WO2019114874A1 - Alliage fer-chrome-nickel-bore - Google Patents

Alliage fer-chrome-nickel-bore Download PDF

Info

Publication number
WO2019114874A1
WO2019114874A1 PCT/DE2018/100998 DE2018100998W WO2019114874A1 WO 2019114874 A1 WO2019114874 A1 WO 2019114874A1 DE 2018100998 W DE2018100998 W DE 2018100998W WO 2019114874 A1 WO2019114874 A1 WO 2019114874A1
Authority
WO
WIPO (PCT)
Prior art keywords
max
alloy
alloy according
chromium
content
Prior art date
Application number
PCT/DE2018/100998
Other languages
German (de)
English (en)
Inventor
Nicole De Boer
Faezeh Kazemi
Stephan KNOP
Original Assignee
Vdm Metals International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vdm Metals International Gmbh filed Critical Vdm Metals International Gmbh
Publication of WO2019114874A1 publication Critical patent/WO2019114874A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/06Magazines for holding fuel elements or control elements
    • G21C19/07Storage racks; Storage pools
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/10Construction of control elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • G21F5/008Containers for fuel elements

Definitions

  • the invention relates to a boron-containing iron-chromium-nickel alloy having improved mechanical properties, in particular strength and ductility.
  • JP H 06192792 A relates to a boron-containing stainless steel with high corrosion resistance, which has the following composition (in% by weight): ⁇ 0.02% C, ⁇ 0.5% Si, ⁇ 2% Mn, 10-22% Ni , 18-26% Cr, ⁇ 3% B, ⁇ 0.1% Mg, ⁇ 0.5% Al, 0.05-1.0% Gd and / or 0.1-5% in total of at least one of the elements Ti, Zr, Nb, balance Fe including impurities.
  • the material ⁇ 1% may include at least one of Cd, Sn, Eu and / or 0.1-5% of at least one of Mo, W and V.
  • US Pat. No. 3,798,075 discloses a method for producing a stainless steel.
  • the alloy has the following composition:
  • the proportion of S, Se and Te should not be greater than 1%. Rest iron.
  • the invention has for its object to provide an iron-chromium-nickel alloy, on the one hand without the element gadolinium and on the other hand has an increased strength.
  • the alloy according to the invention is preferably used for components in the nuclear industry.
  • the following components are addressed here:
  • the alloy may preferably be in the form of sheets, foils or strip material.
  • the subject invention assumes that the material properties can be adjusted substantially by the addition of the element titanium. By deliberately adding titanium in the spreading range of 0.01 - 7.0%, the material properties can also be improved, with the following Ti contents being possible:
  • the element tungsten is given in contents of 0.01-3.0%. Within this spreading range, the element can be adjusted in the alloy as follows:
  • the nickel content is between 10 and 20%, whereby depending on the area of use of the alloy, nickel contents can be given as follows:
  • the carbon content is between 0.02 and 0.4%, whereby depending on the individual case carbon contents can be given as follows:
  • the boron content should preferably be between 0.2 and 3.0%, depending on the individual case, boron contents may be given as follows:
  • the element chromium is necessary for the corrosion resistance because a protective Cr oxide layer is formed.
  • the chromium content is between 15 and 25%, whereby, depending on the medium used, chromium contents can be given as follows:
  • magnesium is one of the addition elements in levels of 0.0005 - 0.05%. Specifically, it is possible to adjust this element in the alloy as follows:
  • Manganese is given in levels of 0.5-2.0%. Depending on the application, this element can be set as follows:
  • the element Si is given in contents 0.1-1.0%. Depending on the application, the element can also be adjusted in the alloy as follows:
  • the alloy may further contain calcium at levels of max. 0.1%. Specifically, it is possible to adjust this element in the alloy as follows:
  • elements such as e.g. Hf, Y and La are added, giving a maximum limitation of each element at 0.05%.
  • impurities may also contain the elements lead, zinc, tin, vanadium, zirconium as follows:
  • high-boron Cr-Ni steels show relatively poor resistance to corrosive attack in general and to intergranular corrosion in particular.
  • One cause is the formation of chromium borides which cause Cr depletion in the surrounding austenite matrix. It is possible by deliberate addition of other alloying elements, e.g. Titanium, the composition of the chromium ore to change so that the chromium content within the borides decreases. By this measure, the chromium depletion in the matrix can be counteracted.
  • FIG. 1 shows the relationship between Ti content and B content to give one at a given nominal Cr concentrations To reach matrix concentration of 14 m% chromium. The data was generated using a simulation.
  • Ti- 14% the Ti content necessary to adjust a chromium concentration in the matrix of 14% will be referred to as Ti- 14% .
  • the functional relationship between Ti content [Ti] and B content [B] can be roughly described by a linear function (straight line equation), with the slope ai and the Y-axis section a 0 :
  • the equation can be at certain Ratios negative result. Of course, these are not physically meaningful. As an additional condition applies
  • the upper limit for the Ti content results from the stoichiometric composition of the titanium boride phase. This is almost independent of the Cr content of the alloy. Therefore, a one-dimensional linear fit function suffices to describe the ratio B / Ti.
  • the upper limit of the titanium content Ti max can be described as a function of the B concentration:
  • the Ti max content is independent of the nominal Cr concentration.
  • Table 3 contains the Ti max contents for boron contents between 0.2% and 3%.
  • the alloy according to the invention can be prepared as follows:
  • the alloy of the invention is preferably melted open, followed by a VOD (Vacuum Oxygen Decarburization) or VLF (Vacuum Laddle Furnace) treatment.
  • the melt is poured as a continuous casting or in blocks. If appropriate, the blocks may then be remelted at least once in order to achieve improved purity, at least once more by ESU (Electro Slag Remelting) and / or at least once by VAR (Vacuum Are Remelting). Subsequently, the intermediate product is hot-worked so that the desired semi-finished product is produced.
  • the hot workability and the properties of the final product can be further improved.
  • the intermediate can still be cold formed with degrees of deformation up to 98%, with intermediate anneals between 800 ° C and 1290 ° C for 0.1 h to 150 h, preferably above 1040 ° C, optionally under inert gas, such as argon or hydrogen or nitrogen can be carried out, followed by cooling a) in air, or b) in the moving annealing atmosphere or c) in a water bath.
  • Hot forming and cold forming can also be carried out alternately up to the end product.
  • mechanical and / or chemical cleaning of the material surface can take place after each production step.
  • the alloy according to the invention can also be produced by means of powder metallurgy.
  • the representation of powder of the alloy takes place a) Mechanical alloying of elements as required under protective gas or a reactive gas or a liquid or a combination thereof, or b) ball milling of the matrix composition and borides, if necessary under inert gas or a reactive gas or a liquid or a combination thereof, or c) ball milling the above cast alloy as required under inert gas or as required under a reactive gas or liquid or a combination thereof, or d) powder atomization of an alloy melt, or e) a combination of a) to d).
  • the alloy is first melted, possibly open or under vacuum, if appropriate with subsequent ESR and / or VAR remelting. Subsequently, powder is produced by atomization of the alloy melt.
  • the crystal structure of the powder is 1) amorphous or 2) coarsely crystalline or 3) nanocrystalline or a mixture of 1) to 3).
  • the powder is then made into a component by A) HIP (hot isostatic pressing) or B) sintering or C) additive manufacturing (melting of the powder eg by laser) or a combination of A) to C) and if necessary subsequent hot forming and, if necessary, cold forming or Change of hot and cold deformation.
  • intermediate anneals in the temperature range of 700 ° C.
  • the alloy according to the invention can also be prepared as follows: Combining powders of the matrix composition with powders of borides, wherein the powders have been previously mixed by means of a) to e) from preparation method number 2, and subsequently, and then by means of A) to C) from manufacturing processes No. 2 or a combination of A) to C) from manufacturing process no. 2 to the component and, if necessary, subsequently hot-formed and, if necessary, cold-formed. If necessary, intermediate anneals are provided. On the final product solution annealing in the temperature range between> 1040 ° C to 1300 ° C is performed.
  • Preferred product forms are:
  • the development can be used as a component for absorbing thermal neutrons, such as
  • the alloy according to the invention was produced by means of preparation process 1.
  • the alloy was melted and poured into molds.
  • the blocks were hot rolled to a thickness of 3 to 10 mm.
  • Tables 5 and 6 below list the yield strengths, tensile strengths and elongations at break for the batches indicated in Table 4. However, only batches LB 250552 and LB 250558 were considered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

Alliage fer-chrome-nickel-bore constitué de (en % en poids) > 0,02 à 0,40% de C, max. 0,03% de S, max. 0,1% de N, 15 à 25% de Cr, 10 à 20% de Ni, 0,5 à 2,0% de Mn, 0,1 à 1,0% de Si, max. 0,3% de Mo, 0,01 à 3,0% de Ti, max. 0,05% de Nb, max. 0,05% de Cu, max. 0,045% de P, max. 0,15% de AI, max. 0,05% de Mg, max. 0,1% de Ca, max. 0,05% de V, max. 0,05% de Zr, 0,01 à 3,0% de W, max. 0,2% de W, 0,2 à 3,0% de B, max. 0,1% de O, le reste étant du Fe, et des impuretés dues à la fusion.
PCT/DE2018/100998 2017-12-12 2018-12-07 Alliage fer-chrome-nickel-bore WO2019114874A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102017129569.0 2017-12-12
DE102017129569 2017-12-12
DE102018130945.7A DE102018130945A1 (de) 2017-12-12 2018-12-05 Eisen-chrom-nickel-bor-legierung
DE102018130945.7 2018-12-05

Publications (1)

Publication Number Publication Date
WO2019114874A1 true WO2019114874A1 (fr) 2019-06-20

Family

ID=66629061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2018/100998 WO2019114874A1 (fr) 2017-12-12 2018-12-07 Alliage fer-chrome-nickel-bore

Country Status (2)

Country Link
DE (1) DE102018130945A1 (fr)
WO (1) WO2019114874A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634805B2 (en) * 2018-06-06 2023-04-25 Hitachi, Ltd. Austenitic stainless steel and reactor internal structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802619B (zh) * 2021-04-13 2021-07-13 西安稀有金属材料研究院有限公司 一种高强钛基硼钨复合屏蔽材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563728A (en) 1968-03-12 1971-02-16 Westinghouse Electric Corp Austenitic stainless steels for use in nuclear reactors
US3798075A (en) 1970-03-10 1974-03-19 Carpenter Technology Corp Method of making stainless steel containing borides
US4891080A (en) 1988-06-06 1990-01-02 Carpenter Technology Corporation Workable boron-containing stainless steel alloy article, a mechanically worked article and process for making thereof
JPH06192792A (ja) 1992-10-30 1994-07-12 Sumitomo Metal Ind Ltd 高耐食ほう素含有ステンレス鋼
DE69608688T2 (de) 1995-08-09 2001-02-01 Sumitomo Metal Ind Rostfreier stahl mit hervorragenden thermisch-neutronen-adsorbtionseigenschaften
WO2012027552A1 (fr) * 2010-08-25 2012-03-01 Crs Holdings, Inc. Alliages à base de fer absorbant les neutrons, à haute tenue thermique, aptes à la mise en oeuvre

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563728A (en) 1968-03-12 1971-02-16 Westinghouse Electric Corp Austenitic stainless steels for use in nuclear reactors
US3798075A (en) 1970-03-10 1974-03-19 Carpenter Technology Corp Method of making stainless steel containing borides
US4891080A (en) 1988-06-06 1990-01-02 Carpenter Technology Corporation Workable boron-containing stainless steel alloy article, a mechanically worked article and process for making thereof
JPH06192792A (ja) 1992-10-30 1994-07-12 Sumitomo Metal Ind Ltd 高耐食ほう素含有ステンレス鋼
DE69608688T2 (de) 1995-08-09 2001-02-01 Sumitomo Metal Ind Rostfreier stahl mit hervorragenden thermisch-neutronen-adsorbtionseigenschaften
WO2012027552A1 (fr) * 2010-08-25 2012-03-01 Crs Holdings, Inc. Alliages à base de fer absorbant les neutrons, à haute tenue thermique, aptes à la mise en oeuvre

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634805B2 (en) * 2018-06-06 2023-04-25 Hitachi, Ltd. Austenitic stainless steel and reactor internal structure

Also Published As

Publication number Publication date
DE102018130945A1 (de) 2019-06-13

Similar Documents

Publication Publication Date Title
EP2855724B1 (fr) Alliage nickel-chrome avec bonne formabilité, la résistance au fluage et à la corrosion
EP2855723B1 (fr) Alliage nickel-chrome-aluminium avec bonne formabilité, la résistance au fluage et à la corrosion
EP2956562B1 (fr) Alliage nickel-cobalt
EP3775308B1 (fr) Utilisation d'un allaige de nickel-chrome-fer-aluminum
EP3102710B1 (fr) Alliage nickel-chrome-cobalt-titane-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion élevées et une usinabilité
EP3102711B1 (fr) Alliage nickel-chrome-aluminium présentant une résistance à l'usure, une résistance au fluage, une résistance à la corrosion élevées et une usinabilité
EP2882881B1 (fr) Utilisation d'un alliage de nickel-chrome-aluminium-fer ayant une bonne usinabilité
DE68907678T2 (de) Legierung auf Nickel-Basis.
WO2017000932A1 (fr) Procédé pour la production d'un alliage forgeable à base de nickel-fer-chrome-aluminium présentant un allongement augmenté dans un essai de traction
WO2020187368A1 (fr) Alliage de nickel à bonne résistance à la corrosion et à résistance élevée à la traction et procédé de fabrication de demi-produits
DE102020116868A1 (de) Pulver aus einer Nickel-Kobaltlegierung, sowie Verfahren zur Herstellung des Pulvers
DE2910653C2 (fr)
DE69106372T2 (de) Legierung mit niedrigem wärmeausdehnungskoeffizient und daraus hergestellter gegenstand.
WO2019114874A1 (fr) Alliage fer-chrome-nickel-bore
DE2534786A1 (de) Nickel-chrom-wolfram-legierungen
DE3020844A1 (de) Hochwarmfeste, sowohl gegen neutroneninduziertes schwellen, als auch gegen korrosion in fluessigem natrium resistente, austenitische eisen-nickel-chrom-legierungen
DE3854091T2 (de) WÄRMEBESTÄNDIGER AUSTENITISCHER Al-STAHL MIT AUSGEZEICHNETEN WARMVERARBEITUNGSEIGENSCHAFTEN.
EP0939140A1 (fr) Acier pour utiliser à hautes températures
WO2022167363A1 (fr) Alliage, en particulier pour la fabrication additive, poudre, procédé et produit
WO2021110217A1 (fr) Alliage nickel-chrome-fer-aluminium présentant une bonne usinabilité, ainsi qu'une résistance au fluage et une résistance à la corrosion élevées, et son utilisation
AT414341B (de) Stahl für chemie - anlagen - komponenten
DE3411011A1 (de) Verfahren zur herstellung einer titanenthaltenden wasserstoffspeicherlegierung
DE102022110384A1 (de) Verwendung einer Nickel-Eisen-Chrom-Legierung mit hoher Beständigkeit in hoch korrosiven Umgebungen und gleichzeitig guter Verarbeitbarkeit und Festigkeit
DE3241414C2 (de) Verwendung eines hitzebeständigen Stahls
DE2658678C2 (de) Verfahren zur pulvermetallurgischen Herstellung stabilisierter ferritischer rostfreier Chromstähle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18826933

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18826933

Country of ref document: EP

Kind code of ref document: A1