WO2019114440A1 - 一种无密封的单片电解质直接碳固体氧化物燃料电池组 - Google Patents

一种无密封的单片电解质直接碳固体氧化物燃料电池组 Download PDF

Info

Publication number
WO2019114440A1
WO2019114440A1 PCT/CN2018/112579 CN2018112579W WO2019114440A1 WO 2019114440 A1 WO2019114440 A1 WO 2019114440A1 CN 2018112579 W CN2018112579 W CN 2018112579W WO 2019114440 A1 WO2019114440 A1 WO 2019114440A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
electrolyte
electrolyte sheet
solid oxide
fuel
Prior art date
Application number
PCT/CN2018/112579
Other languages
English (en)
French (fr)
Inventor
刘江
丘倩媛
张亚鹏
周明扬
汪维
刘美林
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2019114440A1 publication Critical patent/WO2019114440A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This invention relates to solid oxide fuel cells, and more particularly to direct carbon solid oxide fuel cells, and more particularly to a sealless monolithic electrolyte direct carbon solid oxide fuel cell stack.
  • Solid oxide fuel cell is an energy conversion device that uses solid oxide as an electrolyte to directly convert chemical energy into electrical energy. It has many unique advantages: 1. High energy conversion efficiency and wide fuel application range; 2, the modular design of the battery components, can easily expand or reduce the installation scale, site selection freedom; 3, good security; 4, can be used for cogeneration. Therefore, as technology continues to mature, solid oxide fuel cells may replace existing batteries in many areas.
  • Direct Carbon Solid Oxide Fuel Cell is a SOFC that uses solid carbon as a fuel. It has the advantages of high solid carbon energy density, wide source and low cost, and combines the advantages of SOFC solid-state structure without any need. Liquid medium, high safety.
  • the working principle of DC-SOFC is: oxygen receives electrons from an external circuit and is reduced to oxygen ions under the action of a cathode catalyst exposed to air.
  • oxygen ions are transferred to the anode through an electrolyte having oxygen ion conductivity, electrochemically reacting with CO in the anode chamber to generate CO 2 and release electrons to an external circuit.
  • the generated CO 2 reaches the carbon fuel surface by diffusion to react with C to form CO (Boudouard reaction).
  • the open circuit voltage of a SOFC single cell is only about 1V, which cannot be used for practical applications. For this reason, many SOFC cells need to be properly connected in series or in parallel to obtain a desired output.
  • YSZ yttrium stabilized zirconia
  • Prior art DC-SOFCs require a strict seal during operation to avoid direct contact between fuel and air.
  • the sealing materials used mainly include glass ceramic sealing materials, high temperature metal sealing materials, and mica sealing materials.
  • the thermal expansion coefficient of the sealing material and the adjacent electrolyte, the electrode and the connecting body are inconsistent, which tends to stress the battery during the operation of the battery, resulting in cracking of the battery; 2.
  • the stability of the sealing material under high temperature working conditions needs to be evaluated; 3.
  • the production cost of the sealing material is high, and the sealing technology of the battery is strict.
  • the object of the present invention is to overcome the above-mentioned technical disadvantages, and provide a sealless single-electrode direct carbon solid oxide fuel cell stack by designing a plurality of battery electrical connection modes on a single electrolyte. The sealed operation of the DC-SOFC battery pack.
  • the present invention finds that the anode chamber will continuously generate gas when the battery is in operation, so that the pressure in the gas chamber is in a positive pressure state compared with the external atmospheric pressure, so that even if the battery is not performed Strict sealing, air can not enter the anode chamber caused by battery performance degradation.
  • the excess gas generated on the anode side can also diffuse out of the battery through the unsealed portion. Eliminating the sealing of the battery not only avoids the stress problems caused by the sealing, but also greatly reduces the production cost of the solid oxide fuel cell, simplifies the production process, and can easily replace the solid carbon fuel to make the DC-SOFC in the portable power source. Or there is a great application prospect on the backup power supply.
  • the present invention provides a design of a sealless monolithic electrolyte DC-SOFC battery pack consisting of a cell sheet, a carbon fuel, a fuel container, and a fixed frame.
  • the cell sheet is a multi-section series SOFC cell stack prepared on a monolithic electrolyte, one side of which is a porous cathode and the other side is a porous anode.
  • the anode surface of the battery sheet is directly covered with carbon fuel to the opening of the container containing the carbon fuel, and the relative position of the battery assembly piece and the fuel container is fixed by the fixing frame.
  • the DC- The SOFC battery pack has a current and voltage output.
  • the cathode of the above DC-SOFC battery pack is directly exposed to the air, and according to the DC-SOFC reaction mechanism shown in equations (1)-(3), oxygen in the air can be catalytically converted into oxygen ions (1) at the cathode, which The oxygen ions pass through the electrolyte, electrochemically oxidize with the CO in the fuel container to form CO 2 (2), and the generated CO 2 diffuses into the carbon fuel in the vessel to undergo a reverse Boudouard reaction (3) to obtain CO.
  • the DC-SOFC battery of the present invention When the DC-SOFC battery of the present invention is operated, in the carbon fuel container (anode chamber), an oxygen ion reacts with a CO to form a CO 2 , and the CO 2 reacts with the carbon fuel to generate two COs, so
  • the battery is constantly running, and the amount of gas in the container is constantly increasing.
  • the inside of the container is a positive pressure environment, and the outside gas does not enter the container, and excess gas is generated between the cell and the fuel container.
  • the gas generated in the container is a mixture of CO and CO 2 , and a part of the product gas contacts the gap between the container and the electrolyte under the positive pressure inside the container.
  • the CO in the exhaust gas can be oxidized to CO 2 by the air around the container.
  • the above battery sheet is provided with a plurality of porous cathodes spaced apart on one side of one electrolyte sheet, and a corresponding porous anode is disposed at a position opposite to the cathode on the other side of the electrolyte sheet, and cathodes and anodes on both sides of the electrolyte sheet pass through
  • the connectors are electrically connected across the edges of the electrolyte sheets to achieve a series connection of the cells. This electrical connection across the edge of the electrolyte is possible because the DC-SOFC battery pack described above is of a seal-free design. Since no sealant is applied at the edge of the electrolyte, an electrical connection material can be applied at this edge. .
  • the invention can obtain a multi-section series battery pack on a single electrolyte, and is particularly suitable for use in a backup power source and a portable power source.
  • the unsealed monolithic electrolyte direct carbon solid oxide fuel cell stack can be produced in large quantities using a mature process with significant cost advantages.
  • An unsealed monolithic electrolyte direct carbon solid oxide fuel cell assembly comprising a monolithic electrolyte sheet, a connector, a porous cathode, a porous anode, a powdered carbon fuel, a fuel container, and a fixed frame;
  • a plurality of porous cathodes are disposed at intervals, and a plurality of porous anodes are disposed on the other side of the electrolyte sheet, and the porous cathode and the porous anode are disposed opposite to each other on both sides of the electrolyte sheet; the distance between adjacent porous cathodes or porous anodes on the same surface 1mm or more; one end of the connecting body is connected to the porous anode of the first battery on one side of the electrolyte sheet, and the other end is connected to a porous cathode adjacent to the porous anode on the other side of the electrolyte sheet to form a series connection to form a battery sheet; a
  • the electrolyte sheet and the fuel container have the same size of openings, and the fixing frame holds the electrolyte sheet and the fuel container.
  • the electrolyte sheet, the porous cathode or the porous anode is square or circular; and the electrolyte sheet has a thickness of 0.15 to 0.5 mm.
  • the material of the electrolyte sheet is yttria-stabilized zirconia or yttrium-doped yttrium oxide, which is prepared into a flat plate by a dry pressing method or a casting method, and is formed by sintering at 1400-1600 ° C for 3-4 hours in air.
  • the porous anode and the porous cathode are both made of a composite material of silver powder and lanthanum or cerium-doped cerium oxide, and are prepared into a slurry by brushing or screen printing on both sides of the electrolyte sheet, at 400. It is formed by sintering in air at 880 ° C for 1-4 h.
  • the material of the connecting body is metal silver or strontium chromate ceramic.
  • the carbon fuel is powder carbon
  • the powder carbon is activated carbon, bamboo charcoal, coke, carbon black or charcoal.
  • the fuel container is a non-conductive high temperature resistant container, and the fuel container is a quartz container or a ceramic container.
  • the fixing frame is made of a material that is not electrically conductive and resistant to high temperature, and the material is quartz or ceramic material.
  • the frame edge of the fixing frame is a bending structure of a right angle.
  • the invention has the following characteristics:
  • the shape and size of the electrolyte sheet, the shape and size of the electrode, and the distribution of the electrodes can be flexibly designed as needed.
  • the anode uses carbon as the active material and has a capacity of up to 8935 mAh/g.
  • Figure 1 is a front cross-sectional view of a sealless monolithic electrolyte direct carbon solid oxide fuel cell of the present invention.
  • FIG. 2 is a top plan view of an apparatus for a sealless monolithic electrolyte direct carbon solid oxide fuel cell of the present invention.
  • FIG 3 is a front cross-sectional view of a battery pack of the unsealed monolithic electrolyte direct carbon solid oxide fuel cell of the present invention.
  • FIG. 4 is a top plan view of a battery pack of the unsealed monolithic electrolyte direct carbon solid oxide fuel cell of the present invention.
  • Figure 5 is a cross-sectional view of a fuel container of a sealless monolithic electrolyte direct carbon solid oxide fuel cell of the present invention.
  • Figure 6 is a top plan view of a fuel container of a sealless monolithic electrolyte direct carbon solid oxide fuel cell of the present invention.
  • Figure 7 is a cross-sectional view of the fixing frame of the unsealed monolithic electrolyte direct carbon solid oxide fuel cell of the present invention.
  • Figure 8 is a top plan view of the fixing frame of the unsealed monolithic electrolyte direct carbon solid oxide fuel cell of the present invention.
  • Figure 9 is an output characteristic (bamboo charcoal fuel) of a non-sealed electrolyte direct carbon solid oxide fuel cell stack of a square four series connection of Example 1.
  • Figure 10 is an output characteristic (bamboo charcoal fuel) of a square eight-piece tandem unsealed electrolyte direct carbon solid oxide fuel cell stack of Example 2.
  • Figure 11 is a discharge curve (bamboo charcoal fuel) of a square eight-piece tandem unsealed electrolyte direct carbon solid oxide fuel cell stack of Example 2.
  • Figure 12 is an output characteristic (activated carbon fuel) of a square eight-piece, unsealed electrolyte direct carbon solid oxide fuel cell stack of Example 3.
  • the figure shows an electrolyte sheet 1, a porous cathode 2, a porous anode 3, a powdery carbon fuel 4, a fuel container 5, a fixing frame 6, and a connecting body 7.
  • an unsealed monolithic electrolyte direct carbon solid oxide fuel cell stack includes an electrolyte sheet 1, a porous cathode 2, a porous anode 3, a powder carbon fuel 4, a fuel container 5, and a fixing frame 6 And the connecting body 7;
  • the electrolyte sheet 1 is a square sheet, the electrolyte sheet 1 is provided with a plurality of porous cathodes 2 at intervals, and the other side of the electrolyte sheet 1 is provided with a plurality of porous anodes 3, a porous cathode 2 and a porous body
  • the anode 3 is oppositely disposed on both sides of the electrolyte sheet 1; each porous cathode 2 and the porous anode 3 have the same shape and shape; the spacing of the single porous cathode 2 or the porous anode 3 is 1 mm or more to avoid between the porous cathodes 2 or between the porous anodes 3 Occasional electrical connection occurs, which
  • the other side of the sheet 1 is adjacent to the porous anode 3, and a porous cathode 2 is formed in series to form a battery sheet.
  • the connecting bodies between the batteries are not in contact with each other to avoid internal short circuit of the battery.
  • the powdered carbon fuel 4 is placed in the fuel container 5; the prepared electrolyte sheet 1 is placed above the fuel container 5 containing the carbon fuel 4, and the electrolyte sheet 1 is provided with one side of the plurality of porous anodes 3 and the fuel container 5.
  • the hollow frame is opposite; since the opening size of the electrolyte sheet 1 and the fuel container 5 is uniform in size, the fixing frame 6 holds the electrolyte sheet 1 and the fuel container 5.
  • the material of the electrolyte sheet 1 support is yttria-stabilized zirconia (YSZ), which is prepared by a casting method and formed by sintering at 1400-1600 ° C for 3-4 h in air;
  • YSZ yttria-stabilized zirconia
  • the porous anode 2 and the porous cathode 3 are both made of a composite material of silver powder and lanthanum or cerium-doped cerium oxide, and are prepared into a slurry by brushing or spraying, respectively, on both sides of the electrolyte sheet at 500-880 ° C. Sintering in air for 2-4h formation;
  • the powder carbon fuel 4 is activated carbon, coke, carbon black or bamboo charcoal, and the bamboo charcoal has a particle size of 10-500 ⁇ m;
  • the fuel container 5 is a quartz ark having a volume of 100 mm ⁇ 100 mm ⁇ 5 mm;
  • the fixing frame 6 is made of a material resistant to high temperature, oxidation, electrical insulation and heat conduction, and a ceramic material such as quartz, alumina or magnesia may be used.
  • the connecting body 7 is a high temperature resistant DAD-87 (Shanghai Synthetic Resin Research Institute) silver conductive adhesive.
  • An electrolyte sheet 1 (Ningbo Sophomore Energy Technology Co., Ltd.) having an area of 100 mm ⁇ 100 mm and a thickness of 250 ⁇ m is taken, and a battery pack in which four single cells are connected in series is prepared, and the area of the porous cathode 2 of each unit cell can be designed to be 83 mm. ⁇ 17 mm, the distance between adjacent porous cathodes is 5 mm, the distance between the porous cathode 2 and the periphery of the electrolyte sheet 1 is 8 mm, and the shape of the porous anode 3 and the porous cathode 2 are the same, and the positions are relatively set, and the mass ratios are respectively weighed.
  • a porous anode 3 and a porous cathode 2 were prepared by preparing a brush as shown in Figs. 1-8.
  • the porous cathode 2 was obtained on the same side of the electrolyte sheet 1 by a brushing method, and the shape and size of the porous anode 3 were the same as those of the porous cathode 2, and were located directly opposite to the porous cathode 2. Dry in a high temperature oven at 140 °C. Repeat this 4 times. Then, it was placed in a muffle furnace and sintered at 880 ° C for 4 hours in an air atmosphere to obtain an electrode having a thickness of about 20 ⁇ m.
  • the effective area of the single cell is 14 cm 2 .
  • the connecting body 7 is prepared by using silver paste, and the multi-cell batteries are connected in series through the connecting body 7, one end of the connecting body 7 is connected to the porous cathode 2 on one side of the electrolyte sheet, and then reaches the porous anode 3 on the other side of the electrolyte sheet through the edge of the electrolyte, and is Connected, a series of battery cells connected in series on the single electrolyte sheet 1 is connected in series by a single cell, and one end of the two silver wires is fixed to the porous cathode 2 and the porous anode 3 at the outermost end of the electrolyte sheet 1 by silver paste, respectively. Connect the other end to the appliance.
  • the connectors of each cell do not touch each other and have a distance of 5mm to avoid short circuit between the two cells.
  • One end of the two silver wires was fixed to the anode current collector and the cathode current collector by silver paste, and the other end was connected to an electric appliance.
  • the bamboo charcoal was crushed by an electric pulverizer, and the pulverized bamboo charcoal was placed in an oven at 140 ° C for 24 hours to serve as a fuel reserve.
  • the ball mill jar was placed in a planetary ball mill for 2 h at 200 r/min, and then 8 ml of PVB-ethanol solution (PVB concentration of 6%) was added, and ball milling was continued for 30 min at the same speed.
  • the resulting mixture is placed under an infrared lamp to be dried.
  • the prepared bamboo charcoal fuel loaded with 5 wt% Fe as a catalyst was plated in a fuel container having a volume of 100 mm ⁇ 100 mm ⁇ 5 mm, and the prepared monolithic electrolyte battery was lightly covered in the fuel container 5 Above, a non-sealed monolithic electrolyte direct carbon solid oxide fuel cell stack was fabricated.
  • the assembled four-cell battery pack was placed on a universal electric furnace for heating, and a layer of ceramic wool with a thickness of 2 cm was laid at 2.5 cm above the battery to reduce heat loss, and tested with IVIUM electrochemical workstation. The output characteristics of the battery.
  • the open circuit voltage of the DC-SOFC single cell is only about 1.02V.
  • Figure 9 shows the output performance of the four-series battery pack at the highest temperature and the center temperature is 819 °C.
  • the open circuit voltage is 4.08V and the maximum power is 1.42. W. It also shows that when using powdered carbon as a fuel, the battery can obtain a higher open circuit voltage without strict sealing.
  • the main measure of this embodiment is to assemble four series-connected battery packs on a single-piece electrolyte sheet by a non-sealing method, which can effectively solve the problem of sealing of the battery pack and the problem of battery series connection.
  • No sealing is required to solve the inherent problems of sealing materials and technology, while also greatly improving the durability of the battery.
  • Particularly suitable for use with solid carbon as a fuel Because the battery is powered by the consumption of active substances, it is an electrochemical generator. The degradation of battery performance during discharge is not due to the performance degradation of the battery itself, but due to the consumption of carbon fuel or sintering, the electrochemical reaction cannot maintain the original discharge voltage. If you re-add carbon fuel, the battery will still work. That is, the battery does not need to be charged, only the fuel needs to be replaced, and the unsealed structure makes the replacement of the fuel very convenient and flexible.
  • An electrolyte sheet 1 (Ningbo Sophomore Energy Technology Co., Ltd.) having an area of 100 mm ⁇ 100 mm and a thickness of 250 ⁇ m was taken to prepare a battery unit in which eight single cells were connected in series, and the area of the porous cathode 2 of each unit cell was designed to be 39 mm. ⁇ 17 mm, the distance between adjacent porous cathodes is 5 mm, the distance between the porous cathode 2 and the periphery of the electrolyte sheet 1 is 8 mm, and the shape of the porous anode 3 and the porous cathode 2 are the same, and the positions are relatively set, and the mass ratios are respectively weighed.
  • a porous anode 3 and a porous cathode 2 were prepared by preparing a brush as shown in Figs. 1-8.
  • the porous cathode 2 was obtained on the same side of the electrolyte sheet 1 by a brushing method, and the shape and size of the porous anode 3 were the same as those of the porous cathode 2, and were located directly opposite to the porous cathode 2. Dry in a high temperature oven at 140 °C. Repeat this 4 times. Then, it was placed in a muffle furnace and sintered at 880 ° C for 4 hours in an air atmosphere to obtain an electrode having a thickness of about 20 ⁇ m.
  • the effective area of the single cell is 6.63 cm 2 .
  • the connecting body 7 is prepared by using silver paste, and the multi-cell batteries are connected in series through the connecting body 7, one end of the connecting body 7 is connected to the porous cathode 2 on one side of the electrolyte sheet, and then reaches the porous anode 3 on the other side of the electrolyte sheet through the edge of the electrolyte, and is Connected, a battery cell of eight series is formed on the single electrolyte sheet 1 by series connection of the single cells, and one end of the two silver wires is fixed to the porous cathode 2 and the porous anode 3 at the outermost end of the electrolyte sheet 1 by silver paste, respectively. Connect the other end to the appliance. Note that the connectors of each cell do not touch each other and have a distance of 5mm to avoid short circuit between the two cells.
  • the bamboo charcoal was crushed by an electric pulverizer, and the pulverized bamboo charcoal was placed in an oven at 140 ° C for 24 hours to serve as a fuel reserve.
  • the ball mill jar was placed in a planetary ball mill for 2 h at 100 r/min, and then 10 ml of PVB-ethanol solution (PVB concentration of 6%) was added, and ball milling was continued for 30 min at the same speed.
  • the resulting mixture is placed under an infrared lamp to be dried.
  • PVB Since PVB will be concentrated on the surface during the process, it is necessary to stir and mix evenly from time to time. After thorough drying, the ball was milled for 5 minutes. Separate the ball beads from the bamboo charcoal fuel. A carbon fuel was prepared which carried 5 wt% of Fe as a catalyst compared to the total mass.
  • the prepared bamboo charcoal fuel loaded with 5 wt% Fe as a catalyst was plated in a fuel container having a volume of 100 mm ⁇ 100 mm ⁇ 5 mm, and the prepared monolithic electrolyte battery was lightly covered in the fuel container 5 Above, a non-sealed monolithic electrolyte direct carbon solid oxide fuel cell stack was fabricated.
  • the assembled eight-cell battery pack was placed on a universal electric furnace for heating, and a 3 cm thick ceramic wool was laid on the upper 2 cm of the battery to reduce heat loss.
  • the battery was tested with an IVIUM electrochemical workstation. Output characteristics.
  • the open circuit voltage of the DC-SOFC single cell is only about 1.02V.
  • Figure 10 shows the maximum temperature of the eight-cell series battery pack, that is, the output performance when the center temperature is 819 °C.
  • the open circuit voltage is 8.07V, close to eight sections.
  • the theoretical open circuit voltage of the series battery pack is 8.16V and the maximum power is 2.28W. It also shows that when using powdered carbon as a fuel, the battery can obtain a higher open circuit voltage and a higher output power without strict sealing.
  • FIG. 11 is a discharge curve of eight series of unsealed electrolyte direct carbon solid oxide fuel cell stacks with a discharge current of 300 mA and a voltage platform of 5.5 V. That is, the output power at this time is 1.65W. This output power still meets the requirements of some small devices. It also has a certain stability.
  • the main measure of the invention is to assemble eight series-connected battery packs on a single-piece electrolyte sheet by a non-sealing method, which can effectively solve the problem of sealing of the battery pack and the problem of battery series connection.
  • No sealing is required to solve the inherent problems of sealing materials and technology, while also greatly improving the durability of the battery.
  • the battery is an all-solid structure, so at high temperatures, the ion conduction speed is very fast. Therefore, when using a large current discharge, the electrode reacts fast enough to maintain a stable voltage platform. Because the battery is powered by the consumption of active substances, it is an electrochemical generator.
  • the degradation of battery performance during discharge is not due to the performance degradation of the battery itself, but due to the consumption of carbon fuel or sintering, the electrochemical reaction cannot maintain the original discharge voltage. If you re-add carbon fuel, the battery will still work. This means that the battery does not need to be recharged and only needs to be replaced.
  • the unsealed structure also makes fuel replacement very convenient and flexible.
  • An electrolyte sheet 1 (Ningbo Sophomore Energy Technology Co., Ltd.) having an area of 100 mm ⁇ 100 mm and a thickness of 250 ⁇ m was taken to prepare a battery unit in which eight single cells were connected in series, and the area of the porous cathode 2 of each unit cell was designed to be 39 mm. ⁇ 17 mm, the distance between adjacent porous cathodes is 5 mm, the distance between the porous cathode 2 and the periphery of the electrolyte sheet 1 is 8 mm, and the shape of the porous anode 3 and the porous cathode 2 are the same, and the positions are relatively set, and the mass ratios are respectively weighed.
  • a porous anode 3 and a porous cathode 2 were prepared by preparing a brush as shown in Figs. 1-8.
  • the porous cathode 2 was obtained on the same side of the electrolyte sheet 1 by a brushing method, and the shape and size of the porous anode 3 were the same as those of the porous cathode 2, and were located directly opposite to the porous cathode 2. Dry in a high temperature oven at 140 °C. Repeat this 4 times. Then, it was placed in a muffle furnace and sintered at 880 ° C for 4 hours in an air atmosphere to obtain an electrode having a thickness of about 20 ⁇ m.
  • the effective area of the single cell is 6.63 cm 2 .
  • a grid of silver paste is used on both the porous cathode and the surface of the porous anode surface of the single cell to facilitate charge collection.
  • the connecting body 7 is prepared by using silver paste, and the multi-cell batteries are connected in series through the connecting body 7, one end of the connecting body 7 is connected to the porous cathode 2 on one side of the electrolyte sheet, and then reaches the porous anode 3 on the other side of the electrolyte sheet through the edge of the electrolyte, and is Connected, a series of battery cells connected in series on the single electrolyte sheet 1 is connected in series by a single cell, and one end of the two silver wires is fixed to the porous cathode 2 and the porous anode 3 at the outermost end of the electrolyte sheet 1 by silver paste, respectively. Connect the other end to the appliance.
  • the connectors of each cell do not touch each other and have a distance of 5mm to avoid short circuit between the two cells.
  • One end of the two silver wires was fixed to the anode current collector and the cathode current collector, respectively, with a silver paste.
  • the activated carbon was crushed by an electric pulverizer, and the pulverized activated carbon was placed in an oven at 140 ° C for 24 hours to serve as a fuel reserve.
  • the ball mill jar was placed in a planetary ball mill for 30 min at 300 r/min, and then 10 ml of PVB-ethanol solution (PVB concentration of 6%) was added, and ball milling was continued for 30 min at the same speed.
  • the resulting mixture is placed under an infrared lamp to be dried.
  • the activated carbon fuel prepared by using the catalyst with a total mass of 5 wt.% Fe as a catalyst was laid in a fuel container having a volume of 100 mm ⁇ 100 mm ⁇ 5 mm, and the prepared monolithic electrolyte battery pack was lightly covered in the fuel container 5 .
  • the cell and the fuel container are fastened to form a sealed, monolithic electrolyte direct carbon solid oxide fuel cell stack.
  • the assembled eight-cell battery pack was placed on a universal electric furnace for heating, and a layer of ceramic wool with a thickness of 3 cm was laid at 2..5 cm above the battery to reduce heat loss.
  • the workstation tests the output characteristics of the battery.
  • the open circuit voltage of the DC-SOFC single cell is only about 1.02V.
  • Figure 12 shows the maximum temperature of the eight-cell series battery pack, that is, the output performance when the center temperature is 834 °C.
  • the open circuit voltage is 8.07V, which is close to 8 sections.
  • the theoretical open circuit voltage of the series battery pack is 8.16V, and the maximum output power is 7.45W. It also shows that when using powdered carbon as a fuel, the battery can obtain a higher open circuit voltage and a higher output power without strict sealing.
  • the main measure of the invention is to assemble eight series-connected battery packs on a single-piece electrolyte sheet by a non-sealing method, which can effectively solve the problem of sealing of the battery pack and the problem of battery series connection.
  • No sealing is required to solve the inherent problems of sealing materials and technology, while also greatly improving the durability of the battery.
  • the battery is an all-solid structure, so at high temperatures, the ion conduction speed is very fast. Therefore, when using a large current discharge, the electrode reacts fast enough to maintain a stable voltage platform. Because the battery is powered by the consumption of active substances, it is an electrochemical generator.
  • the degradation of battery performance during discharge is not due to the performance degradation of the battery itself, but due to the consumption of carbon fuel or sintering, the electrochemical reaction cannot maintain the original discharge voltage. If you re-add carbon fuel, the battery will still work. That is to say, the battery does not need to be charged, only the fuel needs to be replaced.
  • the unsealed structure also makes fuel replacement very convenient and flexible.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一种无密封的单片电解质直接碳固体氧化物燃料电池组;在电解质片(1)的一面间隔地设有多个多孔阴极(2),电解质片(1)的另一面间隔地设有多个多孔阳极(3),连接体(7)一端连接电解质片(1)一面的第一个电池的多孔阳极(3),另一端连接电解质片(1)另一面的与多孔阳极(3)相邻的一个多孔阴极(2),形成串联连接组成电池片;电解质片(1)放在盛有碳燃料(4)的燃料容器(5)的上方;电解质片(1)上设有多个多孔阳极(3)的一面与燃料容器(5)的空心相对,固定框(6)扣住电解质片(1)和燃料容器(5)。该直接碳固体氧化物燃料电池组无须密封,对电池进行加热,就能得到较高的电压和电流输出,该电池还具有结构简单,制备简便,操作容易和转换效率高等优点,特别适合作为备用电源和便携式电源。

Description

一种无密封的单片电解质直接碳固体氧化物燃料电池组 技术领域
本发明涉及固体氧化物燃料电池,特别是涉及直接碳固体氧化物燃料电池,具体是涉及一种无密封的单片电解质直接碳固体氧化物燃料电池组。
背景技术
固体氧化物燃料电池(SOFC)是一种以固体氧化物为电解质的能够直接将化学能转换为电能的能量转换装置,具有许多的独特的优点:1、能量转换效率高,燃料适用范围广;2、电池部件的模块化设计,可以方便的扩大或缩小安装规模,选址自由;3、安全性好;4、能用于热电联产。因此,随着技术的不断成熟,固体氧化物燃料电池可能在很多领域取代现有的电池。
直接碳固体氧化物燃料电池(DC-SOFC)是使用固体碳作为燃料的SOFC,既具有固体碳能量密度高、来源丰富广泛、成本低廉等优点,也结合了SOFC全固态结构的优势,无须任何液态介质,安全性高。DC-SOFC的工作原理为:氧气在暴露在空气中的阴极催化剂作用下从外电路接受电子被还原成氧离子
1/2O 2+2e -=O 2-   (1)
这些氧离子通过具有氧离子导电性的电解质传递到阳极,与阳极室的CO发生电化学反应生成CO 2并释放出电子到外电路。
O 2-+CO=CO 2+2e -   (2)
而生成的CO 2通过扩散作用到达碳燃料表面与C反应又生成CO(Boudouard反应)
CO 2+C=2CO   (3)
如此循环往复,达到了消耗C燃料而发电的目的。
SOFC单电池的开路电压只有1V左右,不能用于实际应用,为此需要将很多SOFC单电池进行适当的串联或者并联以得到需要的输出。
目前国际上运行成功的大型SOFC电堆均是电解质支撑型平板式SOFC结构。传统的平板型SOFC电堆均采用单片电池为单元,因此需要通过双极板集流体将各单电池串联起来,但是双极板的使用存在着一系列的问题:1、双极板体积和重量大,在SOFC电堆中占很大比例,降低体积功率密度和重量功率密度;2、加工要求高,生产成本高;3、电荷收集困难。申请人采用钇稳定化氧化锆(YSZ)做电解质,在单片电解质上打孔,制备了多节串联的固体氧化物燃料电池组, 减少了双极板的使用,并证实了电池组工作的可行性(一种基于单片电解质的固体氧化物燃料电池组,中国实用新型专利:CN201420173772.0),但该技术在电解质上打孔,势必会占据一部分电解质片的面积,减少电池的有效利用面积,这一问题也需要得到进一步的解决。
现有技术的DC-SOFC在运行过程中为了避免燃料和空气直接接触,都要进行严格的密封。所使用的密封材料主要有玻璃陶瓷密封材料、高温金属密封材料、云母密封材料三类。但是在使用这些密封材料时存在着许多的问题:1、密封材料与相邻的电解质、电极和连接体的热膨胀系数不一致,这在电池运行的过程中容易对电池产生应力,导致电池的破裂;2、密封材料在高温工作条件下的稳定性有待评估;3、密封材料的生产成本较高,且对电池的密封技术要求严苛。
发明内容
本发明的目的在于克服上述存在的技术缺点,通过对单片电解质上多个电池电连接方式的设计,提供一种无密封的单片电解质直接碳固体氧化物燃料电池组,实现基于单片电解质的DC-SOFC电池组的无密封运行。
通过对DC-SOFC的工作机理深入分析后,本发明发现电池工作时,阳极室会不断地产生的气体,使气室内的压力与外界大气压相比处于正压状态,这样,即使对电池不进行严格的密封,空气也不能进入阳极室引起电池性能下降。同时,在阳极侧产生的多余气体也可通过无密封处扩散到电池外。去除电池的密封,既能避免密封所带来的应力问题,也能大大地降低固体氧化物燃料电池的生产成本,简化生产流程,还能方便地更换固体碳燃料,使DC-SOFC在便携式电源或者备用电源上有很大的应用前景。
本发明提出一种无密封单片电解质DC-SOFC电池组的设计,该DC-SOFC电池组由电池片、碳燃料、燃料容器和固定框组成。所述电池片为制备在单片电解质上的多节串联SOFC电池组,电池片的一面为多孔阴极,另一面为多孔阳极。将电池片阳极面朝向碳燃料直接盖在盛有碳燃料的容器的敞口处,再采用固定框将电池组片和燃料容器的相对位置固定,对燃料容器加热到一定温度时,该DC-SOFC电池组就有电流电压输出。
上述DC-SOFC电池组的阴极直接暴露在空气中,根据方程(1)-(3)所示的DC-SOFC反应机理,空气中的氧气可在阴极被催化转化成氧离子(1),该氧离子穿过电解质,与上述燃料容器中的CO发生电化学氧化反应生成CO 2(2),生成的CO 2扩散到容器中的碳燃料处发生逆向Boudouard反应(3),得到CO。本发明的DC-SOFC电池组运行时,在上述碳燃料容器(阳极室)内,一个氧离子与一个CO反应生成一个CO 2,该CO 2与碳燃料反应可生成两个CO,因此随着电池不断地运行,容器内的气体量是不断增加的,相对于大气压,容器内是个正压的环境,外面的气体不会 进入容器,而产生多余的气体也能通过电池片和燃料容器之间的缝隙扩散到电池外,因此不必进行密封电池也能正常工作。
所述DC-SOFC电池组在一定的电流和电压下运行时,容器内产生的气体为CO和CO 2的混合气,在容器内正压的作用下,一部分产物气体从容器和电解质接触的缝隙处排出,所排出气体中的CO可被容器周边的空气氧化成CO 2
上述电池片是在一个电解质片的一面上间隔地设有多个多孔阴极,在电解质片的另一面与上述阴极相对的位置上设有相应的多孔阳极,位于电解质片两侧的阴极和阳极通过连接体跨过电解质片的边缘进行电连接,从而实现电池的串联。这种跨过电解质边缘的电连接方式之所以可行,是因为上述DC-SOFC电池组的是采用无密封设计,由于在电解质的边缘无需施加密封剂,所以可将电连接材料施加在此边缘处。本发明在单片电解质上能够得到多节串联的电池组,特别适合用在备用电源和便携式电源。这种无密封单片电解质直接碳固体氧化物燃料电池组能够采用成熟工艺大批量地生产,具有明显的成本优势。
本发明的目的具体通过如下技术方案实现:
一种无密封的单片电解质直接碳固体氧化物燃料电池组,其特征在于包括单片电解质片、连接体、多孔阴极、多孔阳极、粉体碳燃料、燃料容器和固定框;在电解质片的一面间隔地设有多个多孔阴极,电解质片的另一面间隔地设有多个多孔阳极,多孔阴极和多孔阳极相对设置在电解质片两面;同一面上相邻的多孔阴极或多孔阳极间的距离为1mm以上;连接体一端连接电解质片一面的第一个电池的多孔阳极,另一端连接电解质片另一面的与多孔阳极相邻的一个多孔阴极,形成串联连接组成电池片;燃料容器中设有粉体碳燃料;电解质片放在盛有碳燃料的燃料容器的上方;电解质片上设有多个多孔阳极的一面与燃料容器的空心相对;固定框将电解质片和燃料容器扣住;两根银线的一端分别固定在电解质片最边端的多孔阴极和多孔阳极上,另一端连接用电器。
为进一步实现本发明目的,优选地,所述电解质片和燃料容器的开口大小一致,固定框扣住电解质片和燃料容器。
优选地,所述电解质片、多孔阴极或多孔阳极为方形或圆形;所述电解质片的厚度为0.15-0.5mm。
优选地,所述电解质片的材料是钇稳定化的氧化锆或钆掺杂的氧化铈,采用干压法或者流延法制备成平板,在1400-1600℃下空气中烧结3-4h形成。
优选地,所述多孔阳极和多孔阴极均采用银粉与钆或钐掺杂的氧化铈的复合材料,制成浆料, 采用涂刷法或丝网印刷法分别制备在电解质片的两面,在400~880℃下空气中烧结1-4h形成。
优选地,所述的连接体的材料采用金属银或铬酸镧陶瓷。
优选地,所述的碳燃料为粉体碳,所述粉体碳为活性炭、竹炭、焦碳、碳黑或木炭。
优选地,所述的燃料容器为不导电耐高温的容器,所述燃料容器为石英容器或陶瓷容器。
优选地,所述的固定框为不导电耐高温的材料制成,所述材料为石英或陶瓷材料。
优选地,所述的固定框的框边为一直角的弯折结构。
相对于现有技术,本发明具有如下特点:
(1)一种无密封的全固态电池组,安全性好,结构简单,运行和维护方便。
(2)在单片电解质上设计和制备多节串联的电池组,可根据需要灵活设计电池的组数和串联并联方式,得到设计的电流电压输出。
(3)电解质片的形状和尺寸、电极的形状和尺寸、电极的分布等都可以根据需要灵活设计。
(4)阳极采用碳作为活性物质,容量高达8935mAh/g。
(5)由于是全固态结构,可大电流放电,安全可靠。
(6)无需充电,只需要更换或添加燃料,且电池没有密封,燃料的更换十分方便快捷。
附图说明
图1为本发明无密封单片电解质直接碳固体氧化物燃料电池的正面剖视图。
图2为本发明无密封单片电解质直接碳固体氧化物燃料电池的装置的俯视图。
图3为本发明无密封单片电解质直接碳固体氧化物燃料电池的电池组的正面剖视图。
图4为本发明无密封单片电解质直接碳固体氧化物燃料电池的电池组的俯视图。
图5为本发明无密封单片电解质直接碳固体氧化物燃料电池的燃料容器的剖视图。
图6为本发明无密封单片电解质直接碳固体氧化物燃料电池的燃料容器的俯视图。
图7为本发明无密封单片电解质直接碳固体氧化物燃料电池的固定框的剖视图。
图8为本发明无密封单片电解质直接碳固体氧化物燃料电池的固定框的俯视图。
图9是实施例1正方形四节串联的无密封的电解质直接碳固体氧化物燃料电池组的输出特性(竹炭燃料)。
图10是实施例2正方形的八节串联无密封的电解质直接碳固体氧化物燃料电池组的输出特性(竹炭燃料)。
图11是实施例2正方形的八节串联无密封的电解质直接碳固体氧化物燃料电池组的的放电曲线(竹炭燃料)。
图12是实施例3正方形的八节串联无密封的电解质直接碳固体氧化物燃料电池组的输出特性(活性炭燃料)。
图中示出:电解质片1、多孔阴极2、多孔阳极3、粉体碳燃料4、燃料容器5、固定框6、连接体7。
具体实施方式
下面结合实施例及附图对本发明作进一步地详细说明,但本发明要求保护的范围并不局限于实施方式表示的范围。
如图1-8所示,一种无密封单片电解质直接碳固体氧化物燃料电池组,包括电解质片1、多孔阴极2、多孔阳极3、粉体碳燃料4、燃料容器5、固定框6和连接体7;电解质片1为一正方形的薄片,电解质片1的一面间隔地设有多个多孔阴极2,电解质片1的另一面间隔地设有多个多孔阳极3,多孔阴极2和多孔阳极3相对设置在电解质片1两面;每个多孔阴极2和多孔阳极3的形状大小相同;单个多孔阴极2或者多孔阳极3的间距为1mm以上,以避免多孔阴极2之间或多孔阳极3之间出现偶然的电连接,这种偶然的连接将使得电池串联节数的减少和电池一致性的变差;连接体7一端连接电解质片1一面的第一个电池的多孔阳极3,另一端连接电解质片1另一面的与多孔阳极3相邻的一个多孔阴极2,形成串联连接组成电池片,注意每节电池之间的连接体彼此互不接触,避免电池内部短路,相邻连接体之间的距离为1-10mm。粉体碳燃料4放置于燃料容器5中;制备好的电解质片1放在盛有碳燃料4的燃料容器5的上方,电解质片1上设有多个多孔阳极3的一面与燃料容器5的空心相对;由于电解质片1和燃料容器5的开口大小是尺寸一致的,固定框6扣住电解质片1和燃料容器5。一是利用固定框6的重力向电解质片1施加压力,使得电解质片1和燃料容器5形成紧密接触,二是将电解质片1固定在燃料容器5上,避免电解质片1的滑移。两根银线作为导线,用银浆将两根银线的一端分别固定在电解质片1最边端的多孔阴极2和多孔阳极3上,另一端连接用电器。
所述电解质片1支撑体的材料为钇稳定化的氧化锆(YSZ),采用流延法制备,在1400-1600℃下空气中烧结3-4h形成;
所述多孔阳极2与多孔阴极3均采用银粉与钆或钐掺杂的氧化铈的复合材料,制成浆料,采用涂刷或喷涂法分别制备在电解质片的两面,在500-880℃下空气中烧结2-4h形成;
所述粉体碳燃料4为活性碳、焦碳、碳黑或竹炭,竹炭的粒度为10-500μm;
所述的燃料容器5是体积为100mm×100mm×5mm的石英方舟;
所述固定框6采用耐高温、抗氧化、电绝缘但导热的材料制备,可采用石英、氧化铝或氧化 镁等陶瓷材料。
所述的连接体7为耐高温的DAD-87(上海合成树脂研究所)银导电胶。
实施例1
取用面积为100mm×100mm,厚度为250μm的电解质片1(宁波索福人能源技术股份公司),制备四节单电池串联的电池组,每个单电池的多孔阴极2的面积可以设计为83mm×17mm,相邻多孔阴极之间的距离为5mm,多孔阴极2与电解质片1四周的边缘距离为8mm,多孔阳极3与多孔阴极2的形状大小相同,位置相对设置,分别称取质量比为1:9的PVB和松油醇,置于烧杯中,在60℃的烘箱中溶解24h作为粘结剂待用。按照Ag和GDC(Ce 0.8Gd 0.2O 1.9)的质量比为7:3称取5.8g银浆(DAD-87,上海市合成树脂研究所,含Ag量为80%)和2g GDC(球磨之后),再称取质量为7.8g的粘结剂,加入玛瑙研钵中研磨4h,得到均匀的、流动性好的Ag-GDC复合电极浆料。如图1-8所示制备涂刷制备多孔阳极3与多孔阴极2。采用涂刷法在电解质片1的同一面上得到多孔阴极2,多孔阳极3的形状、尺寸均与多孔阴极2一样,位于多孔阴极2的正对面。在140℃的高温烘箱中烘干。如此重复4遍。然后放入马弗炉中,空气气氛下880℃烧结4h,得到厚度约为20μm的电极。单电池的有效面积为14cm 2
使用银浆制备连接体7,通过连接体7将多节电池串联起来,连接体7的一端连接电解质片一面的多孔阴极2,然后通过电解质边缘到达电解质片另一面的多孔阳极3,并与之相连,通过单电池的串联在单片电解质片1上组成四节串联的电池组,用银浆将两根银线的一端分别固定在电解质片1最边端的多孔阴极2和多孔阳极3上,另一端连接用电器。注意每个单电池的连接体之间互不接触,并有一定距离为5mm,以避免造成两节电池之间的短路。用银浆将两根银线的一端分别固定在阳极集流体和阴极集流体上,另一端连接用电器。
使用电动粉碎机把竹炭破碎,将粉碎后的竹炭盛放在140℃烘箱中烘干24小时,作为燃料备用。按照质量比95:5的比例称取竹炭和铁(三氧化二铁的形式),称取10g粉体碳燃料和0.72g三氧化二铁装入球磨罐中,加入适量的无水乙醇没过粉末表面,将球磨罐放在行星式球磨机以200r/min的转速球磨1h,再加入8ml的PVB-乙醇溶液(PVB浓度为6%),相同转速继续球磨30min。将所得混合物放置在红外灯下烘干,由于过程中PVB会在表面富集,需要不时搅拌混合均匀。待彻底烘干后,球磨5min。将球磨珠和竹炭燃料分开。制备成担载了相比于总质量5wt%Fe做催化剂的碳燃料。
将制备的相比于总质量担载了5wt%Fe做催化剂的竹炭燃料平铺在体积为 100mm×100mm×5mm的燃料容器中,将制备好的单片电解质电池组轻盖在燃料容器5的上方,制成了无密封的单片电解质直接碳固体氧化物燃料电池组。
测试时,将组装好的四节串联电池组放在万用电炉上进行加热,在电池的上方2.5cm处平铺一层厚度为2cm的陶瓷棉以减少热量的散失,用IVIUM电化学工作站测试电池的输出特性。
DC-SOFC单电池的开路电压只有1.02V左右,附图9所示为四节串联电池组的最高温处,中心温度为819℃时的输出性能,其开路电压为4.08V,最大功率为1.42W。也就表明,使用粉体碳作为燃料时,电池无须进行严格的密封也能得到较高的开路电压。
本实施例主要措施是采用无密封的方法在单片电解质片上组装了四节串联的电池组,能够有效地解决电池组的密封问题和电池串联的难题。不需要密封解决了密封材料和技术存在的固有问题,同时也大大提高了电池的耐用性。特别适用于使用固体碳作为燃料的情况。因为电池是以消耗活性物质发电,是一种电化学发电机。放电过程中电池性能的衰减并不是因为电池本身性能降低,而是由于碳燃料的消耗或者烧结造成电化学反应不能维持原有的放电电压。如果重新添加碳燃料,电池还能够正常工作。即该电池无需充电,只需要更换燃料,而无密封的结构也使得燃料的更换变得十分的方便和灵活。
实施例2
取用面积为100mm×100mm,厚度为250μm的电解质片1(宁波索福人能源技术股份公司),制备八节单电池串联的电池组,每个单电池的多孔阴极2的面积可以设计为39mm×17mm,相邻多孔阴极之间的距离为5mm,多孔阴极2与电解质片1四周的边缘距离为8mm,多孔阳极3与多孔阴极2的形状大小相同,位置相对设置,分别称取质量比为1:9的PVB和松油醇,置于烧杯中,在60℃的烘箱中溶解24h作为粘结剂待用。按照Ag和GDC(Ce 0.8Gd 0.2O 1.9)的质量比为7:3称取5.8g银浆(DAD-87,上海市合成树脂研究所,含Ag量为80%)和2g GDC(球磨之后),再称取质量为7.8g的粘结剂,加入玛瑙研钵中研磨4h,得到均匀的、流动性好的Ag-GDC复合电极浆料。如图1-8所示制备涂刷制备多孔阳极3与多孔阴极2。采用涂刷法在电解质片1的同一面上得到多孔阴极2,多孔阳极3的形状、尺寸均与多孔阴极2一样,位于多孔阴极2的正对面。在140℃的高温烘箱中烘干。如此重复4遍。然后放入马弗炉中,空气气氛下880℃烧结4h,得到厚度约为20μm的电极。单电池的有效面积为6.63cm 2
使用银浆制备连接体7,通过连接体7将多节电池串联起来,连接体7的一端连接电解质片一面的多孔阴极2,然后通过电解质边缘到达电解质片另一面的多孔阳极3,并与之相连,通过单电池的串联在单片电解质片1上组成八节串联的电池组,用银浆将两根银线的一端分别固定在 电解质片1最边端的多孔阴极2和多孔阳极3上,另一端连接用电器。注意每个单电池的连接体之间互不接触,并有一定距离为5mm,以避免造成两节电池之间的短路。
使用电动粉碎机把竹炭破碎,将粉碎后的竹炭盛放在140℃烘箱中烘干24小时,作为燃料备用。按照质量比95:5的比例称取竹炭和铁(三氧化二铁的形式),称取10g粉体碳燃料和0.72g三氧化二铁装入球磨罐中,加入适量的无水乙醇没过粉末表面,将球磨罐放在行星式球磨机以100r/min的转速球磨2h,再加入10ml的PVB-乙醇溶液(PVB浓度为6%),相同转速继续球磨30min。将所得混合物放置在红外灯下烘干,由于过程中PVB会在表面富集,需要不时搅拌混合均匀。待彻底烘干后,球磨5min。将球磨珠和竹炭燃料分开。制备成相比于总质量担载了5wt%Fe做催化剂的碳燃料。
将制备的相比于总质量担载了5wt%Fe做催化剂的竹炭燃料平铺在体积为100mm×100mm×5mm的燃料容器中,将制备好的单片电解质电池组轻盖在燃料容器5的上方,制成了无密封的单片电解质直接碳固体氧化物燃料电池组。
测试时,将组装好的八节串联电池组放在万用电炉上进行加热,在电池的上方2cm处平铺一层厚度为3cm的陶瓷棉以减少热量的散失,用IVIUM电化学工作站测试电池的输出特性。
DC-SOFC单电池的开路电压只有1.02V左右,附图10所示为八节串联电池组的最高温度处,即中心温度为819℃时的输出性能,其开路电压为8.07V,接近八节串联电池组的理论开路电压8.16V,最大功率为2.28W。也就表明,使用粉体碳作为燃料时,电池无须进行严格的密封也能得到较高的开路电压和较高的输出功率。
此时电池能成功驱动并联的收音机工作、小风扇转动和两个LED灯泡发亮,并稳定工作2.3h。无法驱动上述并联小器件时,对电池进行了恒电流放电,附图11为八节串联无密封的电解质直接碳固体氧化物燃料电池组的放电曲线,放电电流为300mA,电压平台在5.5V,也就是此时的输出功率为1.65W。这一输出功率仍能够满足一些小型器件的要求。同时也具有一定的稳定性。
本发明主要措施是采用无密封的方法在单片电解质片上组装了八节串联的电池组,能够有效地解决电池组的密封问题和电池串联的难题。不需要密封解决了密封材料和技术存在的固有问题,同时也大大提高了电池的耐用性。特别适用于使用固体碳作为燃料的情况。电池是全固态结构,所以在高温下,离子传导速度非常快。因此使用较大的电流放电时,电极反应的速度足够快,能够让电池维持平稳的电压平台。因为电池是以消耗活性物质发电,是一种电化学发电机。放电过程中电池性能的衰减并不是因为电池本身性能降低,而是由于碳燃料的消耗或者烧结造成电化学反应不能维持原有的放电电压。如果重新添加碳燃料,电池还能够正常工作。即是说该电池无需 充电,只需要更换燃料。而无密封的结构也使得燃料的更换变得十分的方便和灵活。
实施例3
取用面积为100mm×100mm,厚度为250μm的电解质片1(宁波索福人能源技术股份公司),制备八节单电池串联的电池组,每个单电池的多孔阴极2的面积可以设计为39mm×17mm,相邻多孔阴极之间的距离为5mm,多孔阴极2与电解质片1四周的边缘距离为8mm,多孔阳极3与多孔阴极2的形状大小相同,位置相对设置,分别称取质量比为1:9的PVB和松油醇,置于烧杯中,在60℃的烘箱中溶解24h作为粘结剂待用。按照Ag和GDC(Ce 0.8Gd 0.2O 1.9)的质量比为7:3称取5.8g银浆(DAD-87,上海市合成树脂研究所,含Ag量为80%)和2g GDC(球磨之后),再称取质量为7.8g的粘结剂,加入玛瑙研钵中研磨4h,得到均匀的、流动性好的Ag-GDC复合电极浆料。如图1-8所示制备涂刷制备多孔阳极3与多孔阴极2。采用涂刷法在电解质片1的同一面上得到多孔阴极2,多孔阳极3的形状、尺寸均与多孔阴极2一样,位于多孔阴极2的正对面。在140℃的高温烘箱中烘干。如此重复4遍。然后放入马弗炉中,空气气氛下880℃烧结4h,得到厚度约为20μm的电极。单电池的有效面积为6.63cm 2。在单体电池的多孔阴极和多孔阳极面表面都使用银浆涂画网格,有利于进行电荷的收集。
使用银浆制备连接体7,通过连接体7将多节电池串联起来,连接体7的一端连接电解质片一面的多孔阴极2,然后通过电解质边缘到达电解质片另一面的多孔阳极3,并与之相连,通过单电池的串联在单片电解质片1上组成四节串联的电池组,用银浆将两根银线的一端分别固定在电解质片1最边端的多孔阴极2和多孔阳极3上,另一端连接用电器。注意每个单电池的连接体之间互不接触,并有一定距离为5mm,以避免造成两节电池之间的短路。用银浆将两根银线的一端分别固定在阳极集流体和阴极集流体上。
使用电动粉碎机把活性炭破碎,将粉碎后的活性炭盛放在140℃烘箱中烘干24小时,作为燃料备用。按照质量比95:5的比例称取竹炭和铁(三氧化二铁的形式),称取10g粉体碳燃料和0.72g三氧化二铁装入球磨罐中,加入适量的无水乙醇没过粉末表面,将球磨罐放在行星式球磨机以300r/min的转速球磨30min,再加入10ml的PVB-乙醇溶液(PVB浓度为6%),相同转速继续球磨30min。将所得混合物放置在红外灯下烘干,由于过程中PVB会在表面富集,需要不时搅拌混合均匀。待彻底烘干后,球磨5min。将球磨珠和活性炭燃料分开。制备成相比于总质量担载了5wt.%Fe做催化剂的碳燃料。
将制备的相比于总质量担载为5wt.%Fe做催化剂的活性炭燃料平铺在体积为100mm×100mm×5mm的燃料容器中,将制备好的单片电解质电池组轻盖在燃料容器5的上方, 固定框将电池片和燃料容器扣住固定,制成了无密封的单片电解质直接碳固体氧化物燃料电池组。
测试时,将组装好的八节串联电池组放在万用电炉上进行加热,在电池的上方2..5cm处平铺一层厚度为3cm的陶瓷棉以减少热量的散失,用IVIUM电化学工作站测试电池的输出特性。
DC-SOFC单电池的开路电压只有1.02V左右,附图12所示为八节串联电池组的最高温度处,即中心温度为834℃时的输出性能,其开路电压为8.07V,接近8节串联电池组的理论开路电压8.16V,最大输出功率为7.45W。也就表明,使用粉体碳作为燃料时,电池无须进行严格的密封也能得到较高的开路电压和较高的输出功率。
本发明主要措施是采用无密封的方法在单片电解质片上组装了八节串联的电池组,能够有效地解决电池组的密封问题和电池串联的难题。不需要密封解决了密封材料和技术存在的固有问题,同时也大大提高了电池的耐用性。特别适用于使用固体碳作为燃料的情况。电池是全固态结构,所以在高温下,离子传导速度非常快。因此使用较大的电流放电时,电极反应的速度足够快,能够让电池维持平稳的电压平台。因为电池是以消耗活性物质发电,是一种电化学发电机。放电过程中电池性能的衰减并不是因为电池本身性能降低,而是由于碳燃料的消耗或者烧结造成电化学反应不能维持原有的放电电压。如果重新添加碳燃料,电池还能够正常工作。即是说该电池无需充电,只需要更换燃料。而无密封的结构也使得燃料的更换变得十分的方便和灵活。

Claims (10)

  1. 一种无密封的单片电解质直接碳固体氧化物燃料电池组,其特征在于,包括单片电解质片、连接体、多孔阴极、多孔阳极、粉体碳燃料、燃料容器和固定框;在电解质片的一面间隔地设有多个多孔阴极,电解质片的另一面间隔地设有多个多孔阳极,多孔阴极和多孔阳极相对设置在电解质片两面;同一面上相邻的多孔阴极或多孔阳极间的距离为1mm以上;连接体一端连接电解质片一面的第一个电池的多孔阳极,另一端连接电解质片另一面的与多孔阳极相邻的一个多孔阴极,形成串联连接组成电池片;燃料容器中设有粉体碳燃料;电解质片放在盛有碳燃料的燃料容器的上方;电解质片上设有多个多孔阳极的一面与燃料容器的空心相对;固定框扣住电解质片和燃料容器;两根银线的一端分别固定在电解质片最边端的多孔阴极和多孔阳极上,另一端连接用电器。
  2. 根据权利要求1所述的无密封的单片电解质直接碳固体氧化物燃料电池组,其特征在于:电解质片和燃料容器的开口大小一致,固定框扣住电解质片和燃料容器。
  3. 根据权利要求1所述的无密封的单片电解质直接碳固体氧化物燃料电池组,其特征在于:所述电解质片、多孔阴极或多孔阳极为方形或圆形;所述电解质片的厚度为0.15-0.5mm。
  4. 根据权利要求1或3所述的无密封的单片电解质直接碳固体氧化物燃料电池组,其特征在于:所述电解质片的材料是钇稳定化的氧化锆或钆掺杂的氧化铈,采用干压法或者流延法制备成平板,在1400-1600℃下空气中烧结3-4h形成。
  5. 根据权利要求1所述的无密封的单片电解质直接碳固体氧化物燃料电池组,其特征在于:所述多孔阳极和多孔阴极均采用银粉与钆或钐掺杂的氧化铈的复合材料,制成浆料,采用涂刷法或丝网印刷法分别制备在电解质片的两面,在400~880℃下空气中烧结1-4h形成。
  6. 根据权利要求1所述的无密封的单片电解质直接碳固体氧化物燃料电池组,其特征在于:所述的连接体的材料采用金属银或铬酸镧陶瓷。
  7. 根据权利要求1所述的无密封的单片电解质直接碳固体氧化物燃料电池组,其特征在于:所述的碳燃料为粉体碳,所述粉体碳为活性炭、竹炭、焦碳、碳黑或木炭。
  8. 根据权利要求1所述的无密封的单片电解质直接碳固体氧化物燃料电池组,其特征在于:所述的燃料容器为不导电耐高温的容器,所述燃料容器为石英容器或陶瓷容器。
  9. 根据权利要求1所述的无密封的单片电解质直接碳固体氧化物燃料电池组,其特征在于:所述的固定框为不导电耐高温的材料制成,所述材料为石英或陶瓷材料。
  10. 根据权利要求1所述的无密封的单片电解质直接碳固体氧化物燃料电池组,其特征在于:所述的固定框的框边为一直角的弯折结构。
PCT/CN2018/112579 2017-12-11 2018-10-30 一种无密封的单片电解质直接碳固体氧化物燃料电池组 WO2019114440A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711309681.XA CN108183248B (zh) 2017-12-11 2017-12-11 一种无密封的单片电解质直接碳固体氧化物燃料电池组
CN201711309681.X 2017-12-11

Publications (1)

Publication Number Publication Date
WO2019114440A1 true WO2019114440A1 (zh) 2019-06-20

Family

ID=62545919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112579 WO2019114440A1 (zh) 2017-12-11 2018-10-30 一种无密封的单片电解质直接碳固体氧化物燃料电池组

Country Status (2)

Country Link
CN (1) CN108183248B (zh)
WO (1) WO2019114440A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183248B (zh) * 2017-12-11 2020-02-18 华南理工大学 一种无密封的单片电解质直接碳固体氧化物燃料电池组
CN109599583B (zh) * 2018-12-05 2021-04-06 江苏科技大学 一种电气共产固体氧化物燃料电池堆
CN113629267B (zh) * 2021-07-15 2022-07-26 华南农业大学 一种废气再循环的直接碳固体氧化物燃料电池结构
CN115207386B (zh) * 2022-07-01 2024-07-09 华南理工大学 一种全膜化平板膜带串接式固体氧化物燃料电池组的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085981A (ja) * 2004-09-15 2006-03-30 Yanmar Co Ltd 固体酸化物型燃料電池
CN1805200A (zh) * 2005-11-25 2006-07-19 华南理工大学 锥管式阳极支撑固体氧化物燃料电池单体及电池组
CN101908637A (zh) * 2010-08-24 2010-12-08 哈尔滨工业大学 具有双气路通道的无密封固体氧化物燃料电池组
CN103956504A (zh) * 2014-04-10 2014-07-30 华南理工大学 一种单片电解质固体氧化物燃料电池组
CN203871424U (zh) * 2014-04-10 2014-10-08 华南理工大学 一种基于单片电解质的固体氧化物燃料电池组
CN108183248A (zh) * 2017-12-11 2018-06-19 华南理工大学 一种无密封的单片电解质直接碳固体氧化物燃料电池组

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244284B (zh) * 2011-06-15 2014-02-26 东营杰达化工科技有限公司 一种新型直接碳燃料电池技术及其装置
GB2496110A (en) * 2011-10-28 2013-05-08 Univ St Andrews Electrochemical Cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085981A (ja) * 2004-09-15 2006-03-30 Yanmar Co Ltd 固体酸化物型燃料電池
CN1805200A (zh) * 2005-11-25 2006-07-19 华南理工大学 锥管式阳极支撑固体氧化物燃料电池单体及电池组
CN101908637A (zh) * 2010-08-24 2010-12-08 哈尔滨工业大学 具有双气路通道的无密封固体氧化物燃料电池组
CN103956504A (zh) * 2014-04-10 2014-07-30 华南理工大学 一种单片电解质固体氧化物燃料电池组
CN203871424U (zh) * 2014-04-10 2014-10-08 华南理工大学 一种基于单片电解质的固体氧化物燃料电池组
CN108183248A (zh) * 2017-12-11 2018-06-19 华南理工大学 一种无密封的单片电解质直接碳固体氧化物燃料电池组

Also Published As

Publication number Publication date
CN108183248A (zh) 2018-06-19
CN108183248B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
WO2019114440A1 (zh) 一种无密封的单片电解质直接碳固体氧化物燃料电池组
KR0130905B1 (ko) 고체전해질 연료전지
CN103490087B (zh) 便携式电源用管式固体氧化物燃料电池堆及其组装方法
CN103094595B (zh) 一种阳极支撑管式固体氧化物燃料电池及其组装方法
Yan et al. An all-solid-state carbon-air battery reaching an output power over 10 W and a specific energy of 3600 Wh kg− 1
CN206685472U (zh) 一种大功率熔融碳酸盐燃料电池堆
Chen et al. Development of a tubular direct carbon solid oxide fuel cell stack based on lanthanum gallate electrolyte
RU2417488C1 (ru) Планарный элемент электрохимических устройств, батарея и способ изготовления
CN109037698A (zh) 一种可储能的高温固态氧化物燃料电池
CN203871424U (zh) 一种基于单片电解质的固体氧化物燃料电池组
CN114520342B (zh) 一种基于铁酸锶电极催化层的能量双向转化装置
JP2013257989A (ja) 固体酸化物形燃料電池
CN109888357A (zh) 一种固体氧化物燃料电池发电系统及其使用方法
CN110752399B (zh) 可反复利用的联排结构管式直接碳固体氧化物燃料电池组
CN103956504A (zh) 一种单片电解质固体氧化物燃料电池组
CN101719554B (zh) 一种试管型中温固体氧化物燃料电池
JPH03276564A (ja) 固体電解質型燃料電池
CN114481175A (zh) 基于铁酸锶电极催化层的可修复型固态对称电解池装置
CN207542330U (zh) 一种片式固体氧化物燃料电池堆结构
CN106252694B (zh) 一种全固态碳-空气电池
JPH03116659A (ja) 固体電解質型燃料電池
JP2528986B2 (ja) 固体電解質型燃料電池
CN208674273U (zh) 一种直接燃烧陶瓷燃料电池发电装置
CN115275242B (zh) 一种为直接碳固体氧化物燃料电池连续提供燃料的装置
JPH02168568A (ja) 固体電解質型燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18889484

Country of ref document: EP

Kind code of ref document: A1