WO2019115512A1 - Kühler-lüfter- kombination mit cyclorotor - Google Patents

Kühler-lüfter- kombination mit cyclorotor Download PDF

Info

Publication number
WO2019115512A1
WO2019115512A1 PCT/EP2018/084318 EP2018084318W WO2019115512A1 WO 2019115512 A1 WO2019115512 A1 WO 2019115512A1 EP 2018084318 W EP2018084318 W EP 2018084318W WO 2019115512 A1 WO2019115512 A1 WO 2019115512A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclorotor
radiator
elements
fan combination
driven
Prior art date
Application number
PCT/EP2018/084318
Other languages
English (en)
French (fr)
Inventor
Christoph Stroh
Original Assignee
Magna Powertrain Bad Homburg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magna Powertrain Bad Homburg GmbH filed Critical Magna Powertrain Bad Homburg GmbH
Publication of WO2019115512A1 publication Critical patent/WO2019115512A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P2005/025Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers using two or more air pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • F01P2005/046Pump-driving arrangements with electrical pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/34Blade mountings
    • F04D29/36Blade mountings adjustable
    • F04D29/362Blade mountings adjustable during rotation

Definitions

  • the invention relates to a cooler-fan combination consisting of at least one cyclorotor element which is driven by an electric machine and having wings which are rotatably mounted and rotatable cylindrical about a rotor axis.
  • coolers For the cooling of vehicles, specifically of engine, transmission, e-motors, power electronics, battery, etc. are used coolers, which are often operated air-cooled. Due to the ever-increasing requirements for demand-driven regulation of the temperatures in the vehicle, efficient utilization and controllability of these components are of great importance. In addition, due to the steadily reduced available construction space, the optimal utilization of cooling surfaces is desirable.
  • the Voith-Schneider drive is known.
  • a wing On an obliquely Asked with an angle a in the flow of a fluid or moving in a static fluid surface, a wing, forces. These are the resistance (in the direction of movement) and the dynamic buoyancy (transverse to the direction of movement).
  • inclined surfaces In order to be able to use forces in a rotating machine, inclined surfaces must move in a circular path. However, if the surfaces maintain their angle, all forces cancel each other out. It is therefore necessary to change the angle of attack of the surfaces during movement on a circular path. It is expedient in this case that a positive angle of attack offset by 180 ° is offset by a negative angle of attack. In the two ranges of motion between the angle changes continuously.
  • the surfaces are formed as symmetrical streamlined bodies to minimize the resistance force in the direction of movement along the circular path.
  • the profile on one side of the circular path increases the dynamic buoyancy compared to that of the inclined symmetrical flow body.
  • the profile on one side of the circular path increases the dynamic buoyancy compared to that of the inclined symmetrical flow body.
  • the profile on the opposite side practically only the oblique position of the profile is effective.
  • the Voith-Schneider rotor is optimized by adjusting the blade pitch.
  • Such a rotor can also be used as a fan rotor.
  • the object is achieved with a radiator-fan combination consisting of at least one cyclorotor element, which is driven by an electric machine and has vanes which are rotatably mounted rotatably and adjustably about a rotor axis, wherein a plurality of cyclotors Elements are arranged parallel to one another in order to cover a non-circular area of the radiator to be cooled.
  • a number of cyclorotor elements driven by electric motors are placed side by side to provide air flow to a rectangular area, allowing full utilization of the cooler area and reducing the overall area of the cooler at the same cooling capacity.
  • a cooler-fan combination consisting of at least one cyclorotor element, which is driven by an electric machine and having wings which are rotatably mounted cylindrical and rotatable about a rotor axis and adjustable, wherein one or more Cyclorotor- Elements in addition to circular fans to cover a non-circular, to be cooled surface of the radiator.
  • Cyclorotoren has the advantage that they have a lower resistance in the case of high speeds.
  • cyclorotor elements are each driven by an electric machine.
  • the cyclorotor elements are driven by drive components of one or more electric machines.
  • the electrical machines can be controlled individually.
  • the wings of the Cyclorotor elements are also controllable. This results in the possibility of varying the outflow angle of the air flow.
  • the cooling fan combination has a very good controllability of individual elements and thus of individual coolers in the overall package.
  • the invention is also easy to use in the case of highly non-square coolers, even in rectangular air ducts, e.g. for air-cooled batteries.
  • the invention offers the possibility of avoiding indirect charge air cooling with a low-temperature cooling circuit for an engine and instead of using air cooling efficiently.
  • Fig. 3 shows another embodiment.
  • the cyclorotor element 2 consists of a shaft 10 which is arranged centrally in this example and which is suitably driven in the direction of rotation 8 about the axis of rotation 5. On the shaft sit spoke-like arranged support members 11 to which wings 6 are attached.
  • Carrier elements 11 and wings 6 can carry suitable mechanical or electrical adjusters in order to rotate the position of the wings about the wing axes 15.
  • the angle of attack a of the wings determines the force that results in a resultant force 7. In the case of a fan, this resulting force determines the direction of flow of the air through the fan.
  • the structure of the cyclorotor element 2 is cylindrical about the shaft 10, so that the wings either extend along the entire length of the cylinder or are present only in sections. If the wings 6 extend along the entire length L of the cyclorotor element, they can each be fastened to the support elements 11 only on the front side. Further support elements 11 would be omitted.
  • FIG. 2 shows an embodiment of the radiator / fan combination.
  • the cyclorotor elements 2 sketched as cylinders are arranged with their respective rotation axis 5 parallel to one another.
  • the cyclorotor elements 2 cover the entire surface of a cooler 1.
  • the cyclorotor elements are driven by an electric drive 3. As a result, an air flow 7 takes place along the indicated arrows.
  • cyclorotor elements allows a rectangular or square area to be covered in a simple manner.
  • the covering means that the surface of the cooler 1 is almost completely covered by a cutting surface through the axes of rotation 5 of the cyclorotor elements.
  • the corner areas of the radiator are sufficiently ventilated.
  • the components are installed in a housing so that the air flow can be better controlled.
  • FIG. 3 shows an embodiment of the radiator-fan combination according to the invention in which the radiator surface of two conventional circular fans is supplied with an air flow.
  • a cyclorotor element 2 is used, which supplies a rectangular area below the circular fan surfaces with an air flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

Kühler-Lüfter-Kombination bestehend aus mindestens einem Cyclorotor-Element, das von einer elektrischen Maschinen angetrieben wird und Flügel aufweist, die zylindrisch um einen Rotorachse drehbar und anstellbar gelagert sind, wobei mehrere Cyclorotor-Elemente parallel zueinander angeordnet sind, um eine nicht kreisrunde, zu kühlende Fläche des Kühlers zu überdecken.

Description

Kühler-Lüfter- Kombination mit Cvclorotor
Die Erfindung betrifft eine Kühler-Lüfter-Kombination bestehend aus mindestens einem Cyclorotor-Element, das von einer elektrischen Maschine angetrieben wird und Flügel aufweist, die zylindrisch um eine Rotorachse drehbar und anstellbar gelagert sind.
Stand der Technik
Zur Kühlung von Fahrzeugen, konkret von Motor, Getriebe, e-Motoren, Leistungs- elektronik, Batterie, etc. werden Kühler verwendet, die oft luftgekühlt betrieben werden. Aufgrund der stetig steigenden Anforderungen an eine bedarfsgerechte Regelung der Temperaturen im Fahrzeug kommt einer effizienten Ausnützung und Regelbarkeit dieser Komponenten hohe Bedeutung zu. Zusätzlich ist aufgrund der stetig reduzierten verfügbaren Bauräume die optimale Ausnützung von Kühlflä- chen erstrebenswert.
Zur Sicherstellung einer ausreichenden Luftmenge durch die Kühler werden in al- ler Regel Elektro-Lüfter eingesetzt. Aufgrund der kreisrunden Geometrie der Lüfter und den großen Lüfternaben ist die Durchströmung der rechteckigen Kühler nicht gleichmäßig und die effektive, gekühlte Fläche deutlich kleiner als die vom Lüfter verbaute Fläche. Auch die Regelbarkeit beschränkt sich auf eine Regelung des Gesamtdurchsatzes der vom Lüfter beaufschlagten Fläche.
Aus dem Stand der Technik ist der Voith-Schneider-Antrieb bekannt. Auf eine schräg mit einem Anstellwinkel a in die Strömung eines Fluids gestellte oder aber in einem ruhenden Fluid bewegte Fläche, einen Flügel, wirken Kräfte. Es sind dies die Widerstandskraft (in Bewegungsrichtung) und der dynamische Auftrieb (quer zur Bewegungsrichtung). Um Kräfte in einer rotierenden Maschine nutzen zu kön- nen, müssen sich schräg angestellte Flächen auf einer Kreisbahn bewegen. Be- halten die Flächen dabei jedoch ihren Winkel bei, heben sich alle Kräfte auf. Es ist deshalb notwendig, den Anstellwinkel der Flächen während der Bewegung auf ei- ner Kreisbahn zu verändern. Zweckmäßig ist hierbei, dass einem positiven An- stellwinkel um 180° versetzt ein negativer Anstellwinkel gegenübersteht. In den beiden Bewegungsbereichen dazwischen verändert sich der Winkel kontinuierlich.
Die Flächen sind als symmetrische stromlinienförmige Körper ausgebildet, um die Widerstandskraft in Bewegungsrichtung entlang der Kreisbahn zu minimieren.
In diesem Fall wird durch das Profil auf der einen Seite der Kreisbahn der dynami- sche Auftrieb gegenüber dem des schräg angestellten symmetrischen Strömungs- körpers verstärkt. Auf der gegenüberliegenden Seite ist jedoch praktisch nur die Schräganstellung des Profils wirksam.
Eine solche Nutzung wird in der WO 2009 109 918 A2 beschrieben.
Der Voith-Schneider Rotor wird durch Verstellung der Flügelneigungen optimiert. Ein solcher Rotor kann auch als Gebläserotor eingesetzt sein.
Aus der DE 33 90 228 C2 ist ein Cycloid-Rotor bekannt, der auch als Lüfter arbeitet.
Die DE 10 2015 005 129 B3 zeigt einen Fahrzeugkühler mit auf Riemen geführten Lüfter- blättern.
Es ist Aufgabe der Erfindung eine Kühler- Lüfter- Kombination zu schaffen, bei der die Kühlfläche optimiert ist. Die Aufgabe wird gelöst mit einer Kühler-Lüfter-Kombination bestehend aus min- destens einem Cyclorotor-Element, das von einer elektrischen Maschine angetrie- ben wird und Flügel aufweist, die zylindrisch um eine Rotorachse drehbar und an- stellbar gelagert sind, wobei mehrere Cyclorotor-Elemente parallel zueinander an- geordnet sind, um eine nicht kreisrunde, zu kühlende Fläche des Kühlers zu über- decken.
Eine Reihe von Cyclorotor-Elementen, die von Elektromotoren angetrieben wer- den, werden nebeneinander platziert, um so eine rechteckige Fläche mit Luftstrom zu versorgen, dadurch ist eine volle Ausnutzung der Kühlerfläche möglich und die Gesamtfläche des Kühlers kann bei derselben Kühlleistung reduziert werden.
Weiterhin wird die Aufgabe gelöst mit einer Kühler-Lüfter-Kombination bestehend aus mindestens einem Cyclorotor-Element, das von einer elektrischen Maschine angetrieben wird und Flügel aufweist, die zylindrisch um einen Rotorachse dreh- bar und anstellbar gelagert sind, wobei ein oder mehrere Cyclorotor-Elemente zu- sätzlich zu Kreislüftern eine nicht kreisrunde, zu kühlende Fläche des Kühlers zu überdecken.
Die Verwendung von Cyclorotoren hat den Vorteil, dass sie einen geringeren Wi- derstand im Falle von hohen Fahrgeschwindigkeiten aufweisen.
Es ist von Vorteil, wenn die Cyclorotor-Elemente jeweils von einer elektrischen Maschine angetrieben sind.
Alternativ ist es auch von Vorteil, wenn die Cyclorotor-Elemente über Antriebs- komponenten von einer oder mehreren elektrischen Maschinen angetrieben sind.
Vorteilhafterweise lassen sich die elektrischen Maschinen einzeln ansteuern.
Die Flügel der Cyclorotor-Elemente sin dabei ebenfalls ansteuerbar. Dadurch ergibt sich die Möglichkeit, den Abströmwinkel des Luftstroms zu variieren. Damit weist die Kühle-Lüfter Kombination eine sehr gute Regelbarkeit von einzel- nen Elementen und dadurch von einzelnen Kühlern im Gesamtpaket auf.
Die Erfindung lässt sich einfach auch im Falle von stark nichtquadratischen Küh- lern verwenden, auch in rechteckigen Luftkanälen, z.B. bei luftgekühlten Batterien.
Die Erfindung bietet die Möglichkeit, indirekte Ladeluftkühlung mit Niedertempera- turkühlkreislauf für einen Motor zu vermeiden und stattdessen effizient Luftkühlung zu verwenden.
Beschreibung der Erfindung
Die Erfindung wird nachfolgend beispielhaft unter Bezugnahme auf die beigefügte Zeichnung beschrieben.
Fig. 1 zeigt eine schematische Darstellung eines Cyclorotors im Stand der Tech- nik,
Fig.2 zeigt eine Darstellung der beispielhaften Ausführungsform,
Fig. 3 zeigt eine weitere Ausführungsform.
Das Cyclorotor-Element 2 besteht aus einer in diesem Beispiel mittig angeordne- ten Welle 10, die geeignet in Rotationsrichtung 8 um die Rotationsachse 5 ange- trieben wird. Auf der Welle sitzen speichenartig angeordnet Trägerelemente 11 , an denen Flügel 6 befestigt sind.
Trägerelemente 11 und Flügel 6 können geeignete mechanische oder elektrische Versteller tragen, um die Position der Flügel um die Flügelachsen 15 zu verdre- hen. Der Anstellwinkel a der Flügel bestimmt die Kraft, die in einer Resultierenden Kraft 7 mündet. Diese resultierende Kraft bestimmt im Fall eines Lüfters die Strö- mungsrichtung der Luft durch den Lüfter. Der Aufbau des Cyclorotor-Elements 2 ist zylindrisch um die Welle 10, so dass die Flügel sich entweder entlang der ganzen Länge des Zylinders strecken oder aber nur abschnittsweise vorhanden sind. Erstrecken sich die Flügel 6 entlang der ge- samten Länge L des Cyclorotor-Elements können sie mit Trägerelementen 11 je- weils nur stirnseitig befestig sein. Weitere Trägerelemente 11 würden entfallen.
In Figur 2 wird eine Ausführungsform der Kühler-Lüfterkombination dargestellt. Die als Zylinder skizzierten Cyclorotor-Elemente 2 werden mit ihren jeweiligen Rotati- onsachse 5 parallel zueinander angeordnet. Die Cyclorotor-Elemente 2 überde- cken dabei die gesamte Fläche eines Kühlers 1. Die Cyclorotor-Elemente werden von einem elektrischen Antrieb 3 angetrieben. Resultierend erfolgt ein Luftstrom 7 entlang der angedeuteten Pfeile.
Es ist klar zu erkennen, dass durch die Anordnung von geeigneten Cyclorotor-Ele- menten eine rechteckige oder quadratische Fläche auf einfache Art und Weise übergedeckt werden kann. Das Überdecken bedeutet dabei, dass die Fläche des Kühlers 1 von einer Schnittfläche durch die Rotationsachsen 5 der Cyclorotor-Ele- mente nahezu vollständig überdeckt ist.
Dadurch werden auch die Eckbereiche des Kühlers ausreichend belüftet. Damit die Kühler-Lüfterkombination funktioniert werden die Komponenten in einem Ge- häuse verbaut, damit der Luftzustrom besser kontrolliert werden kann.
Figur 3 zeigt eine Ausführungsform der erfindungsgemäßen Kühler-Lüfter Kombi- nation bei der die Kühlerfläche von zwei konventionellen kreisförmigen Lüftern mit einem Luftstrom versorgt wird. Zusätzlich dazu wird ein Cyclorotor-Element 2 ein- gesetzt, der eine Rechteckfläche unterhalb der kreisförmigen Lüfterflächen mit ei- nem Luftstrom versorgt. Bezugszeichenliste
1 Kühler
Cyclorotor-Element
Elektrische Maschine
Kreislüfter
Rotationsachse
Flügel
7 Luftströmung
8 Rotationsrichtung
10 Rotorwelle
11 Trägerelement
15 Flügelachse
L Länge Zylinder

Claims

Ansprüche
1. Kühler-Lüfter-Kombination (1 ,2) bestehend aus mindestens einem Cyclorotor- Element (2), das von einer elektrischen Maschine (3) angetrieben wird und Flügel (6) aufweist, die zylindrisch um eine Rotorachse (5) drehbar und anstellbar gela- gert sind, dadurch gekennzeichnet, dass mehrere Cyclorotor-Elemente (2) parallel zueinander angeordnet sind, um eine nicht kreisrunde, zu kühlende Fläche des Kühlers (1 ) zu überdecken.
2. Kühler-Lüfter-Kombination (1 ,2) bestehend aus mindestens einem Cyclorotor- Element (2), das von einer elektrischen Maschine (3) angetrieben wird und Flügel (6) aufweist, die zylindrisch um einen Rotorachse (5) drehbar und anstellbar gela- gert sind, dadurch gekennzeichnet, dass ein oder mehrere Cyclorotor-Elemente (2) zusätzlich zu Kreislüftern (3) eine nicht kreisrunde, zu kühlende Fläche des Kühlers zu überdecken.
3. Kühler-Lüfter-Kombination nach einem der Ansprüche 1 oder 2, dass die Cyclo- rotor-Elemente (2) jeweils von einer elektrischen Maschine (3) angetrieben sind.
4. Kühler-Lüfter-Kombination nach einem der Ansprüche 1 oder 2, dass die Cyclo- rotor-Elemente (2) über Antriebskomponenten von einer oder mehreren elektri- schen Maschinen angetrieben sind.
5. Kühler-Lüfter-Kombination nach einem der Ansprüche 1 bis 4, dass die elektri- schen Maschinen (3) einzeln ansteuerbar sind.
6. Kühler-Lüfter-Kombination nach einem der Ansprüche 1 bis 5, dass die Flügel (6) der Cyclorotor-Elemente (2) ansteuerbar sind.
PCT/EP2018/084318 2017-12-12 2018-12-11 Kühler-lüfter- kombination mit cyclorotor WO2019115512A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017222540.8 2017-12-12
DE102017222540.8A DE102017222540B3 (de) 2017-12-12 2017-12-12 Kühler-Lüfter- Kombination mit Cyclorotor

Publications (1)

Publication Number Publication Date
WO2019115512A1 true WO2019115512A1 (de) 2019-06-20

Family

ID=64457920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/084318 WO2019115512A1 (de) 2017-12-12 2018-12-11 Kühler-lüfter- kombination mit cyclorotor

Country Status (2)

Country Link
DE (1) DE102017222540B3 (de)
WO (1) WO2019115512A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124222A1 (fr) * 2021-06-22 2022-12-23 Valeo Systemes Thermiques Dispositif de ventilation pour module de refroidissement de véhicule automobile

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068703A1 (de) * 1981-06-22 1983-01-05 Eaton Corporation Leitung für einen Ventilator
US4519343A (en) * 1982-11-08 1985-05-28 Aisin Seiki Kabushiki Kaisha Engine cooling system
DE3390228C2 (de) 1982-10-06 1993-07-08 Jonsson Pumpkonsult
WO1997042416A1 (en) * 1996-05-07 1997-11-13 Rollo Enterprises Limited An impeller and fan incorporating same
US20060254291A1 (en) * 2005-05-10 2006-11-16 Emp Advanced Development, Llc Cooling system and method for cooling a heat producing system
US20080317612A1 (en) * 2007-06-21 2008-12-25 Engine Power Source, Inc. Auxiliary engine driven device and methods for use thereof
WO2009109918A2 (en) 2008-03-04 2009-09-11 Philip Bogrash Cycloidal rotor with non-circular blade orbit
DE102015005129B3 (de) 2015-04-22 2016-08-25 Audi Ag Fahrzeug mit einem Kühler und einem Kühlerlüfter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068703A1 (de) * 1981-06-22 1983-01-05 Eaton Corporation Leitung für einen Ventilator
DE3390228C2 (de) 1982-10-06 1993-07-08 Jonsson Pumpkonsult
US4519343A (en) * 1982-11-08 1985-05-28 Aisin Seiki Kabushiki Kaisha Engine cooling system
WO1997042416A1 (en) * 1996-05-07 1997-11-13 Rollo Enterprises Limited An impeller and fan incorporating same
US20060254291A1 (en) * 2005-05-10 2006-11-16 Emp Advanced Development, Llc Cooling system and method for cooling a heat producing system
US20080317612A1 (en) * 2007-06-21 2008-12-25 Engine Power Source, Inc. Auxiliary engine driven device and methods for use thereof
WO2009109918A2 (en) 2008-03-04 2009-09-11 Philip Bogrash Cycloidal rotor with non-circular blade orbit
DE102015005129B3 (de) 2015-04-22 2016-08-25 Audi Ag Fahrzeug mit einem Kühler und einem Kühlerlüfter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124222A1 (fr) * 2021-06-22 2022-12-23 Valeo Systemes Thermiques Dispositif de ventilation pour module de refroidissement de véhicule automobile
WO2022268588A1 (fr) * 2021-06-22 2022-12-29 Valeo Systemes Thermiques Dispositif de ventilation pour module de refroidissement de véhicule automobile

Also Published As

Publication number Publication date
DE102017222540B3 (de) 2018-12-20

Similar Documents

Publication Publication Date Title
DE102013221813B4 (de) Aktiver Luftströmungsauslass für ein Fahrzeug und Verfahren zm aktiven Erleichtern einer Strömung durch einen aktiven Luftströmungsauslass
DE3844337C2 (de)
DE202014105449U1 (de) Rotationswärmetauschereinrichtung
EP0325972A2 (de) Kühleranordnung, insbesondere für einen Fahrzeugantrieb
DE202015107159U1 (de) Kühlstruktur eines Motors
EP2756585A2 (de) Atmender elektromotor
EP2601730B1 (de) Kompakte elektrische maschine
WO2019115512A1 (de) Kühler-lüfter- kombination mit cyclorotor
AT523262A4 (de) Vorrichtung zur Verstellung der Neigung von Rotorblättern eines Rotors
DE1403059A1 (de) Kleinheizluefter
EP2431702A2 (de) Luftgekühlter Motorgenerator sowie Verfahren zum Betrieb eines solchen Motorgenerators
DE102016014038A1 (de) Vorrichtung zum Verändern des Querschnitts einer Lufteintrittsöffnung eines Kraftfahrzeugs
DE1214936B (de) Kuehleinrichtung fuer Fahrzeugbrennkraft-maschinen
DE202010012577U1 (de) Gartenhäcksler
EP2603388A1 (de) Gebläseanordnung
DE102017206641A1 (de) Antriebseinheit und Kraftfahrzeug mit einer Antriebseinheit
DE19819996B4 (de) Universal Gleichstrom Stellantrieb
DE102013207520A1 (de) Steuerschrank und Industrieroboter mit einem Steuerschrank
WO2010069715A2 (de) Maschine mit lagervorrichtung
DE102017105696A1 (de) Drehschieberventil für den Einsatz im Kfz-Bereich
DE102012113165A1 (de) Vorrichtung zum Schutz eines Kühlgebläsemotors
DE112007001111T5 (de) Vorrichtung zum Schutz vor überhöhter Geschwindigkeit für Fahrtreppen
DE202005005694U1 (de) Windenergieanlage
EP3667119A1 (de) Aktuator
DE19707222A1 (de) Verdichteranlage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825914

Country of ref document: EP

Kind code of ref document: A1