそれがある。したがって、特許文献1の構成を、スラスト荷重が頻繁に増減する電動ブレーキに適用した場合に、正確なスラスト荷重を測定することは困難となるという問題があった。
 本発明の目的は、荷重-歪特性のヒステリシスを低減した荷重センサおよびこれを用いた電動ブレーキを提供することである。
 上記課題を解決するために、本発明の荷重センサは、第1の歪センサと、該第1の歪センサが搭載される第1の起歪体と、該第1の起歪体に対して荷重方向に直列に配置される第2の起歪体と、を備える荷重センサであって、前記第1の起歪体は、前記荷重方向に沿って前記第2の起歪体に向かって荷重が入力される第1入力部と、該第1入力部から荷重の入力方向に交差する方向に互いに離れた位置に配置されて前記第2の起歪体に対向する一対の第1支持部とを有し、前記第2の起歪体は、前記荷重方向に沿って前記第1の起歪体に向かって荷重が入力される第2入力部と、該第2入力部から荷重の入力方向に交差する交差方向に互いに離れた位置に配置されて前記第1の起歪体に対向して前記一対の第1支持部にそれぞれ接触する一対の第2支持部とを有することを特徴とする。
 本発明によれば、荷重-歪特性のヒステリシスを低減した荷重センサおよびこれを用いた電動ブレーキを提供することができる。
 本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明が搭載された電動ブレーキの構成を示す断面図。 本発明の荷重センサの構成を示す斜視断面図。 本発明の荷重センサにおいて、荷重を増加する過程で起歪体にかかる力の釣り合いの説明図。 本発明の荷重センサにおいて、荷重を減少する過程で起歪体にかかる力の釣り合いの説明図。 本発明の荷重センサの荷重-歪特性を示す図。 本発明の荷重センサの起歪体の変形を説明する説明図。 本発明の荷重センサの構成の一例を示す斜視断面図。 本発明の荷重センサにおいて、荷重を増加する過程で起歪体にかかる力の釣り合いの説明図。 本発明の荷重センサにおいて、荷重を減少する過程で起歪体にかかる力の釣り合いの説明図。 本発明の荷重センサの構成の一例を示す斜視断面図。 支持面のない荷重センサの構成の一例を示す斜視断面図。 支持面のない荷重センサにおいて、荷重を増加する過程で起歪体にかかる力の釣り合いの説明図。 支持面のない荷重センサにおいて、荷重を減少する過程で起歪体にかかる力の釣り合いの説明図。 支持面のない荷重センサの荷重-歪特性を示す図。
 以下、本発明の荷重センサの実施例について図面を用いて説明する。
(実施例1)
 以下、本発明の一実施例を図1ないし図5に沿って説明する。
 図1は、本発明が搭載された電動ブレーキ1の構成を示す断面図である。1は電動ブレーキ、2はキャリパ筐体、3は電動モータ、4は減速ギヤ、5はリードスクリュー、6はナット、7はピストン、8はブレーキパッド、9は荷重センサである。
 図1の電動ブレーキ1は、電動モータ3を駆動源としてブレーキパッド8をディスク10に押し当ててディスク10に制動力をかける装置である。電動モータ3は、外部のコントローラからの電流信号や電圧信号によって駆動され、モータ軸を回転させる。モータ軸の回転は減速ギヤ4によって減速されて大きな回転力となり、リードスクリュー5に伝達される。リードスクリュー5は、ナット6とともに直動機構を構成し、リードスクリュー5の回転が軸方向の並進力に変換される。ナット6がキャリパ筐体2に図示しないキー溝で回転を規制されるとともに軸方向の移動も規制されているため、並進力はリードスクリュー5に作用してリードスクリュー5自体が回転しながら軸方向に並進する。ピストン7はリードスクリュー5の並進力を受けてディスク10の方向へ移動する。ピストン7は図の右側のブレーキパッド8をディスク10の方向へ押し出す。ブレーキパッド8がディスク10に押し出されて接触すると、その反力によってキャリパ筐体2は図の右方向へ移動する。キャリパ筐体2の移動により、図の左側のブレーキパッド8がディスク10に押し当てられる。ディスク10は左右のブレーキパッド8により挟みこまれることにより、制動力を受ける。荷重センサ9はナット6に接触し、ナット6にかかる反力を一方の面で受け、もう一方の面でキャリパ筐体2の内壁に接している。荷重センサ9はナット6より荷重を受けて変形し、荷重に相当する電圧信号を外部に出力する。
 次に、荷重センサ9の構成について説明する。
 図2は本発明の荷重センサ9の構成を示す斜視断面図である。9は荷重センサ、91は第1の起歪体、92は第2の起歪体、93は歪センサ、94は中継基板、95は配線である。第1の起歪体91には、土手部91a、受圧部91bが設けられている。第2の起歪体92には、支持面92bが設けられている。
 荷重センサ9は、歪センサ(第1の歪センサ)93と、歪センサ93が搭載される第1の起歪体91と、第1の起歪体91に対して矢印Nで示す荷重方向に直列に配置される第2の起歪体92とを備える。第1の起歪体91は、荷重方向に沿って第2の起歪体92に向かって荷重が入力される受圧部(第1入力部)91bと、受圧部(第1入力部)91bから荷重の入力方向に交差する方向に互いに離れた位置に配置されて第2の起歪体92に対向する一対の土手部(第1支持部)91aとを有している。そして、第2の起歪体92は、荷重方向に沿って第1の起歪体91に向かって荷重が入力される支持面(第2入力部)92bと、支持面(第2入力部)92bから荷重の入力方向に交差する交差方向に互いに離れた位置に配置されて第1の起歪体91に対向して一対の土手部(第1支持部)91aにそれぞれ接触する一対の接触面(第2支持部)92cとを有している。
 本発明の荷重センサ9の構成部品の詳細について説明する。
 第1の起歪体91は、リードスクリュー5が貫通する穴を中央に設けたリング状の形状となっている。また、外形はピストン7の内部に収まる円形としている。これらの外形は、電動ブレーキ1のデザインによって必ずしも円形である必要はなく、例えば矩形や楕円形状であっても良い。また、例えばキャリパ筐体2の外側に荷重センサ9を取り付け、リードスクリュー5の端面によって荷重センサ9が荷重を受ける構造になっている場合は、リードスクリュー5が貫通する穴を必ずしも設ける必要はない。
 第1の起歪体91には底面に2つの受圧部91bが設けられている。受圧部91bは底面よりも一段突出した形状となっていて、ナット6との接点となっている。受圧部91bには荷重が集中するため、最大荷重時に材料の降伏限度を超えない面積に設計する。この実施例では、受圧部91bを第1の起歪体91に設けているが、ナット6側に設けても良い。その場合は、キャリパ筐体2に設けられたナット6の回転止めは、第1の起歪体91に対して荷重点の位置ずれを起こさないようにガタが少なくなるように構成する。
 第1の起歪体91の上面には、2つの土手部91aが設けられている。また、2つの土手部91aの間の窪みには歪センサ93、中継基板94、配線95が搭載されている。土手部91aにより、第1の起歪体91と第2の起歪体92の間に空間を作り、その空間に歪センサ93、中継基板94、配線95を搭載できるようにしている。第1の起歪体91は、高荷重下で使用されるため、強度の高い鋼材で作られている。また、耐力を向上するために表面処理等を行なってもよい。
 第2の起歪体92は、下面に第1の起歪体91の土手部91aと接触する接触面92cを設けている。また、上面にはキャリパ筐体2の内壁と接触する支持面92bを設けている。支持面92bは、上面よりも一段高く突出した形状となっていて、キャリパ筐体2との接点となっている。第2の起歪体92は、第1の起歪体91と荷重方向に直列に配置され、第1の起歪体91に搭載される歪センサ93等の保護キャップとして第1の起歪体91に被せられる。第2の起歪体92にも高荷重がかかるため、強度の高い鋼材で作られている。
 歪センサ93は、例えば歪ICである。シリコンチップの上面中央にひずみを検出するピエゾ抵抗と、その周辺にホイートストンブリッジや増幅回路、温度保証回路等を半導体プロセスで形成している。歪センサ93はピエゾ抵抗効果を利用して、歪センサ93にかかる歪を抵抗変化として捉える。歪センサ93は第1の起歪体91の2つの土手部91aの中間に搭載され、土手部91a間を繋ぐ直線方向のひずみ成分と、それに直交する半径方向のひずみ成分が検出される。さらに、歪センサ93は2つのひずみ成分の差の大きさに相当した電圧信号を作り出力する。歪センサ93はひずみゲージ等で構成しても良い。
 中継基板94は、例えばガラスエポキシ基板である。中継基板94には電極パッドが形成され、このパッドを使って歪センサ93との間をワイヤボンディングで配線を行ない、歪センサ93から信号を取り出す。また、中継基板94には外部へ信号を取り出すために電極が設けられている。この電極に被覆ケーブルでできた配線95を直接はんだ付けを行なったり、コネクタを設けることで外部に信号を引き出すようになっている。
 本発明の荷重センサ9の荷重検出原理について説明する。
 第1の起歪体91は、受圧部91bを荷重点、土手部91aを支持点とした3点曲げ構造になっている。受圧部91bにナット6からの荷重がかかることで、第1の起歪体91は曲げ変形を起こし、2つの土手部91aの間の窪みが凸状に盛り上がる。第1の起歪体91の表面に接合されている歪センサ93は第1の起歪体91に倣って変形し、ひずみの大きさに相当した電圧信号を出力する。歪センサ93から出力された信号は、中継基板94を介して配線95で外部へ出力される。
 本実施例の荷重センサ9は、第2の起歪体92に支持面92bを設けて、第2の起歪体92を変形させることによって、センサ出力特性(荷重-歪特性)の改善を図っている。第2の起歪体92に設けられている支持面92bの効果を説明するため、まず、支持面92bのない構造の課題について図11ないし図14に沿って説明する。
 図11は支持面92bのない荷重センサ9の構成を示す斜視断面図である。第2の起歪体92に支持面92bがない点を除いて、図2に示す荷重センサと同じ構成であるので、重複する説明は省略する。第2の起歪体92は、支持面92bが設けられていない。このため、上面全体でキャリパ筐体2の内壁に接触し固定される。
 図12は支持面92bのない荷重センサ9において、荷重Nを増加していく過程で第1の起歪体91にかかる力の釣り合いを説明する図である。図12において、Nは荷重、μは摩擦係数、Fは摩擦力である。図中の細い矢印は力の掛かる位置と方向を示す。また、太い矢印は第1の起歪体91の土手部91aの変位方向を示す。
 第1の起歪体91の下面中央に上向きの矢印で示す荷重Nがかかっている。これは、ナット6から第1の起歪体91の受圧部91bに受ける荷重Nを示す。第1の起歪体91の土手部91aには荷重Nに対する抗力N/2がかかっている。第1の起歪体91は、荷重Nと抗力N/2によって3点曲げが行なわれる。3点曲げにより、第1の起歪体91は中央部が凸状に反り上がる曲げ変形を生じる。
 この状態からさらに荷重Nを増加する場合、第1の起歪体91の変形は大きくなって、土手部91aは太い矢印の方向へ開くように変位する。このとき、第2の起歪体92は上面をキャリパ筐体2の内壁によって固定支持されているため変形せず、第1の起歪体91の土手部91aとの接触面で変位は発生しない。このため、第1の起歪体91の土手部91aと、第2の起歪体92の接触面の間に相対変位が生じ、接触面で滑りが発生する。滑りが発生すると、変位を妨げる向きに摩擦力Fが発生する。摩擦力Fは摩擦係数μと抗力N/2の積で表され、摩擦係数μがゼロであれば摩擦力Fは発生しないが、摩擦係数μがゼロでないときは摩擦力Fが働いて、第1の起歪体91の変形を妨げる。
 図13は支持面92bのない荷重センサ9において、荷重Nを減少していく過程で第1の起歪体91にかかる力の釣り合いを説明する図である。図12に対して、太い矢印の方向と摩擦力Fの方向が異なる。
 3点曲げの状態から荷重Nを減少する場合、第1の起歪体91の変形は小さくなって、土手部91aは図中の太い矢印の向きに閉じるように変位する。この変位により、第1の起歪体91の土手部91aと、第2の起歪体92の接触面の間に相対変位が生じ、接触面で滑りが発生する。このとき、滑りに伴う摩擦力Fは、土手部91aの変位を妨げる向きに発生するので、第1の起歪体91の変形が戻りにくくなる。
 図14は、支持面92bのない荷重センサ9の荷重-歪特性を示す図である。図において、実線は摩擦係数μがゼロでないときの荷重-歪特性を示す。図中の矢印で、荷重Nが増加する過程(A特性)と荷重Nが減少する過程(B特性)を示す。点線は摩擦係数μがゼロのときの荷重-歪特性を示す。
 荷重Nが増加する過程では、摩擦力Fにより第1の起歪体91が変形しにくくなるため、点線で示す摩擦係数μがゼロのときの荷重-歪特性よりも傾きが小さいA特性に沿って推移する。荷重Nが減少する過程では、摩擦力Fにより起歪体91の変形が戻りにくくなるため、摩擦係数μがゼロのときの荷重-歪特性よりも傾きが大きいB特性に沿って推移する。荷重の増減の切り替わりでは、A特性のライン上からB特性のライン上へ、またB特性のライン上からA特性のライン上へ漸近するように推移する。このA特性とB特性の切り替わりにおいて、荷重-歪特性は荷重増減の履歴の影響(ヒステリシス)が現れる。
 支持面92bのない荷重センサ9は、荷重が増減したときに荷重の値が前記のヒステリシスの影響を受けるため、正確な値を得ることが難しい。また、この荷重センサ9を電動ブレーキ1に適用した場合、制動の履歴によって荷重の測定値が変わってしまうため、細かな制動力コントロールができず、荷重センサを用いる利点が得られなくなる恐れがある。
 次に、支持面92bを設けた本発明の荷重センサ9について図3ないし図5に沿って説明する。
 図3は本発明の荷重センサ9において、荷重Nを増加する過程での第1の起歪体91および第2の起歪体92にかかる力の釣り合いを説明する図である。
 図3において、Nは荷重、μは摩擦係数、Fは摩擦力である。図中の矢印は起歪体91、92にかかる力の位置と方向を示す。また、太い矢印は起歪体91、92の接触面の変位方向を示す。実線は第1の起歪体91、点線は第2の起歪体92にかかる力および変位を示す。
 第1の起歪体91の下面中央に上向きの矢印で示す荷重Nがかかっている。これは、ナット6から第1の起歪体91の受圧部91bに受ける荷重Nを示す。第1の起歪体91の土手部91aには荷重Nに対する抗力N/2がかかっている。第1の起歪体91は、荷重Nと抗力N/2によって3点曲げが行なわれる。3点曲げにより、第1の起歪体91は中央部が凸状に反り上がる曲げ変形を生じる。この状態からさらに荷重Nを増加する場合、第1の起歪体91の変形は大きくなって、土手部91aは太い矢印の方向へ開くように変位する。
 第2の起歪体92は、第1の起歪体91の土手部91aとの接触面で荷重N/2を受け、支持面92bでキャリパ筐体2から荷重Nに対する反力Nを受けて、3点曲げが行なわれる。3点曲げにより、第2の起歪体92は中央部が下に窪む曲げ変形を生じる。この状態からさらに荷重Nを増加する場合、第2の起歪体92の変形は大きくなって、第1の起歪体91の土手部91aとの接触面が太い点線矢印の方向へ開くように変位する。
 このとき、第1の起歪体91の土手部91aの変位と、第2の起歪体92の接触面の変位は互いに変位方向が同じとなることで、相対変位が少なくなる。相対変位が少なくなることで接触面に生じる滑りは減少し、摩擦力Fが小さくなるので第1の起歪体91の変形を妨げなくなる。したがって、荷重-歪特性(A特性)は、摩擦係数μがゼロの時の傾きを維持できるようになる。
 図4は支持面92bを設けた本発明の荷重センサ9において、荷重Nを減少していく過程で第1の起歪体91および第2の起歪体92にかかる力の釣り合いを説明する図である。
 3点曲げの状態から荷重Nを減少する場合、第1の起歪体91の変形は小さくなって、土手部91aは図中の太い矢印の向きに閉じるように変位する。また、第2の起歪体92の変形も小さくなって、第1の起歪体91の土手部91aとの接触面は太い点線矢印の方向へ閉じるように変位する。このとき、第1の起歪体91の土手部91aの変位と、第2の起歪体92の接触面の変位は互いに変位方向が同じとなることで、相対変位を少なくすることができる。相対変位が少なくなると滑りの量も減少するため、摩擦力Fが小さくなって第1の起歪体91の変形を妨げなくなる。したがって、荷重-歪特性(B特性)は、摩擦係数μがゼロの時の傾きを維持できるようになる。
 図5は支持面92bを設けた本発明の荷重センサ9の荷重-歪特性を示す図である。
 第1の起歪体9の土手部91aの変位と、第2の起歪体92の接触部の変位を完全に一致させることができれば、相対変位はゼロとなり、第1の起歪体91の変形を妨げる滑りによる摩擦力Fは発生しなくなる。したがって、荷重増加時のA特性と、荷重減少時のB特性は、ともに摩擦係数μがゼロのときの荷重-歪特性に一致するようになり、可逆的となるのでヒステリシスは発生しなくなる。
 ここで、第1の起歪体9の土手部91aの変位と、第2の起歪体92の接触部の変位を完全に一致させることができなくても、相対変位の低減に繋がるので、滑りによる摩擦力Fを低減することができる。
 以上より、第2の起歪体92に支持面92bを設けることで、荷重-歪特性のヒステリシスの低減が可能となる。
 第1の起歪体91の土手部91aの変位と、第2の起歪体92の接触面の変位を一致させる方法について図6を用いて説明する。
 図6は本発明の荷重センサ9の第2の起歪体92の変形を説明する説明図である。2箇所の荷重N/2は第1の起歪体91の土手部91aから受けている荷重を表す。また、支持点は第2の起歪体92に設けられている支持面92bを表す。Lは荷重点と支持点との距離、Δxは第2の起歪体92の接触面の変位、t1は第2の起歪体92の中立面NSから接触面までの厚み方向の距離、EIは曲げ剛性を示す。
 第2の起歪体92は、荷重と支持点により3点曲げ構造となっている。荷重がかかると第2の起歪体92は図のように中央部が下方向に窪むたわみ変形が起きる。たわみ変形が生じているとき、第2の起歪体92の中立面NSでは図の横方向に変位を生じないが、中立面NSから離れた上面と下面はたわみ角によって傾斜するため、変位が発生する。上面では中央に閉じる方向に変位が生じ、下面(接触面)では中央から外側に開く方向に変位を生じる。第2の起歪体92の接触面の変位Δxは、中立面NSから下面までの距離t1の影響を受ける。中立面NSから下面までの距離t1を変更すると、厚みも連動して変更される。曲げ剛性EIは厚みの3乗に比例するので、例えば第2の起歪体92の厚みを薄くするとたわみ変形が劇的に大きくなり、接触面の変位Δxは大きくなる。
 第2の起歪体92の接触面の変位Δxは、支持条件によっても影響を受ける。第2の起歪体92の荷重点と支持点の距離Lを長くすると接触点のたわみ角が大きくなるので、中立面NSから下面までの距離t1による変位Δxは大きくなる。
 本実施例の荷重センサ9では、第1の起歪体91の厚みに対して第2の起歪体92の厚みを薄くする例を示している。第2の起歪体92の厚みが第1の起歪体91の厚みより薄くなると、第2の起歪体92の曲げ剛性EIが低くなって変形しやすくなるので、第2の起歪体92の変位Δxが第1の起歪体91の土手部91aの変位よりも大きくなりヒステリシスの原因となる。そこで、第2の起歪体92に設けられている支持面92bの幅を広くすることにより、荷重点と支持点の距離Lを短くすることでたわみ角を低減し、変位Δxを小さく抑えた。荷重点と支持点の距離Lの長さについては、有限要素法を用いた構造解析によって第2の起歪体92の接触面の変位Δxを見積り、第1の起歪体91の土手部91aの変位と一致するときの値で設計すればよい。
 以上、本実施例の荷重センサ9および電動ブレーキ1は、歪センサ93と、前記歪センサ93を搭載した第1の起歪体91と、前記第1の起歪体91と荷重方向に直列に配置した第2の起歪体92とを有する荷重センサ9において、荷重Nが作用したときに、第1の起歪体91の接触面における変位方向が外側となるように第1の起歪体91の変形形状を設定するとともに、第2の起歪体92の接触面における変位方向が外側となるように第2の起歪体92の変形形状を設定した。
 これによれば、第1の起歪体91の土手部91aの変位方向と、第2の起歪体92の接触部の変位方向を一致させて相対変位を低減することにより、荷重センサ9の荷重-歪特性に発生するヒステリシスを低減できるので、荷重Nを高精度に測定することができるようになる。また、荷重Nを正確に測定できるようになるため、電動ブレーキ1の制動力制御をきめ細かく設定できるので、車輌の乗り心地改善に貢献できる。
 本実施例では、第1の起歪体91と第2の起歪体92をスラスト荷重方向に直列に配置し、その接触面においてスラスト荷重を受けたときの第1の起歪体91の変位と、第2の起歪体92の変位が同じ方向となるようにそれぞれの起歪体91、92の変形形状を設定しているので、接触面での相対変位を低減することができる。したがって、ヒステリシスを低減でき、荷重Nを高精度に測定することができる。
(実施例2)
 次に、本発明による荷重センサ9の第2の実施例を図7ないし図9に沿って説明する。
 図7は、本発明の荷重センサ9の構成を示す斜視断面図である。図7に示す本実施例は、図2の構成に対して、第2の起歪体92の形状が異なる。第2の起歪体92を除く他の構成については、再度の説明となるため省略する。
 第2の起歪体92は、第1の起歪体91と同じ形状であり、面対称となるように配置されている。第1の起歪体91と第2の起歪体92を同じ部品で構成することにより、荷重Nがかかったときに同じ変形を得ることができ、また、別形状の部品を設けるよりも量産効果が得られる。第2の起歪体92は、土手部(第2支持部)92aを第1の起歪体91の土手部(第1支持部)91aと向かい合わせ、接触面に対して鏡像の位置関係となるように配置する。
 歪センサ93、中継基板94、配線95は、少なくとも一方の起歪体に設ける。歪センサ93をそれぞれの起歪体に設ける場合は、一方の歪センサ93が故障して出力を得られない状態に陥っても、故障していないもう一方の出力が得られるのでフェールセーフを実現でき、信頼性の向上に貢献できる。また、1つの起歪体91上に2つの歪センサ93を設ける構成とするよりも、2つの起歪体にそれぞれ歪センサ93を設けることによって、歪センサ93を2つ搭載する歩留まりよりも1つ搭載する歩留まりのほうが高いので、生産性の改善につなげることができる。
 図8、図9は、本発明の第1の起歪体91および第2の起歪体92にかかる力の釣り合いを説明する図である。
 図8は荷重Nを増加する過程の力の釣り合いを示している。ナット6からの荷重Nは第1の起歪体91に設けられた受圧部91bにかかっている。第1の起歪体91は、土手部91aで抗力N/2を受けて3点曲げ構造となっている。第1の起歪体91は、荷重Nがかかることによって太い矢印で示すように土手部91aが外側に開く方向に曲げ変形を起こす。一方、第2の起歪体92は、第1の起歪体91から2箇所の土手部92aに荷重N/2を受けている。第2の起歪体92は、キャリパ筐体2の内壁に支持面92bで支持されて3点曲げ構造となっている。第2の起歪体92は荷重Nがかかることによって太い点線矢印で示すように土手部92aが外側に開く方向に曲げ変形を起こす。このとき、第1の起歪体91の土手部91aの接触面の変位と、第2の起歪体92の土手部92aの接触面の変位は、互いに同じ変位、方向であることから相対変位がなく、滑りを生じない。滑りによって生じる摩擦力Fが発生しないため、第1の起歪体91の変形を阻止する力が働かなくなり、荷重-歪特性は摩擦係数μがゼロのときと同じ傾きとなる。
 図9は荷重Nを減少する過程の力の釣り合いを示している。第1の起歪体91、第2の起歪体92はともに、荷重Nを減少させると土手部91a、92aが太い矢印で示すように中央に向かって閉じる方向に変位する。ここで生じる変位も、同じ変位、方向であることから相対変位がなく、滑りを生じない。このため、滑りによって生じる摩擦力Fが発生しないので第1の起歪体91の変形を阻止する力が働かず、荷重-歪特性は摩擦係数μがゼロのときと同じ傾きとなる。
 荷重Nを増加する過程、および荷重Nを減少させる過程はともに荷重-歪特性が同じ傾きとなるため、ヒステリシスの発生を抑制することができる。
 以上、本実施例の荷重センサ9および電動ブレーキ1は、歪センサ93と、前記歪センサ93を搭載した第1の起歪体91と、前記第1の起歪体91と荷重方向に直列に配置した第2の起歪体92とを有する荷重センサ9において、荷重Nが作用したときに、第1の起歪体91の接触面における変位方向が外側となるように第1の起歪体91の変形形状を設定するとともに、第2の起歪体92の接触面における変位方向が外側となるように第2の起歪体92を第1の起歪体91と同じ形状とした。
 これによれば、第1の起歪体91の土手部91aの変位方向と、第2の起歪体92の土手部92aの変位方向を一致させて相対変位を低減することにより、荷重センサ9の荷重-歪特性に発生するヒステリシスを低減できるので、荷重Nを高精度に測定することができるようになる。また、荷重Nを正確に測定できるようになるため、電動ブレーキ1の制動力制御をきめ細かく設定できるので、車輌の乗り心地改善に貢献できる。
(実施例3)
 以下、本発明の一実施例を図10に沿って説明する。
 図10は、本発明の荷重センサ9の構成を示す斜視断面図である。
 実施例1で説明した荷重センサ9の構造に対して、第1の起歪体92と第2の起歪体92の間に中間部材96を設けている。中間部材96は、例えばゴムなどの弾性体である。中間部材96は、細長い円柱状のころやベアリング、ばね部材としても良い。中間部材96は最大荷重がかかったときに完全に潰れることなく、厚みが残るようにヤング率および厚みを設定する。
 中間部材96を介在させることにより、第1の起歪体91の土手部91aと第2の起歪体92の接触部の間に相対変位が生じたときに、中間部材96のせん断方向の変形によって相対変位が吸収される。これにより、第1の起歪体91の土手部91aと中間部材96間の固着、および第2の起歪体92の接触面と中間部材96間の固着を保つことができ、どの面においても滑りが発生しない。また、第1の起歪体91の土手部91aと第2の起歪体92の接触面の間が中間部材96によって離間され直接接触しないため摩擦力Fが発生しない。
 本実施例によれば、中間部材96のせん断変形による第1の起歪体91の土手部91aと第2の起歪体92の接触面の相対変位を吸収する効果と、中間部材96の厚みで第1の起歪体91と第2の起歪体92を離間させて摩擦力を発生させない効果が得られる。これにより、荷重センサ9の荷重-歪特性はヒステリシスのない特性が得られる。
 以上、本実施例の荷重センサ9および電動ブレーキ1は、歪センサ93と、前記歪センサ93を搭載した第1の起歪体91と、前記第1の起歪体91と荷重方向に直列に配置した第2の起歪体92とを有する荷重センサ9において、第1の起歪体91の土手部91aと第2の起歪体92の間に中間部材96を設ける構成とした。
 これによれば、第1の起歪体91の土手部91aの変位を中間部材96のせん断変形で吸収することにより、荷重センサ9の荷重-歪特性に発生するヒステリシスを低減できるので、荷重Nを高精度に測定することができるようになる。また、荷重Nを正確に測定できるようになるため、電動ブレーキ1の制動力制御をきめ細かく設定できるので、車輌の乗り心地改善に貢献できる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1 電動ブレーキ
2 キャリパ筐体
3 電動モータ
4 減速ギヤ
5 リードスクリュー
6 ナット
7 ピストン
8 ブレーキパッド
9 荷重センサ
91 第1の起歪体
91a 土手部(第1支持部)
91b 受圧部(第1入力部)
92 第2の起歪体
92a 土手部(第2支持部)
92b 支持面(第2入力部)
92c 接触面(第2支持部)
93 歪センサ(第1の歪センサ)
94 中継基板
95 配線
96 中間部材
10 ディスク
N 荷重
μ 摩擦係数
F 摩擦力

Claims (6)

  1.  第1の歪センサと、
     該第1の歪センサが搭載される第1の起歪体と、
     該第1の起歪体に対して荷重方向に直列に配置される第2の起歪体と、
    を備える荷重センサであって、
     前記第1の起歪体は、前記荷重方向に沿って前記第2の起歪体に向かって荷重が入力される第1入力部と、該第1入力部から荷重の入力方向に交差する方向に互いに離れた位置に配置されて前記第2の起歪体に対向する一対の第1支持部とを有し、
     前記第2の起歪体は、前記荷重方向に沿って前記第1の起歪体に向かって荷重が入力される第2入力部と、該第2入力部から荷重の入力方向に交差する交差方向に互いに離れた位置に配置されて前記第1の起歪体に対向して前記一対の第1支持部にそれぞれ接触する一対の第2支持部とを有する
     ことを特徴とする荷重センサ。
  2.  前記第2入力部は、前記第2の起歪体の前記第2支持部が設けられている面とは逆の面に一段高く突出する支持面により構成されていることを特徴とする請求項1に記載の荷重センサ。
  3.  前記第2の起歪体に搭載される第2の歪センサを有することを特徴とする請求項1または2に記載の荷重センサ。
  4.  前記第1の起歪体と前記第2の起歪体は、同じ形状を有しており、面対称となるように配置されていることを特徴とする請求項1から請求項3のいずれか一項に記載の荷重センサ。
  5.  前記第1支持部と前記第2支持部との間に中間部材を設けたことを特徴とする請求項1から請求項4のいずれか一項に記載の荷重センサ。
  6.  請求項1から請求項5のいずれか一項に記載の荷重センサを用いた電動ブレーキ。
     
PCT/JP2018/042228 2017-12-11 2018-11-15 荷重センサおよび電動ブレーキ WO2019116817A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-236700 2017-12-11
JP2017236700A JP2019105469A (ja) 2017-12-11 2017-12-11 荷重センサおよび電動ブレーキ

Publications (1)

Publication Number Publication Date
WO2019116817A1 true WO2019116817A1 (ja) 2019-06-20

Family

ID=66820241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042228 WO2019116817A1 (ja) 2017-12-11 2018-11-15 荷重センサおよび電動ブレーキ

Country Status (2)

Country Link
JP (1) JP2019105469A (ja)
WO (1) WO2019116817A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7160651B2 (ja) * 2018-11-29 2022-10-25 日立Astemo株式会社 電動ブレーキ
KR102355270B1 (ko) * 2020-08-06 2022-02-07 한국철도기술연구원 축상고무스프링 작용력 측정을 위한 라이너 구조 및 이를 이용한 작용력 측정방법
KR102355265B1 (ko) * 2020-08-06 2022-02-07 한국철도기술연구원 축상고무스프링 형식 철도차량 윤중측정구조 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412875A (en) * 1977-06-28 1979-01-30 Philips Nv Flat type dynamometer
JPH01101428A (ja) * 1987-10-15 1989-04-19 Kyowa Electron Instr Co Ltd 荷重変換器
JPH0221231A (ja) * 1988-07-11 1990-01-24 Kyowa Electron Instr Co Ltd 台座付荷重変換器
JPH0267937A (ja) * 1988-07-13 1990-03-07 Philips Gloeilampenfab:Nv 圧力又は力センサ
JPH02272336A (ja) * 1989-04-14 1990-11-07 Kyowa Electron Instr Co Ltd 台座付荷重変換器
JPH11211589A (ja) * 1998-01-28 1999-08-06 Kawatetsu Advantech Kk 耐圧防爆型ロードセル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412875A (en) * 1977-06-28 1979-01-30 Philips Nv Flat type dynamometer
JPH01101428A (ja) * 1987-10-15 1989-04-19 Kyowa Electron Instr Co Ltd 荷重変換器
JPH0221231A (ja) * 1988-07-11 1990-01-24 Kyowa Electron Instr Co Ltd 台座付荷重変換器
JPH0267937A (ja) * 1988-07-13 1990-03-07 Philips Gloeilampenfab:Nv 圧力又は力センサ
JPH02272336A (ja) * 1989-04-14 1990-11-07 Kyowa Electron Instr Co Ltd 台座付荷重変換器
JPH11211589A (ja) * 1998-01-28 1999-08-06 Kawatetsu Advantech Kk 耐圧防爆型ロードセル

Also Published As

Publication number Publication date
JP2019105469A (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2019116817A1 (ja) 荷重センサおよび電動ブレーキ
US7404330B2 (en) Pressure sensor
EP2270455B1 (en) Force sensor apparatus
US10527512B2 (en) Integrated pressure sensor with double measuring scale, pressure measuring device including the integrated pressure sensor, braking system, and method of measuring a pressure using the integrated pressure sensor
US7578196B2 (en) Integrated pressure sensor with double measuring scale and a high full-scale value
US5915281A (en) Silicon force and displacement sensor
CA2587978C (en) Brake force transducer for electric brakes
US11105693B2 (en) Torque sensor
US20080196491A1 (en) Integrated pressure sensor with a high full-scale value
JP4044761B2 (ja) アクチュエータ組み込み式の力センサー
EP3130899A1 (en) Strain sensor and load detector using same
US7121154B2 (en) Load sensor having hourglass-shaped coil spring
JP4122246B2 (ja) 荷重センサ
KR101573367B1 (ko) 압저항형 세라믹 압력센서
US11860050B2 (en) Load detector
US9885624B2 (en) Strain sensor, and load detection device using same
WO2020066328A1 (ja) 荷重センサ、電動ブレーキ
JP6820102B2 (ja) トルク検出器及びトルク検出器の製造方法
JP4580243B2 (ja) 押圧力検出器の取付構造
US11137296B2 (en) Force sensor with MEMS-based device and force touching member
JP2018036118A (ja) 電動ブレーキ用推力センサ
KR102129890B1 (ko) 스프링 구조 일체형 토크 센서 및 그 구조물
KR102333526B1 (ko) 토크 검출기 및 토크 검출기의 제조 방법
JPH08145819A (ja) 荷重センサー
JPH0543041U (ja) 軸力センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887295

Country of ref document: EP

Kind code of ref document: A1