WO2019116440A1 - インバータ発電機及び制御方法 - Google Patents

インバータ発電機及び制御方法 Download PDF

Info

Publication number
WO2019116440A1
WO2019116440A1 PCT/JP2017/044501 JP2017044501W WO2019116440A1 WO 2019116440 A1 WO2019116440 A1 WO 2019116440A1 JP 2017044501 W JP2017044501 W JP 2017044501W WO 2019116440 A1 WO2019116440 A1 WO 2019116440A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
sine wave
reference sine
synchronization signal
inverter generator
Prior art date
Application number
PCT/JP2017/044501
Other languages
English (en)
French (fr)
Inventor
山下 和郎
泰和 山口
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to JP2018519879A priority Critical patent/JP6533870B1/ja
Priority to US16/076,670 priority patent/US11183852B2/en
Priority to PCT/JP2017/044501 priority patent/WO2019116440A1/ja
Publication of WO2019116440A1 publication Critical patent/WO2019116440A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • H02J3/42Synchronising a generator for connection to a network or to another generator with automatic parallel connection when synchronisation is achieved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter

Definitions

  • the present invention relates to an inverter generator and a control method.
  • the value of the counter reaches a set counter value “127” corresponding to the timing when the polarity of the output voltage changes from negative to positive
  • another inverter generator is used.
  • the output level of the synchronization signal output to the own inverter generator from high to low, it is notified that the phase of the output voltage of the other inverter generator is 360 degrees.
  • the counter of the own inverter generator is “126” which is smaller by 1 than the set counter value “127”, it is regarded that the phase of the own inverter generator is delayed, and the output voltage of the own inverter generator is 1 It is disclosed to shorten the period by 12.8 ⁇ s.
  • the present invention has been made in consideration of such points, and an inverter generator and control method that can improve the prediction accuracy of the polarity inversion timing in the output voltage output from another inverter generator. Intended to provide.
  • the inverter generator is An inverter generator that synchronizes the phase of an output voltage by communication with another inverter generator, comprising: A communication unit that intermittently receives a first synchronization signal including the phase of the first reference sine wave from the other inverter generator that outputs the first output voltage based on the first reference sine wave; An output circuit that outputs a second output voltage; A control unit that controls the output circuit based on a second reference sine wave; Equipped with The control unit, when the communication unit receives the first synchronization signal from the other inverter generator, a first phase that represents the phase of the first reference sine wave with the phase included in the first synchronization signal.
  • the phase of the second reference sine wave is changed with the amount of phase change per unit time after the change with reference to the first phase until the next first synchronization signal is received from the other inverter generator. Repeat a series of processes to keep updating the phase of the second reference sine wave so as to change,
  • the control unit is a phase that is included in the first synchronization signal that the communication unit receives before the polarity inversion timing of the second reference sine wave, and is a third of the first phases.
  • the fourth phase which is the phase of the second reference sine wave when the first synchronization signal is received, and the phase per unit time of the second reference sine wave according to the comparison result.
  • the change amount is changed, and the phase of the second reference sine wave is continuously updated so that the phase of the second reference sine wave is changed by the phase change amount per unit time after the change, and the change of the first reference sine wave is continued. Predict the polarity inversion timing.
  • An inverter generator is the inverter generator according to the first aspect, wherein The communication unit receives the first synchronization signal every first setting time, The control unit is configured to receive the first reference signal received most recently among the first synchronization signals received before the polarity inversion timing of the second reference sine wave by the communication unit. The first phase is repeatedly added to the fourth phase, which is the phase of the wave, at every second setting time shorter than the first setting time, after the phase change amount per unit time after the change. Predict the polarity inversion timing of the reference sine wave.
  • An inverter generator is the inverter generator according to the first or second aspect,
  • the communication unit receives the first synchronization signal every first setting time,
  • the time interval for updating the phase of the second reference sine wave is a second set time shorter than the first set time,
  • the control unit changes the phase change amount per second set time of the second reference sine wave after the change at every second set time. Add to the phase of
  • An inverter generator is the inverter generator according to the third aspect, When the second phase is behind the first phase, the control unit increases a phase change amount per second set time of the second reference sine wave, and the second phase is the second phase. When it is earlier than the first phase, the amount of phase change per second set time of the second reference sine wave is reduced.
  • An inverter generator is the inverter generator according to the first or second aspect,
  • the communication unit receives the first synchronization signal every first setting time,
  • the time interval for updating the phase of the second reference sine wave is a second set time shorter than the first set time,
  • the control unit changes a phase change amount per unit time of the second reference sine wave by changing a time interval for updating the phase of the second reference sine wave, and changes the phase of the second reference sine wave.
  • the set phase addition amount is added to the second phase at each time interval after the change.
  • An inverter generator is the inverter generator according to the fifth aspect,
  • the control unit shortens a time interval for updating the phase of the second reference sine wave when the second phase is behind the first phase, and the second phase is the first phase. If it is earlier than the phase, the time interval for updating the phase of the second reference sine wave is increased.
  • An inverter generator is the inverter generator according to any one of the first to sixth aspects, wherein The control unit changes the phase of the second reference sine wave per unit time according to the magnitude of the difference between the first phase and the second phase when the first synchronization signal is received. Determine the amount of change.
  • An inverter generator is the inverter generator according to any one of the first to seventh aspects, wherein The control unit controls the communication unit to transmit a second synchronization signal including the phase of the second reference sine wave to the other inverter generator, and the other inverter generator performs the first reference sine wave.
  • the phase of the wave is compared with the phase of the second reference sine wave, the phase of the first reference sine wave is updated according to the comparison result, and the first synchronization signal including the phase after the update is transmitted, the communication
  • the unit receives the first synchronization signal including the updated phase, and repeats the series of processes using the phase included in the first synchronization signal.
  • An inverter generator is the inverter generator according to any one of the first to eighth aspects, wherein
  • the first synchronization signal is a packet including the phase of the first reference sine wave and an error detection code.
  • the inverter generator according to a tenth aspect of the present invention is the inverter generator according to any one of the first to ninth aspects, wherein the control unit is configured to generate the second output voltage at the predicted polarity inversion timing.
  • the output circuit is controlled to start the output.
  • the control method is A communication unit intermittently receiving a first synchronization signal including a phase of the first reference sine wave from the other inverter generator outputting the first output voltage based on the first reference sine wave; and a second output Inverter power generation that synchronizes the phase of an output voltage by communication with another inverter generator, comprising: an output circuit that outputs a voltage; and a control unit that controls the output circuit based on a second reference sine wave Control method executed by the machine, The control unit, when the communication unit receives the first synchronization signal from the other inverter generator, a first phase that represents the phase of the first reference sine wave with the phase included in the first synchronization signal.
  • the phase of the second reference sine wave is changed with the amount of phase change per unit time after the change with reference to the first phase until the next first synchronization signal is received from the other inverter generator. Repeat a series of processes to keep updating the phase of the second reference sine wave so as to change,
  • the control unit is a phase that is included in the first synchronization signal that the communication unit receives before the polarity inversion timing of the second reference sine wave, and is a third of the first phases.
  • the fourth phase which is the phase of the second reference sine wave when the first synchronization signal is received, and the phase per unit time of the second reference sine wave according to the comparison result.
  • the change amount is changed, and the phase of the second reference sine wave is continuously updated so that the phase of the second reference sine wave is changed by the phase change amount per unit time after the change, and the change of the first reference sine wave is continued. Predict the polarity inversion timing.
  • the inverter generator repeats the process of changing the phase change amount per unit time of the second reference sine wave to obtain the phase of the second reference sine wave of the inverter generator in another.
  • the phase of the first reference sine wave of the inverter generator can be gradually approximated.
  • the fourth phase which is the phase after asymptotic, is compared with the third phase included in the first synchronization signal received prior to the polarity inversion timing, and according to the comparison result, per unit time of the second reference sine wave.
  • the phase change amount of the second reference sine wave is updated so that the phase change amount of the second reference sine wave changes with the phase change amount per unit time of the second reference sine wave after the change. 1 Predict the polarity inversion timing of the reference sine wave.
  • the prediction accuracy of the polarity inversion timing of the first reference sine wave can be improved, the prediction accuracy of the polarity inversion timing of the output voltage of the other inverter generator output based on the first reference sine wave can be improved. It can be improved.
  • FIG. 1 is a diagram showing an example of the configuration of an inverter power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the configuration of the control unit of the inverter generator according to the embodiment of the present invention.
  • FIG. 3 shows the first reference sine wave, the time change of the phase of the first reference sine wave, the transmission timing of the second synchronization signal transmitted by the inverter generator 1, the phase included in the first synchronization signal, the first reference sine wave It is a figure which shows an example of the prediction time change of the phase of.
  • FIG. 4 is a diagram showing an example of temporal change of the phase of the first reference sine wave and the phase of the second reference sine wave in the comparative example in which the phase change amount is not updated.
  • FIG. 5 is a diagram showing an example of temporal change of the phase of the first reference sine wave and the phase of the second reference sine wave in the present embodiment for updating the phase change amount.
  • An inverter power generation system 10 includes an inverter generator 1 (also referred to as another inverter generator) and an inverter generator 2.
  • the inverter power generation system 10 aligns the phase of the first output voltage output from the inverter generator 1 with the phase of the second output voltage output from the inverter generator 2, and generates the first output voltage and the second output voltage. Superimpose and output.
  • the first output voltage and the second output voltage are sine-wave alternating current voltages, but the phases of the first output voltage and the second output voltage are aligned, whereby the first output voltage and the second output voltage are superimposed.
  • the output voltage is also a sine wave AC voltage, and the inverter power generation system 10 can output a sine wave AC voltage.
  • the inverter generator 1 and the inverter generator 2 mutually synchronize the phases of the output voltage by communication with the other inverter generator.
  • the inverter generator 1 is connected to the power supply S1, and a power supply voltage is supplied from the power supply S1.
  • the inverter generator 1 includes a communication unit 11, an output circuit 12, a control unit 13, and a storage unit 14.
  • the communication unit 11 communicates with a communication unit 21 described later of the inverter generator 2. This communication may be wired or wireless. Specifically, the communication unit 11 intermittently receives the second synchronization signal including the phase of the second reference sine wave generated by the inverter generator 2.
  • the first synchronization signal is a packet including the phase of the first reference sine wave and the error detection code.
  • the communication unit 11 also intermittently transmits a first synchronization signal including the phase of the first reference sine wave generated by the control unit 13.
  • the first synchronization signal is a packet including the phase of the first reference sine wave and the error detection code.
  • an inverter Since an error detection code is included in the first synchronization signal, an inverter is generated when the value of the phase of the first reference sine wave included in the first synchronization signal deviates from the original value due to noise mixing in during communication.
  • the generator 2 can detect the error using the error detection code. Then, the inverter generator 2 can receive the correct phase by requesting retransmission of the packet and receiving the same first synchronization signal again.
  • the output circuit 12 is connected to the power supply S1, and outputs a first output voltage using the voltage supplied from the power supply S1.
  • the control unit 13 is connected to the communication unit 11, the output circuit 12, and the storage unit 14, and controls the communication unit 11 and the output circuit 12. For example, the control unit 13 generates a first reference sine wave, and controls the output circuit 12 based on the generated first reference sine wave. Thus, the inverter generator 1 outputs the first output voltage based on the first reference sine wave.
  • the storage unit 14 can store data.
  • the inverter generator 2 is connected to the power supply S2, and the power supply voltage is supplied from the power supply S2.
  • the inverter generator 2 includes a communication unit 21, an output circuit 22, a control unit 23, and a storage unit 24.
  • the communication unit 21 communicates with the communication unit 11 of the inverter generator 1. This communication may be wired or wireless. Specifically, the communication unit 21 intermittently receives the first synchronization signal including the phase of the first reference sine wave generated by the inverter generator 1. Further, the communication unit 21 intermittently transmits the second synchronization signal including the phase of the second reference sine wave generated by the control unit 23.
  • the second synchronization signal is a packet including the phase of the second reference sine wave and the error detection code. Since an error detection code is included in the second synchronization signal, an inverter is used when the value of the phase of the second reference sine wave included in the second synchronization signal deviates from the original value due to noise mixing during communication. The generator 1 can detect the error using an error detection code. Then, the inverter generator 1 can receive the correct phase by requesting retransmission of the packet and receiving the same second synchronization signal again.
  • the output circuit 22 is connected to the power supply S2, and outputs a second output voltage using the voltage supplied from the power supply S2.
  • the control unit 23 is connected to the communication unit 21, the output circuit 22, and the storage unit 24, and controls the communication unit 21 and the output circuit 22. For example, the control unit 23 generates a second reference sine wave, and controls the output circuit 22 based on the generated second reference sine wave. Thus, the inverter generator 2 outputs the second output voltage based on the second reference sine wave.
  • the storage unit 24 can store data.
  • control unit 23 includes a reference sine wave generation unit 241, a communication data input unit 242, a PWM modulation unit 243, a communication data output unit 244, a phase change amount update unit 245, and a partner phase prediction unit 246. And the other party zero cross detection unit 247.
  • the reference sine wave generation unit 241 reads out the phase change amount per unit time stored in the storage unit 24, and the phase change amount per unit time of the first reference sine wave is the phase change amount per unit time read out. To generate a second reference sine wave.
  • the reference sine wave generation unit 241 outputs time series data of the pulse width for the PWM signal to the PWM modulation unit 243 so as to generate a PWM signal corresponding to the generated second reference sine wave.
  • the reference sine wave generation unit 241 outputs the second phase, which is the phase of the second reference sine wave when the communication unit 21 receives the first synchronization signal, to the communication data output unit 244 and the phase change amount update unit 245. Do.
  • the reference sine wave generation unit 241 transmits the fourth phase, which is the phase of the second reference sine wave when the communication unit 21 receives the first synchronization signal before the polarity inversion timing of the second reference sine wave, as the communication data. It is output to the output unit 244 and the phase change amount update unit 245.
  • the first synchronization signal received prior to the polarity inversion timing is the first synchronization signal received earlier among the two first synchronization signals received across the polarity inversion timing.
  • the communication data input unit 242 receives the first synchronization signal received by the communication unit 21.
  • the communication data input unit 242 acquires, from the first synchronization signal, a first phase that represents the phase of the first reference sine wave with the phase included in the first synchronization signal.
  • the communication data input unit 242 outputs the acquired first phase to the phase change amount update unit 245.
  • the communication data input unit 242 also stores the acquired first phase in the storage unit 24.
  • the communication data input unit 242 is a phase included in the first synchronization signal received by the communication unit 21 before the polarity inversion timing of the second reference sine wave, which is one of the first phases.
  • the phase of is acquired from the first synchronization signal.
  • the first synchronization signal received prior to the polarity inversion timing is the first synchronization signal received earlier among the two first synchronization signals received across the polarity inversion timing.
  • the communication data input unit 242 outputs the acquired third phase to the phase change amount update unit 245.
  • the communication data input unit 242 also stores the acquired third phase in the storage unit 24.
  • the PWM modulation unit 243 generates a switching signal using time series data of the pulse width for the PWM signal, and transmits the generated switching signal to the output circuit 22.
  • the output circuit 22 generates a second output voltage by turning on and off the internal switch circuit based on the switching signal.
  • the communication data output unit 244 When the second phase is input, the communication data output unit 244 outputs a second synchronization signal including the second phase to the communication unit 21. Thus, the communication unit 21 can transmit the second synchronization signal to the inverter generator 1. Similarly, when the fourth phase is input, the communication data output unit 244 outputs a second synchronization signal including the fourth phase to the communication unit 21. Thus, the communication unit 21 can transmit the second synchronization signal to the inverter generator 1.
  • the phase change amount update unit 245 uses a phase included in the first synchronization signal to represent the phase of the first reference sine wave and a phase of the second reference sine wave when the first synchronization signal is received.
  • the second phase is compared with a certain second phase, and the phase change amount per unit time of the second reference sine wave is changed according to the comparison result.
  • the phase change amount update unit 245 uses the second reference. Increase the phase change amount per second set time of the sine wave. By this, it is possible to advance the phase advance of its own and catch up with the phases of other inverter generators.
  • the phase change amount update unit 245 when the second phase is earlier than the first phase (that is, when the second phase is earlier than the phase of another inverter generator), the phase change amount update unit 245 generates the second reference sine. The amount of phase change per second set time of the wave may be reduced. As a result, it is possible to delay the degree of advance of its own phase and approach the phases of other inverter generators.
  • the phase change amount update unit 245 when the second phase is behind the first phase (that is, when its own phase is behind the phase of another inverter generator), the phase change amount update unit 245 generates the second reference sine.
  • the time interval for updating the wave phase may be shortened. By this, it is possible to advance the phase advance of its own and catch up with the phases of other inverter generators.
  • the phase change amount update unit 245 determines the phase of the second reference sine wave. You may extend the time interval to update the As a result, it is possible to delay the degree of advance of its own phase and approach the phases of other inverter generators.
  • the phase change amount update unit 245 stores the phase change amount per unit time after the change in the storage unit 24.
  • the counterpart phase prediction unit 246 reads out from the storage unit 24 the first phase and the amount of phase change per unit time after the change.
  • the other phase prediction unit 246 reads the first phase stored in the storage unit 24. Then, until the communication unit 21 receives the next first synchronization signal from the inverter generator 1, the other phase prediction unit 246 performs the second phase change per unit time after the change based on the first phase. Continue to update the phase of the second reference sine wave so that the phase of the reference sine wave changes.
  • the communication unit 21 receives the first synchronization signal at every first setting time, and the time interval for updating the phase of the second reference sine wave in the control unit 23 is a second setting shorter than the first setting time. It's time. That is, it is assumed that the update interval of the phase of the second reference sine wave is shorter than the reception interval of the first synchronization signal.
  • the control unit 23 changes the phase change amount per second setting time of the second reference sine wave after change every second setting time. May be added to the phase of Thereby, the control unit 23 can update the phase of the second reference sine wave so that the phase of the second reference sine wave changes by the phase change amount per unit time after the change.
  • the control unit 23 changes the amount of phase change per unit time of the second reference sine wave by changing the time interval for updating the phase of the second reference sine wave, thereby changing the second reference sine wave.
  • the set phase addition amount may be added to the second phase at each time interval after the change.
  • the control unit 23 can update the phase of the second reference sine wave so that the phase of the second reference sine wave changes by the phase change amount per unit time after the change.
  • the control unit 23 changes the phase change amount per unit time of the second reference sine wave according to the magnitude of the difference between the first phase and the second phase when the first synchronization signal is received.
  • the amount may be determined.
  • the difference between the first phase and the second phase when the first synchronization signal is received is large, the amount of change in phase change per unit time of the second reference sine wave is increased.
  • the phase of the second reference sine wave of the inverter generator 2 can be brought closer to the phase of the first reference sine wave of the inverter generator 1 more quickly.
  • the difference between the first phase and the second phase when the first synchronization signal is received is small, the amount of change in the phase change amount per unit time of the second reference sine wave can be reduced.
  • the phase of the second reference sine wave of the inverter generator 2 can be brought closer to the phase of the first reference sine wave of the inverter generator 1 more quickly.
  • control unit 23 changes the amount of phase change per unit time of the second reference sine wave every time the first synchronization signal is received, and after receiving the next first synchronization signal, A series of processes are continuously repeated so that the phase of the second reference sine wave is continuously updated so as to change the phase of the second reference sine wave by the amount of phase change per unit time after the change.
  • control unit 23 controls the communication unit 21 to transmit a second synchronization signal including the phase of the second reference sine wave to the inverter generator 1, and the inverter generator 1 generates the first reference sine wave phase and the The phases of the two reference sine waves are compared, the phase of the first reference sine wave is updated according to the comparison result, and the first synchronization signal including the phase after the update is transmitted, and the communication unit 21 performs the phase after the update , And repeats the series of processes using the phase included in the first synchronization signal.
  • the phase change amount update unit 245 is a phase included in the first synchronization signal received before the polarity inversion timing of the second reference sine wave by the communication unit 21 and is one of the first phases. Phase is compared with the fourth phase which is the phase of the second reference sine wave when the first synchronization signal is received, and the amount of phase change per unit time of the second reference sine wave according to the comparison result Change. The phase change amount update unit 245 stores the phase change amount per unit time after the change in the storage unit 24.
  • the other-party zero-cross detection unit 247 reads the third phase and the amount of phase change per unit time after the change from the storage unit 24.
  • the other party zero cross detection unit 247 continuously updates the phase of the second reference sine wave so that the phase of the second reference sine wave changes with the amount of phase change per unit time after the change with reference to the third phase. 1 Predict the polarity inversion timing of the reference sine wave.
  • the communication unit 21 receives the first synchronization signal every first set time.
  • the second zero cross detection unit 247 receives the first synchronization signal received most recently among the first synchronization signals received before the polarity inversion timing of the second reference sine wave by the communication unit 21 when the second synchronization signal is received.
  • a first reference is repeatedly made by repeatedly adding the amount of phase change per unit time after the change to the fourth phase which is the phase of the reference sine wave every second setting time shorter than the first setting time. Predict the polarity reversal timing of the sine wave.
  • control unit 23 controls the output circuit 22 to start output of the second output voltage at the predicted polarity inversion timing.
  • the phase of the second output voltage can be matched with the phase of the first output voltage at the polarity inversion timing.
  • a curve W1 in FIG. 3 represents a first reference sine wave of the inverter generator 1.
  • the broken line W2 in FIG. 3 represents the time change of the phase included in the first synchronization signal, that is, the time change of the phase of the first reference sine wave of the inverter generator 1.
  • a plurality of line segments W3 in FIG. 3 are transmission timings of the second synchronization signal transmitted by the inverter generator 2.
  • Dots D1 to D13 in FIG. 3 indicate the phase (that is, the phase of the first reference sine wave) included in the first synchronization signal when the inverter generator 2 receives the first synchronization signal transmitted from the inverter generator 1.
  • a broken line W4 in FIG. 3 is a line connecting the dots D1 to D13, and represents a time change of the phase of the first reference sine wave predicted by the inverter generator 2.
  • the broken line W11 is a phase change of the first reference sine wave of the inverter generator 1
  • the broken line W12 is a second example of the inverter generator 2 when the phase change amount per unit time is not updated as a comparative example. It is a phase change of a reference sine wave.
  • the broken line W12 does not approach the broken line W11 even if time passes.
  • a broken line W ⁇ b> 21 is a phase change of the first reference sine wave of the inverter generator 1.
  • Dots D21 to D31 in FIG. 5 represent the phase of the second reference sine wave when the inverter generator 2 receives the first synchronization signal transmitted from the inverter generator 1.
  • a broken line W22 is a phase change of the second reference sine wave of the inverter generator 2 when the phase change amount per unit time is updated in the present embodiment.
  • the broken line W22 is represented as connecting the dots D21 to D31.
  • the inverter is updated by updating the phase change amount per unit time.
  • the phase of the second reference sine wave of the generator 2 approaches the phase of the first reference sine wave of the inverter generator 1.
  • the control unit 23 sets the second reference sine wave so that the phase of the second reference sine wave changes with the phase change amount per unit time after the change with reference to the third phase.
  • the inverter generator 2 which concerns on this embodiment is an inverter generator which synchronizes the phase of an output voltage by communication between other inverter generators 1.
  • FIG. Communication which intermittently receives the first synchronization signal including the phase of the first reference sine wave from the other inverter generator 1 which outputs the first output voltage based on the first reference sine wave
  • a unit 21 is provided.
  • the inverter generator 2 further includes an output circuit 22 that outputs a second output voltage.
  • the inverter generator 2 further includes a control unit 23 that controls the output circuit based on the second reference sine wave.
  • the control unit 23 When the communication unit 21 receives the first synchronization signal from another inverter generator 1, the control unit 23 performs a first phase representing the phase of the first reference sine wave with the phase included in the first synchronization signal, and Comparing with a second phase which is a phase of the second reference sine wave when the first synchronization signal is received, and changing a phase change amount per unit time of the second reference sine wave according to the comparison result; The second reference so that the phase of the second reference sine wave is changed by the phase change amount per unit time after the change with reference to the first phase until the next first synchronization signal is received from another inverter generator. A series of processes of updating the phase of the sine wave is repeated.
  • the control unit 23 is a phase that is included in the first synchronization signal that the communication unit 21 receives before the polarity inversion timing of the second reference sine wave, and is a third phase that is one of the first phases. Is compared with the fourth phase which is the phase of the second reference sine wave when the first synchronization signal is received, and the amount of phase change per unit time of the second reference sine wave is changed according to the comparison result.
  • the phase of the second reference sine wave is continuously updated so as to change the phase of the second reference sine wave by the amount of phase change per unit time after the change, and the polarity inversion timing of the first reference sine wave is predicted.
  • the inverter generator 2 repeats the process of changing the phase change amount per unit time of the second reference sine wave to obtain the phase of the second reference sine wave of the inverter generator 2 in another manner.
  • the phase of the first reference sine wave of the inverter generator 1 can be gradually approximated.
  • the fourth phase which is the phase after the asymptotic approach, is compared with the third phase included in the first synchronization signal received before the polarity inversion timing (zero cross point), and the second reference sine wave according to the comparison result
  • the phase change amount of the second reference sine wave is changed so that the phase change amount of the second reference sine wave changes with the phase change amount per unit time of the second reference sine wave after the change. It updates and predicts the polarity inversion timing of the first reference sine wave.
  • the prediction accuracy of the polarity inversion timing of the first reference sine wave can be improved, the prediction accuracy of the polarity inversion timing of the output voltage of the other inverter generator 1 output based on the first reference sine wave can be improved. Can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

制御部は、通信部が他のインバータ発電機から第1同期信号を受信した場合、当該第1同期信号に含まれる第1の位相と、当該第1同期信号を受信したときの第2基準正弦波の位相である第2の位相とを比較し、比較結果に応じて第2基準正弦波の単位時間あたりの位相変化量を変更し、他のインバータ発電機から次の第1同期信号を受信するまで、第1の位相を基準として当該変更後の単位時間あたりの位相変化量で第2基準正弦波の位相が変化するよう第2基準正弦波の位相を更新し続けるという一連の処理を繰り返す。制御部は、通信部が第2基準正弦波の極性反転タイミングより前に受信した第1同期信号に含まれる第3の位相と、当該第1同期信号を受信したときの第2基準正弦波の位相である第4の位相とを比較し、比較結果に応じて第2基準正弦波の単位時間あたりの位相変化量を変更し、当該変更後の単位時間あたりの位相変化量で第2基準正弦波の位相が変化するよう第2基準正弦波の位相を更新し続けて第1基準正弦波の極性反転タイミングを予測する。

Description

インバータ発電機及び制御方法
 本発明は、インバータ発電機及び制御方法に関する。
 二つのインバータ発電機から出力電圧を重畳して出力する際に、二つのインバータ発電機の間で出力電圧の位相の同期を取るために、一方のインバータ発電機から他方のインバータ発電機へ同期信号を送信することが行われている。例えば、特許文献1には、他のインバータ発電機が、カウンタの値が、出力電圧の極性が負から正になるタイミングに対応する設定カウンタ値「127」になったとき、他のインバータ発電機から自インバータ発電機へ出力する同期信号の出力レベルをハイからローに切り替えることで、他のインバータ発電機の出力電圧の位相が360度であることを通知する。このとき、自インバータ発電機のカウンタが上記設定カウンタ値「127」より1小さい「126」の場合、自インバータ発電機の位相が遅れているものとみなして、自インバータ発電機の出力電圧の1周期を12.8μsだけ短くすることが開示されている。
特開2010-110027号公報
 しかしながら、間欠的に送られてくる同期信号の信号間の時間間隔が空いている場合には、他のインバータ発電機の出力電圧の位相が360度となる極性反転タイミング(ゼロクロス点ともいう)を精度良く予測できないという問題がある。
 そこで本発明はこのような点を考慮してなされたものであり、他のインバータ発電機が出力する出力電圧における極性反転タイミングについての予測精度を向上させることを可能とするインバータ発電機及び制御方法を提供することを目的とする。
 本発明の第1の態様に係るインバータ発電機は、
 他のインバータ発電機との間で通信により出力電圧の位相の同期をとるインバータ発電機であって、
 第1基準正弦波に基づいて第1出力電圧を出力する前記他のインバータ発電機から、当該第1基準正弦波の位相を含む第1同期信号を間欠的に受信する通信部と、
 第2出力電圧を出力する出力回路と、
 第2基準正弦波に基づいて前記出力回路を制御する制御部と、
 を備え、
 前記制御部は、前記通信部が前記他のインバータ発電機から第1同期信号を受信した場合、当該第1同期信号に含まれる位相で前記第1基準正弦波の位相を表す第1の位相と、当該第1同期信号を受信したときの前記第2基準正弦波の位相である第2の位相とを比較し、比較結果に応じて前記第2基準正弦波の単位時間あたりの位相変化量を変更し、前記他のインバータ発電機から次の第1同期信号を受信するまで、前記第1の位相を基準として当該変更後の単位時間あたりの位相変化量で前記第2基準正弦波の位相が変化するよう前記第2基準正弦波の位相を更新し続けるという一連の処理を繰り返し、
 前記制御部は、前記通信部が前記第2基準正弦波の極性反転タイミングより前に受信した前記第1同期信号に含まれる位相であって前記第1の位相のうちの一つである第3の位相と、当該第1同期信号を受信したときの前記第2基準正弦波の位相である第4の位相とを比較し、比較結果に応じて前記第2基準正弦波の単位時間あたりの位相変化量を変更し、当該変更後の単位時間あたりの位相変化量で前記第2基準正弦波の位相が変化するよう前記第2基準正弦波の位相を更新し続けて前記第1基準正弦波の極性反転タイミングを予測する。
 本発明の第2の態様に係るインバータ発電機は、第1の態様にかかるインバータ発電機であって、
 前記通信部は、第1設定時間毎に前記第1同期信号を受信し、
 前記制御部は、前記通信部が前記第2基準正弦波の極性反転タイミングより前に受信した前記第1同期信号のうち直近に受信した前記第1同期信号を受信したときの前記第2基準正弦波の位相である第4の位相に対して、前記第1設定時間より短い第2設定時間毎に、前記変更後の単位時間あたりの位相変化量を加算することを繰り返すことにより、前記第1基準正弦波の極性反転タイミングを予測する。
 本発明の第3の態様に係るインバータ発電機は、第1または2の態様にかかるインバータ発電機であって、
 前記通信部は、第1設定時間毎に前記第1同期信号を受信し、
 前記第2基準正弦波の位相を更新する時間間隔は、前記第1設定時間より短い第2設定時間であり、
 前記第2基準正弦波の位相を更新する際に、前記制御部は、前記第2設定時間毎に、前記変更後の第2基準正弦波の第2設定時間あたりの位相変化量を前記第2の位相に加算する。
 本発明の第4の態様に係るインバータ発電機は、第3の態様にかかるインバータ発電機であって、
 前記制御部は、前記第2の位相が前記第1の位相よりも遅れている場合、前記第2基準正弦波の第2設定時間あたりの位相変化量を大きくし、前記第2の位相が前記第1の位相よりも早まっている場合、前記第2基準正弦波の第2設定時間あたりの位相変化量を小さくする。
 本発明の第5の態様に係るインバータ発電機は、第1または2の態様にかかるインバータ発電機であって、
 前記通信部は、第1設定時間毎に前記第1同期信号を受信し、
 前記第2基準正弦波の位相を更新する時間間隔は、前記第1設定時間より短い第2設定時間であり、
 前記制御部は、前記第2基準正弦波の位相を更新する時間間隔を変更することによって前記第2基準正弦波の単位時間あたりの位相変化量を変更し、前記第2基準正弦波の位相を更新する際に、変更後の時間間隔毎に、設定された位相加算量を前記第2の位相に加算する。
 本発明の第6の態様に係るインバータ発電機は、第5の態様にかかるインバータ発電機であって、
 前記制御部は、前記第2の位相が前記第1の位相よりも遅れている場合、前記第2基準正弦波の位相を更新する時間間隔を短くし、前記第2の位相が前記第1の位相よりも早まっている場合、前記第2基準正弦波の位相を更新する時間間隔を長くする。
 本発明の第7の態様に係るインバータ発電機は、第1から6のいずれかの態様にかかるインバータ発電機であって、
 前記制御部は、前記第1の位相と、前記第1同期信号を受信したときの前記第2の位相との差の大きさに応じて、前記第2基準正弦波の単位時間あたりの位相変化量の変更量を決定する。
 本発明の第8の態様に係るインバータ発電機は、第1から7のいずれかの態様にかかるインバータ発電機であって、
 前記制御部は、前記通信部から、前記第2基準正弦波の位相を含む第2同期信号を前記他のインバータ発電機へ送信するよう制御し、前記他のインバータ発電機は前記第1基準正弦波の位相と前記第2基準正弦波の位相を比較し、比較結果に応じて前記第1基準正弦波の位相を更新し、当該更新後の位相を含む第1同期信号を送信し、前記通信部は当該更新後の位相を含む第1同期信号を受信し、当該第1同期信号に含まれる位相を用いて前記一連の処理を繰り返す。
 本発明の第9の態様に係るインバータ発電機は、第1から8のいずれかの態様にかかるインバータ発電機であって、
 前記第1同期信号は、前記第1基準正弦波の位相と誤り検出符号が含まれているパケットである。
 本発明の第10の態様に係るインバータ発電機は、第1から9のいずれかの態様にかかるインバータ発電機であって、前記制御部は、前記予測した極性反転タイミングにおいて前記第2出力電圧の出力を開始するよう前記出力回路を制御する。
 本発明の第11の態様に係る制御方法は、
 第1基準正弦波に基づいて第1出力電圧を出力する前記他のインバータ発電機から、当該第1基準正弦波の位相を含む第1同期信号を間欠的に受信する通信部と、第2出力電圧を出力する出力回路と、第2基準正弦波に基づいて前記出力回路を制御する制御部と、を備え、他のインバータ発電機との間で通信により出力電圧の位相の同期をとるインバータ発電機が実行する制御方法であって、
 前記制御部は、前記通信部が前記他のインバータ発電機から第1同期信号を受信した場合、当該第1同期信号に含まれる位相で前記第1基準正弦波の位相を表す第1の位相と、当該第1同期信号を受信したときの前記第2基準正弦波の位相である第2の位相とを比較し、比較結果に応じて前記第2基準正弦波の単位時間あたりの位相変化量を変更し、前記他のインバータ発電機から次の第1同期信号を受信するまで、前記第1の位相を基準として当該変更後の単位時間あたりの位相変化量で前記第2基準正弦波の位相が変化するよう前記第2基準正弦波の位相を更新し続けるという一連の処理を繰り返し、
 前記制御部は、前記通信部が前記第2基準正弦波の極性反転タイミングより前に受信した前記第1同期信号に含まれる位相であって前記第1の位相のうちの一つである第3の位相と、当該第1同期信号を受信したときの前記第2基準正弦波の位相である第4の位相とを比較し、比較結果に応じて前記第2基準正弦波の単位時間あたりの位相変化量を変更し、当該変更後の単位時間あたりの位相変化量で前記第2基準正弦波の位相が変化するよう前記第2基準正弦波の位相を更新し続けて前記第1基準正弦波の極性反転タイミングを予測する。
 本発明の一態様に係るインバータ発電機は、第2基準正弦波の単位時間あたりの位相変化量を変更する処理を繰り返すことによって、当該インバータ発電機の第2基準正弦波の位相を、他のインバータ発電機の第1基準正弦波の位相に徐々に漸近させることができる。この漸近後の位相である第4の位相と極性反転タイミングより前に受信した第1同期信号に含まれる第3の位相とを比較し、比較結果に応じて第2基準正弦波の単位時間あたりの位相変化量を更に変更し、当該変更後の第2基準正弦波の単位時間あたりの位相変化量で第2基準正弦波の位相が変化するよう第2基準正弦波の位相を更新して第1基準正弦波の極性反転タイミングを予測する。このため、第1基準正弦波の極性反転タイミングの予測精度を向上させることができるので、第1基準正弦波に基づいて出力される他のインバータ発電機の出力電圧の極性反転タイミングの予測精度を向上させることができる。
図1は、本発明の実施形態に係るインバータ発電システムの構成の一例を示す図である。 図2は、本発明の実施形態に係るインバータ発電機の制御部の構成の一例を示す図である。 図3は、第1基準正弦波、第1基準正弦波の位相の時間変化、インバータ発電機1が送信する第2同期信号の送信タイミング、第1同期信号に含まれる位相、第1基準正弦波の位相の予測時間変化の一例を示す図である。 図4は、位相変化量の更新をしない比較例における第1基準正弦波の位相と第2基準正弦波の位相の時間変化の一例を示す図である。 図5は、位相変化量を更新する本実施形態における第1基準正弦波の位相と第2基準正弦波の位相の時間変化の一例を示す図である。
 以下、本発明に係る実施形態について図面に基づいて説明する。図1において、
本発明の実施形態に係るインバータ発電システム10は、インバータ発電機1(他のインバータ発電機ともいう)と、インバータ発電機2とを備える。インバータ発電システム10は、インバータ発電機1から出力される第1出力電圧の位相と、インバータ発電機2から出力される第2出力電圧の位相とを揃え、第1出力電圧と第2出力電圧を重畳して出力する。本実施形態では第1出力電圧と第2出力電圧は正弦波の交流電圧であるところ、第1出力電圧と第2出力電圧の位相が揃うことにより、第1出力電圧と第2出力電圧が重畳して出力される電圧も正弦波の交流電圧となり、インバータ発電システム10は、正弦波の交流電圧を出力することができる。
 インバータ発電機1及びインバータ発電機2は、互いに相手のインバータ発電機との間で通信により出力電圧の位相の同期をとる。
 インバータ発電機1は電源S1に接続されており、電源S1から電源電圧が供給される。ここで、インバータ発電機1は、通信部11と、出力回路12と、制御部13と、記憶部14を備える。
 通信部11は、インバータ発電機2の後述する通信部21と通信する。この通信は有線であっても無線であってもよい。具体的には、通信部11は、インバータ発電機2が生成する第2基準正弦波の位相を含む第2同期信号を間欠的に受信する。ここで第1同期信号は、第1基準正弦波の位相と誤り検出符号が含まれているパケットである。
 また、通信部11は、制御部13によって生成された第1基準正弦波の位相を含む第1同期信号を間欠的に送信する。ここで第1同期信号は、第1基準正弦波の位相と誤り検出符号が含まれているパケットである。第1同期信号に誤り検出符号が含まれているので、通信中にノイズが混入することにより第1同期信号に含まれる第1基準正弦波の位相の値が本来の値からずれた場合、インバータ発電機2は誤り検出符号を用いてその誤りを検出することができる。そして、インバータ発電機2はパケットの再送を要求して再度同じ第1同期信号を受信することにより、正しい位相を受信することができる。
 出力回路12は、電源S1に接続されており、電源S1から供給された電圧を用いて第1出力電圧を出力する。
 制御部13は、通信部11、出力回路12、記憶部14に接続されており、通信部11及び出力回路12を制御する。例えば、制御部13は、第1基準正弦波を生成し、生成した第1基準正弦波に基づいて出力回路12を制御する。これにより、インバータ発電機1は、第1基準正弦波に基づいて第1出力電圧を出力する。
 記憶部14はデータを保存可能である。
 同様にして、インバータ発電機2は電源S2に接続されており、電源S2から電源電圧が供給される。ここで、インバータ発電機2は、通信部21と、出力回路22と、制御部23と、記憶部24を備える。
 通信部21は、インバータ発電機1の通信部11と通信する。この通信は有線であっても無線であってもよい。具体的には、通信部21は、インバータ発電機1が生成する第1基準正弦波の位相を含む第1同期信号を間欠的に受信する。また、通信部21は、制御部23によって生成された第2基準正弦波の位相を含む第2同期信号を間欠的に送信する。ここで第2同期信号は、第2基準正弦波の位相と誤り検出符号が含まれているパケットである。第2同期信号に誤り検出符号が含まれているので、通信中にノイズが混入することにより第2同期信号に含まれる第2基準正弦波の位相の値が本来の値からずれた場合、インバータ発電機1は誤り検出符号を用いてその誤りを検出することができる。そして、インバータ発電機1はパケットの再送を要求して再度同じ第2同期信号を受信することにより、正しい位相を受信することができる。
 出力回路22は、電源S2に接続されており、電源S2から供給された電圧を用いて第2出力電圧を出力する。
 制御部23は、通信部21、出力回路22、記憶部24に接続されており、通信部21及び出力回路22を制御する。例えば、制御部23は、第2基準正弦波を生成し、生成した第2基準正弦波に基づいて出力回路22を制御する。このように、インバータ発電機2は、第2基準正弦波に基づいて第2出力電圧を出力する。
 記憶部24はデータを保存可能である。
 <制御部23の構成の詳細>
 続いて、図2を用いて制御部23の機能的な構成について説明する。なお、制御部13の機能的な構成は、制御部23と同様であるから、その詳細な説明を省略する。
 図2において、制御部23は、基準正弦波生成部241と、通信データ入力部242と、PWM変調部243と、通信データ出力部244と、位相変化量更新部245と、相手位相予測部246と、相手ゼロクロス検出部247を備える。
 基準正弦波生成部241は、記憶部24に記憶されている単位時間あたりの位相変化量を読み出し、第1基準正弦波の単位時間あたりの位相変化量が当該読み出した単位時間あたりの位相変化量になるように、第2基準正弦波を生成する。基準正弦波生成部241は、生成した第2基準正弦波に対応するPWM信号を生成するように、当該PWM信号用のパルス幅の時系列データをPWM変調部243へ出力する。
 また基準正弦波生成部241は、通信部21が第1同期信号を受信したときの第2基準正弦波の位相である第2の位相を通信データ出力部244及び位相変化量更新部245へ出力する。また基準正弦波生成部241は、通信部21が第2基準正弦波の極性反転タイミングより前に第1同期信号を受信したときの第2基準正弦波の位相である第4の位相を通信データ出力部244及び位相変化量更新部245へ出力する。本実施形態では一例として、この極性反転タイミングより前に受信した第1同期信号は、極性反転タイミングを挟んで受信した2つの第1同期信号のうち先に受信した第1同期信号である。
 通信データ入力部242は、通信部21が受信した第1同期信号が入力される。通信データ入力部242は、第1同期信号に含まれる位相で第1基準正弦波の位相を表す第1の位相を第1同期信号から取得する。通信データ入力部242は、取得した第1の位相を位相変化量更新部245へ出力する。また通信データ入力部242は、取得した第1の位相を記憶部24に保存する。
 また通信データ入力部242は、通信部21が第2基準正弦波の極性反転タイミングより前に受信した第1同期信号に含まれる位相であって第1の位相のうちの一つである第3の位相を第1同期信号から取得する。本実施形態では一例として、この極性反転タイミングより前に受信した第1同期信号は、極性反転タイミングを挟んで受信した2つの第1同期信号のうち先に受信した第1同期信号である。通信データ入力部242は、取得した第3の位相を位相変化量更新部245へ出力する。また通信データ入力部242は、取得した第3の位相を記憶部24に保存する。
 PWM変調部243は、当該PWM信号用のパルス幅の時系列データを用いてスイッチング信号を生成し、生成したスイッチング信号を出力回路22へ送信する。これにより、出力回路22は、このスイッチング信号に基づいて内部のスイッチ回路をオンオフすることにより第2出力電圧を生成する。
 通信データ出力部244は、第2の位相が入力された場合、この第2の位相を含む第2同期信号を通信部21へ出力する。これにより、通信部21は、この第2同期信号をインバータ発電機1へ送信することができる。
 同様にして、通信データ出力部244は、第4の位相が入力された場合、この第4の位相を含む第2同期信号を通信部21へ出力する。これにより、通信部21は、この第2同期信号をインバータ発電機1へ送信することができる。
 位相変化量更新部245は、第1同期信号に含まれる位相で第1基準正弦波の位相を表す第1の位相と、当該第1同期信号を受信したときの第2基準正弦波の位相である第2の位相とを比較し、比較結果に応じて第2基準正弦波の単位時間あたりの位相変化量を変更する。
 その際、位相変化量更新部245は例えば、第2の位相が第1の位相よりも遅れている場合(すなわち自身の位相が他のインバータ発電機の位相より遅れている場合)、第2基準正弦波の第2設定時間あたりの位相変化量を大きくする。これにより、自身の位相の進み具合を早めて他のインバータ発電機の位相に追いつくようにすることができる。一方、位相変化量更新部245は例えば、第2の位相が第1の位相よりも早まっている場合(すなわち自身の位相が他のインバータ発電機の位相より早まっている場合)、第2基準正弦波の第2設定時間あたりの位相変化量を小さくしてもよい。これにより、自身の位相の進み具合を遅くして他のインバータ発電機の位相に近づけることができる。
 あるいは、位相変化量更新部245は例えば、第2の位相が第1の位相よりも遅れている場合(すなわち自身の位相が他のインバータ発電機の位相より遅れている場合)、第2基準正弦波の位相を更新する時間間隔を短くしてもよい。これにより、自身の位相の進み具合を早めて他のインバータ発電機の位相に追いつくようにすることができる。また位相変化量更新部245は第2の位相が第1の位相よりも早まっている場合(すなわち自身の位相が他のインバータ発電機の位相より早まっている場合)、第2基準正弦波の位相を更新する時間間隔を長くしてもよい。これにより、自身の位相の進み具合を遅くして他のインバータ発電機の位相に近づけることができる。位相変化量更新部245は、変更後の単位時間あたりの位相変化量を記憶部24に保存する。
 相手位相予測部246は、第1の位相及び上記変更後の単位時間あたりの位相変化量を記憶部24から読み出す。また相手位相予測部246は、記憶部24に記憶された第1の位相を読み出す。
 そして、相手位相予測部246は、通信部21がインバータ発電機1から次の第1同期信号を受信するまで、第1の位相を基準として当該変更後の単位時間あたりの位相変化量で第2基準正弦波の位相が変化するよう第2基準正弦波の位相を更新し続ける。
 ここで、位相更新の具体例について説明する。前提として、通信部21は、第1設定時間毎に第1同期信号を受信し、制御部23において第2基準正弦波の位相を更新する時間間隔は、この第1設定時間より短い第2設定時間である。すなわち、第1同期信号の受信間隔よりも、第2基準正弦波の位相の更新間隔の方が短いことを前提とする。
 この前提において、第2基準正弦波の位相を更新する際に、制御部23は、第2設定時間毎に、変更後の第2基準正弦波の第2設定時間あたりの位相変化量を第2の位相に加算してもよい。これにより、制御部23は、変更後の単位時間あたりの位相変化量で第2基準正弦波の位相が変化するよう第2基準正弦波の位相を更新することができる。
 あるいは、上記の前提において、制御部23は、第2基準正弦波の位相を更新する時間間隔を変更することによって第2基準正弦波の単位時間あたりの位相変化量を変更し、第2基準正弦波の位相を更新する際に、変更後の時間間隔毎に、設定された位相加算量を第2の位相に加算してもよい。これにより、制御部23は、変更後の単位時間あたりの位相変化量で第2基準正弦波の位相が変化するよう第2基準正弦波の位相を更新することができる。
 なお制御部23は、第1の位相と、第1同期信号を受信したときの第2の位相との差の大きさに応じて、第2基準正弦波の単位時間あたりの位相変化量の変更量を決定してもよい。これにより、第1の位相と、第1同期信号を受信したときの第2の位相との差が大きいときに、第2基準正弦波の単位時間あたりの位相変化量の変更量を大きくすることができ、インバータ発電機2の第2基準正弦波の位相をインバータ発電機1の第1基準正弦波の位相に、より早く近づけることができる。一方、第1の位相と、第1同期信号を受信したときの第2の位相との差が小さいときに、第2基準正弦波の単位時間あたりの位相変化量の変更量を小さくすることができ、インバータ発電機2の第2基準正弦波の位相をインバータ発電機1の第1基準正弦波の位相に、より早く近づけることができる。
 このように、制御部23は、第1同期信号を受信する度に、第2基準正弦波の単位時間あたりの位相変化量を変更し、変更しては、次の第1同期信号を受信する前まで、当該変更後の単位時間あたりの位相変化量で第2基準正弦波の位相が変化するよう第2基準正弦波の位相を更新し続けるという一連の処理を繰り返す。
 また制御部23は、通信部21から、第2基準正弦波の位相を含む第2同期信号をインバータ発電機1へ送信するよう制御し、インバータ発電機1は第1基準正弦波の位相と第2基準正弦波の位相を比較し、比較結果に応じて第1基準正弦波の位相を更新し、当該更新後の位相を含む第1同期信号を送信し、通信部21は当該更新後の位相を含む第1同期信号を受信し、当該第1同期信号に含まれる位相を用いて当該一連の処理を繰り返す。
 位相変化量更新部245は、通信部21が第2基準正弦波の極性反転タイミングより前に受信した第1同期信号に含まれる位相であって第1の位相のうちの一つである第3の位相と、当該第1同期信号を受信したときの第2基準正弦波の位相である第4の位相とを比較し、比較結果に応じて第2基準正弦波の単位時間あたりの位相変化量を変更する。位相変化量更新部245は、変更後の単位時間あたりの位相変化量を記憶部24に保存する。
 相手ゼロクロス検出部247は、第3の位相及び当該変更後の単位時間あたりの位相変化量を記憶部24から読み出す。相手ゼロクロス検出部247は、第3の位相を基準として当該変更後の単位時間あたりの位相変化量で第2基準正弦波の位相が変化するよう第2基準正弦波の位相を更新し続けて第1基準正弦波の極性反転タイミングを予測する。
 ここで、本実施形態では通信部21は、第1設定時間毎に第1同期信号を受信する。この場合において、相手ゼロクロス検出部247は、通信部21が第2基準正弦波の極性反転タイミングより前に受信した第1同期信号のうち直近に受信した第1同期信号を受信したときの第2基準正弦波の位相である第4の位相に対して、第1設定時間より短い第2設定時間毎に、変更後の単位時間あたりの位相変化量を加算することを繰り返すことにより、第1基準正弦波の極性反転タイミングを予測する。これにより、変更後の単位時間あたりの位相変化量を加算することを繰り返すことで、精度良く第1基準正弦波の極性反転タイミングを予測することができる。
 制御部23は例えば、当該予測した極性反転タイミングにおいて第2出力電圧の出力を開始するよう出力回路22を制御する。これにより、極性反転タイミングにおいて、第2出力電圧の位相を、第1出力電圧の位相に合わせることができる。
 図3における曲線W1は、インバータ発電機1の第1基準正弦波を表している。図3における折れ線W2は、第1同期信号に含まれる位相の時間変化、すなわちインバータ発電機1の第1基準正弦波の位相の時間変化を表している。図3における複数の線分W3は、インバータ発電機2が送信する第2同期信号の送信タイミングである。図3におけるドットD1~D13は、インバータ発電機1から送信された第1同期信号をインバータ発電機2が受信した時における当該第1同期信号に含まれる位相(すなわち第1基準正弦波の位相)を表す。図3における折れ線W4は、ドットD1~D13を繋いだ線であり、インバータ発電機2が予測する第1基準正弦波の位相の時間変化を表す。
 続いて、位相変化量の更新をしない比較例(図4)と位相変化量を更新する本実施形態(図5)との間で、第2基準正弦波の位相の時間変化を比較することにより、本実施形態に係る位相変化量の更新による位相同期効果について説明する。
 図4において、折れ線W11は、インバータ発電機1の第1基準正弦波の位相変化であり、折れ線W12は、比較例として単位時間あたりの位相変化量を更新しない場合におけるインバータ発電機2の第2基準正弦波の位相変化である。折れ線W12は、時間が経過しても折れ線W11に近づかない。
 図5において、折れ線W21は、インバータ発電機1の第1基準正弦波の位相変化である。図5におけるドットD21~D31は、インバータ発電機1から送信された第1同期信号をインバータ発電機2が受信した時における第2基準正弦波の位相を表す。折れ線W22は、本実施形態において単位時間あたりの位相変化量を更新する場合におけるインバータ発電機2の第2基準正弦波の位相変化である。折れ線W22は、このドットD21~D31間を繋いだものとして表される。
 図5の折れ線W22に示すように、本実施形態では、図4の比較例に係る第2基準正弦波の位相の時間変化とは異なり、単位時間あたりの位相変化量を更新することにより、インバータ発電機2の第2基準正弦波の位相が、インバータ発電機1の第1基準正弦波の位相に近づいていく。例えば、ドットD25における位相を第3位相とすると、制御部23は、この第3位相を基準として変更後の単位時間あたりの位相変化量で第2基準正弦波の位相が変化するよう第2基準正弦波の位相を更新し続けていくことにより、第1基準正弦波の極性反転タイミングを精度良く予測することができる。
 以上、本実施形態に係るインバータ発電機2は、他のインバータ発電機1との間で通信により出力電圧の位相の同期をとるインバータ発電機である。インバータ発電機2は、第1基準正弦波に基づいて第1出力電圧を出力する他のインバータ発電機1から、当該第1基準正弦波の位相を含む第1同期信号を間欠的に受信する通信部21を備える。更にインバータ発電機2は、第2出力電圧を出力する出力回路22を備える。更にインバータ発電機2は、第2基準正弦波に基づいて前記出力回路を制御する制御部23を備える。
 制御部23は、通信部21が他のインバータ発電機1から第1同期信号を受信した場合、当該第1同期信号に含まれる位相で第1基準正弦波の位相を表す第1の位相と、当該第1同期信号を受信したときの第2基準正弦波の位相である第2の位相とを比較し、比較結果に応じて第2基準正弦波の単位時間あたりの位相変化量を変更し、他のインバータ発電機から次の第1同期信号を受信するまで、第1の位相を基準として当該変更後の単位時間あたりの位相変化量で第2基準正弦波の位相が変化するよう第2基準正弦波の位相を更新し続けるという一連の処理を繰り返す。
 制御部23は、通信部21が第2基準正弦波の極性反転タイミングより前に受信した前記第1同期信号に含まれる位相であって第1の位相のうちの一つである第3の位相と、当該第1同期信号を受信したときの第2基準正弦波の位相である第4の位相とを比較し、比較結果に応じて第2基準正弦波の単位時間あたりの位相変化量を変更し、当該変更後の単位時間あたりの位相変化量で第2基準正弦波の位相が変化するよう第2基準正弦波の位相を更新し続けて第1基準正弦波の極性反転タイミングを予測する。
 本実施形態に係るインバータ発電機2は、第2基準正弦波の単位時間あたりの位相変化量を変更する処理を繰り返すことによって、当該インバータ発電機2の第2基準正弦波の位相を、他のインバータ発電機1の第1基準正弦波の位相に徐々に漸近させることができる。この漸近後の位相である第4の位相と極性反転タイミング(ゼロクロス点)より前に受信した第1同期信号に含まれる第3の位相とを比較し、比較結果に応じて第2基準正弦波の単位時間あたりの位相変化量を更に変更し、当該変更後の第2基準正弦波の単位時間あたりの位相変化量で第2基準正弦波の位相が変化するよう第2基準正弦波の位相を更新して第1基準正弦波の極性反転タイミングを予測する。このため、第1基準正弦波の極性反転タイミングの予測精度を向上させることができるので、第1基準正弦波に基づいて出力される他のインバータ発電機1の出力電圧の極性反転タイミングの予測精度を向上させることができる。
 なお、実施形態は例示であり、発明の範囲はそれらに限定されない。
 1、2 インバータ発電機
 10 インバータ発電システム
 11、21 通信部
 12、22 出力回路
 13、23 制御部
 14、24 記憶部
 241 基準正弦波生成部
 242 通信データ入力部
 243 PWM変調部
 244 通信データ出力部
 245 位相変化量更新部
 246 相手位相予測部
 247 相手ゼロクロス検出部
 S1、S2 電源

Claims (11)

  1.  他のインバータ発電機との間で通信により出力電圧の位相の同期をとるインバータ発電機であって、
     第1基準正弦波に基づいて第1出力電圧を出力する前記他のインバータ発電機から、
     当該第1基準正弦波の位相を含む第1同期信号を間欠的に受信する通信部と、
     第2出力電圧を出力する出力回路と、
     第2基準正弦波に基づいて前記出力回路を制御する制御部と、
     を備え、
     前記制御部は、前記通信部が前記他のインバータ発電機から第1同期信号を受信した場合、当該第1同期信号に含まれる位相で前記第1基準正弦波の位相を表す第1の位相と、当該第1同期信号を受信したときの前記第2基準正弦波の位相である第2の位相とを比較し、比較結果に応じて前記第2基準正弦波の単位時間あたりの位相変化量を変更し、前記他のインバータ発電機から次の第1同期信号を受信するまで、前記第1の位相を基準として当該変更後の単位時間あたりの位相変化量で前記第2基準正弦波の位相が変化するよう前記第2基準正弦波の位相を更新し続けるという一連の処理を繰り返し、
     前記制御部は、前記通信部が前記第2基準正弦波の極性反転タイミングより前に受信した前記第1同期信号に含まれる位相であって前記第1の位相のうちの一つである第3の位相と、当該第1同期信号を受信したときの前記第2基準正弦波の位相である第4の位相とを比較し、比較結果に応じて前記第2基準正弦波の単位時間あたりの位相変化量を変更し、当該変更後の単位時間あたりの位相変化量で前記第2基準正弦波の位相が変化するよう前記第2基準正弦波の位相を更新し続けて前記第1基準正弦波の極性反転タイミングを予測するインバータ発電機。
  2.  前記通信部は、第1設定時間毎に前記第1同期信号を受信し、
     前記制御部は、前記通信部が前記第2基準正弦波の極性反転タイミングより前に受信した前記第1同期信号のうち直近に受信した前記第1同期信号を受信したときの前記第2基準正弦波の位相である第4の位相に対して、前記第1設定時間より短い第2設定時間毎に、前記変更後の単位時間あたりの位相変化量を加算することを繰り返すことにより、前記第1基準正弦波の極性反転タイミングを予測する請求項1に記載のインバータ発電機。
  3.  前記通信部は、第1設定時間毎に前記第1同期信号を受信し、
     前記第2基準正弦波の位相を更新する時間間隔は、前記第1設定時間より短い第2設定時間であり、
     前記第2基準正弦波の位相を更新する際に、前記制御部は、前記第2設定時間毎に、前記変更後の第2基準正弦波の第2設定時間あたりの位相変化量を前記第2の位相に加算する請求項1または2に記載のインバータ発電機。
  4.  前記制御部は、前記第2の位相が前記第1の位相よりも遅れている場合、前記第2基準正弦波の第2設定時間あたりの位相変化量を大きくし、前記第2の位相が前記第1の位相よりも早まっている場合、前記第2基準正弦波の第2設定時間あたりの位相変化量を小さくする請求項3に記載のインバータ発電機。
  5.  前記通信部は、第1設定時間毎に前記第1同期信号を受信し、
     前記第2基準正弦波の位相を更新する時間間隔は、前記第1設定時間より短い第2設定時間であり、
     前記制御部は、前記第2基準正弦波の位相を更新する時間間隔を変更することによって前記第2基準正弦波の単位時間あたりの位相変化量を変更し、前記第2基準正弦波の位相を更新する際に、変更後の時間間隔毎に、設定された位相加算量を前記第2の位相に加算する
     請求項1または2に記載のインバータ発電機。
  6.  前記制御部は、前記第2の位相が前記第1の位相よりも遅れている場合、前記第2基準正弦波の位相を更新する時間間隔を短くし、前記第2の位相が前記第1の位相よりも早まっている場合、前記第2基準正弦波の位相を更新する時間間隔を長くする請求項5に記載のインバータ発電機。
  7.  前記制御部は、前記第1の位相と、前記第1同期信号を受信したときの前記第2の位相との差の大きさに応じて、前記第2基準正弦波の単位時間あたりの位相変化量の変更量を決定する請求項1から6のいずれか一項に記載のインバータ発電機。
  8.  前記制御部は、前記通信部から、前記第2基準正弦波の位相を含む第2同期信号を前記他のインバータ発電機へ送信するよう制御し、前記他のインバータ発電機は前記第1基準正弦波の位相と前記第2基準正弦波の位相を比較し、比較結果に応じて前記第1基準正弦波の位相を更新し、当該更新後の位相を含む第1同期信号を送信し、前記通信部は当該更新後の位相を含む第1同期信号を受信し、当該第1同期信号に含まれる位相を用いて前記一連の処理を繰り返す請求項1から7のいずれか一項に記載のインバータ発電機。
  9.  前記第1同期信号は、前記第1基準正弦波の位相と誤り検出符号が含まれているパケットである請求項1から8のいずれか一項に記載のインバータ発電機。
  10.  前記制御部は、前記予測した極性反転タイミングにおいて前記第2出力電圧の出力を開始するよう前記出力回路を制御する請求項1から9のいずれか一項に記載のインバータ発電機。
  11.  第1基準正弦波に基づいて第1出力電圧を出力する前記他のインバータ発電機から、当該第1基準正弦波の位相を含む第1同期信号を間欠的に受信する通信部と、第2出力電圧を出力する出力回路と、第2基準正弦波に基づいて前記出力回路を制御する制御部と、を備え、他のインバータ発電機との間で通信により出力電圧の位相の同期をとるインバータ発電機が実行する制御方法であって、
     前記制御部は、前記通信部が前記他のインバータ発電機から第1同期信号を受信した場合、当該第1同期信号に含まれる位相で前記第1基準正弦波の位相を表す第1の位相と、当該第1同期信号を受信したときの前記第2基準正弦波の位相である第2の位相とを比較し、比較結果に応じて前記第2基準正弦波の単位時間あたりの位相変化量を変更し、前記他のインバータ発電機から次の第1同期信号を受信するまで、前記第1の位相を基準として当該変更後の単位時間あたりの位相変化量で前記第2基準正弦波の位相が変化するよう前記第2基準正弦波の位相を更新し続けるという一連の処理を繰り返し、
     前記制御部は、前記通信部が前記第2基準正弦波の極性反転タイミングより前に受信した前記第1同期信号に含まれる位相であって前記第1の位相のうちの一つである第3の位相と、当該第1同期信号を受信したときの前記第2基準正弦波の位相である第4の位相とを比較し、比較結果に応じて前記第2基準正弦波の単位時間あたりの位相変化量を変更し、当該変更後の単位時間あたりの位相変化量で前記第2基準正弦波の位相が変化するよう前記第2基準正弦波の位相を更新し続けて前記第1基準正弦波の極性反転タイミングを予測する制御方法。
PCT/JP2017/044501 2017-12-12 2017-12-12 インバータ発電機及び制御方法 WO2019116440A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018519879A JP6533870B1 (ja) 2017-12-12 2017-12-12 インバータ発電機及び制御方法
US16/076,670 US11183852B2 (en) 2017-12-12 2017-12-12 Inverter generator for synchronizing a phase of an output voltage and control method thereof
PCT/JP2017/044501 WO2019116440A1 (ja) 2017-12-12 2017-12-12 インバータ発電機及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044501 WO2019116440A1 (ja) 2017-12-12 2017-12-12 インバータ発電機及び制御方法

Publications (1)

Publication Number Publication Date
WO2019116440A1 true WO2019116440A1 (ja) 2019-06-20

Family

ID=66820878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044501 WO2019116440A1 (ja) 2017-12-12 2017-12-12 インバータ発電機及び制御方法

Country Status (3)

Country Link
US (1) US11183852B2 (ja)
JP (1) JP6533870B1 (ja)
WO (1) WO2019116440A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209872A (ja) * 1999-01-13 2000-07-28 Honda Motor Co Ltd 発電機および発電機装置
JP2006217780A (ja) * 2005-02-07 2006-08-17 Yamaha Motor Co Ltd インバータ式交流発電装置
JP2015231264A (ja) * 2014-06-04 2015-12-21 東芝機械株式会社 インバータ発電システム及びインバータ発電装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281664B1 (en) 1999-01-13 2001-08-28 Honda Giken Kogyo Kabushiki Kaisha Generator and generator apparatus
JP5424611B2 (ja) 2008-10-28 2014-02-26 澤藤電機株式会社 インバータ発電機
US9263971B2 (en) * 2011-12-16 2016-02-16 Empower Micro Systems Inc. Distributed voltage source inverters
US10181728B2 (en) * 2016-03-22 2019-01-15 General Electric Company Smart grid synchronization scheme
JP6809960B2 (ja) * 2017-03-30 2021-01-06 本田技研工業株式会社 発電機システム
WO2019061186A1 (zh) * 2017-09-28 2019-04-04 华为技术有限公司 一种逆变器的pwm控制信号同步方法及逆变器和电网系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209872A (ja) * 1999-01-13 2000-07-28 Honda Motor Co Ltd 発電機および発電機装置
JP2006217780A (ja) * 2005-02-07 2006-08-17 Yamaha Motor Co Ltd インバータ式交流発電装置
JP2015231264A (ja) * 2014-06-04 2015-12-21 東芝機械株式会社 インバータ発電システム及びインバータ発電装置

Also Published As

Publication number Publication date
US11183852B2 (en) 2021-11-23
US20210175819A1 (en) 2021-06-10
JPWO2019116440A1 (ja) 2020-01-16
JP6533870B1 (ja) 2019-06-19

Similar Documents

Publication Publication Date Title
US20150357822A1 (en) Inverter electric generator system and inverter electric generator thereof
TW200939608A (en) Control device for a resonant DC/DC converter
JP4888741B2 (ja) 分散型制御システム
RU2010140813A (ru) Способ управления переключающим устройством резонансного преобразователя мощности, в особенности для обеспечения требуемой мощности, в особенности для генератора рентгеновских лучей
JP6533870B1 (ja) インバータ発電機及び制御方法
CN107277914A (zh) 一种无线mesh网络内设备时间同步控制方法及系统
JP6780254B2 (ja) 並列多重インバータシステム
JP2016005380A (ja) 電力変換装置の多重化システム
JP4730435B2 (ja) Pwmインバータ装置
JP2011083841A (ja) ロボット制御装置、ロボット制御システム及びロボット制御方法
JP2013062928A (ja) 同期制御システム
JP6019633B2 (ja) 電力変換装置
US11303221B1 (en) DC-AC inverter drive system and operation
US11799401B2 (en) Drive system
JP2011139407A (ja) 受信回路
JP2015186067A (ja) 電力変換装置並びにノード間の同期方法
CN111492571A (zh) 用于双通道电机控制器的定时器电路
CN105978413A (zh) 一种脉冲序列的串行传输方法、装置和永磁传动系统
RU2269860C2 (ru) Способ преобразования частоты
US10524329B2 (en) Apparatus for generating PWM signal and apparatus for controlling light having the same
CN116455545B (zh) 一种信号同步的方法、设备和系统
JP2004187492A (ja) 半導体装置および制御方法
KR20180058483A (ko) 인버터 장치
KR102452064B1 (ko) 무효전력보상장치
JP2008219235A (ja) システム同期方法、これを行うpwm信号発生装置、及びこれを備えた電動機制御システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519879

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934830

Country of ref document: EP

Kind code of ref document: A1