WO2019116736A1 - 圧接型半導体装置及び圧接型半導体装置の製造方法 - Google Patents
圧接型半導体装置及び圧接型半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2019116736A1 WO2019116736A1 PCT/JP2018/039473 JP2018039473W WO2019116736A1 WO 2019116736 A1 WO2019116736 A1 WO 2019116736A1 JP 2018039473 W JP2018039473 W JP 2018039473W WO 2019116736 A1 WO2019116736 A1 WO 2019116736A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode plate
- pressure
- semiconductor chip
- semiconductor device
- contact type
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 239
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000003825 pressing Methods 0.000 claims abstract description 11
- 230000007246 mechanism Effects 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 abstract description 35
- 238000009413 insulation Methods 0.000 abstract description 19
- 230000007774 longterm Effects 0.000 abstract description 4
- 230000008646 thermal stress Effects 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 22
- 238000003466 welding Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 11
- 239000011888 foil Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000005493 welding type Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/52—Mounting semiconductor bodies in containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/04—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
Definitions
- the present invention relates to a pressure contact type semiconductor device, and more particularly to a pressure contact type semiconductor device for protecting insulation of the outer peripheral portion of a semiconductor chip and a method of manufacturing the pressure contact type semiconductor device.
- the semiconductor substrate serves as a conduction path for supplying a current during ON operation, and is an insulating layer for interrupting the current during OFF operation and holding a high voltage. Play a role as A high voltage of several kilovolts to several tens of kilovolts is applied to the semiconductor device. Even if the semiconductor substrate has sufficient insulation performance, creeping discharge is generated in the gas layer on the surface of the surface protective layer between the surface electrode and the end of the semiconductor substrate, resulting in breakdown of the semiconductor device. there is a possibility.
- the surface of the semiconductor device is protected by insulatingly protecting the outer peripheral portion of the semiconductor chip inside the device with a resin coating such as polyimide or silicone rubber.
- semiconductor chips have been replaced with thyristors and IGBTs and MOSFETs, and semiconductor chips have been made into multiple chips along with replacement of semiconductor chips (elements). Further, as the breakdown voltage design of the element is advanced, the end distance which is the distance between the end of the surface electrode and the end of the semiconductor substrate, that is, the distance between the outer periphery of the semiconductor chip is reduced.
- Patent Document 1 in order to ensure insulation of the outer peripheral portion of the semiconductor chip, the outer periphery of the semiconductor chip is adhered with a chip frame by an adhesive, thereby the outer periphery of the semiconductor chip There has been proposed a pressure contact type semiconductor device which strengthens the insulation of the part.
- thermal stress is generated from the difference in the thermal expansion coefficient of each member with respect to the adhesive between the semiconductor chip and the chip frame due to temperature change of the semiconductor chip in long-term operation
- the chip frame may be peeled off from the outer peripheral portion of the semiconductor chip.
- the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to enhance the insulation of the outer peripheral portion of a semiconductor chip by a simple assembly process.
- the pressure-contact type semiconductor device includes a semiconductor chip whose back surface is connected to a first electrode plate, a second electrode plate facing the first electrode plate with the semiconductor chip interposed therebetween, and a semiconductor chip disposed on the surface of the semiconductor chip. It has a flexible member, and a frame which has a projecting cover for pressing the flexible member on the side and is disposed to surround the semiconductor chip.
- the method for manufacturing a pressure-contact type semiconductor device comprises the steps of: disposing a semiconductor chip on a first electrode plate; disposing an intermediate electrode on a second electrode plate; and surrounding the semiconductor chip on the first electrode plate.
- Arranging a frame arranging a module case to surround the frame, arranging a flexible member between a protruding cover on a side of the frame and the surface of the semiconductor chip; Placing a second electrode plate on the module case so that the intermediate electrode is positioned on the semiconductor chip, pressing the first electrode plate, the second electrode plate, and the module case by a pressure welding jig And electrically connecting the first electrode plate, the second electrode plate, the intermediate electrode, and the semiconductor chip, and performing pressure contact fixation of the flexible member to the outer peripheral portion by the cover. That.
- the cover provided on the frame presses the flexible member disposed on the surface of the semiconductor chip, peeling of the flexible member due to thermal stress can be prevented. Long-term insulation reliability of the outer periphery of the chip can be achieved.
- insulation protection of the outer peripheral portion of the semiconductor chip can be performed by a simple process.
- FIG. 1 is a schematic view showing a pressure contact type semiconductor device according to a first embodiment of the present invention.
- FIG. 1 is a cross-sectional view of a pressure-contact type semiconductor device according to Embodiment 1 of the present invention.
- FIG. 1 is a cross-sectional view showing a semiconductor chip of a pressure-contact type semiconductor device according to Embodiment 1 of the present invention.
- FIG. 3 is a cross-sectional view showing a pressure welding method of the pressure welding-type semiconductor device according to the first embodiment of the present invention.
- FIG. 3 is a view showing an assembly pattern before pressure contact of the pressure-contact type semiconductor device according to the first embodiment of the present invention.
- FIG. 1 is a schematic view showing a pressure contact type semiconductor device according to a first embodiment of the present invention.
- FIG. 1 is a cross-sectional view of a pressure-contact type semiconductor device according to Embodiment 1 of the present invention.
- FIG. 1 is a cross-sectional view showing a semiconductor chip of
- FIG. 7 is a cross-sectional view of a pressure-contact type semiconductor device according to a second embodiment of the present invention.
- FIG. 7 is a cross-sectional view of a pressure-contact type semiconductor device according to a third embodiment of the present invention.
- FIG. 10 is a cross-sectional view of a pressure-contact type semiconductor device according to a fourth embodiment of the present invention.
- FIG. 13 is a cross-sectional view of a pressure contact type semiconductor device according to a fifth embodiment of the present invention.
- FIG. 16 is a cross-sectional view of a pressure contact type semiconductor device according to a sixth embodiment of the present invention.
- FIG. 21 is a cross-sectional view of a pressure contact type semiconductor device according to a seventh embodiment of the present invention.
- FIG. 1 is a schematic view of a pressure-contact type semiconductor device 100 according to a first embodiment.
- FIG. 2 is a cross-sectional view of the pressure-contact type semiconductor device 100 according to the first embodiment, and is a cross-sectional view taken along the line AA of FIG.
- the pressure contact type semiconductor device 100 includes a semiconductor chip 11, a first electrode plate 12, a second electrode plate 13, an intermediate electrode 14, a frame 15, a flexible member 16, and a cover. And a module case 18.
- the configuration of the semiconductor chip 11 is shown below.
- FIG. 3 is a cross-sectional view showing the semiconductor chip 11 of the pressure-contact type semiconductor device 100 according to the first embodiment.
- the semiconductor chip 11 has a semiconductor substrate 110, a first electrode 111, a second electrode 112, and a surface protection member 113.
- the second electrode 112 side of the semiconductor chip 11 is a front surface, and the first electrode 111 side is a rear surface.
- the detailed structure provided inside the semiconductor substrate 110 is omitted because it differs depending on each element structure.
- the semiconductor chip 11 may be a transistor such as an insulated gate bipolar transistor (IGBT) or a metal oxide semiconductor field effect transistor (MOSFET), a gate turn-off thyristor (GTO), or the like.
- the first electrode 111 is provided on the back surface of the semiconductor substrate 110.
- the second electrode 112 is provided on the surface of the semiconductor substrate 110.
- a portion between the second electrode 112 and the end portion of the semiconductor substrate 110 provided along the periphery of the surface of the semiconductor chip 11 is referred to as an outer peripheral portion 114.
- the surface protection member 113 is provided over the entire circumference of the outer peripheral portion 114 of the semiconductor chip 11.
- the surface protection member 113 is made of an insulating member such as TEOS, Si 3 N 4 , DLC (Diamond Like Carbon), SIPOS (Semi Insulating polycrystal silicon), parylene, or polyimide.
- the pressure-contact type semiconductor device 100 includes three semiconductor chips 11 as shown in FIG.
- the number of semiconductor chips 11 included in the pressure contact type semiconductor device 100 is not limited to three.
- Examples of the base material of the semiconductor chip 11 include semiconductor materials such as Si, SiC, GaN, and Ga 2 O 3 .
- the intermediate electrode 14 is disposed on the second electrode 112 of the semiconductor chip 11.
- the intermediate electrode 14 is sandwiched between the semiconductor chip 11 and the second electrode plate 13, and electrically connects the second electrode 112 of the semiconductor chip 11 to the second electrode plate 13.
- the intermediate electrode 14 has a property of expanding and contracting like a spring.
- the intermediate electrode 14 may use, for example, the elasticity of a bulk metal, or may have a spring structure formed by metal processing.
- the frames 15 are provided to surround the individual semiconductor chips 11 respectively.
- the frame 15 has a function of positioning the semiconductor chip 11.
- the frame 15 has electrical insulation, and is made of, for example, an insulating resin such as ceramic, PPS, PEEK, epoxy, or fluorine resin.
- the flexible member 16 is disposed so as to cover the outer peripheral portion 114 of the semiconductor chip 11.
- the flexible member 16 is a cured product of a flexible insulator.
- the term "flexibility" means that the shape is sufficiently deformed when stress is applied from the outside, and specifically, it is desirable that the Young's modulus is 100 megapascal or less. Silicone, epoxy, polyimide, polyamide, fluorocarbon resin, composite resin of them, etc. are mentioned as an insulating material which has such a characteristic and can endure high temperature in a semiconductor device.
- the cover 17 is provided on the side surface of the frame 15, protrudes inward from the end of the outer peripheral portion 114 of the semiconductor chip 11, and contacts the flexible member 16.
- the cover 17 has electrical insulation, and is made of, for example, an insulating resin such as ceramic, PPS, PEEK, epoxy, or fluorine resin.
- the first electrode plate 12 and the second electrode plate 13 sandwich the semiconductor chip 11, the intermediate electrode 14, the frame 15, the flexible member 16, and the cover 17.
- the first electrode plate 12 is also referred to as a base plate electrode
- the second electrode plate 13 is also referred to as a top plate electrode.
- the semiconductor chip 11 is mounted on the first electrode plate 12.
- the second electrode plate 13 is disposed above the semiconductor chip 11 and the intermediate electrode 14 so as to face the first electrode plate 12.
- the back surface of the semiconductor chip 11 is disposed on the first electrode plate 12 using, for example, a solder.
- the first electrode plate 12 is electrically connected to the first electrode 111 of the semiconductor chip 11.
- Power is supplied to the semiconductor chip 11 from the outside of the pressure-contact type semiconductor device 100 through the first electrode plate 12 and the second electrode plate 13.
- An example of the material of the first electrode plate 12 and the second electrode plate 13 is a copper plate.
- the first electrode plate 12 and the second electrode plate 13 are electrically connected to the semiconductor chip 11 and the intermediate electrode 14 while being pressure-welded to the semiconductor chip 11 by the module case 18.
- the frame 15 is sandwiched between the first electrode plate 12 and the second electrode plate 13. Since the first electrode plate 12 and the second electrode plate 13 are in pressure contact with the semiconductor chip 11 by the module case 18, the frame 15 is also in pressure contact.
- the cover 17 provided on the frame 15 is provided further toward the intermediate electrode 14 than the end of the outer peripheral portion 114 of the semiconductor chip 11 and is in contact with the flexible member 16.
- the flexible member 16 disposed so as to cover the two is press-fixed.
- the module case 18 is provided to surround the frame 15, and a portion in contact with the first electrode plate 12 and a portion in contact with the second electrode plate 13 are respectively joined.
- the module case 18 applies a force to press the first electrode plate 12 and the second electrode plate 13 toward the semiconductor chip 11.
- the pressure-contact type semiconductor device 100 includes the intermediate electrode 14 above the semiconductor chip 11, and the semiconductor chip 11 and the intermediate electrode 14 are vertically sandwiched by the first electrode plate 12 and the second electrode plate 13. ing.
- the frame 15 is also sandwiched by the first electrode plate 12 and the second electrode plate 13 in the vertical direction.
- the cover 17 is provided on the frame 15 and is provided further toward the intermediate electrode 14 side than the end of the outer peripheral portion 114 of the semiconductor chip 11 and is in contact with the flexible member 16.
- a module case 18 is provided to surround the frame 15.
- the semiconductor chip 11 is arranged on the first electrode plate 12 using a solder.
- the intermediate electrode 14 is arranged on the second electrode plate 13 using a solder.
- a frame 15 is disposed to surround the semiconductor chip 11 disposed on the first electrode plate 12, and a module case 18 is disposed to surround the frame 15.
- the flexible member 16 is disposed between the cover 17 and the outer peripheral portion 114 provided on the frame 15 and protruding inward from the end of the outer peripheral portion 114 on the surface of the semiconductor chip 11.
- the second electrode plate 13 is disposed on the module case 18 so that the intermediate electrode 14 is positioned on the second electrode 112 of the semiconductor chip 11 disposed on the first electrode plate 12.
- FIG. 4 is a cross-sectional view showing a pressure contact method of the pressure contact type semiconductor device according to the first embodiment.
- the pressure contact is performed using the pressure contact jig 50.
- the pressure welding jig 50 includes a rod 51, a nut 52, a first plate 53, and a second plate 54.
- the rod 51 is passed through a hole provided in the first plate 53 and a hole provided in the second plate 54. Both ends of the rod 51 are bolts (not shown) having threads.
- the pressing jig 50 presses the first electrode plate 12 and the second electrode plate 13 against the semiconductor chip 11. Specifically, the first electrode plate 12 and the second electrode plate 13 are pressure-welded to the semiconductor chip 11 by tightening the nut 52 on the bolt of the rod 51. According to this method, the first electrode plate 12 and the second electrode plate 13 are electrically connected to the semiconductor chip 11 through the intermediate electrode 14 to form a main circuit.
- the pressure welding jig 50 may be configured to further include a buffer member 55.
- the buffer members 55 are respectively disposed between the first plate 53 and the first electrode plate 12 and between the second plate 54 and the second electrode plate 13.
- the buffer member 55 causes the pressure contact type semiconductor device 100 to be in pressure contact with a uniform force.
- the semiconductor chip 11 and the intermediate electrode 14 first come in contact with each other. Since the intermediate electrode 14 is formed into a spring structure by bulk metal or metal processing, it can be shrunk to a distance in which the frame 15 is held by the first electrode plate 12 and the second electrode plate 13. Therefore, since the first electrode plate 12 and the second electrode plate 13 are electrically connected to the semiconductor chip 11 through the intermediate electrode 14, the main part of the pressure-contact type semiconductor device 100 is formed by pressure contact using the pressure contact jig 50. A circuit can be formed.
- the cover 17 is provided on the side surface of the frame 15 and protrudes inward beyond the end of the outer peripheral portion 114 of the semiconductor chip 11.
- the cover 17 presses and fixes the flexible member 16 by a pressing force of the pressing jig 50.
- the cover 17 press-fixes the flexible member 16 to the outer peripheral portion 114 of the semiconductor chip 11 so that the outer peripheral portion 114 of the semiconductor chip 11 is insulated by the frame 15 and the flexible member 16. Therefore, the main circuit formation of the pressure contact type semiconductor device 100 and the insulation protection of the semiconductor chip 11 can be achieved by pressure contact using the pressure contact jig 50.
- the first electrode plate 12 and the module case 18 and the second electrode plate 13 and the module case 18 are respectively pressure-welded by pressure-welding using the pressure-welding jig 50.
- the module case 18 is often made of ceramic in order to maintain the airtightness inside the pressure-contact type semiconductor device 100, and a portion in contact with the module case 18 and the first electrode plate 12, the module case 18 and the second electrode plate
- the part in contact with 13 is often pressed by metallizing ceramic and welding, but in the pressure-contact type semiconductor device 100 according to the first embodiment, the module case 18 and the first electrode plate 12, the module case 18 and the
- the pressure welding method of the two-electrode plate 13 is not particularly limited, and a known bonding method can be applied.
- the module case 18 includes the first electrode plate 12 and the first electrode plate 12.
- the main circuit formation of the press-contact type semiconductor device 100 and the insulation protection of the semiconductor chip 11 can be achieved even if the press jig 50 is removed.
- FIG. 5 is a view showing an assembly pattern of the semiconductor chip 11, the flexible member 16 and the cover 17 before pressure contact of the pressure contact type semiconductor device 100 according to the first embodiment.
- the flexible member 16 is placed on the outer peripheral portion 114 of the semiconductor chip 11.
- the flexible member 16 is fixed in advance to be fitted to the lower surface of the cover 17 of the frame 15.
- pressure bonding for forming pressure-contact type semiconductor device 100 can be performed without requiring a bonding process of flexible member 16 and frame 15 with an adhesive or the like.
- the flexible member 16 can be fixed between the semiconductor chip 11 and the cover 17. That is, since the bonding process of the frame 15 with an adhesive or the like is not required, the insulation protection of the outer peripheral portion 114 of the semiconductor chip 11 can be performed by a simple process.
- the semiconductor chip 11 and the first electrode plate 12 are brought into pressure contact with the first electrode plate 12 and the second electrode plate 13 using the pressure jig 50.
- the second electrode plate 13 and the intermediate electrode 14 are electrically connected, and the outer peripheral portion 114 of the semiconductor chip 11 is insulated by the frame 15 and the flexible member 16.
- the insulation protection of the semiconductor chip 11 can be achieved simultaneously with the formation of the main circuit of the pressure contact type semiconductor device 100 by the method of manufacturing the pressure contact type semiconductor device 100 according to the first embodiment.
- the insulation protection of the outer peripheral portion 114 of the semiconductor chip 11 can be performed by a simple process.
- the pressure-contact type semiconductor device 100 includes a semiconductor chip 11, a first electrode plate 12, a second electrode plate 13, an intermediate electrode 14, a frame 15, a flexible member 16, and a cover 17.
- the flexible member 16 is disposed so as to cover the outer peripheral portion 114 of the semiconductor chip 11.
- the cover 17 is provided on the frame 15, protrudes inward from the end of the outer peripheral portion 114 of the semiconductor chip 11, and contacts the flexible member 16.
- the frame 15 is sandwiched between the first electrode plate 12 and the second electrode plate 13.
- the pressure-contact type semiconductor device 100 includes the semiconductor chip 11, the first electrode plate 12, the second electrode plate 13 and the second electrode plate 13 by pressing the first electrode plate 12 and the second electrode plate 13 toward the semiconductor chip 11 by the module case 18.
- the intermediate electrode 14 is electrically connected to form a main circuit.
- the frame 15 Since the first electrode plate 12 and the second electrode plate 13 are in pressure contact with the semiconductor chip 11 by the module case 18, the frame 15 is also in pressure contact.
- the cover 17 provided on the frame 15 projects inward beyond the end of the outer peripheral portion 114 of the semiconductor chip 11 and is in contact with the flexible member 16, and is thus arranged to cover the outer peripheral portion 114 of the semiconductor chip 11
- the flexible member 16 is pressed.
- the cover 17 presses the flexible member 16 the flexible member 16 is press-fixed on the outer peripheral portion 114 of the semiconductor chip 11, so the outer peripheral portion 114 of the semiconductor chip 11 is the frame 15 and the flexible member 16. Insulated by
- the insulation protection of the semiconductor chip 11 can be achieved simultaneously with the formation of the main circuit of the pressure-contact type semiconductor device 100. Further, the flexible member 16 is pressed by the cover 17 provided on the frame 15, and the outer peripheral portion 114 of the semiconductor chip 11 is insulated and protected. Furthermore, since the flexible member 16 is pressurized by the cover 17 provided on the frame 15, peeling of the flexible member 16 from the outer peripheral portion 114 due to thermal stress can be prevented, and the outer peripheral portion of the semiconductor chip 11 is A long-term insulation reliability of 114 is achieved. In addition, since the bonding process of the frame 15 with an adhesive or the like is not required, the insulation protection of the outer peripheral portion 114 of the semiconductor chip 11 can be performed by a simple process.
- Second Embodiment The configuration of the pressure-contact type semiconductor device 200 according to the second embodiment of the present invention will be described.
- the description is abbreviate
- FIG. 6 is a cross-sectional view of a pressure-contact type semiconductor device 200 according to the second embodiment.
- a part of the cover 17 of the pressure-contact type semiconductor device 200 is in contact with the second electrode plate 13.
- a part of the cover 17 provided on the frame 15 contacts the second electrode plate 13, so the contact area between the second electrode plate 13 and the frame 15 is increased. This makes it possible to hold the frame 15 more stably.
- FIG. 7 is a cross-sectional view of a pressure-contact type semiconductor device 300 according to the third embodiment.
- the pressure-contact type semiconductor device 300 according to the third embodiment is configured such that the frame 15 is fixed to the first electrode plate 12 by the fastening member 21.
- the fastening member 21 for example, a fixing screw, a bolt or the like can be mentioned.
- the frame 15 is fixed to the first electrode plate 12 by the fastening member 21
- displacement of the frame 15 with respect to the semiconductor chip 11 can be suppressed.
- the process can be easily performed.
- the pressure applied to the flexible member 16 can utilize the pressure at which the frame 15 is fixed to the first electrode plate 12 by the fastening member 21, the pressure applied to the flexible member 16 is independent of the pressing force of the main circuit, Design of the pressure applied to the flexible member 16 is possible.
- FIG. 8 is a cross-sectional view of a pressure-contact type semiconductor device 400 according to the fourth embodiment.
- the pressure-contact type semiconductor device 400 according to the fourth embodiment is configured such that the frame 15 is fixed to the second electrode plate 13 by the fastening member 21.
- the fastening member 21 for example, a fixing screw, a bolt or the like can be mentioned.
- Embodiment 5 The configuration of a pressure-contact type semiconductor device 500 according to the fifth embodiment of the present invention will be described.
- the description is abbreviate
- FIG. 9 is a cross-sectional view of a pressure-contact type semiconductor device 500 according to the fifth embodiment.
- the pressure-contact type semiconductor device 500 according to the fifth embodiment is configured such that the frame 15 and the module case 18 are fitted with the fitting portion 31 interposed therebetween.
- a frame through the fitting portion 31 is further provided. As the module case 18 and the module case 18 are fitted, it is possible to fix the frame 15 more stably.
- FIG. 10 is a cross-sectional view of a pressure-contact type semiconductor device 600 according to the sixth embodiment.
- the pressure-contact type semiconductor device 600 according to the sixth embodiment has a configuration in which the frame 15 is provided with a gate wiring mechanism 41 for inputting a gate signal.
- the gate wiring mechanism 41 has a spring contact 42 for electrically connecting to the semiconductor chip 11.
- the spring contact 42 has an elastic function, and examples thereof include shapes such as a leaf spring, a disc spring, and a coil spring.
- the spring contactor 42 is electrically connected to the gate pad on the semiconductor chip 11. Are connected to form a control circuit.
- the frame 15 since the frame 15 includes the gate wiring mechanism 41 for inputting a gate signal, the main circuit formation, control circuit formation, and insulation are performed by the pressure-contact assembly process of the pressure-contact type semiconductor device 600. Reliability can be achieved simultaneously.
- Embodiment 7 The configuration of a pressure-contact type semiconductor device 700 according to a sixth embodiment of the present invention will be described. The description of the same or corresponding parts as in the first, second, third, fourth, fifth, and sixth embodiments will be omitted, and only different parts will be described.
- FIG. 11 is a cross-sectional view of a pressure-contact type semiconductor device 700 according to a seventh embodiment.
- the pressure-contact type semiconductor device 700 according to the seventh embodiment is configured to include a connection plate 60.
- the connection plate 60 is connected to the plurality of gate wiring mechanisms 41 and has a function of drawing out the control wiring from the outside of the module.
- the connection plate 60 includes a support member 61 for supporting the structure of the connection plate 60, a first electrode foil 62 for extracting the gate potential to the outside of the module, and a first for extracting the surface electrode potential of the semiconductor chip 11 to the outside.
- 2 electrode foil 63 the wiring board 60 can apply a printed circuit board technique.
- the support material 61 may be a glass epoxy substrate
- the first electrode foil 62 and the second electrode foil 63 may be copper foils
- the connection plate 60 may be integrally formed.
- connection plate 60 is pressure-welded between the second electrode plate 13 and the plurality of gate wiring mechanisms 41, and the gate wiring mechanism 41 and the first electrode are pressure-welded. Electrical contact between the foil 62 and the second electrode plate 13 and the second electrode foil 63 is achieved.
- the first electrode foil 62 is a first electric wire of the claims
- the second electrode foil 63 is a second electric wire of the claims.
- the pressure-contact type semiconductor device 700 connects the potentials of the plurality of gate wiring mechanisms 41, and the connection plate 60 for drawing out the gate potential and the surface electrode potential of the semiconductor element to the outside. Due to the provision, the main circuit formation, the control circuit formation, and the insulation reliability can be achieved simultaneously by the pressure-contact assembly process of the pressure-contact type semiconductor device 700.
- the present invention is not limited to the shapes described in the first to seventh embodiments, and within the scope of the invention, the embodiments can be freely combined or each embodiment can be appropriately modified or omitted. It is possible.
- the frame of the first embodiment may have a tubular shape, and the projecting cover may be disposed on the inner side surface of the tubular shape.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Die Bonding (AREA)
Abstract
圧接型半導体装置100は、第1電極板12と、第1電極板12に裏面が接続された半導体チップ11と、半導体チップを挟んで第1電極板12と対向する第2電極板13と、半導体チップ11の表面に配置された可撓性部材16と、可撓性部材を押圧する突起状のカバー17を側面に有し半導体チップ11を取り囲むように配置されるフレーム15と、を備える。この簡易な構成によって、フレーム15に設けられたカバー17が、半導体チップ11の表面に配置された可撓性部材を加圧するため、熱応力によるフレーム15の剥離を防止し、半導体チップの外周部の長期的絶縁信頼性を達成することができる。
Description
本発明は、圧接型半導体装置に関し、特に半導体チップ外周部の絶縁を保護する圧接型半導体装置及び圧接型半導体装置の製造方法に関する。
従来の縦型の半導体装置、特に圧接型の半導体装置では、半導体基板は、ON動作時には電流を通電する通電パスとしての役割を果たし、OFF動作時には電流を遮断し、高電圧を保持する絶縁層としての役割を果たす。
半導体装置には、数kVから数10kVまでの高電圧が印加される。半導体基板が十分な絶縁性能を保有していたとしても表面電極と半導体基板の端部との間で、表面保護層の表面のガス層において沿面放電が発生し、半導体装置が絶縁破壊してしまう可能性がある。
半導体装置には、数kVから数10kVまでの高電圧が印加される。半導体基板が十分な絶縁性能を保有していたとしても表面電極と半導体基板の端部との間で、表面保護層の表面のガス層において沿面放電が発生し、半導体装置が絶縁破壊してしまう可能性がある。
従来の縦型の半導体装置、特に圧接型の半導体装置では、装置内部の半導体チップの外周部を、ポリイミド、シリコーンゴム等の樹脂コーティングによって絶縁保護することによって半導体装置の表面保護を行っていた。
近年、半導体チップは、サイリスタからIGBT、MOSFETへと置き換わっており、半導体チップ(素子)の置き換えに伴い、半導体チップがマルチチップ化されている。また、素子の耐圧設計の高度化によって、表面電極の端部と半導体基板の端部との距離、つまり半導体チップの外周部の距離である終端距離が縮小化している。
沿面放電は、終端距離を十分に長くするほど防止することが可能であるが、半導体装置の小型化によって、半導体チップの終端距離が縮小化しているため、半導体チップの外周部への樹脂コーティングのみによる、外周部の絶縁性の確保が困難になっている。
上記の問題を解決するために、特許文献1では、半導体チップの外周部の絶縁性を確保するために、半導体チップの外周部上にチップフレームを接着剤によって接着することで、半導体チップの外周部の絶縁強化を行う圧接型半導体装置が提案されている。
特許文献1に記載の圧接型半導体装置においては、長期運転における半導体チップの温度変化によって、半導体チップとチップフレーム間の接着剤に対して、各部材の熱膨張係数の差から熱応力が発生し、チップフレームが半導体チップの外周部から剥離してしまうおそれがあった。
本発明は、上記のような問題点を解決するためになされたものであり、簡易なアセンブリ工程によって半導体チップの外周部の絶縁性を強化することを目的としている。
本発明に係る圧接型半導体装置は、第1電極板に裏面が接続された半導体チップと、半導体チップを挟んで第1電極板と対向する第2電極板と、半導体チップ表面に配置された可撓性部材と、可撓性部材を押圧する突起状のカバーを側面に有し、半導体チップを取り囲むように配置されるフレームと、を備える。
本発明に係る圧接型半導体装置の製造方法は、半導体チップを第1電極板上に配置する工程と、中間電極を第2電極板に配置する工程と、第1電極板上で半導体チップを取り囲むようにフレームを配置する工程と、フレームを取り囲むようにモジュールケースを配置する工程と、フレームの側面の突起状のカバーと前記半導体チップ表面との間に、可撓性部材を配置する工程と、中間電極が前記半導体チップ上に位置するように、モジュールケースの上に第2電極板を配置する工程と、第1電極板と、第2電極板と、モジュールケースとを圧接治具によって圧接することにより、第1電極板、第2電極板、中間電極及び前記半導体チップとを電気的に接続するとともに、カバーによる外周部への可撓性部材の圧接固定とを行う工程と、を備える。
本発明に係る圧接型半導体装置によれば、フレームに設けられたカバーが、半導体チップ表面に配置された可撓性部材を加圧するため、熱応力による可撓性部材の剥離を防止でき、半導体チップの外周部の長期的絶縁信頼性を達成することができる。
本発明に係る圧接型半導体装置の製造方法によれば、簡易的なプロセスによって半導体チップの外周部の絶縁保護を行うことができる。
実施の形態1.
本発明の実施の形態1に係る圧接型半導体装置100の構成について説明する。図1は、実施の形態1に係る圧接型半導体装置100の概略図である。図2は、実施の形態1に係る圧接型半導体装置100の断面図であり、図1のA-A断面図である。図2に示すように、圧接型半導体装置100は、半導体チップ11と、第1電極板12と、第2電極板13と、中間電極14と、フレーム15と、可撓性部材16と、カバー17と、モジュールケース18とを有する。半導体チップ11の構成については、以下に示す。
本発明の実施の形態1に係る圧接型半導体装置100の構成について説明する。図1は、実施の形態1に係る圧接型半導体装置100の概略図である。図2は、実施の形態1に係る圧接型半導体装置100の断面図であり、図1のA-A断面図である。図2に示すように、圧接型半導体装置100は、半導体チップ11と、第1電極板12と、第2電極板13と、中間電極14と、フレーム15と、可撓性部材16と、カバー17と、モジュールケース18とを有する。半導体チップ11の構成については、以下に示す。
図3は、実施の形態1に係る圧接型半導体装置100の半導体チップ11を示す断面図である。半導体チップ11は、半導体基板110と、第1の電極111と、第2の電極112と、表面保護部材113とを有する。半導体チップ11の第2の電極112側を表面、第1の電極111側を裏面とする。なお、半導体基板110内部に設けられた詳細な構造は、個々の素子構造によって異なるため省略する。
半導体チップ11として、絶縁ゲート型バイポーラトランジスタ(IGBT)、金属酸化物半導体電界効果トランジスタ(MOSFET)、などのトランジスタ、ゲートターンオフサイリスタ(GTO)等が挙げられる。第1の電極111は、半導体基板110の裏面上に設けられる。第2の電極112は、半導体基板110の表面上に設けられる。半導体チップ11表面の周辺に沿って設けられた、第2の電極112と半導体基板110の端部との間の部位を外周部114とする。表面保護部材113は、半導体チップ11の外周部114の全周にわたって設けられる。表面保護部材113は、TEOS、Si3N4、DLC(Diamond Like Carbon)、SIPOS(Semi Insulating polycrystalline silicon)、パリレン、ポリイミド等の絶縁部材によって構成される。
半導体チップ11として、絶縁ゲート型バイポーラトランジスタ(IGBT)、金属酸化物半導体電界効果トランジスタ(MOSFET)、などのトランジスタ、ゲートターンオフサイリスタ(GTO)等が挙げられる。第1の電極111は、半導体基板110の裏面上に設けられる。第2の電極112は、半導体基板110の表面上に設けられる。半導体チップ11表面の周辺に沿って設けられた、第2の電極112と半導体基板110の端部との間の部位を外周部114とする。表面保護部材113は、半導体チップ11の外周部114の全周にわたって設けられる。表面保護部材113は、TEOS、Si3N4、DLC(Diamond Like Carbon)、SIPOS(Semi Insulating polycrystalline silicon)、パリレン、ポリイミド等の絶縁部材によって構成される。
実施の形態1に係る圧接型半導体装置100は、図2に示すように、3個の半導体チップ11を含む。圧接型半導体装置100に含まれる半導体チップ11の数は、3個に限られない。半導体チップ11の基材として、Si、SiC、GaN、Ga2O3等の半導体材料が挙げられる。
中間電極14は、半導体チップ11の第2の電極112上に配置されている。中間電極14は、半導体チップ11と第2電極板13との間に挟持され、半導体チップ11の第2の電極112と第2電極板13とを電気的に接続する。中間電極14は、バネ状に伸縮する性質を持つ。中間電極14は、例えば、バルク状金属の弾性を利用することもできるし、金属加工によりバネ構造を形成しておいてもよい。
フレーム15は、個々の半導体チップ11をそれぞれ取り囲むように設けられている。
フレーム15は、半導体チップ11の位置決めを行う機能がある。フレーム15は、電気的に絶縁性を有しており、例えば、セラミック、PPS、PEEK、エポキシ、フッ素樹脂等の絶縁樹脂によって構成されている。
フレーム15は、半導体チップ11の位置決めを行う機能がある。フレーム15は、電気的に絶縁性を有しており、例えば、セラミック、PPS、PEEK、エポキシ、フッ素樹脂等の絶縁樹脂によって構成されている。
可撓性部材16は、半導体チップ11の外周部114を覆うように配置されている。可撓性部材16は可撓性絶縁体からなる硬化物である。可撓性とは外部より応力が加わった際に十分に形状が変形する特性を備えていることを意味しており、具体的にはヤング率が100メガパスカル以下であることが望ましい。このような特性を持ち、さらに半導体装置内の高温に耐えることのできる絶縁材料としてはシリコーン、エポキシ、ポリイミド、ポリアミド、フッ素樹脂、及びそれらの複合樹脂等が挙げられる。
カバー17は、フレーム15の側面に設けられており、半導体チップ11の外周部114の終端よりも内側に突出しており、可撓性部材16と接する。なお、カバー17は電気的に絶縁性を有しており、例えば、セラミック、PPS、PEEK、エポキシ、フッ素樹脂等の絶縁樹脂によって構成されている。
第1電極板12及び第2電極板13は、半導体チップ11と、中間電極14と、フレーム15と、可撓性部材16と、カバー17とを挟持する。なお、第1電極板12は、ベース板電極とも称し、第2電極板13は、天板電極とも称される。
半導体チップ11は、第1電極板12の上に載置されている。第2電極板13は、半導体チップ11及び中間電極14の上側に、第1電極板12に対向するように配置されている。半導体チップ11の裏面は、例えば、はんだを用いて、第1電極板12の上に配置される。第1電極板12は、半導体チップ11の第1の電極111と電気的に接続される。
第1電極板12及び第2電極板13を通じて、圧接型半導体装置100の外部から半導体チップ11に電力が供給される。第1電極板12及び第2電極板13の材料の一例として、銅板が挙げられる。第1電極板12及び第2電極板13は、モジュールケース18によって半導体チップ11の方に圧接されながら、半導体チップ11及び中間電極14に電気的に接続される。
フレーム15は、第1電極板12及び第2電極板13に狭持される。第1電極板12及び第2電極板13は、モジュールケース18によって半導体チップ11の方に圧接されるため、フレーム15も圧接される。フレーム15に設けられたカバー17は、半導体チップ11の外周部114の終端よりもさらに中間電極14側に向かって設けられ、可撓性部材16と接しているため、半導体チップ11の外周部114を覆うように配置されている可撓性部材16を圧接固定する。
モジュールケース18は、フレーム15を取り囲むように設けられ、第1電極板12と接する部分と、第2電極板13と接する部分とが、それぞれ接合されている。モジュールケース18は、第1電極板12及び第2電極板13を半導体チップ11の方に圧接する力を与える。
次に、実施の形態1に係る圧接型半導体装置100の製造方法について説明する。
圧接型半導体装置100は、半導体チップ11の上方に中間電極14を備え、半導体チップ11と中間電極14とを、第1電極板12と第2電極板13とで上下方向から挟持した構成となっている。また、フレーム15も第1電極板12と第2電極板13とで上下方向から挟持されている。カバー17は、フレーム15に設けられており、半導体チップ11の外周部114の終端よりもさらに中間電極14側に向かって設けられ、可撓性部材16と接する。さらに、モジュールケース18が、フレーム15を取り囲むように設けられている。
半導体チップ11を第1電極板12上に配置する工程では、半導体チップ11は、はんだを用いて第1電極板12の上に配置される。
中間電極14を第2電極板13に配置する工程では、中間電極14は、はんだを用いて第2電極板13の上に配置される。
第1電極板12上に配置された半導体チップ11を取り囲むようにフレーム15が配置されて、フレーム15を取り囲むようにモジュールケース18が配置される。
フレーム15に設けられ、半導体チップ11表面の外周部114の終端よりも内側に突出したカバー17と外周部114との間に可撓性部材16が配置される。
第1電極板12上に配置された半導体チップ11の第2の電極112の上に、中間電極14が位置するようにモジュールケース18の上に第2電極板13が配置される。
図4は、実施の形態1に係る圧接型半導体装置の圧接方法を示す断面図である。実施の形態1に係る圧接型半導体装置100は、圧接治具50を用いて圧接を行っている。
圧接治具50は、ロッド51と、ナット52と、第1の板53と、第2の板54とを含む。第1の板53に設けられた孔と第2の板54に設けられた孔とにロッド51が通される。ロッド51の両端は、ねじ山を有するボルト(図示せず)である。圧接治具50は、第1電極板12及び第2電極板13を、半導体チップ11の方に圧接する。具体的には、ロッド51のボルトにナット52を締め付けることによって、第1電極板12及び第2電極板13が半導体チップ11の方に圧接される。かかる方法により、第1電極板12及び第2電極板13は、中間電極14を介して半導体チップ11に電気的に接続され、主回路を形成する。
圧接治具50は、緩衝部材55をさらに含む構成でも良い。緩衝部材55は、第1の板53と第1電極板12との間、及び、第2の板54と第2電極板13との間にそれぞれ配置される。緩衝部材55によって、圧接型半導体装置100は、均一な力で圧接される。
図4に示す圧接方法において、半導体チップ11と中間電極14が最初に接触することになる。中間電極14は、バルク状金属または金属加工によりバネ構造に形成されているため、フレーム15が第1電極板12と第2電極板13とによって挟持される距離に、縮むことができる。したがって、第1電極板12及び第2電極板13は、中間電極14を介して半導体チップ11と電気的に接続されるため、圧接治具50を用いた圧接によって、圧接型半導体装置100の主回路を形成することができる。
カバー17は、フレーム15の側面に設けられており、半導体チップ11の外周部114の終端よりも内側に突出している。カバー17は、圧接治具50による圧接力によって、可撓性部材16を圧接固定する。カバー17が半導体チップ11の外周部114に可撓性部材16を圧接固定することで、半導体チップ11の外周部114がフレーム15と可撓性部材16によって絶縁される。したがって、圧接治具50を用いた圧接によって、圧接型半導体装置100の主回路形成と、半導体チップ11の絶縁保護を達成することができる。
圧接治具50を用いた圧接によって、第1電極板12とモジュールケース18、第2電極板13とモジュールケース18はそれぞれ圧接される。モジュールケース18は、圧接型半導体装置100内部の気密性を保持するためにセラミックによって構成される場合が多く、モジュールケース18と第1電極板12と接する部分と、モジュールケース18と第2電極板13と接する部分とは、それぞれセラミックのメタライズと溶接によって圧接される場合が多いが、実施の形態1に係る圧接型半導体装置100では、モジュールケース18と第1電極板12、モジュールケース18と第2電極板13の圧接方法は特に限定されるわけではなく、公知の接合方法が適用可能である。
圧接治具50を用いた圧接によって、モジュールケース18と第1電極板12と、モジュールケース18と第2電極板13とがそれぞれ圧接されると、モジュールケース18は、第1電極板12及び第2電極板13を半導体チップ11の方に圧接する力を与えるため、圧接治具50を取り外しても圧接型半導体装置100の主回路形成及び半導体チップ11の絶縁保護は達成される。
図5は、実施の形態1に係る圧接型半導体装置100の圧接前の半導体チップ11と可撓性部材16とカバー17との組立パターンを示す図である。
図5(a)においては、可撓性部材16は半導体チップ11の外周部114上に載置されている。図5(b)においては、可撓性部材16はフレーム15のカバー17下面に対して、はめ込まれるようにして予め固定されている。
図5に示すいずれの組立パターンにおいても、接着剤等による可撓性部材16とフレーム15との接合プロセスを必要とせずに、圧接型半導体装置100を構成するための圧接を行うことで、可撓性部材16を半導体チップ11とカバー17との間で固定することができる。つまり、接着剤等によるフレーム15の接合プロセスを必要としないため、簡易的なプロセスによって半導体チップ11の外周部114の絶縁保護を行うことができる。
実施の形態1に係る圧接型半導体装置100の製造方法では、圧接治具50を用いた第1電極板12及び第2電極板13への圧接によって、半導体チップ11と、第1電極板12と、第2電極板13と、中間電極14とが、電気的に接続され、半導体チップ11の外周部114がフレーム15と可撓性部材16によって絶縁される。
実施の形態1に係る圧接型半導体装置100の製造方法によって、圧接型半導体装置100の主回路形成と同時に、半導体チップ11の絶縁保護を達成することができる。また、接着剤等によるフレーム15の接合プロセスを必要としないため、簡易的なプロセスによって半導体チップ11の外周部114の絶縁保護を行うことができる。
実施の形態1に係る圧接型半導体装置100の効果を以下に説明する。
圧接型半導体装置100は、半導体チップ11と、第1電極板12と、第2電極板13と、中間電極14と、フレーム15と、可撓性部材16と、カバー17を含む。可撓性部材16は、半導体チップ11の外周部114を覆うように配置されている。カバー17は、フレーム15に設けられており、半導体チップ11の外周部114の終端よりも内側に突出しており、可撓性部材16と接する。フレーム15は、第1電極板12及び第2電極板13に狭持される。圧接型半導体装置100は、モジュールケース18による、第1電極板12及び第2電極板13の半導体チップ11の方への圧接によって、半導体チップ11、第1電極板12、第2電極板13及び中間電極14が電気的に接続され、主回路を形成する。第1電極板12及び第2電極板13は、モジュールケース18によって半導体チップ11の方に圧接されるため、フレーム15も圧接される。フレーム15に設けられたカバー17は、半導体チップ11の外周部114の終端よりも内側に突出し、可撓性部材16と接しているため、半導体チップ11の外周部114を覆うように配置されている可撓性部材16を圧接する。カバー17が可撓性部材16を圧接することによって、半導体チップ11の外周部114に可撓性部材16が圧接固定されるため、半導体チップ11の外周部114がフレーム15と可撓性部材16によって絶縁される。
したがって、実施の形態1に係る圧接型半導体装置100では、圧接型半導体装置100の主回路形成と同時に、半導体チップ11の絶縁保護を達成することができる。また、フレーム15に設けられたカバー17によって、可撓性部材16が加圧され、半導体チップ11の外周部114が絶縁保護されている。さらに、可撓性部材16は、フレーム15に設けられたカバー17によって加圧されているため、熱応力による可撓性部材16の外周部114からの剥離を防止でき、半導体チップ11の外周部114の長期的絶縁信頼性が達成される。加えて、接着剤等によるフレーム15の接合プロセスを必要としないため、簡易的なプロセスによって半導体チップ11の外周部114の絶縁保護を行うことができる。
実施の形態2.
本発明の実施の形態2に係る圧接型半導体装置200の構成について説明する。なお、実施の形態1と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
本発明の実施の形態2に係る圧接型半導体装置200の構成について説明する。なお、実施の形態1と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
図6は、実施の形態2に係る圧接型半導体装置200の断面図である。実施の形態2に係る圧接型半導体装置200は、圧接型半導体装置200のカバー17の一部が、第2電極板13と接する構成とするものである。
実施の形態2に係る圧接型半導体装置200では、フレーム15に設けられたカバー17の一部が、第2電極板13と接するため、第2電極板13とフレーム15との接触面積が増加することによって、より安定したフレーム15の保持が可能となる。
実施の形態3.
本発明の実施の形態3に係る圧接型半導体装置300の構成について説明する。なお、実施の形態1、2と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
本発明の実施の形態3に係る圧接型半導体装置300の構成について説明する。なお、実施の形態1、2と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
図7は、実施の形態3に係る圧接型半導体装置300の断面図である。実施の形態3に係る圧接型半導体装置300は、フレーム15が締結部材21によって第1電極板12に固定されている構成である。締結部材21として、例えば、固定ねじ、ボルト等が挙げられる。
実施の形態3に係る圧接型半導体装置300では、締結部材21によって第1電極板12にフレーム15が固定されているため、半導体チップ11に対するフレーム15のずれを抑制することができる結果、圧接アセンブリ工程を容易に行うことができる。また、可撓性部材16に加えられる圧力は、第1電極板12にフレーム15を締結部材21によって固定させる際の圧力を利用することができるため、主回路の圧接力とは独立して、可撓性部材16に加える圧力の設計が可能となる。
実施の形態4.
本発明の実施の形態4に係る圧接型半導体装置400の構成について説明する。なお、実施の形態1、2、3と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
本発明の実施の形態4に係る圧接型半導体装置400の構成について説明する。なお、実施の形態1、2、3と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
図8は、実施の形態4に係る圧接型半導体装置400の断面図である。実施の形態4に係る圧接型半導体装置400は、フレーム15が締結部材21によって第2電極板13に固定されている構成である。締結部材21として、例えば、固定ねじ、ボルト等が挙げられる。
実施の形態4に係る圧接型半導体装置400では、締結部材21によって第2電極板13にフレーム15が固定されているため、半導体チップ11に対するフレーム15のずれを抑制することができる結果、圧接アセンブリ工程を容易に行うことができる。
実施の形態5.
本発明の実施の形態5に係る圧接型半導体装置500の構成について説明する。なお、実施の形態1、2、3、4と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
本発明の実施の形態5に係る圧接型半導体装置500の構成について説明する。なお、実施の形態1、2、3、4と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
図9は、実施の形態5に係る圧接型半導体装置500の断面図である。実施の形態5に係る圧接型半導体装置500は、フレーム15とモジュールケース18とが嵌合部31を介して嵌合されている構成である。
実施の形態5に係る圧接型半導体装置500では、モジュールケース18が、第1電極板12及び第2電極板13とそれぞれ接合されているのに加えて、さらに、嵌合部31を介してフレーム15とモジュールケース18とが嵌合されているため、フレーム15をより一層安定して固定することが可能である。
実施の形態6.
本発明の実施の形態6に係る圧接型半導体装置600の構成について説明する。なお、実施の形態1、2、3、4、5と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
本発明の実施の形態6に係る圧接型半導体装置600の構成について説明する。なお、実施の形態1、2、3、4、5と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
図10は、実施の形態6に係る圧接型半導体装置600の断面図である。実施の形態6に係る圧接型半導体装置600は、フレーム15に、ゲート信号を入力するためのゲート配線機構41を備えた構成である。ゲート配線機構41は、半導体チップ11と電気的に接続するための、ばね接触子42を有している。なお、ばね接触子42は、弾性機能を備えており、例えば、板バネ、皿ばね、コイルばね等の形状が挙げられる。
圧接型半導体装置600の圧接アセンブリ工程によって、中間電極14と半導体チップ11間で圧接型半導体装置600の主回路が形成される他に、ばね接触子42が半導体チップ11上のゲートパッドに電気的に接続されて制御回路が形成される。
実施の形態6に係る圧接型半導体装置600では、フレーム15がゲート信号を入力するためのゲート配線機構41を備えるため、圧接型半導体装置600の圧接アセンブリ工程によって主回路形成、制御回路形成、絶縁信頼性を同時に達成することができる。
実施の形態7.
本発明の実施の形態6に係る圧接型半導体装置700の構成について説明する。なお、実施の形態1、2、3、4、5、6と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
本発明の実施の形態6に係る圧接型半導体装置700の構成について説明する。なお、実施の形態1、2、3、4、5、6と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
図11は、実施の形態7に係る圧接型半導体装置700の断面図である。実施の形態7に係る圧接型半導体装置700は、結線板60を備えた構成である。
結線板60は、複数のゲート配線機構41と結線し、モジュールの外部から制御配線を引き出す機能を有する。
さらに、結線板60は、結線板60の構造を支持する支持材61と、ゲート電位をモジュール外部まで引き出すための第1電極箔62と、半導体チップ11の表面電極電位を外部まで引き出すための第2電極箔63とで構成される。
なお、結線板60はプリント基板技術を適用することが可能である。この場合、支持材61はガラエポ基板、第1電極箔62と第2電極箔63は銅箔を採用し、結線板60を一体成型することができる。
結線板60は、複数のゲート配線機構41と結線し、モジュールの外部から制御配線を引き出す機能を有する。
さらに、結線板60は、結線板60の構造を支持する支持材61と、ゲート電位をモジュール外部まで引き出すための第1電極箔62と、半導体チップ11の表面電極電位を外部まで引き出すための第2電極箔63とで構成される。
なお、結線板60はプリント基板技術を適用することが可能である。この場合、支持材61はガラエポ基板、第1電極箔62と第2電極箔63は銅箔を採用し、結線板60を一体成型することができる。
実施の形態7に係る圧接型半導体装置700では、結線板60は第2電極板13と複数のゲート配線機構41との間で圧接されており、圧接することによってゲート配線機構41と第1電極箔62、及び第2電極板13と第2電極箔63間の電気コンタクトが達成される。
なお、第1電極箔62は、請求の範囲の第1電線であり、第2電極箔63は、請求の範囲の第2電線である。
なお、第1電極箔62は、請求の範囲の第1電線であり、第2電極箔63は、請求の範囲の第2電線である。
実施の形態7に係る圧接型半導体装置700では、圧接型半導体装置700が複数のゲート配線機構41の電位を結線し、ゲート電位と半導体素子の表面電極電位を外部まで引き出すための結線板60を備えるため、圧接型半導体装置700の圧接アセンブリ工程によって主回路形成、制御回路形成、絶縁信頼性を同時に達成することができる。
本発明は、実施の形態1から7で説明した形状に限定されるものでなく、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。例えば、実施の形態1のフレームは、筒形状であっても良く、さらに、突起状のカバーは、筒形状内側の内側面に配置されても良い。
100,200,300,400,500,600 圧接型半導体装置、
11 半導体チップ、12 第1電極板、13 第2電極板、14 中間電極、
15 フレーム、16 可撓性部材、17 カバー、18 モジュールケース、
21 締結部材、
31 嵌合部、
41 ゲート配線機構、42 ばね接触子、
50 圧接治具、51 ロッド、52 ナット、53 第1の板、54 第2の板、
55 緩衝部材、
60 結線板、61 支持材、62 第1電極箔、63 第2電極箔、
110 半導体基板、111 第1の電極、112 第2の電極、113 表面保護部材、
114 外周部。
11 半導体チップ、12 第1電極板、13 第2電極板、14 中間電極、
15 フレーム、16 可撓性部材、17 カバー、18 モジュールケース、
21 締結部材、
31 嵌合部、
41 ゲート配線機構、42 ばね接触子、
50 圧接治具、51 ロッド、52 ナット、53 第1の板、54 第2の板、
55 緩衝部材、
60 結線板、61 支持材、62 第1電極箔、63 第2電極箔、
110 半導体基板、111 第1の電極、112 第2の電極、113 表面保護部材、
114 外周部。
Claims (10)
- 第1電極板と、
前記第1電極板に裏面が接続された半導体チップと、
前記半導体チップを挟んで前記第1電極板と対向する第2電極板と、
前記半導体チップの表面に配置された可撓性部材と、
前記可撓性部材を押圧する突起状のカバーを側面に有し、前記半導体チップを取り囲むように配置されるフレームと、を備える圧接型半導体装置。 - 前記半導体チップと前記第2電極板との間に挟持され、前記半導体チップと前記第2電極板とを電気的に接続する中間電極をさらに備える請求項1に記載の圧接型半導体装置。
- 前記半導体チップは、複数設けられ、前記フレームによってそれぞれ取り囲まれる請求項1または請求項2に記載の圧接型半導体装置。
- 前記フレームは、前記第1電極板及び前記第2電極板の間に挟持される請求項1から請求項3のいずれか1項に記載の圧接型半導体装置。
- 前記カバーは、前記第2電極板に接する部位を有する請求項1から請求項4のいずれか1項に記載の圧接型半導体装置。
- 前記フレームは、前記第1電極板あるいは前記第2電極板のいずれか一方と締結部材によって固定される請求項1から請求項5のいずれか1項に記載の圧接型半導体装置。
- 前記フレームを取り囲むように配置されるモジュールケースを、さらに備え、
前記フレームは、前記モジュールケースと嵌合部を介して嵌合されている請求項1から請求項6のいずれか1項に記載の圧接型半導体装置。 - 前記フレームは、ゲート信号を入力するためのゲート配線機構をさらに備え、
前記ゲート配線機構は、前記半導体チップと導通する可撓性体接触子を有する請求項1から請求項7のいずれか1項に記載の圧接型半導体装置。 - 第1電線と、第2電線と、前記第1電線と前記第2電線とを支持する支持材とを有する結線板をさらに備え、
前記結線板は、複数の前記ゲート配線機構と結線することを特徴とする請求項8に記載の圧接型半導体装置。 - 半導体チップを第1電極板の上に配置する工程と、
中間電極を第2電極板に配置する工程と、
前記第1電極板の上で前記半導体チップを取り囲むようにフレームを配置する工程と、
前記フレームを取り囲むようにモジュールケースを配置する工程と、
前記フレームの側面の突起状のカバーと前記半導体チップ表面との間に、可撓性部材を配置する工程と、
前記中間電極が前記半導体チップの上に位置するように、前記モジュールケースの上に前記第2電極板を配置する工程と、
前記第1電極板と、前記第2電極板と、前記モジュールケースとを圧接治具によって圧接することにより、前記第1電極板、前記第2電極板、前記中間電極及び前記半導体チップとを電気的に接続するとともに、前記カバーにより前記可撓性部材の圧接固定とを行う工程と、
を備える圧接型半導体装置の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-237678 | 2017-12-12 | ||
JP2017237678A JP2021028921A (ja) | 2017-12-12 | 2017-12-12 | 圧接型半導体装置及び圧接型半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019116736A1 true WO2019116736A1 (ja) | 2019-06-20 |
Family
ID=66820247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/039473 WO2019116736A1 (ja) | 2017-12-12 | 2018-10-24 | 圧接型半導体装置及び圧接型半導体装置の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021028921A (ja) |
WO (1) | WO2019116736A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112635409A (zh) * | 2020-12-29 | 2021-04-09 | 中科芯(苏州)微电子科技有限公司 | 一种氧化镓功率器件钝化层及其钝化方法 |
WO2022259503A1 (ja) * | 2021-06-11 | 2022-12-15 | 三菱電機株式会社 | 圧接型半導体装置 |
US12068280B2 (en) | 2020-09-23 | 2024-08-20 | Kabushiki Kaisha Toshiba | Semiconductor device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01152668A (ja) * | 1987-12-09 | 1989-06-15 | Fuji Electric Co Ltd | 半導体装置の製造方法 |
JPH0718456U (ja) * | 1993-09-10 | 1995-03-31 | 日本インター株式会社 | 圧接型半導体装置 |
JPH11307555A (ja) * | 1998-04-21 | 1999-11-05 | Mitsubishi Electric Corp | 圧接型半導体装置 |
JP2002057260A (ja) * | 2000-08-09 | 2002-02-22 | Fuji Electric Co Ltd | 平型半導体装置 |
JP2002151646A (ja) * | 2000-11-10 | 2002-05-24 | Toshiba Corp | 圧接型半導体装置 |
-
2017
- 2017-12-12 JP JP2017237678A patent/JP2021028921A/ja active Pending
-
2018
- 2018-10-24 WO PCT/JP2018/039473 patent/WO2019116736A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01152668A (ja) * | 1987-12-09 | 1989-06-15 | Fuji Electric Co Ltd | 半導体装置の製造方法 |
JPH0718456U (ja) * | 1993-09-10 | 1995-03-31 | 日本インター株式会社 | 圧接型半導体装置 |
JPH11307555A (ja) * | 1998-04-21 | 1999-11-05 | Mitsubishi Electric Corp | 圧接型半導体装置 |
JP2002057260A (ja) * | 2000-08-09 | 2002-02-22 | Fuji Electric Co Ltd | 平型半導体装置 |
JP2002151646A (ja) * | 2000-11-10 | 2002-05-24 | Toshiba Corp | 圧接型半導体装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12068280B2 (en) | 2020-09-23 | 2024-08-20 | Kabushiki Kaisha Toshiba | Semiconductor device |
CN112635409A (zh) * | 2020-12-29 | 2021-04-09 | 中科芯(苏州)微电子科技有限公司 | 一种氧化镓功率器件钝化层及其钝化方法 |
WO2022259503A1 (ja) * | 2021-06-11 | 2022-12-15 | 三菱電機株式会社 | 圧接型半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2021028921A (ja) | 2021-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4569473B2 (ja) | 樹脂封止型パワー半導体モジュール | |
US9171773B2 (en) | Semiconductor device | |
JP7532933B2 (ja) | 半導体装置及びその製造方法 | |
US6999317B2 (en) | Thermally enhanced electronic module with self-aligning heat sink | |
WO2019116736A1 (ja) | 圧接型半導体装置及び圧接型半導体装置の製造方法 | |
US10720368B2 (en) | Semiconductor device and method for manufacturing same | |
US9728484B2 (en) | Power module package and method for manufacturing the same | |
JP2007311441A (ja) | パワー半導体モジュール | |
JP6093455B2 (ja) | 半導体モジュール | |
JP3319569B2 (ja) | 圧接型半導体装置 | |
JP2000124398A (ja) | パワー半導体モジュール | |
WO2015125352A1 (ja) | パワー半導体モジュールおよびパワーユニット | |
US6548890B2 (en) | Press-contact type semiconductor device | |
JP2913247B2 (ja) | パワー半導体モジュール及び車両用インバータ装置 | |
US11094615B2 (en) | Semiconductor apparatus including leads and bonding wires | |
US20130256920A1 (en) | Semiconductor device | |
JP6884217B2 (ja) | 凹形湾曲部を備えた底部プレートを有する半導体モジュール | |
JP2001051011A (ja) | 高耐圧半導体チップの評価方法、高耐圧電子機器基板およびその製造方法、および高耐圧半導体装置 | |
US20220238426A1 (en) | Packaged electronic devices having dielectric substrates with thermally conductive adhesive layers | |
WO2022259503A1 (ja) | 圧接型半導体装置 | |
KR102465954B1 (ko) | 가압형 반도체 패키지 | |
US11887933B2 (en) | Manufacturing method of semiconductor device | |
CN111435631B (zh) | 具有母线系统并且具有电容器的电气装置 | |
US20240213106A1 (en) | Semiconductor device | |
US20240234237A1 (en) | Power semiconductor device and method for manufacturing power semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18887403 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18887403 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |