WO2019114466A1 - 一种显示产品的制作方法及一种激光加工装置 - Google Patents

一种显示产品的制作方法及一种激光加工装置 Download PDF

Info

Publication number
WO2019114466A1
WO2019114466A1 PCT/CN2018/114320 CN2018114320W WO2019114466A1 WO 2019114466 A1 WO2019114466 A1 WO 2019114466A1 CN 2018114320 W CN2018114320 W CN 2018114320W WO 2019114466 A1 WO2019114466 A1 WO 2019114466A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
laser processing
processing apparatus
lasers
Prior art date
Application number
PCT/CN2018/114320
Other languages
English (en)
French (fr)
Inventor
胡红伟
卿万梅
辛燕霞
于名印
佘建民
李雪萍
曹英
冯巧
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18867313.1A priority Critical patent/EP3725452A4/en
Priority to US16/345,835 priority patent/US11571767B2/en
Publication of WO2019114466A1 publication Critical patent/WO2019114466A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • B23K26/0617Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis and with spots spaced along the common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Definitions

  • the present disclosure relates to the field of machining technologies, and in particular, to a laser processing apparatus and method.
  • Laser cutting is rapidly expanding in the entire industry due to its excellent precision, process flexibility, non-contact processing type, and thermal effects on materials.
  • the energy density of the laser beam has a maximum at the center of the focus of the laser beam, and the energy density toward the outside is gradually reduced.
  • the thickness of the workpiece to be processed is larger than the thickness of the region where the laser beam energy is focused, it is necessary to perform laser processing a plurality of times to cut the workpiece to be processed.
  • the laser cutting line has a large offset, resulting in an increase in the processing defect rate of the workpiece to be processed.
  • Embodiments of the present disclosure provide a laser processing apparatus and method.
  • an embodiment of the present disclosure provides a laser processing apparatus, including:
  • At least two lasers for respectively generating a laser beam
  • a focusing device disposed in one-to-one correspondence with the at least two lasers for adjusting a focus position of at least two laser beams generated by the two lasers;
  • a combining device for receiving at least two laser beams after the focus position adjustment, and coaxially outputting the at least two laser beams.
  • the laser processing apparatus further includes:
  • a scanning galvanometer for receiving the at least two laser beams coaxially outputted by the combining device, and coaxially outputting the at least two laser beams to the workpiece to be processed.
  • the focusing device is:
  • a focusing mirror having a fixed focal length and a variable position relative to the combining device.
  • the workpiece to be processed is an OLED display.
  • the at least two lasers comprise a carbon dioxide laser and a femtosecond laser.
  • the laser processing apparatus further includes:
  • a first controller configured to control an operating state of the at least two lasers according to a current working mode
  • a second controller for controlling the focusing device according to a target focus position.
  • the second controller is specifically configured to control a focal length and/or a position of the dynamic focusing mirror according to a target focus position
  • the second controller is specifically configured to control the position of the focusing mirror according to a target focus position when the focusing device is a focusing mirror whose focal length is fixed and the position is variable with respect to the combining device.
  • the at least two lasers comprise a first laser and a second laser
  • the optical axis of the first laser generated by the first laser and adjusted by the corresponding focusing device is generated by the second laser
  • the optical axes of the second laser beams adjusted by the corresponding focusing device intersect at the combining device and are perpendicular to each other.
  • an embodiment of the present disclosure further provides a method for manufacturing a display product, which is applied to the laser processing apparatus described above, and the method for manufacturing the display product includes:
  • Controlling according to a current mode of operation of the laser processing apparatus, at least one of the at least two lasers of the laser processing apparatus to generate a laser beam;
  • the laser beam generated by the at least one laser after the focus position adjustment is controlled is coaxially output.
  • the step of controlling at least one of the at least two lasers of the laser processing apparatus to generate a laser beam according to a current mode of operation of the laser processing apparatus comprises:
  • the current mode of operation of the laser processing apparatus is a full cut or chamfer cut mode of operation
  • at least two lasers controlling the laser processing apparatus respectively generate a laser beam.
  • the step of controlling at least two lasers of the laser processing apparatus to generate a laser beam respectively comprises:
  • the step of controlling at least one of the at least two lasers of the laser processing apparatus to generate a laser beam according to a current mode of operation of the laser processing apparatus comprises:
  • the current working mode of the laser processing apparatus is a land cutting operation mode, controlling one of the at least two lasers of the laser processing device to generate a laser beam and controlling at least two lasers of the laser processing device The other lasers in the laser do not produce a laser beam.
  • the step of controlling one of the at least two lasers of the laser processing apparatus to generate a laser beam and controlling the other of the at least two lasers of the laser processing apparatus not to generate a laser beam include:
  • At least one carbon dioxide laser controlling the laser processing apparatus generates a laser beam and controls at least one femtosecond laser of the laser processing apparatus to not generate a laser beam.
  • the full-cut mode of operation is for cutting a substrate into a plurality of substrate cells using the laser beam, the method further before the current mode of operation of the laser processing device enters a full-cut mode of operation
  • the method includes: the alignment device of the machine table aligns the substrate on the machine table such that the cutting area of the substrate is located above the groove of the machine table, and vacuum-adsorbs the substrate.
  • the land cut operation mode is used to perform a land cut of the substrate unit with the laser beam after the substrate is cut into a plurality of substrate cells;
  • the laser that produces a laser beam is a carbon dioxide laser.
  • the chamfer cutting mode of operation is for chamfering the substrate unit with the laser beam after performing a land cut on the substrate unit;
  • the method further comprises: scanning the galvanometer An angle of incidence of the laser beam to a surface of the substrate unit is controlled to chamfer the substrate unit.
  • FIG. 1 is a structural diagram of a laser processing apparatus according to an embodiment of the present disclosure
  • FIG. 2 is a structural diagram of a laser processing apparatus according to still another embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a working principle of a beam combining device according to an embodiment of the present disclosure
  • FIG. 4a is a schematic diagram of a manner in which a focusing device according to an embodiment of the present disclosure controls a focus position of a laser beam;
  • FIG. 4b is a schematic diagram of another manner in which a focusing device according to an embodiment of the present disclosure controls a focus position of a laser beam;
  • FIG. 5 is a structural diagram of a focusing device according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a method for manufacturing a display product according to an embodiment of the present disclosure
  • FIG. 7 is a structural diagram of a laser processing apparatus according to still another embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of focusing a first laser beam and a second laser beam on an OLED display screen according to an embodiment of the present disclosure.
  • the laser processing apparatus includes at least two lasers, a focusing device and a combining device disposed in one-to-one correspondence with the at least two lasers, wherein at least two lasers are used to respectively generate one laser beam.
  • the focusing device is for adjusting a focus position of the laser beam generated by the corresponding laser
  • the combining device is configured to receive the at least two laser beams after the focus position adjustment, and coaxially output the at least two laser beams.
  • FIG. 1 is a structural diagram of a laser processing apparatus according to an embodiment of the present disclosure.
  • the laser processing apparatus provided in this embodiment includes a first laser 11 and a second laser 12 , a first focusing device 21 corresponding to the first laser 11 , and a second focusing corresponding to the second laser 12 .
  • Device 22 and combining device 30 It should be understood that the number of lasers of the present embodiment is merely an example, and thus does not limit the number of lasers of the laser processing apparatus of the present disclosure. In other embodiments, the number of the lasers of the laser processing apparatus may be greater than or equal to 3, which may be determined according to actual needs, which is not limited by the embodiments of the present disclosure.
  • the optical path in the laser processing apparatus of the present embodiment is as follows: the first laser 11 and the second laser 12 respectively generate laser beams; the laser beam generated by the first laser 11 (shown as a broken line in the drawing) passes through the first focusing device 21 a first laser beam whose focus position is adjusted, a laser beam generated by the second laser 12 (shown as a solid line in the drawing) passes through the second focusing device 22, and outputs a second laser beam whose focus position is adjusted;
  • the laser beam and the second laser beam are incident on the combining device 30 (optionally, the optical axes of the first laser beam and the optical axis of the second laser beam intersect at the combining device 30 and are perpendicular to each other) Thereafter, the combining device 30 adjusts the transmission paths of the first laser beam and the second laser beam such that the combining device 30 outputs the combined first laser beam and the second laser beam.
  • the first laser beam and the second laser beam pass through the combining device 30, they are coaxially output, but since the focusing position and the focusing depth of the first laser beam and the second laser beam are different, the first laser beam is And the second laser beam is capable of cutting at different depths of the workpiece to be processed.
  • the first laser beam and the second laser beam simultaneously act on the workpiece to be processed, in comparison with the related art, the first laser beam and the second laser beam act on the workpiece to be processed in time. Therefore, the embodiments of the present disclosure can save processing time and increase the generation of unit time;
  • the first laser beam and the second laser beam are sequentially applied to the adjacent two film layers of the workpiece to be processed for cutting, thereby causing the cutting path of the first laser beam and the cutting path of the second laser beam.
  • the first laser beam and the second laser beam are coaxially output, and simultaneously act on the workpiece to be processed, and the first laser beam and the second laser beam can be ensured.
  • the first laser beam and the second laser beam are sequentially applied to the workpiece to be processed in time according to the related art.
  • the first laser beam and the second laser beam are coaxially output, and simultaneously act on By machining the workpiece, the accumulation of the first laser beam and the second laser beam energy can increase the utilization of the laser energy, reduce the laser energy, and reduce the smoke and particles generated during the cutting process, and reduce the heat affected zone.
  • At least two laser beams coaxially outputted by the combining device 30 can directly act on the workpiece to be processed, and the workpiece to be processed is cut.
  • the laser processing apparatus of the embodiment of the present disclosure can perform overall movement by the machine to perform cutting at different portions of the workpiece to be processed.
  • the laser processing apparatus may further include a scanning galvanometer 40.
  • a scanning galvanometer 40 At least two laser beams coaxially output by the combining device 30 are received by the scanning galvanometer 40 and coaxially Output to the workpiece to be machined and cut the workpiece to be machined.
  • the scanning galvanometer 40 adjusts the output angle and position of at least two laser beams coaxially output by the combining device 30, It is necessary to ensure the coaxial characteristics of the optical axes of at least two laser beams.
  • the scanning galvanometer 40 is in a fixed position relative to the combining device 30, and the laser processing apparatus of the embodiment of the present disclosure It is still necessary to control the machining position by the movement of the machine.
  • the scanning galvanometer can adjust the output angle and position of the unique laser beam to cut in different parts of the workpiece to be processed.
  • the control of the cutting position is made simpler and more precise by adjusting the angle of the scanning galvanometer 40 relative to the merging device 30 relative to the position of the merging device 30 relative to the overall moving machine table.
  • the transmission paths of the first laser beam and the second laser beam are perpendicular, and the coaxial laser beam output from the combining device 30 is parallel to the transmission path of the first laser beam, perpendicular to the transmission path of the second laser beam,
  • the coaxial laser beam output by the scanning galvanometer is perpendicular to the coaxial laser beam output by the combining device 30. It should be understood that in other embodiments, the angle between the transmission paths of the first laser beam and the second laser beam may be other values, which are not limited herein.
  • the combining device 30 is mainly used to realize the combination of the first laser beam and the second laser beam, so that the first laser beam and the second laser beam are coaxially output after passing through the combining device 30.
  • the beam combining device 30 may be a light beam combiner, or may be a polarization polarization beam splitter (PBS) film or a birefringent crystal that combines the polarization difference between the first laser beam and the first light beam. It may also be a device that combines evanescent wave coupling, FP interference cavity, crystal interference, and the like by combining the wavelength difference between the first laser beam and the first beam.
  • PBS polarization polarization beam splitter
  • the conjugate device 30 can also be a beam combining prism. Please refer to FIG. 3 together to explain the working principle of the combining prism.
  • the combining prism includes at least a first surface 31, a second surface 32, and a third surface 33.
  • the first surface 31 is for receiving a second laser beam (shown as a solid line with an arrow), and the first surface 31 is disposed perpendicular to the transmission path of the second laser beam;
  • the second surface 32 is for receiving the first surface a laser beam (shown as a dashed line with an arrow), in addition, the second surface 32 is also used to achieve total reflection of the second laser beam, such that the second laser beam after the total reflection occurs and the first laser beam passes through the third Face 33 emerges coaxially from the beam combining prism.
  • the scanning galvanometer 40 is used to change the exit direction of the coaxial laser beam and control the offset angle of the coaxial laser beam, thereby controlling the scanning motion of the coaxial laser beam.
  • the laser processing apparatus uses the scanning galvanometer 40 to control the coaxial laser beam to perform a scanning motion on the surface of the workpiece to be processed at a specific scanning speed according to a specific motion trajectory, and the workpiece to be processed is cut by the coaxial laser beam.
  • the focus position of the laser beam generated by the corresponding laser needs to be adjusted by the focusing device, and the focus position of the laser beam generated by the corresponding laser is adjusted by the focusing device, which can be implemented in various manners. .
  • the focusing device is a dynamic focusing mirror with a variable focal length.
  • the depth of focus of the first laser beam and the second laser beam in the workpiece 23 to be processed is related to the focal length of the focusing device that passes therethrough.
  • the focal length of the first focusing device can be adjusted at this time, when the first focusing device When the focal length of 21 becomes large, the corresponding laser beam can be cut to a deeper position of the workpiece 23 to be processed.
  • the focal length of the first focusing device 21 is smaller, the depth at which the corresponding laser beam can be cut to the workpiece 23 to be processed is smaller.
  • the focal length of the focusing device can be controlled according to the target focus position, thereby enabling the corresponding laser beam to be cut to the target depth.
  • the focusing device may also be a focusing mirror that is fixed in focus and variable in position relative to the combining device.
  • the depth of focus of the first laser beam and the second laser beam in the workpiece 23 to be processed is related to the position of the focusing device. Specifically, taking the first focusing device 21 as an example, as shown in FIG. 4b, when the position of the first focusing device 21 is closer to the workpiece, the laser beam passing through the first focusing device 21 can be cut to the workpiece to be processed. 23 deeper position. Conversely, the further the position of the first focusing device 21 is from the workpiece, the smaller the depth at which the corresponding laser beam can be cut to the workpiece 23 to be processed.
  • the position of the focusing device can be controlled according to the target focus position, thereby enabling the corresponding laser beam to be cut to the target depth.
  • the focus position of the laser beam can also be controlled by the position of the focusing device at the same time.
  • the focus position can be controlled from the workpiece to be processed.
  • the width of the cutting path of the laser beam closer to the surface is larger than the width of the cutting path of the laser beam whose focus position is farther from the surface of the workpiece to be processed, that is, the laser beam that controls the focus position closer to the surface of the workpiece to be processed is to be processed.
  • the cutting amount on the workpiece is larger than the cutting amount of the laser beam at a position distant from the surface of the workpiece to be processed on the workpiece to be processed, wherein the width refers to the length of the vertical laser beam cutting path direction.
  • the laser beam whose focus position is closer to the surface of the workpiece to be processed may be the first laser beam
  • the laser beam whose focus position is farther from the surface of the workpiece to be processed may be the second laser beam
  • the focal length of the first focusing device 21 is smaller than the focal length of the second focusing device 22, and the cutting amount of the first laser beam on the workpiece to be processed is greater than the cutting amount of the second laser beam on the workpiece to be processed.
  • the laser beam that is closer to the surface of the workpiece to be processed is the first laser beam
  • the laser beam that is farther from the surface of the workpiece to be processed is the second laser beam.
  • the processing method of gas laser is continuous wave processing, the generated heat is large, which is suitable for large cutting amount; the processing mode of solid-state laser is pulse wave processing, and the pulse time is short, usually 10-12 seconds.
  • the first laser 11 can be a gas laser and the second laser 12 can be a solid state laser.
  • the first laser 11 can be a carbon dioxide (CO2) laser and the second laser 12 can be a femtosecond laser.
  • the gas laser is quickly cut to a certain depth by the large heat generated by it, and the laser generated by the gas laser can no longer be cut to a deeper depth due to the focal length. Since the laser generated by the femtosecond laser has a larger focal length and can be applied to a greater depth, it is possible to further perform a higher cutting operation by using a laser with a larger focal length generated by a femtosecond laser. This combination of lasers improves cutting efficiency while ensuring cutting accuracy.
  • the focal length of the focusing device of the laser processing apparatus of the embodiment of the present disclosure may be flexibly adjusted according to the actual cutting depth of the workpiece to be processed.
  • the laser processing apparatus of the embodiment of the present disclosure may further include control.
  • the controller 50 can be used to control the focal length and/or position of the dynamic focusing mirror, thereby controlling the focus position of the laser beam, when the focusing device is a dynamic focusing mirror with a variable focal length.
  • the controller 50 can be used to control the position of the focusing mirror, thereby controlling the focus position of the laser beam.
  • the controller 50 that controls the focal length of the focusing device may be disposed in the focusing device or may be set independently of the focusing device.
  • the dynamic focusing mirror may include a first lens 211 and a second lens 212 connected in series, and the controller 50 may dynamically adjust the first lens.
  • the spacing between 211 and second lens 212 completes the dynamic focusing of the received laser beam to focus the laser beam to the appropriate location.
  • the number of lenses in FIG. 5 is only an example, and thus does not limit the number of lenses of the dynamic focusing mirror.
  • the control unit corresponding to the second focusing device 22 can achieve the control of the focal length of the dynamic focusing mirror by the same method.
  • the workpiece to be processed may be an OLED (Organic Light-Emitting Diode) display (for example, a flexible display).
  • OLED Organic Light-Emitting Diode
  • the OLED display panel includes, but is not limited to, an upper protective mold layer 61, a display screen body film layer 62, and a lower protective film layer 63.
  • the laser processing apparatus of the embodiment of the present disclosure may be used to completely cut the entire box of glass into a single body of the OLED display panel.
  • the flexible substrate to be cut is first placed on a load table by a robot arm, and then the support pin of the loading platform is lowered.
  • the load picker table can adsorb the flexible substrate on the loading table to raise it, to transfer the flexible substrate to the work table, and the alignment device on the machine will then
  • the flexible substrate is vacuum-adsorbed after the good position (the dummy region of the flexible substrate is located above the groove of the machine table, the groove is used for absorbing the laser light that cuts through the substrate), and then the above-mentioned full cutting can be performed.
  • the movement of at least the first laser beam and the second laser beam laser matching machine of the coaxial output is fully cut to completely cut the flexible substrate into a single body of the display screen.
  • the laser processing apparatus of the embodiment of the present disclosure may also be used to perform a pad open cut on the single display screen to cut the single display screen.
  • the upper protective film layer is leaked out of the pad PAD layer, and the test signal is input to realize the electrical property test of the PAD layer.
  • only the first laser e.g., CO2 laser
  • the first laser may be turned on, and the laser beam generated by the first laser is moved in conjunction with the machine to perform the above-described pad cutting.
  • the laser processing device of the embodiment of the present disclosure can also be used, and the incident angle of the laser beam to the surface of the workpiece to be processed is controlled by the scanning galvanometer, and the pair is completed.
  • the chamfer cut of the body OLED display is convenient for mounting the single OLED display to the whole machine.
  • an unload picker table may adsorb the display panel unit subjected to the above-described full-cutting step processing and the pad cutting step to rise, and the peeling device may form a dummy after cutting the flexible substrate. Strips are stripped and the remaining display elements are transferred to a buffer table.
  • a load picker places the display unit on the buffer table on a turn table (the rotary table vacuum absorbs the display unit, and the PAD side exceeds the rotary table). Then, the rotary table is rotated to the PAD peeling station, the support bar is raised flush with the rotary table, and the peeling pin peels off the protective film on the PAD region from the edge of the PAD to pass the clamping device. The protective film on the PAD area is removed and placed in a peeling collection box. Then, the support rod is lowered, the rotary table is rotated again to the chamfer cutting station, and the laser beam exit path is controlled by the deflection of the scanning galvanometer to chamfer the two corners of the PAD. After the chamfer cutting is completed, the entire cutting process is completed. The picker places the cut display unit into the tray to the next station.
  • the cutting process of the OLED display requires a laser processing device to complete the complete cutting of the OLED display, that is, the cut OLED display is completely split into at least two parts. Therefore, as shown in FIG. 8, the focal length can be adjusted in real time by the first focusing device 21 and the second focusing device 22 to achieve different depth cutting, such as adjusting the first laser beam 65 to focus on the upper protective film layer of the OLED display. 61.
  • the second focusing device 22 adjusts the second laser beam 66 to focus on the OLED display body film layer 62, and realizes cutting of different positions of the OLED display through the overall movement of the machine.
  • the shaded portion indicates a portion where the first laser beam 65 and the second laser beam 66 coincide.
  • the focal length can be adjusted in real time by a dynamic focusing mirror to achieve cutting at different depths.
  • the protective film is also cut.
  • the CO2 laser In the full cutting mode, the CO2 laser has a cutting depth of 150 um or more. In the dicing mode, the CO2 laser has a cutting depth of about 130 um.
  • the laser processing apparatus of the embodiment of the present disclosure can complete the one-time cutting of the OLED display screen by the first laser beam and the second laser beam output coaxially, thereby simplifying the cutting process of the OLED display panel and simplifying the cutting time.
  • the centers of the two laser-cut beams are always coincident. Therefore, the additive effect of the coaxial laser beam energy on the cutting line can improve the utilization of the amount, reduce the laser energy, and even reduce the smoke generated by the cutting, the particles and reduce the thermal influence. District, which in turn improves the cutting quality of OLED displays.
  • the laser processing device of the embodiment of the present disclosure may be used to perform PAD layer cutting on the OLED display screen, and the upper protective film layer of the OLED display screen is performed. Cutting, to leak out of the PAD layer of the pad, input test signals, to achieve electrical performance test of the PAD layer, and then to find out the failed OLED display.
  • the focal length of the focusing device can be adjusted such that the laser beam generated by the laser processing device is focused on the upper protective film layer of the OLED display screen after passing through the focusing device.
  • the dynamic focusing mirror follows the adjustment of the focal length to ensure the consistency of the cutting depth at different positions.
  • the workpiece to be processed may also be other types of display screens, such as a liquid crystal display, a plasma display screen, etc., and may be other workpieces such as metal.
  • the laser processing apparatus of the embodiment of the present disclosure further includes a first controller 51 and/or a second controller 52.
  • the first controller 51 is connected to the at least two lasers 11, 12 and is configured to control the operating states of the at least two lasers 11, 12 according to a current operating mode.
  • the laser processing apparatus can be, but is not limited to, three modes of operation: full cut, chamfer cut, and land cut. The above three modes of operation will be described below.
  • the laser processing device controls the at least two lasers to be in an operating state, and the combining device coaxially outputs the laser generated by the at least two lasers received by the focusing device To the workpiece to be processed, and the laser beam generated by different lasers is different in the focus position of the workpiece to be processed via the focusing device, the one-time cutting of the OLED display screen is completed, and the workpiece to be processed is cut into different monomers, thereby simplifying
  • the cutting process of the OLED display simplifies the cutting time.
  • the centers of the two laser-cut beams are always coincident, and the additive effect of the coaxial laser beam energy on the cutting line can increase the utilization of the amount, reduce the laser energy, and even reduce the smoke generated by the cutting, the particles and the heat-affected zone. Thereby improving the cutting quality of the OLED display.
  • the laser processing device For the working mode of the cutting zone cutting, if the workpiece to be processed is an OLED display, the laser processing device only needs to cut the upper protective film layer of the OLED display to leak out the PAD layer of the pad and input a test signal to realize the electricity of the PAD layer. Performance Testing. Therefore, in this mode of operation, the first controller 51 only needs to control the laser that produces the laser beam focused on the upper protective film layer of the OLED display screen to be in operation, and the other lasers can be in the off state.
  • the first controller 51 can control the first laser 11 to be in an operating state, and control the second laser 12 to be Disabled.
  • the first controller 51 can also control the first laser 11 to be in the off state, and the second laser 12 is in the working state, thereby adjusting the focal length of the second focusing device 22 corresponding to the second laser 12 to adjust the focus position of the output.
  • the second laser beam focus point is concentrated on the upper protective film layer of the OLED display.
  • the laser processing apparatus of the embodiment of the present disclosure is applicable to different working modes such as full cutting, chamfer cutting, and land cutting, so that the applicable range of the laser processing apparatus can be improved.
  • the laser processing apparatus of the embodiment of the present disclosure further includes a second controller 52 connected to the first focusing device 21 and the second focusing device 22 for controlling according to the target focus position.
  • the focusing devices 21, 22 control the focus position of the laser beam.
  • the second controller 52 can adjust the focal length and/or position of the focusing devices 21, 22 according to the processing depth requirements of the workpiece to be processed, so that the laser beam energy after the focus position adjustment of the focusing devices 21, 22 can be adjusted. Accurate focusing on the required machining depth increases the flexibility of the laser cutting depth and improves the cutting quality of the workpiece to be machined.
  • At least two laser beams coaxially outputted by the laser processing apparatus of the present disclosure can avoid at least two laser cutting line offsets in the related art, as compared with at least two laser beams in the related art.
  • the displacement is difficult to control, and there may be a problem that at least two laser cutting lines have a large offset, thereby improving the cutting quality of the workpiece to be processed and effectively reducing the defective rate of the workpiece to be processed; on the other hand, the coaxial output
  • the energy accumulation of at least two laser beams can expand the cutting thickness of one laser cutting, thereby simplifying the cutting process and saving the cutting time of the workpiece to be processed.
  • At least two lasers for respectively generating one laser beam in the embodiments of the present disclosure are independently disposed, and each laser is correspondingly provided with a focusing device for adjusting a focus position of the laser beam generated by the laser, so that the laser can be enlarged.
  • the scope of application increases the flexibility of adjusting the focus position of the laser beam produced by the laser.
  • the embodiment of the present disclosure further provides a method for manufacturing a display product, which is applied to the above laser processing apparatus.
  • the manufacturing method of the display product includes:
  • Step 601 Control at least one of the at least two lasers of the laser processing device to generate one laser beam respectively according to a current working mode of the laser processing device.
  • Step 602 Adjust a focus position of the laser beam generated by the at least one laser.
  • Step 603 Control a focus output of the laser beam generated by the at least one laser to be coaxially output.
  • the laser processing apparatus may preset the working states of the at least two lasers corresponding to each working mode, and therefore, after determining the current working mode of the laser processing apparatus, the laser The processing device may control the operating state of the at least two lasers according to a preset such that at least one of the at least two lasers respectively generates one laser beam.
  • the laser processing apparatus including the first laser and the second laser will be described as an example.
  • the first laser and the second laser can be controlled to be in a working state to respectively generate a laser beam; when the laser processing apparatus is in the working mode of the cutting zone cutting At this time, it is possible to control the first laser or the second laser to be in an operating state, and the other laser is in a closed state to generate a laser beam.
  • the laser processing device controls, according to the current working mode, at least one of the at least two lasers to generate a laser beam, adjusts a focus position of the laser beam generated by the at least one laser, and controls the at least one laser after the focus position adjustment
  • the generated laser beam is coaxially output.
  • the laser processing apparatus can adjust the working state of the laser and the focus position of the laser beam according to the current working mode, thereby improving the application range of the laser processing apparatus.
  • At least two lasers of the laser processing device respectively generate one laser beam, and the two laser beams thus generated are controlled to be coaxially outputted to the workpiece to be processed, at least two laser beams are sequentially processed in the related art.
  • At least two laser beams coaxially outputted by the laser processing apparatus of the present disclosure can prevent the at least two laser cutting line offsets from being difficult to control in the related art, and at least two laser cutting line offsets may exist.
  • the big problem can improve the cutting quality of the workpiece to be processed and effectively reduce the defect rate of the workpiece to be processed; on the other hand, the energy accumulation of at least two laser beams outputted coaxially can enlarge the cutting thickness of one laser cutting, thereby Simplify the cutting process and save the cutting time of the workpiece to be machined.
  • at least two lasers for respectively generating one laser beam in the embodiments of the present disclosure are independently disposed, and each laser is correspondingly provided with a focusing device for adjusting a focus position of the laser beam generated by the laser, so that the laser can be enlarged.
  • the scope of application increases the flexibility of adjusting the focus position of the laser beam produced by the laser.
  • the step of controlling at least one of the at least two lasers of the laser processing apparatus to generate a laser beam respectively may be expressed as: if the laser processing apparatus The current mode of operation is a full-cut or chamfer-cut mode of operation, and at least two lasers controlling the laser processing device respectively generate a laser beam.
  • the first laser generates a first laser beam
  • the second laser generates a second laser beam.
  • the workpiece to be processed is an OLED display including an upper protective film layer, a display body film layer and a lower protective film layer, and the laser processing device is used as an example.
  • the first laser After controlling the first laser and the second laser to be in an operating state, the first laser generates a first laser beam, and after the second laser generates the second laser beam, further adjusting a focal length of the first laser beam and the second laser to make the first laser
  • the beam is focused on the upper protective film layer of the OLED display, and the second laser beam is focused on the bulk film layer of the OLED display.
  • the laser processing apparatus controls the first laser beam and the second laser beam to be coaxially outputted to the OLED display screen, the first laser beam realizes cutting of the upper protective film layer of the OLED display screen, and the second laser beam realizes display to the OLED The cutting of the body film layer and the lower protective film layer of the screen, thereby completing the overall cutting of the OLED system.
  • the step of controlling at least two lasers of the laser processing device to generate one laser beam respectively may be performed by: controlling at least one carbon dioxide laser of the laser processing device and at least one femtosecond The lasers respectively generate a laser beam.
  • the first laser may be set as a carbon dioxide laser
  • the second laser may be set as a femtosecond laser
  • the focus of the first laser beam generated by the carbon dioxide laser may be adjusted.
  • the position is focused on the upper protective film layer of the OLED display, and the focus position of the second laser beam generated by the femtosecond laser is adjusted to focus on the bulk film layer of the OLED display.
  • the carbon dioxide laser is rapidly cut to a certain depth by the large heat generated by it, and the laser generated by the carbon dioxide laser can no longer be cut to a deeper depth due to the focal length. Since the laser generated by the femtosecond laser has a larger focal length and can be applied to a greater depth, it is possible to further perform a higher cutting operation by using a laser with a larger focal length generated by a femtosecond laser. This combination of lasers improves cutting efficiency while ensuring cutting accuracy.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present disclosure, which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal (which may be a cell phone, computer, server, air conditioner, or network device, etc.) to perform the methods described in various embodiments of the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光加工装置,包括:至少两个激光器(11,12),用于分别产生一个激光束;与所述至少两个激光器一一对应设置的调焦器件(21,22),用于调节所述两个激光器产生的至少两个激光束的聚焦位置;合束器件(30),用于接收聚焦位置调整后的至少两个激光束,并同轴输出所述至少两个激光束。该激光加工装置能够节约加工时间,提高加工精度和激光能量的利用率。还涉及一种显示产品的制作方法。

Description

[根据细则37.2由ISA制定的发明名称] 一种显示产品的制作方法及一种激光加工装置
相关申请的交叉引用
本申请主张在2017年12月13日在中国提交的中国专利申请No.201711327699.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及机器加工技术领域,尤其涉及一种激光加工装置及方法。
背景技术
激光切割凭借其精密性、工艺的灵活性、非接触加工型、对材料造成的热影响等优异特性,在整个产业的应用领域正在迅速扩大。激光束的能量密度在激光束聚焦点的正中央具有最大值,而以其为中心向外侧能量密度逐步减少。
因此,当待加工工件的厚度大于激光束能量聚焦的区域的厚度时,需要进行多次激光加工以切割该待加工工件。而在多次激光切割待加工工件的过程中,存在激光切割线偏移量较大导致待加工工件的加工不良率增加的问题。
发明内容
本公开实施例提供一种激光加工装置及方法。
一方面,本公开实施例提供了一种激光加工装置,包括:
至少两个激光器,用于分别产生一个激光束;
与所述至少两个激光器一一对应设置的调焦器件,用于调节所述两个激光器产生的至少两个激光束的聚焦位置;
合束器件,用于接收聚焦位置调整后的至少两个激光束,并同轴输出所述至少两个激光束。
在一些实施例中,该激光加工装置还包括:
扫描振镜,用于接收所述合束器件同轴输出的所述至少两个激光束,并同轴输出所述至少两个激光束至待加工工件。
在一些实施例中,所述调焦器件为:
焦距可变的动态聚焦镜;或
焦距固定、而位置相对于所述合束器件可变的聚焦镜。
在一些实施例中,所述待加工工件为OLED显示屏。
在一些实施例中,所述至少两个激光器包括二氧化碳激光器和飞秒激光器。
在一些实施例中,所述激光加工装置还包括:
第一控制器,用于根据当前工作模式控制所述至少两个激光器的工作状态;和/或
第二控制器,用于根据目标聚焦位置控制所述调焦器件。
在一些实施例中,在所述调焦器件为焦距可变的动态聚焦镜时,所述第二控制器具体用于根据目标聚焦位置控制所述动态聚焦镜的焦距和/或位置;
在所述调焦器件为焦距固定、而位置相对于所述合束器件可变的聚焦镜时,所述第二控制器具体用于根据目标聚焦位置控制所述聚焦镜的位置。
在一些实施例中,所述至少两个激光器包括第一激光器和第二激光器,所述第一激光器产生并经对应调焦器件调节后的第一激光束的光轴与所述第二激光器产生并经对应调焦器件调节后的第二激光束的光轴在所述合束器件处相交并且相互垂直。
另一方面,本公开实施例还提供一种显示产品的制作方法,应用于上述的激光加工装置,该显示产品的制作方法包括:
根据所述激光加工装置的当前工作模式,控制所述激光加工装置的至少两个激光器中的至少一个激光器分别产生一个激光束;
调整所述至少一个激光器产生的激光束的聚焦位置;
控制聚焦位置调整后的所述至少一个激光器产生的激光束同轴输出。
在一些实施例中,所述根据所述激光加工装置的当前工作模式,控制所述激光加工装置的至少两个激光器中的至少一个激光器产生激光束的步骤,包括:
若所述激光加工装置的当前工作模式为全切割或倒角切割工作模式,则控制所述激光加工装置的至少两个激光器分别产生一个激光束。
在一些实施例中,所述控制所述激光加工装置的至少两个激光器分别产生一个激光束的步骤,包括:
控制所述激光加工装置的至少一个二氧化碳激光器和至少一个飞秒激光器分别产生一个激光束。
在一些实施例中,所述根据所述激光加工装置的当前工作模式,控制所述激光加工装置的至少两个激光器中的至少一个激光器分别产生一个激光束的步骤,包括:
若所述激光加工装置的当前工作模式为焊区切割工作模式,则控制所述激光加工装置的至少两个激光器中的一个激光器产生一个激光束,并控制所述激光加工装置的至少两个激光器中的其他激光器不产生激光束。
在一些实施例中,所述控制所述激光加工装置的至少两个激光器中的一个激光器产生一个激光束,并控制所述激光加工装置的至少两个激光器中的其他激光器不产生激光束的步骤,包括:
控制所述激光加工装置的至少一个二氧化碳激光器产生一个激光束,并控制所述激光加工装置的至少一个飞秒激光器不产生激光束。
在一些实施例中,所述全切割工作模式用于利用所述激光束将基板切割为多个基板单体,在所述激光加工装置的当前工作模式进入全切割工作模式之前,所述方法还包括:机台的对位装置将位于所述机台上的基板进行对位,以使得所述基板的切割区位于所述机台的凹槽上方,并对所述基板进行真空吸附。
在一些实施例中,所述焊区切割工作模式用于在将基板切割为多个基板单体后利用所述激光束对所述基板单体进行焊区切割;并且
所述产生一个激光束的激光器为二氧化碳激光器。
在一些实施例中,所述倒角切割工作模式用于在对所述基板单体进行焊区切割后利用所述激光束对所述基板单体进行倒角切割;并且
若所述激光加工装置的当前工作模式为倒角切割工作模式时,则在控制所述激光加工装置的至少两个激光器分别产生一个激光束的步骤之后,所述方法还包括:通过扫描振镜控制所述激光束到所述基板单体的表面的入射角度,以对所述基板单体进行倒角切割。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一实施例提供的激光加工装置的结构图;
图2是本公开又一实施例提供的激光加工装置的结构图;
图3是本公开实施例提供的合束器件的工作原理示意图;
图4a是本公开实施例提供的调焦器件控制激光束聚焦位置的一种方式的示意图;
图4b是本公开实施例提供的调焦器件控制激光束聚焦位置的另一种方式的示意图;
图5是本公开实施例提供的调焦器件的结构图;
图6是本公开实施例提供的显示产品的制作方法的流程图;
图7是本公开又一实施例提供的激光加工装置的结构图;以及
图8是本公开实施例提供的第一激光束和第二激光束聚焦在OLED显示屏的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例中,激光加工装置包括至少两个激光器、与所述至少两个激光器一一对应设置的调焦器件及合束器件,其中,至少两个激光器用于分别产生一个激光束,调焦器件用于调节对应的激光器产生的激光束的聚焦位置,合束器件用于接收聚焦位置调整后的至少两个激光束,并同轴输出所述至少两个激光束。
为方便理解,请参阅图1,本公开一实施例提供的激光加工装置的结构图。如图1所示,本实施例提供的激光加工装置包括第一激光器11和第二激光器12、与第一激光器11对应的第一调焦器件21、与第二激光器12对应的第二调焦器件22及合束器件30。应理解的,本实施例的激光器的数量仅为示例,并不因此限制本公开的激光加工装置的激光器的数量。在其他实施例中,激光加工装置的激光器的数量可以大于或等于3,具体可根据实际需要决定,本公开实施例对此不作限定。
本实施例的激光加工装置中的光路流程如下:第一激光器11和第二激光器12分别产生激光束;第一激光器11产生的激光束(图中表示为虚线)经过第一调焦器件21后,输出聚焦位置调整后的第一激光束,第二激光器12产生的激光束(图中表示为实线)经过第二调焦器件22后,输出聚焦位置调整后的第二激光束;第一激光束和第二激光束入射至合束器件30(可选地,所述第一激光束的光轴与所述第二激光束的光轴在所述合束器件30处相交并且彼此垂直)后,合束器件30对第一激光束和第二激光束的传输路径进行调整,使得所述合束器件30输出合束同轴的第一激光束和第二激光束。
如图1所示,当第一激光束和第二激光束经过合束器件30后同轴输出,但由于第一激光束和第二激光束的聚焦位置和聚焦深度不同,因此第一激光束和第二激光束能够在待加工工件的不同深度进行切割。
本公开实施例具有如下的有益效果中的至少一个:
1、相比于相关技术的第一激光束和第二激光束在时间上先后作用于待加工工件,本公开具体实施例中,第一激光束和第二激光束同时作用于待加工工件,因此本公开实施例能够节约加工时间,提高单位时间的产生;
2、相关技术中,第一激光束和第二激光束在时间上先后作用于待加工工件的相邻两个膜层进行切割,造成第一激光束的切割路径和第二激光束的切割路径彼此之间可能存在对位偏移的问题,本公开具体实施例中,第一激光束和第二激光束同轴输出,同时作用于待加工工件,能够保证第一激光束和第二激光束的作用区域的一致性,即以相同的偏移量工作,因此本公开实施例提高了加工精度;
3、相比于相关技术的第一激光束和第二激光束在时间上先后作用于待加 工工件,本公开实施例中,第一激光束和第二激光束同轴输出,同时作用于待加工工件,第一激光束和第二激光束能量的累积可以提高激光能量的利用率,减少激光能量,以及减少切割过程中产生的烟尘和颗粒,并减小热影响区。
进一步地,如图1所示,合束器件30同轴输出的至少两个激光束可以直接作用在待加工工件上,对待加工工件进行切割。当合束器件30同轴输出的至少两个激光束直接作用在待加工工件时,本公开实施例的激光加工装置可以通过机台进行整体的移动,以在待加工工件的不同部分进行切割。
进一步地,如图2所示,激光加工装置还可以进一步包括扫描振镜40,在该实施例中,合束器件30同轴输出的至少两个激光束由扫描振镜40接收,并同轴输出至待加工工件上,对待加工工件进行切割。
从以上描述可以发现,本公开具体实施例中,在至少两个激光器同时工作时,扫描振镜40在调整合束器件30同轴输出的至少两个激光束的输出角度和位置的同时,还需要保证至少两个激光束的光轴的同轴特性,这种情形下,如图2所示,扫描振镜40处于相对于合束器件30固定的位置,本公开具体实施例的激光加工装置还是需要通过机台的移动来控制加工位置。
但应当理解的是,在不同的场景中,有可能只需要一个激光器工作,此时扫描振镜就可以调整唯一的激光束的输出角度和位置,在待加工工件的不同部分进行切割。
相对于整体移动机台的方式,通过调整扫描振镜40相对于合束器件30的位置来控制激光束的角度从而实现切割位置的控制更加简单,也更加精确。
在图2中,第一激光束和第二激光束的传输路径垂直,合束器件30输出的同轴激光束与第一激光光束的传输路径平行,与第二激光光束的传输路径垂直,经扫描振镜输出的同轴激光束与经合束器件30输出的同轴激光束垂直。应理解的,在其他实施例中,第一激光束和第二激光束的传输路径的夹角可以为其他值,在此不作限定。
其中,合束器件30主要用于实现第一激光束和第二激光束的合束,使得第一激光束和第二激光束经合束器件30后同轴输出。
具体地,合束器件30可以是光线合束器,也可以是利用第一激光束和第 光束之间的偏振差别进行合束的偏振分光棱镜(Polarization Beam Splitter,PBS)膜或双折射晶体,也可以是利用第一激光束和第光束之间的波长差别进行合束的倏逝波耦合、F-P干涉腔、晶体干涉等的器件。
另外,合束器件30也可以是合束棱镜。请一并参阅图3,对合束棱镜的工作原理进行说明。
如图3所示,合束棱镜至少包括第一面31、第二面32以及第三面33。其中,第一面31用于接收第二激光束(图中表示为带箭头的实线),且第一面31与第二激光束的传输路径垂直设置;第二面32用于接收第一激光束(图中表示为带箭头的虚线),此外,第二面32还用于实现第二激光束的全反射,从而使得发生全反射后的第二激光束与第一激光束通过第三面33从合束棱镜中同轴出射。
扫描振镜40用于改变同轴激光束的出射方向,控制同轴激光束的偏移角度,从而控制同轴激光束的扫描运动。具体地,激光加工装置采用扫描振镜40控制同轴激光束按照特定的运动轨迹,以特定的扫描速度在待加工工件表面进行扫描运动,由同轴激光束对待加工工件进行切割。
本公开具体实施例中,需要通过调焦器件来调节对应激光器产生的激光束的聚焦位置,而通过调焦器件来调节对应激光器产生的激光束的聚焦位置可以通过多种方式实现,具体说明如下。
在一些实施例中,所述调焦器件为:焦距可变的动态聚焦镜。
当调焦器件为焦距可变的动态聚焦镜时,第一激光束和第二激光束在待加工工件23中的聚焦深度与其经过的调焦器件的焦距相关。具体地,以第一调焦器件21为例,如图4a所示,当第一调焦器件21的位置固定时,此时可以通过调整第一调焦器件的焦距,当第一调焦器件21的焦距变大时,则对应的激光束能够切割到待加工工件23更深的位置。反之,当第一调焦器件21的焦距越小,则对应的激光束能够切割到待加工工件23的深度越小。
因此,本公开具体实施例中可以根据目标聚焦位置控制所述调焦器件的焦距,进而使得对应的激光束能够切割到目标深度。
在一些实施例中,所述调焦器件还可以为:焦距固定、而位置相对于所述合束器件可变的聚焦镜。
在这种情况下,第一激光束和第二激光束在待加工工件23中的聚焦深度与调焦器件的位置相关。具体地,以第一调焦器件21为例,如图4b所示,当第一调焦器件21的位置距离工件更近时,经过第一调焦器件21的激光束能够切割到待加工工件23更深的位置。反之,当第一调焦器件21的位置距离工件越远,则对应的激光束能够切割到待加工工件23的深度越小。
因此,本公开具体实施例中可以根据目标聚焦位置控制所述调焦器件的位置,进而使得对应的激光束能够切割到目标深度。
当然,应当理解的是,所述调焦器件为焦距可变的动态聚焦镜时,激光束的聚焦位置也可以同时通过调焦器件的位置进行控制。
应理解的,为了保证聚焦位置距离待加工工件的表面较远的激光束的切割区域不会超过聚焦位置距离待加工工件的表面较近的激光束的切割区域,可以控制聚焦位置距离待加工工件的表面较近的激光束的切割路径的宽度大于聚焦位置距离待加工工件的表面较远的激光束的切割路径的宽度,即控制聚焦位置距离待加工工件的表面较近的激光束在待加工工件上的切削量大于聚焦位置距离待加工工件的表面较远的激光束在待加工工件上的切削量,其中,宽度指的是垂直激光束切割路径方向的长度。
示例性地,聚焦位置距离待加工工件的表面较近的激光束可以为第一激光束,聚焦位置距离待加工工件的表面较远的激光束可以为第二激光束,则在该示例场景中,第一调焦器件21的焦距小于第二调焦器件22的焦距,且第一激光束在待加工工件上的切削量大于第二激光束在待加工工件上的切削量。为方便理解,以下均以聚焦位置距离待加工工件的表面较近的激光束为第一激光束,聚焦位置距离待加工工件的表面较远的激光束为第二激光束为例进行说明。
考虑到气体激光的加工方式为连续波加工,产生的热量较大,适合较大的切削量;固态激光器的加工方式为脉冲波方式加工,其脉冲时间较短,通常为10 -12秒级别,适合小切削量的精细加工,因此,第一激光器11可以为气体激光器,第二激光器12可以为固态激光器。在实际应用中,第一激光器11可以为二氧化碳(CO2)激光器,第二激光器12为飞秒激光器。
在切割的起始阶段,气体激光器通过其产生的大热量快速切割到一定的 深度,由于焦距原因,气体激光器产生的激光无法再切割到更深的深度。而由于飞秒激光器产生的激光的焦距更大,能够作用于更大的深度,此时就可以利用飞秒激光器产生的,焦距更大的激光进一步进行切割进度更高的操作。这种激光器的组合方式在保证切割精度的同时提高了切割效率。
在实际应用场景中,本公开实施例的激光加工装置的调焦器件的焦距可根据待加工工件的实际切割深度进行灵活调节,可选地,本公开实施例的激光加工装置还可以进一步包括控制器50,当调焦器件为焦距可变的动态聚焦镜,控制器50可用于控制动态聚焦镜的焦距和/或位置,进而控制激光束的聚焦位置。而当调焦器件为焦距固定、而位置相对于所述合束器件可变的聚焦镜时,控制器50可用于控制聚焦镜的位置,进而控制激光束的聚焦位置。在实际应用场景中,控制调焦器件的焦距的控制器50可以设置在调焦器件中,也可以独立于调焦器件设置。
具体地,如图5所示,以第一调焦器件21为动态聚焦镜为例,动态聚焦镜可以包括串联的第一透镜211和第二透镜212,控制器50可以通过动态调整第一透镜211和第二透镜212之间的间距,完成接收到的激光束的动态聚焦,以使得激光束聚焦到合适的位置。需要说明的是,图5中的透镜数量仅为示例,并不因此限制动态聚焦镜的透镜数量。类似地,若第二调焦器件22为动态聚焦镜,与第二调焦器件22对应的控制单元可以通过相同的方法实现对动态聚焦镜的焦距的控制。
本公开实施例中,待加工工件可以为OLED(Organic Light-Emitting Diode,有机发光二极管)显示屏(例如柔性显示屏)。如图8所示,OLED显示屏包括但不仅限于上保护模层61、显示屏本体膜层62及下保护膜层63。
在OLED显示屏的生产制造中,为了提高生产效率,降低制造成本,形成规模的批量生产,往往是在一张较大的玻璃上制作多个OLED显示屏。因此,为了完成OLED显示屏的后续加工工艺,可以采用本公开实施例的激光加工装置将整盒的玻璃全切割(full cut)成OLED显示屏的单体。例如,在OLED显示屏的生产制造中,在上述全切割步骤之前,首先通过机械手臂将待切割的柔性基板取放在装载台(load table)上,之后装载台的支撑柱(support pin)下降,从而使得装载拾取台(load picker table)能够将装载台上的柔性 基板吸附起来使其上升,以将该柔性基板转移放到机台(work table)上,机台上的对位装置继而将柔性基板对好位之后进行真空吸附(对好位的柔性基板的切割dummy区位于机台的凹槽上方,凹槽用于吸收切割穿基板的激光),再之后就可以进行上述的全切割了。在一个实施例中,在全切割过程中,同轴输出的至少第一激光束和第二激光束激光配合机台的移动进行全切割,以将上述柔性基板全切割成显示屏的单体。在一个实施例中,可以有多组(例如4组)激光器并排同时进行上述全切割,其中每组包括至少上述第一激光器和第二激光器,以提升切割效率。
在上述的全切割步骤之后和下述的倒角切割步骤之前,还可以采用本公开实施例的激光加工装置对单体显示屏进行焊区切割(pad open cut),以切割单体显示屏的上保护膜层,从而漏出焊区PAD层,输入测试信号,实现对PAD层的电性能测试。例如,在上述的全切割步骤完成后,可以只开启第一激光器(例如CO2激光器),该第一激光器产生的激光束配合机台移动进行上述的焊区切割。
进一步地,在将整盒的玻璃切割成OLED显示屏的单体后,还可以采用本公开实施例的激光加工装置,通过扫描振镜控制激光束到待加工工件表面的入射角度,完成对单体OLED显示屏的倒角切割(chamfer cut),以方便将单体OLED显示屏安装至整机上。例如,具体地,卸载拾取台(unload picker table)可以将经过上述的全切割步骤处理和焊区切割步骤处理后的显示屏单体吸附起来使其上升,剥离装置将柔性基板切割后形成的dummy条剥离,并将剩下的显示屏单体转移到缓存台(buffer table)上。继而,装载拾取器(load picker)将缓存台上的显示屏单体取放在旋转台(turn table)上(旋转台真空吸附显示屏单体,PAD边超出旋转台)。继而,旋转台旋转到PAD剥离(peeling)工位,支撑杆(support bar)升起与旋转台齐平,剥离销(peeling pin)从PAD边缘将PAD区上保护膜剥离,以通过夹持装置将PAD区上保护膜夹走,放到剥离收集盒。再继而,支撑杆下降,旋转台再次旋转到倒角切割工位,通过扫描振镜的偏转控制激光束出射路径对PAD的两角进行倒角切割。完成倒角切割后,整个切割工艺结束。拾取器将切割完成的显示屏单体放到tray盘流向下一个工位。
在上述全切割和倒角切割应用场景中,OLED显示屏的切割工艺需要激光加工装置完成对OLED显示屏的完全切割,即切割后的OLED显示屏彻底分裂成至少两个部分。因此,如图8所示,可以通过第一调焦器件21和第二调焦器件22实时调节焦距,实现不同深度的切割,如调节第一激光束65聚焦在OLED显示屏的上保护膜层61,第二调焦器件22调节第二激光束66聚焦在OLED显示屏本体膜层62,并通过机台的整体移动,实现对OLED显示屏不同位置的切割。在图8中,阴影部分表示第一激光束65和第二激光束66相重合的部分。
通过动态聚焦镜实时调节焦距,可实现不同深度的切割。比如:同样切上保护膜,全切割模式下,CO2激光器切割深度为150um以上;而在焊区切割模式下时,CO2激光器切割深度130um左右。
因此,本公开实施例的激光加工装置可以通过同轴输出的第一激光束和第二激光束,完成对OLED显示屏的一次性切割,从而可以简化OLED显示屏的切割工艺,简化切割时间。另外,两条激光切割束中心始终重合,因此,同轴激光束能量在切割线上的累加作用能提升量利用率,减小激光能量,甚至可以减少切割产生的烟尘,颗粒及减小热影响区,进而提高OLED显示屏的切割质量。
另外,在OLED显示屏的生产过程中,为排查出不合格的OLED显示屏,可以采用本公开实施例的激光加工装置对OLED显示屏进行PAD层切割,对OLED显示屏的上保护膜层进行切割,以漏出焊区PAD层,输入测试信号,实现对PAD层的电性能测试,进而排查出不合格的OLED显示屏。在该应用场景中,可以通过调节调焦器件的焦距,使得激光加工装置产生的激光束经调焦器件后聚焦在OLED显示屏的上保护膜层。同时配合扫描振镜来改变激光束位置时,动态聚焦镜跟随进行焦距的调整,保证在不同位置切割深度的一致性。通过上述过程实现OLED显示屏PAD层的切割,进而实现对PAD层的电性能测试。
当然,待加工工件也可以为其他类型的显示屏,如液晶显示屏,等离子体显示屏等,也可以为金属等其他工件,本公开实施例对此不作限定。
进一步地,如图7所示,本公开实施例的激光加工装置还包括:第一控 制器51和/或第二控制器52。
其中,第一控制器51,其与所述至少两个激光器11、12连接,并用于根据当前工作模式控制所述至少两个激光器11、12的工作状态。在采用本公开实施例的激光加工装置对待加工工件进行切割时,激光加工装置可以但不仅限于运行全切割、倒角切割、焊区切割三种工作模式。以下对上述三种工作模式进行说明。
针对全切割和倒角切割两种工作模式,激光加工装置控制所述至少两个激光器均处于工作状态,合束器件将经调焦器件接收到的所述至少两个激光器产生的激光同轴输出至待加工工件,且不同激光器产生的激光束经由调焦器件在待加工工件上的聚焦位置不同,完成对OLED显示屏的一次性切割,将待加工工件切割成不同的单体,从而可以简化OLED显示屏的切割工艺,简化切割时间。另外,两条激光切割束中心始终重合,同轴激光束能量在切割线上的累加作用能提升量利用率,减小激光能量,甚至可以减少切割产生的烟尘,颗粒及减小热影响区,进而提高OLED显示屏的切割质量。
针对焊区切割的工作模式,若待加工工件为OLED显示屏,则激光加工装置只需切割OLED显示屏的上保护膜层,以漏出焊区PAD层,输入测试信号,实现对PAD层的电性能测试。因此,在该工作模式下,第一控制器51仅需控制产生聚焦在OLED显示屏的上保护膜层的激光束的激光器处于工作状态,其他激光器均可以处于关闭状态。
具体地,当第一激光器11为二氧化碳激光器,且其产生的激光器经第一调焦器件21调节后其聚焦点集中在OLED显示屏的上保护膜层,第二激光器12为飞秒激光器,且其产生的激光器经第二调焦器件22调节后其聚焦点集中在OLED显示屏的下保护膜层时,则第一控制器51可以控制第一激光器11为工作状态,控制第二激光器12为关闭状态。当然,第一控制器51也可以控制第一激光器11处于关闭状态,第二激光器12处于工作状态,进而调节第二激光器12对应的第二调焦器件22的焦距,使其输出的聚焦位置调整后的第二激光束聚焦点集中在OLED显示屏的上保护膜层。
这样,本公开实施例的激光加工装置适用于全切割、倒角切割、焊区切割等不同的工作模式,从而可以提高激光加工装置的适用范围。
可选地,如图7所示,本公开实施例的激光加工装置还包括第二控制器52,其与第一调焦器件21和第二调焦器件22连接,用于根据目标聚焦位置控制所述调焦器件21、22,以控制激光束的聚焦位置。具体地,第二控制器52可以根据待加工工件的加工深度要求,对调焦器件21、22的焦距和/或位置进行调节,使得经调焦器件21、22聚焦位置调整后的激光束能准确的聚焦在要求的加工深度上,从而提高激光器切割深度的灵活性,提高待加工工件的切割质量。
综上,相比于相关技术中至少两个激光束先后作用在待加工工件上,本公开的激光加工装置同轴输出的至少两个激光光束可以避免相关技术中该至少两个激光切割线偏移量难控制,及可能存在的至少两个激光切割线偏移量较大的问题,从而可以提高待加工工件的切割质量,有效降低待加工工件的不良率;另一方面,同轴输出的至少两个激光光束的能量累积可以扩大一次激光切割的切割厚度,从而可以简化切割工序流程,节约待加工工件的切割时间。此外,本公开实施例中用于分别产生一个激光束的至少两个激光器独立设置,且每一激光器对应设置有用于调节该激光器产生的激光束的聚焦位置的调焦器件,从而可以扩大激光器的适用范围,提高调节激光器产生的激光束的聚焦位置的灵活性。
本公开实施例还提供一种显示产品的制作方法,应用于上述的激光加工装置,如图6所示,该显示产品的制作方法包括:
步骤601、根据所述激光加工装置的当前工作模式,控制所述激光加工装置的至少两个激光器中的至少一个激光器分别产生一个激光束。
步骤602、调整所述至少一个激光器产生的激光束的聚焦位置。
步骤603、控制聚焦位置调整后的所述至少一个激光器产生的激光束同轴输出。
本实施例中,针对激光加工装置的不同工作模式,激光加工装置可以预先设置每一工作模式对应的所述至少两个激光器的工作状态,因此,在确定激光加工装置的当前工作模式后,激光加工装置可以按照预先设置控制所述至少两个激光器的工作状态,使得至少两个激光器中的至少一个激光器分别产生一个激光束。以下均以激光加工装置包括第一激光器和第二激光器为例 进行说明。
具体地,当激光加工装置处于全切割和倒角切割的工作模式时,可以控制第一激光器和第二激光器均处于工作状态,分别产生一个激光束;当激光加工装置处于焊区切割的工作模式时,可以控制第一激光器或第二激光器处于工作状态,另外一激光器处于关闭状态,产生一个激光束。
激光加工装置根据当前工作模式控制至少两个激光器中的至少一个激光器分别产生一个激光束后,调整所述至少一个激光器产生的激光束的聚焦位置,并控制聚焦位置调整后的所述至少一个激光器产生的激光束同轴输出。其中,激光束的聚焦位置调整及同轴输出的控制过程均可参考上述实施例中激光加工装置的描述,为避免重复,本实施例对此不再赘述。
通过上述方式,激光加工装置可以根据当前工作模式实现对激光器的工作状态及激光束的聚焦位置进行调节,从而可以提高激光加工装置的适用范围。
当所述激光加工装置的至少两个激光器分别产生一个激光束,且控制这样产生的两个激光束同轴输出在待加工工件,相比于相关技术中至少两个激光束先后作用在待加工工件上,本公开的激光加工装置同轴输出的至少两个激光光束可以避免相关技术中该至少两个激光切割线偏移量难控制,及可能存在的至少两个激光切割线偏移量较大的问题,从而可以提高待加工工件的切割质量,有效降低待加工工件的不良率;另一方面,同轴输出的至少两个激光光束的能量累积可以扩大一次激光切割的切割厚度,从而可以简化切割工序流程,节约待加工工件的切割时间。此外,本公开实施例中用于分别产生一个激光束的至少两个激光器独立设置,且每一激光器对应设置有用于调节该激光器产生的激光束的聚焦位置的调焦器件,从而可以扩大激光器的适用范围,提高调节激光器产生的激光束的聚焦位置的灵活性。
进一步地,所述根据所述激光加工装置的当前工作模式,控制所述激光加工装置的至少两个激光器中的至少一个激光器分别产生一个激光束的步骤,可以表现为:若所述激光加工装置的当前工作模式为全切割或倒角切割工作模式,则控制所述激光加工装置的至少两个激光器分别产生一个激光束。
以第一激光器产生第一激光束,第二激光器产生第二激光束,待加工工 件为包括上保护膜层、显示屏本体膜层及下保护膜层的OLED显示屏为例,则激光加工装置在控制第一激光器和第二激光器处于工作状态,使第一激光器产生第一激光束,第二激光器产生第二激光束后,进一步调整第一激光束和第二激光的焦距,使得第一激光束聚焦在OLED显示屏的上保护膜层,第二激光束聚焦在OLED显示屏的本体膜层。这样,当激光加工装置控制第一激光束和第二激光束同轴输出至OLED显示屏时,第一激光束实现对OLED显示屏的上保护膜层进行切割,第二激光束实现对OLED显示屏的本体膜层和下保护膜层的切割,从而可以完成对OLED系统的整体切割。
进一步地,在上述工作模式下,所述控制所述激光加工装置的至少两个激光器分别产生一个激光束的步骤,可以表现为:控制所述激光加工装置的至少一个二氧化碳激光器和至少一个飞秒激光器分别产生一个激光束。
若激光加工装置仅设置第一激光器和第二激光器,则可以将第一激光器设置为二氧化碳激光器,将第二激光器设置为飞秒激光器,且进一步地,调节二氧化碳激光器产生的第一激光束的聚焦位置,使其聚焦在OLED显示屏的上保护膜层,调节飞秒激光器产生的第二激光束的聚焦位置,使其聚焦在OLED显示屏的本体膜层。
这样,在切割的起始阶段,二氧化碳激光器通过其产生的大热量快速切割到一定的深度,由于焦距原因,二氧化碳激光器产生的激光无法再切割到更深的深度。而由于飞秒激光器产生的激光的焦距更大,能够作用于更大的深度,此时就可以利用飞秒激光器产生的,焦距更大的激光进一步进行切割进度更高的操作。这种激光器的组合方式在保证切割精度的同时提高了切割效率。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (16)

  1. 一种显示产品的制作方法,应用于激光加工装置,其中,所述显示产品的制作方法包括:
    根据所述激光加工装置的当前工作模式,控制所述激光加工装置的至少两个激光器中的至少一个激光器分别产生一个激光束;
    调整所述至少一个激光器产生的激光束的聚焦位置;
    控制聚焦位置调整后的所述至少一个激光器产生的激光束同轴输出。
  2. 根据权利要求1所述的显示产品的制作方法,其中,所述根据所述激光加工装置的当前工作模式,控制所述激光加工装置的至少两个激光器中的至少一个激光器分别产生一个激光束的步骤,包括:
    若所述激光加工装置的当前工作模式为全切割或倒角切割工作模式,则控制所述激光加工装置的至少两个激光器分别产生一个激光束。
  3. 根据权利要求2所述的显示产品的制作方法,其中,所述控制所述激光加工装置的至少两个激光器分别产生一个激光束的步骤,包括:
    控制所述激光加工装置的至少一个二氧化碳激光器和至少一个飞秒激光器分别产生一个激光束。
  4. 根据权利要求2所述的显示产品的制作方法,其中,所述根据所述激光加工装置的当前工作模式,控制所述激光加工装置的至少两个激光器中的至少一个激光器分别产生一个激光束的步骤,包括:
    若所述激光加工装置的当前工作模式为焊区切割工作模式,则控制所述激光加工装置的至少两个激光器中的一个激光器产生一个激光束,并控制所述激光加工装置的至少两个激光器中的其他激光器不产生激光束。
  5. 根据权利要求4所述的显示产品的制作方法,其中,所述控制所述激光加工装置的至少两个激光器中的一个激光器产生一个激光束,并控制所述激光加工装置的至少两个激光器中的其他激光器不产生激光束的步骤,包括:
    控制所述激光加工装置的至少一个二氧化碳激光器产生一个激光束,并控制所述激光加工装置的至少一个飞秒激光器不产生激光束。
  6. 根据权利要求4所述的显示产品的制作方法,其中,所述全切割工作 模式用于利用所述激光束将基板切割为多个基板单体,在所述激光加工装置的当前工作模式进入全切割工作模式之前,所述方法还包括:机台的对位装置将位于所述机台上的基板进行对位,以使得所述基板的切割区位于所述机台的凹槽上方,并对所述基板进行真空吸附。
  7. 根据权利要求6所述的显示产品的制作方法,其中,所述焊区切割工作模式用于在将基板切割为多个基板单体后利用所述激光束对所述基板单体进行焊区切割;并且
    所述产生一个激光束的激光器为二氧化碳激光器。
  8. 根据权利要求7所述的显示产品的制作方法,其中,所述倒角切割工作模式用于在对所述基板单体进行焊区切割后利用所述激光束对所述基板单体进行倒角切割;并且
    若所述激光加工装置的当前工作模式为倒角切割工作模式时,则在控制所述激光加工装置的至少两个激光器分别产生一个激光束的步骤之后,所述方法还包括:通过扫描振镜控制所述激光束到所述基板单体的表面的入射角度,以对所述基板单体进行倒角切割。
  9. 一种激光加工装置,包括:
    至少两个激光器,用于分别产生一个激光束;
    与所述至少两个激光器一一对应设置的调焦器件,用于调节所述至少两个激光器产生的至少两个激光束的聚焦位置;
    合束器件,用于接收聚焦位置调整后的至少两个激光束,并同轴输出所述至少两个激光束。
  10. 根据权利要求9所述的激光加工装置,还包括:
    扫描振镜,用于接收所述合束器件同轴输出的所述至少两个激光束,并同轴输出所述至少两个激光束至待加工工件。
  11. 根据权利要求9所述的激光加工装置,其中,所述调焦器件为:
    焦距可变的动态聚焦镜;或
    焦距固定、而位置相对于所述合束器件可变的聚焦镜。
  12. 根据权利要求10所述的激光加工装置,其中,所述待加工工件为OLED显示屏。
  13. 根据权利要求12所述的激光加工装置,其中,所述至少两个激光器包括二氧化碳激光器和飞秒激光器。
  14. 根据权利要求11所述的激光加工装置,还包括:
    第一控制器,用于根据所述激光加工装置的当前工作模式控制所述至少两个激光器的工作状态;和/或
    第二控制器,用于根据目标聚焦位置控制所述调焦器件。
  15. 根据权利要求14所述的激光加工装置,其中,
    在所述调焦器件为焦距可变的动态聚焦镜时,所述第二控制器具体用于根据目标聚焦位置控制所述动态聚焦镜的焦距和/或位置;
    在所述调焦器件为焦距固定、而位置相对于所述合束器件可变的聚焦镜时,所述第二控制器具体用于根据目标聚焦位置控制所述聚焦镜的位置。
  16. 根据权利要求9所述的激光加工装置,其中,所述至少两个激光器包括第一激光器和第二激光器,所述第一激光器产生并经对应调焦器件调节后的第一激光束的光轴与所述第二激光器产生并经对应调焦器件调节后的第二激光束的光轴在所述合束器件处相交并且相互垂直。
PCT/CN2018/114320 2017-12-13 2018-11-07 一种显示产品的制作方法及一种激光加工装置 WO2019114466A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18867313.1A EP3725452A4 (en) 2017-12-13 2018-11-07 METHOD OF MANUFACTURING DISPLAY PRODUCTS AND LASER PROCESSING DEVICE
US16/345,835 US11571767B2 (en) 2017-12-13 2018-11-07 Laser processing device and laser processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711327699.2 2017-12-13
CN201711327699.2A CN109909601A (zh) 2017-12-13 2017-12-13 一种激光加工系统及方法

Publications (1)

Publication Number Publication Date
WO2019114466A1 true WO2019114466A1 (zh) 2019-06-20

Family

ID=66818935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114320 WO2019114466A1 (zh) 2017-12-13 2018-11-07 一种显示产品的制作方法及一种激光加工装置

Country Status (4)

Country Link
US (1) US11571767B2 (zh)
EP (1) EP3725452A4 (zh)
CN (1) CN109909601A (zh)
WO (1) WO2019114466A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019128251A1 (de) * 2019-10-18 2021-04-22 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Fügen von zwei Fügepartnern mittels ultrakurzer Laserpulse

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110303243A (zh) * 2019-08-15 2019-10-08 北京理工大学 一种光场动态可调的多激光焦点切割脆性材料装置及方法
JP2023059323A (ja) * 2021-10-15 2023-04-27 株式会社ディスコ 単結晶シリコン基板の製造方法
JP2023066465A (ja) * 2021-10-29 2023-05-16 株式会社ディスコ 基板の製造方法
CN114012274A (zh) * 2021-11-12 2022-02-08 常州天寅智造科技股份有限公司 激光雕刻装置及系统
CN115319275B (zh) * 2022-10-17 2023-01-13 武汉引领光学技术有限公司 一种激光合束切割涂层玻璃的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154478A (ja) * 2002-07-29 2003-05-27 Seiko Epson Corp レーザ加工装置及びレーザ加工方法並びに液晶パネル
US20060261051A1 (en) * 2005-05-19 2006-11-23 Mark Unrath Synthetic pulse repetition rate processing for dual-headed laser micromachining systems
US20080264910A1 (en) * 2004-09-14 2008-10-30 Raman Kashyap Process for Fabricating Optical Waveguides
CN101811227A (zh) * 2009-02-24 2010-08-25 王晓东 一种激光打孔方法和装置
CN104741798A (zh) * 2015-03-24 2015-07-01 张立国 一种复合焦点时空同步钻孔系统与方法
CN105772947A (zh) * 2016-03-23 2016-07-20 中国科学院上海光学精密机械研究所 双光源联用激光束抛光装置
CN107234347A (zh) * 2017-07-19 2017-10-10 江苏大学 一种激光辅助加热飞秒脉冲激光打孔装置及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2175737A (en) * 1985-05-09 1986-12-03 Control Laser Limited Laser material processing
US6809291B1 (en) * 2002-08-30 2004-10-26 Southeastern Universities Research Assn., Inc. Process for laser machining and surface treatment
JP2004154813A (ja) * 2002-11-06 2004-06-03 National Institute Of Advanced Industrial & Technology レーザ加工方法および装置
KR101074408B1 (ko) * 2004-11-05 2011-10-17 엘지디스플레이 주식회사 펨토초 레이저 발생장치 및 이를 이용한 기판의 절단방법
US20070228616A1 (en) * 2005-05-11 2007-10-04 Kyu-Yong Bang Device and method for cutting nonmetalic substrate
TWI543264B (zh) * 2010-03-31 2016-07-21 應用材料股份有限公司 雷射光束定位系統
CN104125934A (zh) * 2012-02-28 2014-10-29 伊雷克托科学工业股份有限公司 用于分离强化玻璃的方法及装置及由该强化玻璃生产的物品
US10442719B2 (en) * 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
CN106232283B (zh) * 2014-02-28 2019-03-29 Ipg光子公司 使用不同波长和/或脉冲持续时间的多个激光束的多光束激光加工
CN104972221B (zh) * 2014-04-03 2017-12-26 苏州天弘激光股份有限公司 一种激光加工设备及激光加工寻焦方法
WO2016010954A2 (en) * 2014-07-14 2016-01-21 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
CN204116671U (zh) * 2014-10-22 2015-01-21 苏州曙天激光有限公司 双光耦合式双头激光剥线机
CA2991444C (en) * 2015-08-10 2020-03-31 Saint-Gobain Glass France Method for cutting a thin glass layer
CN205129179U (zh) * 2015-10-29 2016-04-06 福建中科光汇激光科技有限公司 脉冲-连续波复合型激光的加工装置
CN106964894A (zh) * 2016-11-03 2017-07-21 苏州镭明激光科技有限公司 一种可变双焦点激光微加工装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154478A (ja) * 2002-07-29 2003-05-27 Seiko Epson Corp レーザ加工装置及びレーザ加工方法並びに液晶パネル
US20080264910A1 (en) * 2004-09-14 2008-10-30 Raman Kashyap Process for Fabricating Optical Waveguides
US20060261051A1 (en) * 2005-05-19 2006-11-23 Mark Unrath Synthetic pulse repetition rate processing for dual-headed laser micromachining systems
CN101811227A (zh) * 2009-02-24 2010-08-25 王晓东 一种激光打孔方法和装置
CN104741798A (zh) * 2015-03-24 2015-07-01 张立国 一种复合焦点时空同步钻孔系统与方法
CN105772947A (zh) * 2016-03-23 2016-07-20 中国科学院上海光学精密机械研究所 双光源联用激光束抛光装置
CN107234347A (zh) * 2017-07-19 2017-10-10 江苏大学 一种激光辅助加热飞秒脉冲激光打孔装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3725452A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019128251A1 (de) * 2019-10-18 2021-04-22 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Fügen von zwei Fügepartnern mittels ultrakurzer Laserpulse

Also Published As

Publication number Publication date
US20210323095A1 (en) 2021-10-21
EP3725452A4 (en) 2021-10-13
EP3725452A1 (en) 2020-10-21
US11571767B2 (en) 2023-02-07
CN109909601A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2019114466A1 (zh) 一种显示产品的制作方法及一种激光加工装置
JP2008080346A (ja) レーザ加工装置及び加工方法
TW201029780A (en) Laser machining systems and methods with multiple beamlet laser beam delivery systems
US8519298B2 (en) Split laser scribe
TW200800457A (en) Method and apparatus for laser processing
CN105127604A (zh) 激光加工系统及方法
JP2009190069A (ja) レーザによる透明基板の加工方法および装置
CN110722272A (zh) 超快激光微纳切割钻孔设备及方法
CN107414309A (zh) 一种激光加工晶圆的方法及装置
KR101902991B1 (ko) 레이저 스크라이빙 장치
CN102717191B (zh) 一种脉冲激光刻蚀卷对卷柔性导电膜的装置和方法
JP2008238195A (ja) 有機デバイス加工装置及び有機デバイス加工方法
KR100921662B1 (ko) Uv 레이저를 이용한 기판의 절단 장치 및 방법
CN109759722B (zh) 一种双工艺组合的led芯片加工系统及方法
CN108581189B (zh) 激光切割方法
CN107378255A (zh) 一种激光加工晶圆的方法及装置
KR100824962B1 (ko) 극초단파 레이저를 이용한 기판의 절단 장치 및 방법
CN220915507U (zh) 一种基于光阑切换变径组合去除电路板材料的加工装置
CN105458517A (zh) 晶圆激光划片与裂片方法及系统
CN202667918U (zh) 一种脉冲激光刻蚀卷对卷柔性导电膜的装置
JP2020082139A (ja) レーザー加工装置および被加工物の加工方法
CN110549012B (zh) 一种多色超短脉冲光丝隐切方法及装置
KR100862522B1 (ko) 레이저가공 장치 및 기판 절단 방법
US20190344389A1 (en) Laser process with controlled polarization
CN206981987U (zh) 用于光学元件的激光预处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018867313

Country of ref document: EP

Effective date: 20200713