WO2019111616A1 - 集電体電極シート、その製造方法、電池、およびその製造方法 - Google Patents

集電体電極シート、その製造方法、電池、およびその製造方法 Download PDF

Info

Publication number
WO2019111616A1
WO2019111616A1 PCT/JP2018/041120 JP2018041120W WO2019111616A1 WO 2019111616 A1 WO2019111616 A1 WO 2019111616A1 JP 2018041120 W JP2018041120 W JP 2018041120W WO 2019111616 A1 WO2019111616 A1 WO 2019111616A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
electrode sheet
active material
forming
collector electrode
Prior art date
Application number
PCT/JP2018/041120
Other languages
English (en)
French (fr)
Inventor
政則 平井
功典 佐藤
和矢 三村
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to CN201880079029.XA priority Critical patent/CN111433944B/zh
Priority to JP2019558085A priority patent/JP6936873B2/ja
Publication of WO2019111616A1 publication Critical patent/WO2019111616A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the positive electrode active material is not particularly limited as long as it is a normal positive electrode active material that can be used for the positive electrode of a lithium ion battery.
  • the density of the positive electrode active material layer is 3.0 g / cm 3 or more. Is preferably 3.2 g / cm 3 or more, particularly preferably 3.3 g / cm 3 or more, and the density of the negative electrode active material layer is 1.5 g / cm 3 or more. Is preferably, and more preferably 1.6 g / cm 3 or more.
  • FIG. 11 is a block diagram showing a configuration example of a manufacturing system 1 of the current collector electrode sheet 10 according to the present embodiment.
  • the manufacturing system 1 includes a slurry application device 20, a compression device 40, and a cutting device 60. Furthermore, control means for controlling each device of the manufacturing system 1 may be provided. In this embodiment, control means (sequencer) 207 (FIG. 7) described later is provided.
  • a program 110 including a control program for controlling the operation of the servomotor 205 is realized by any combination of the hardware and software of the computer 100. And it is understood by those skilled in the art that there are various modifications in the implementation method and apparatus.
  • the start position of the terminal portion 303 of the coating area is x 2
  • the time when the formation of the central portion 302 is finished is t 2.
  • the combined length (x 2 -x 0 ) of the central portion 302 and the central portion 302 is preferably in the range of 88% to 93% of the total length of the start, the center and the end of the application region. .
  • a heat-sealable resin layer such as modified polyolefin is provided on at least one surface of the metal layer, and the heat-sealable resin layers of the flexible film 140 are opposed to each other through the battery element to make the battery element
  • the sheath is formed by heat-sealing the periphery of the part to be stored.
  • a resin layer such as a nylon film or a polyester film can be provided on the surface of the exterior body opposite to the surface on which the heat-fusible resin layer is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

シート状の集電体層の両面に活物質を含むスラリをダイヘッドから吐出させることによって、間欠的に塗布、乾燥して、スラリの塗布領域と、非塗布領域とをシート状集電体層の巻取方向に交互に形成して集電体電極シートを製造する工程のうち、各間欠塗布領域の終端部を形成する工程において、ダイヘッドとシート状集電体層の間隔が、各間欠塗布領域の中央部を形成する工程における前記ダイヘッドと前記シート状集電体層の間隔よりも狭い状態で、スラリを前記ダイヘッドから吐出させることで、塗布領域の終端における尾引き部の長さの値が、加圧圧縮後の片面活物質層の厚さの値の12倍以下である、集電体電極シートを作製する。

Description

集電体電極シート、その製造方法、電池、およびその製造方法
 本発明は、集電体電極シート、その製造方法、電池、およびその製造方法に関する。
 近年、環境問題を踏まえ、電気自動車やハイブリッド自動車への関心が高まり、その駆動源である二次電池の高エネルギー密度化、高容量化への技術的要求が一段と高まっている。
 こうした二次電池用の電極は、アルミニウムや銅等の帯状の集電体層上に活物質を含むスラリを塗布・乾燥させた集電体電極シートから作製される。活物質の塗布方法は、間欠塗工方式と連続塗工方式とに大別できる。
 間欠塗工方式は、帯状の集電体層に、活物質等のスラリを塗布して形成する塗布領域とスラリを塗布しない非塗布領域とを、該集電体層の巻取方向に所定の間隔で交互に形成する方式である。所定の間隔で配置された活物質の非形成部は、外部端子と電気的に接続するための引き出しタブを取り出す部位として利用される。本発明に関連する集電体電極シートの製造方法では、主材である活物質、導電付与剤、結合材、溶剤を混合または混錬したスラリを、集電体層の一方の面に間欠的に塗布(以下、間欠塗布と称する。)した後に、再度、集電体層上の反対側の他方の面にも間欠塗布して、集電体層の両面にスラリをそれぞれ塗布する。次に、両面にスラリが塗布された集電体層を圧縮ローラによって加圧成型する。その後、集電体として所望の外形寸法に切断し、集電体電極シートに電極端子部を形成している。
 ここで、リチウムイオン二次電池の正極活物質には、リチウム含有複合酸化物が用いられており、こうした金属酸化物粒子を主成分とする活物質層を加圧成型する場合、大きな圧力を必要とする。特に高エネルギー密度に設計された二次電池に用いる正極電極では、活物質層を高密度に圧縮する必要があるため、該加圧成型において、より大きな圧力をかけて成型されることが多い。
 また、高エネルギー密度に設計された二次電池に用いる電極は、集電体である集電体層の厚さを薄く設計する傾向にある。
特開2002-164041号公報
 図1に示すように、前記の集電体電極シートの塗布終端部には、スラリを間欠塗布したときに、塗布領域11と非塗布領域12との境界に、スラリの尾引き部14が発生しやすい。帯状集電体電極シート10を電極ロールの巻取方向Dxに沿って、ロールプレス機で圧縮加工成型する場合、こうした尾引き部14が存在すると、塗布終端の尾引き部14には巻取方向(以後、長手方向とも呼ぶ)Dxと垂直な方向Dyに活物質層が断続的にしか存在しないため、巻取方向Dxと垂直な方向Dyに活物質層が連続的に存在する塗布領域11の中央部分よりも大きな線圧がかかることになる。
 このように大きな線圧の掛かる尾引き部14では、活物質粒子が集電体層である金属箔9に大きく食い込む現象がしばしば発生する。この活物質粒子が金属箔9に食い込んだ部分の箔の残肉量がきわめて薄くなっているため、図示しないが箔の破断のもととなるクラックが発生する。このクラックが発生した領域を、引き続き行う裁断工程で裁断すると、シート電極の切断面に活物質層の部分的に脱落したバリが発生する。発生したバリが、電極に付着すると、電池の組み立て時に短絡を発生させる原因になり、電池の不良率が高まるという問題が生じていた。
 このようにスラリを間欠塗布するときに塗布終端部に尾引き部14が発生するのを防止するために、例えば特許文献1には、あらかじめ活物質層を塗布する塗布域のうち、箔の巻取方向Dxの始端と終端にフッ素樹脂を塗布しておく方法が提示されている。しかし、この方法では、フッ素樹脂を塗布するためのコストが増大するとともに、電極の重量や厚みが増えてしまうこととなり、高エネルギー密度に設計された二次電池に用いる電極の製造方法としては問題があった。そこで、活物質層のみを集電体電極シートに塗布しても、バリの発生を抑制し、不良率の低い電極を提供する製造方法を提供する必要があった。
 本発明は上述したような背景技術が有する課題を解決するためになされたものであり、製造コストの増大を招くことなく、裁断工程におけるバリの発生を抑制できる集電体電極シート、その製造方法、電池、およびその製造方法を提供することを目的とする。
 本発明の集電体電極シートは、
 シート状の集電体層の両面に活物質が塗布された集電体電極シートであって、
 前記集電体層の両面に、前記活物質を含むスラリを間欠的に塗布、乾燥して形成される、前記スラリの塗布領域と、非塗布領域と、を含み、
 前記塗布領域と前記非塗布領域は、帯状の前記集電体層の巻取方向に交互に形成され、
 各前記塗布領域の終端における尾引き部の長さの値が、加圧圧縮後の片面活物質層の厚さの値の12倍以下である。
 本発明の集電体電極シートの製造方法は、
 シート状の集電体層の両面に活物質を含むスラリをダイヘッドから吐出させることによって、間欠的に塗布、乾燥して、前記スラリの塗布領域と、非塗布領域とを前記集電体層の巻取方向に交互に形成して集電体電極シートを製造する方法であって、
 前記塗布領域の始端部を形成する工程と、前記塗布領域の中央部を形成する工程と、前記塗布領域の終端部を形成する工程と、を含み、
 前記終端部を形成する工程において、前記ダイヘッドと前記集電体層の間隔が、前記中央部を形成する工程における前記ダイヘッドと前記集電体層の間隔よりも狭い状態で、前記スラリを前記ダイヘッドから吐出させる。
 本発明の第2の電極集電体シートは、
 本発明の上記集電体電極シートの製造方法を用いて製造される。
 本発明の電池の製造方法は、
 シート状の集電体層の両面に正極活物質層を形成して正極集電体電極シートを形成する工程と、シート状の集電体層の両面に負極活物質層を形成して負極集電体電極シートを形成する工程と、前記正極集電体電極シートと前記負極集電体電極シートとをそれぞれ所定の大きさに切断して、それぞれ正極電極と、負極電極を形成する工程と、前記正極電極と、前記負極電極とを、セパレータを介して積層する工程と、を含む電池の製造方法であって、
 前記正極集電体電極シートを形成する工程および前記負極集電体電極シートを形成する工程のいずれか一方または両方が、本発明の上記集電体電極シートの製造方法の各工程を含む。
 本発明の電池は、
 正極と、負極と、電解質と、を少なくとも備えた電池であって、
 前記正極と負極のいずれか一方または両方が、本発明の上記集電体電極シートを所定の大きさに切断して形成したものである電極を含む。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
 また、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等でもよい。
 また、本発明の方法およびコンピュータプログラムには複数の手順(又は工程)を順番に記載してあるが、その記載の順番は複数の手順を実行する順番を限定するものではない。このため、本発明の方法およびコンピュータプログラムを実施するときには、その複数の手順の順番は内容的に支障のない範囲で変更することができる。
 さらに、本発明の方法およびコンピュータプログラムの複数の手順(又は工程)は個々に相違するタイミングで実行されることに限定されない。このため、ある手順の実行中に他の手順が発生すること、ある手順の実行タイミングと他の手順の実行タイミングとの一部ないし全部が重複していること、等でもよい。
 本発明によれば、製造コストの増大を招くことなく、集電体電極シートの裁断工程におけるバリの発生を抑制できる集電体電極シート、その製造方法、電池、およびその製造方法を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
間欠塗工方式による活物質の両面塗布後の集電体電極シートを示す平面図である。 本発明の実施形態における両面塗布後の集電体電極シートを示す平面図である。 本発明の実施形態における両面塗布後の集電体電極シートを示す平面図と断面図である。 本発明の実施形態に係る電極シートのスラリ塗布装置の概要を示す模式図である。 本発明の実施形態に係る電極シートのスラリ塗布装置のうち、ダイコータ部分の一例を示す模式図である。 本発明の実施の形態に係る電極シートの製造システムの各装置を実現するコンピュータのハードウェア構成の一例を示すブロック図である。 本発明の実施形態に係る電極シートの製造方法のうち、スラリ塗布における各装置の動作状況を模式的に示した図である。 本発明の実施形態に係る電極シートの圧縮装置の概要を示す模式図である。 本発明の実施形態に係る電極シートを複数のシートに裁断する裁断装置の概要を示す模式図である。 本発明の実施の形態に係る電池の構成の一例を示す概略図である。 本実施形態に係る集電体電極シートの製造システムの構成例を示すブロック図である。 本実施形態に係る集電体電極シートの製造方法の工程を示すフローチャートである。 本実施形態の制御プログラムの処理手順の一例を示すフローチャートである。
 以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。また、数値範囲の「A~B」は特に断りがなければ、A以上B以下を表す。
<電極および電極の製造方法>
 以下、本実施形態に係る集電体電極シート10および集電体電極シート10の製造方法について説明する。
 図2は、本発明に係る実施形態の集電体電極シート10の構成の一例を示す平面図である。
 図3(a)は、本発明に係る実施形態の両面塗布後の集電体電極シート10の一部を示す平面図である。図3(b)は、図3(a)の集電体電極シート10を線I-Iから見た断面図である。
 本実施形態に係る集電体電極シート10の製造方法は、集電体層(金属箔9)と電極活物質層(塗布領域11)とを備える電極の製造方法である。
 前記したように、本発明者らの検討によれば、間欠塗工法を用いて作製した電極は、その後の裁断工程においてバリが発生しやすいことが明らかになった。
 本発明者らは、前記知見をもとに検討を重ねた結果、間欠的に塗布された塗布領域11の終端13における尾引き部14の長さの値(図3(b)におけるZ)が、加圧圧縮後の片面活物質層(塗布領域11)の厚さの値(図3(b)におけるT)の12倍以下である集電体電極シート10とすることによって、裁断工程におけるバリの発生を効果的に抑制できることを見出した。
 また、本実施形態に係る集電体電極シート10の製造方法によれば、各間欠塗布領域11の終端部を形成する工程において、ダイヘッドとシート状集電体層(金属箔9)の間隔が、各間欠塗布領域11の中央部を形成する工程におけるダイヘッドとシート状集電体層(金属箔9)の間隔よりも狭い状態で、スラリをダイヘッドから吐出させる集電体電極シート10の製造方法を用いることにより、間欠的に塗布された塗布領域11の終端13における尾引き部14の長さの値(図3(b)におけるZ)が、加圧圧縮後の片面活物質層(塗布領域11)の厚さの値(図3(b)におけるT)の12倍以下である集電体電極シート10を安定的に得ることができる。
 また、本実施形態によれば、スラリを集電体に塗工して乾燥し、溶媒を除去することによって、前記集電体上に活物質層を形成する工程を含む電池用集電体電極シートの製造方法が提供される。
 また、本実施形態によれば、集電体と、前記集電体の少なくとも一方の面に設けられ、かつ、スラリの固形分により形成された活物質層と、を含む電池用電極がシート提供される。
 以上のように、本実施形態に係る集電体電極シート10の製造方法によれば、バリの発生が抑制された電極を提供することができる。
 以下、集電体電極シート10の構成および集電体電極シート10の製造方法における各工程について詳細に説明する。
 はじめに、本実施形態に係る電極活物質層を構成する各成分について説明する。
 電極活物質層は、電極活物質を含み、必要に応じてバインダ樹脂、導電助剤、増粘剤等を含む。
 本実施形態に係る電極活物質層に含まれる電極活物質は用途に応じて適宜選択される。正極を作製するときは正極活物質を使用し、負極を作製するときは負極活物質を使用する。
 正極活物質としてはリチウムイオン電池の正極に使用可能な通常の正極活物質であれば特に限定されない。例えば、リチウム-ニッケル複合酸化物、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物等のリチウムと遷移金属との複合酸化物;TiS、FeS、MoS等の遷移金属硫化物;MnO、V、V13、TiO等の遷移金属酸化物、オリビン型リチウムリン酸化物等が挙げられる。
 オリビン型リチウムリン酸化物は、例えば、Mn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nb、およびFeよりなる群のうちの少なくとも1種の元素と、リチウムと、リンと、酸素とを含んでいる。これらの化合物はその特性を向上させるために一部の元素を部分的に他の元素に置換したものであってもよい。
 これらの中でも、オリビン型リチウム鉄リン酸化物、リチウム-ニッケル複合酸化物、リチウム-コバルト複合酸化物、リチウム-マンガン複合酸化物、リチウム-ニッケル-マンガン複合酸化物、リチウム-ニッケル-コバルト複合酸化物、リチウム-ニッケル-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-アルミニウム複合酸化物、リチウム-ニッケル-マンガン-コバルト複合酸化物、リチウム-ニッケル-マンガン-アルミニウム複合酸化物、リチウム-ニッケル-コバルト-マンガン-アルミニウム複合酸化物が好ましい。これらの正極活物質は作用電位が高いことに加えて容量も大きく、大きなエネルギー密度を有する。
 正極活物質は、一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 負極活物質としては、リチウムイオン電池の負極に使用可能な通常の負極活物質であれば特に限定されない。例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素材料;リチウム金属、リチウム合金等のリチウム系金属材料;シリコン、スズ等の金属材料;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー材料等が挙げられる。これらの中でも炭素材料が好ましく、特に天然黒鉛や人造黒鉛等の黒鉛質材料が好ましい。
 負極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 電極活物質の平均粒子径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、2μm以上がより好ましく、入出力特性や電極作製上の観点(電極表面の平滑性等)から、100μm以下が好ましく、50μm以下がより好ましい。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。
 電極活物質の含有量は、電極活物質層の全体を100質量部としたとき、85質量部以上99.8質量部以下であることが好ましい。
 本実施形態に係る電極活物質層に含まれるバインダ樹脂は用途に応じて適宜選択される。例えば、溶媒に溶解可能なフッ素系バインダ樹脂や、水に分散可能な水系バインダ等を使用することができる。
 フッ素系バインダ樹脂としては電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ポリフッ化ビニリデン系樹脂、フッ素ゴム等が挙げられる。これらのフッ素系バインダ樹脂は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、ポリフッ化ビニリデン系樹脂が好ましい。フッ素系バインダ樹脂は、例えば、N-メチル-ピロリドン(NMP)等の溶媒に溶解させて使用することができる。
 水系バインダとしては電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ポリテトラフルオロエチレン系樹脂、ポリアクリル酸系樹脂、スチレン・ブタジエン系ゴム、ポリイミド系樹脂等が挙げられる。これらの水系バインダは一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、スチレン・ブタジエン系ゴムが好ましい。
 なお、本実施形態において、水系バインダとは、水に分散し、エマルジョン水溶液を形成できるものをいう。
 水系バインダを使用する場合は、さらに増粘剤を使用することができる。増粘剤としては特に限定されないが、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;ポリカルボン酸;ポリエチレンオキシド;ポリビニルピロリドン;ポリアクリル酸ナトリウム等のポリアクリル酸塩;ポリビニルアルコール;等の水溶性ポリマー等が挙げられる。
 バインダ樹脂の含有量は、電極活物質層の全体を100質量部としたとき、0.1質量部以上10.0質量部以下であることが好ましい。バインダ樹脂の含有量が前記範囲内であると、電極スラリの塗工性、バインダの結着性および電池特性のバランスがより一層優れる。
 また、バインダ樹脂の含有量が前記上限値以下であると、電極活物質の割合が大きくなり、電極質量当たりの容量が大きくなるため好ましい。バインダ樹脂の含有量が前記下限値以上であると、電極剥離が抑制されるため好ましい。
 本実施形態に係る電極活物質層に含まれる導電助剤としては電極の導電性を向上させるものであれば特に限定されないが、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、天然黒鉛、人工黒鉛、炭素繊維等が挙げられる。これらの導電助剤は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 導電助剤の含有量は、電極活物質層の全体を100質量部としたとき、0.1質量部以上5.0質量部以下であることが好ましい。導電助剤の含有量が前記範囲内であると、電極スラリの塗工性、バインダの結着性および電池特性のバランスがより一層優れる。
 また、導電助剤の含有量が前記上限値以下であると、電極活物質の割合が大きくなり、電極質量当たりの容量が大きくなるため好ましい。導電助剤の含有量が前記下限値以上であると、電極の導電性がより良好になるため好ましい。
 本実施形態に係る電極活物質層は、電極活物質層の全体を100質量部としたとき、電極活物質の含有量は好ましくは85質量部以上99.8質量部以下である。また、バインダ樹脂の含有量は好ましくは0.1質量部以上10.0質量部以下である。また、導電助剤の含有量は好ましくは0.1質量部以上5.0質量部以下である。
 電極活物質層を構成する各成分の含有量が前記範囲内であると、集電体電極シート10の取扱い性と、得られるリチウムイオン電池の電池特性のバランスが特に優れる。
 電極活物質層の密度は特に限定されないが、電極活物質層が正極活物質層の場合は、例えば、2.0g/cm以上4.0g/cm以下であることが好ましく、2.4g/cm以上3.8g/cm以下であることがより好ましく、2.8g/cm以上3.6g/cm以下であることがさらに好ましい。また、電極活物質層が負極活物質層の場合は、例えば、1.2g/cm以上2.0g/cm以下であることが好ましく、1.3g/cm以上1.9g/cm以下であることがより好ましく、1.4g/cm以上1.8g/cm以下であることがさらに好ましい。
 電極活物質層の密度を前記範囲内とすると、高放電レートでの使用時における放電容量が向上するため好ましい。
 ここで、電極活物質層の密度が高いほど、電極活物質層を構成する電極活物質粒子が集電体層である金属箔9により深く食い込むため、尾引き部14の金属箔9の厚みが薄くなり、かつ、金属箔9の強度が弱くなるため、裁断工程におけるバリの発生が起きやすくなる傾向にある。しかし、本実施形態に係る集電体電極シート10の製造方法によれば、電極活物質層の密度が高くても、裁断工程におけるバリの発生を効果的に抑制することができる。
 そのため、集電体電極シート10のバリの発生を効果的に抑制しつつ、得られるリチウムイオン電池のエネルギー密度をより一層向上させる観点から、正極活物質層の密度は3.0g/cm以上であることが好ましく、3.2g/cm以上であることがより好ましく、3.3g/cm以上であることが特に好ましく、負極活物質層の密度は1.5g/cm以上であることが好ましく、1.6g/cm以上であることがより好ましい。また、高温でのサイクル特性の悪化をより抑制する観点から、正極活物質層の密度は4.0g/cm以下であることが好ましく、3.8g/cm以下であることがより好ましく、3.6g/cm以下であることがさらに好ましく、そして負極活物質層の密度は2.0g/cm以下であることが好ましく、1.9g/cm以下であることがより好ましく、1.8g/cm以下であることがさらに好ましい。
 電極活物質層の厚みは特に限定されるものではなく、所望の特性に応じて適宜設定することができる。例えば、エネルギー密度の観点からは厚く設定することができ、また出力特性の観点からは薄く設定することができる。電極活物質層の厚み(片面の厚み)は、例えば、10μm以上250μm以下の範囲で適宜設定でき、20μm以上200μm以下が好ましく、30μm以上150μm以下がより好ましい。
 本実施形態に係る集電体層としては特に限定されないが、正極集電体層としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができる。その形状としては、例えば、箔、平板状、メッシュ状等が挙げられる。特にアルミニウム箔を好適に用いることができる。
 また、負極集電体層としては、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。その形状としては、箔、平板状、メッシュ状が挙げられる。特に銅箔を好適に用いることができる。
 正極集電体層の厚みは特に限定されないが、例えば1μm以上30μm以下である。また、負極集電体層の厚みは特に限定されないが、例えば1μm以上20μm以下である
 ここで、集電体層である金属箔9の厚みが薄いほど、尾引き部14の金属箔9の強度が弱くなるため、裁断工程におけるバリの発生が起きやすい傾向にある。しかし、本実施形態に係る集電体電極シート10の製造方法によれば、金属箔9の厚みが薄くても、裁断工程におけるバリの発生を効果的に抑制することができる。
 そのため、集電体電極シート10のバリの発生を効果的に抑制しつつ、得られるリチウムイオン電池における集電体層の割合を減らし、リチウムイオン電池をより高エネルギー密度化する観点から、正極集電体層の厚みは25μm未満が好ましく、20μm未満がより好ましく、18μm未満が特に好ましく、そして負極集電体層の厚みは15μm未満が好ましく、12μm未満がより好ましく、10μm未満が特に好ましい。
 以下、本発明の電池の製造方法のうち、電極の詳細な作製方法について説明する。
 はじめに、電極スラリを調製する。
 電極スラリは、電極活物質と、必要に応じてバインダ樹脂と、導電助剤と、増粘剤と、を混合することにより調製することができる。電極活物質、バインダ樹脂、および導電助剤の配合比率は電極活物質層中の電極活物質、バインダ樹脂、および導電助剤の含有比率と同じため、ここでは説明を省略する。
 電極スラリは、電極活物質と、必要に応じてバインダ樹脂と、導電助剤と、増粘剤と、を溶媒に分散または溶解させたものである。
 各成分の混合手順は特に限定されないが、例えば、電極活物質と導電助剤とを乾式混合した後に、バインダ樹脂および溶媒を添加して湿式混合することにより電極スラリを調製することができる。
 このとき、用いられる混合機としては、ボールミルやプラネタリーミキサー等の公知のものが使用でき、特に限定されない。
 電極スラリに用いる溶媒としては、N-メチル-2-ピロリドン(NMP)等の有機溶媒や、水を用いることができる。
 本実施形態において、調製されるスラリは、例えば、B型粘度計(ブルックフィールド社製、回転粘度計)を用いて、25℃、せん断速度3.4s-1の条件で測定した場合、2000mPa・s~20000mPa・sの範囲であるのが好ましい。また、スラリの固形分濃度は50質量%~83質量%であるのが好ましい。
 このようにして調製された電極スラリを用いて集電体電極シート10の製造を行う。
 図11は、本実施形態に係る集電体電極シート10の製造システム1の構成例を示すブロック図である。
 製造システム1は、スラリ塗布装置20と、圧縮装置40と、裁断装置60と、を備える。さらに、製造システム1の各装置を制御する制御手段を備えてもよい。本実施形態では、後述する制御手段(シーケンサ)207(図7)を備える。
 スラリ塗布装置20、圧縮装置40、および裁断装置60は、それぞれ後述するコンピュータ100(図6)のハードウェアとソフトウェアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
 プログラム110(図6)は、コンピュータ100で読み取り可能な記録媒体に記録されてもよい。記録媒体は特に限定されず、様々な形態のものが考えられる。また、プログラムは、記録媒体からコンピュータ100のメモリ104にロードされてもよいし、ネットワークを通じてコンピュータ100にダウンロードされ、メモリ104にロードされてもよい。
 プログラム110を記録する記録媒体は、非一時的な有形のコンピュータ100が使用可能な媒体を含み、その媒体に、コンピュータ100が読み取り可能なプログラムコードが埋め込まれる。プログラム110が、コンピュータ100上で実行されたとき、コンピュータ100に、各装置を実現させる電極シートの製造方法を実行させる。
 図12は、本実施形態に係る集電体電極シート10の製造方法の工程を示すフローチャートである。
 本実施形態の集電体電極シート10の製造方法は、塗布工程(S1)と、圧縮工程(S5)と、裁断工程(S6)と、を含む。本実施形態に係る集電体電極シート10は、図12に示される製造方法によって製造される。各工程の詳細については、各装置の説明とともに後述する。
 図4は、本発明の実施形態に係る電極シートのスラリ塗布装置20の概要を示す模式図である。
 また、図5は、前記本発明の実施形態に係る電極シートのスラリ塗布装置20のうち、スラリを塗工して間欠塗布を行うダイコータ21、ダイコータ22部分の一例を示す模式図である。
 まず、塗布工程(図12のS1)において、塗布装置20に設置された金属箔9には、例えば第1のダイコータ21を用いて、一方の面9aに活物質を含むスラリを間欠的に塗布、乾燥することで活物質(スラリ)の塗布領域11が形成される。
 ダイヘッドを含むダイコータを用いて、得られた電極スラリを帯状の金属箔9の長手方向に沿って、間欠的に塗工しながら乾燥し、溶媒を除去することによって、金属箔9の少なくとも一方の面上に電極活物質層を、塗布部と非塗布部を交互に繰り返すように間欠的に形成する。
 ここで、図5に示すように、間欠塗布を行うダイコータ21には、ダイヘッド200と、ダイヘッド200に連結された塗工弁201と、ポンプ202と、活物質合剤のスラリ203を溜めるタンク204が設けられている。ダイヘッド200と対向する位置に、金属箔9をダイヘッド200に対して相対移動させる相対移動手段が配置されている。本実施形態では、相対移動手段の一例であるローラ27の回転によって、活物質層を形成すべき集電体である金属箔9が搬送される。
 例えば、ローラ27の回転速度は、10m/min~80m/minの範囲で制御される。
 ダイヘッド200は、ダイヘッド移動手段であるサーボモータ205に駆動されて、ローラ27に対して近づいたり離れたりすることができ、ダイヘッド200の変位(移動量)は変位センサ206によって検知される。制御手段(シーケンサ)207が、後述の制御プログラムに基づいて、サーボモータ205の動作を制御する。この製造装置は、ダイヘッド200からタンク204にスラリを戻すリターン経路が設けられていてもよく、リターン経路にはリターン弁が設けられていてもよい。
 活物質層の塗布領域中央部(後述する図7の302)におけるダイヘッド200と金属箔9との間隔(ギャップ)を100%とした場合、塗布領域終端部(後述する図7の303)に移行する際のダイヘッド200の変位(移動)量は10%~50%の範囲で制御されるのが好ましく、30%~50%の範囲で制御されるのがより好ましい。
 図6は、本発明の実施の形態に係る、前記制御手段(シーケンサ)207を含む各装置を実現するコンピュータ100のハードウェア構成の一例を示すブロック図である。
 コンピュータ100は、CPU(Central Processing Unit)102、メモリ104、メモリ104にロードされたサーボモータ205の動作を規定する制御プログラムを含むプログラム110、そのプログラム110を格納するストレージ105、I/O(Input Output)106、およびネットワーク接続用通信インタフェース(I/F)107を備える。CPU102と各要素は、バス109を介して互いに接続され、CPU102により制御手段(シーケンサ)207等の各装置それぞれが制御される。ただし、CPU102などを互いに接続する方法は、バス接続に限定されない。
 CPU102が、ストレージ105に記憶されるプログラム110をメモリ104に読み出して実行することにより、各装置の各機能を実現することができる。
 サーボモータ205の動作を制御する制御プログラムを含むプログラム110はコンピュータ100のハードウェアとソフトウェアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
 以下、サーボモータ205の動作を制御する制御プログラムについて説明する。
 本発明の実施の形態に係る、制御プログラムには、間欠的に塗布される各塗布領域の長手方向の長さlと、ローラの回転速度vと、スラリの集電体層への塗布ならびに乾燥工程(不図示)が終了した時、集電体電極シート片面の塗布領域中央部における活物質層の平均厚さTとが、少なくともパラメータとして設定される。そして、前記間欠塗布の工程を開始するに先立って制御手段(シーケンサ)207に入力される。各パラメータの値は、制御プログラムの操作画面に従って作業者により入力されてもよいし、予め記憶されている設定ファイルから読み出されてもよい。
 制御プログラムは、前記入力された各パラメータに基づいて、間欠的に塗布される各塗布領域の始端部と、中央部と、終端部と、各非塗布領域それぞれを形成するために適切な、ダイヘッド200と金属箔9との間隔d(以下、ギャップともいう)を算出するとともに、ダイヘッド200と金属箔9と間隔を調節する位置、もしくはローラ27の回転による集電体9の搬送速度から算出し、前記間隔dを調節するタイミングを算出し、サーボモータ205を動作させる。
 図7は、本実施形態の塗布工程(図12のS1)の詳細を説明するための図である。
 図13は、本実施形態の制御プログラムの処理手順の一例を示すフローチャートである。
 図7は、本発明の実施の形態に係る、制御プログラムの動作によって、ダイヘッド200と金属箔9の間隔d(ギャップ)が、間欠的に形成される各塗布領域の位置もしくは、塗布を開始してからの経過時間tによって、変化することを模式的に示している。
 まず、塗布領域の始端部301を形成する(ステップS10)。この始端部形成の開始位置をx、開始時刻をtとする。そして、ローラ27の回転を開始する(ステップS11)。ダイヘッド200をローラ27および金属箔9に近づけ、ダイヘッド200と金属箔9の間隔(ギャップ)をdにする(ステップS12)とともに、塗工弁201を開き、さらにポンプ202を調節して、所定の吐出圧力に設定する(ステップS13)。そのままローラ27の回転によって、帯状の集電体シートである金属箔9をダイヘッド200の吐出口直下を通過させることによって、長手方向に連続的にスラリが塗布された所望の長さの塗布領域の始端部301を形成する(ステップS10)。ここで、塗布領域の始端部301の終了位置であり、塗布領域の中央部302の開始位置をx、始端部301の形成を終了した時刻をtとするが、塗布領域の始端部301の長さ:x-xについては、電池の設計に応じて適宜決定することができる。
 次に、時刻tになったとき(ステップS14のYES)、塗布領域の中央部302の形成(ステップS20)に移行する。塗工弁201を開いたまま、ローラ27の回転によって、帯状の集電体シートである金属箔9をダイヘッド200の吐出口直下を通過させ、所望の長さの塗布領域の中央部302を形成する。なお、始端部301と中央部302で形成する活物質層の厚さを変化させる等の必要に応じて、中央部302の形成に移行すると同時に、ダイヘッド200と金属箔9の間隔(ギャップ)をdに変化させても良いし(ステップS21)、また、ポンプ202を調節して、吐出流量や吐出圧力を変更させても良い(不図示)。ここで、塗布領域の中央部302の終了位置であり、塗布領域の終端部303の開始位置をx、中央部302の形成を終了した時刻をtとするが、塗布領域の始端部301と中央部302を合わせた長さ(x-x)については、塗布領域の始端部と中央部と終端部を合わせた全体の長さの88%乃至93%の範囲とすることが好ましい。なお、前記範囲内の、具体的な値の設定については、製造に用いるスラリの粘度や形成すべき活物質層の厚さに応じて適宜決められるべきものである。
 次に、時刻tになったとき(ステップS22のYES)、塗布領域の終端部303の形成(ステップS30)に移行する。塗布領域の終端部303の形成に移行する時刻tにおいて、塗工弁201は開いたまま、ダイヘッド200と金属箔9の間隔(ギャップ)をdからdに変化させ(ステップS31)、ローラ27の回転によって、帯状の集電体シートである金属箔9をダイヘッド200の吐出口直下を通過させ、所望の長さの塗布領域の終端部303を形成する。この、塗布領域の終端部303の形成におけるダイヘッド200と集電体9の間隔(ギャップ)dは、塗布領域の中央部302の形成におけるダイヘッド200と集電体9の間隔(ギャップ)をdの50%乃至70%とすることが好ましい。また、塗布領域の中央部302の形成から塗布領域の終端部303の形成に移行する際は、ポンプ22の調節による吐出流量や吐出圧力の変更を行わないことが好ましい。
 この塗布領域の終端部303の終了位置であり、非塗布領域12の開始位置をx、終端部303の形成を終了した時刻をtとする。
 こうして、塗布領域の終端部303の形成におけるダイヘッド200と金属箔9の間隔(ギャップ)dを、塗布領域の中央部302の形成におけるダイヘッド200と金属箔9の間隔(ギャップ)をdの50%乃至70%とし、かつ、塗布領域の中央部302から塗布領域の終端部303の形成に切り替える位置(x-x)を、塗布領域の始端部301、中央部302、終端部303を合わせた長さ(x-x)の88%乃至93%の範囲とする。これにより、塗布された領域の終端における尾引き部14の長さの値が、加圧圧縮後の片面活物質層の厚さの値の12倍以下である集電体電極シート10を得ることができる。ここで、x-xの値をx-xの88%未満にすると、塗布領域の終端部303において、活物質層の厚さが設計値に満たない場合があり、94%以上とすると、尾引き部14の長さが十分短くならない。
 前記塗布領域を終端部303の塗布開始位置とダイヘッドと集電体の間隔(ギャップ)を制御することで、尾引き長さを一定以下とすることができる理由は必ずしも明らかではないが、以下の理由が考えられる。
 塗布領域最終端における尾引きは、塗工弁の限界性能の影響により、活物質(スラリ)の塗布を遮断する際、スラリの切れが悪くなるため、スラリを引きずる状態が生じることによって生じるものである。ダイヘッドと集電体の間隔(ギャップ)dを中央部におけるダイヘッドと集電体の間隔(ギャップ)dよりも狭くすることにより、吐出圧力が増加する一方で、塗布量は減少するから、塗布を遮断した際に引きずりに寄与するスラリ量も減少する。ここで、尾引き量を低減するために、dの値をdの値の90%以下とすることが好ましく、dの値の70%以下とすることがより好ましい。一方、dをdの50%以下まで狭くすると、吐出圧が上昇しすぎるため、吐出口からのスラリの切れが悪化する。このため、dをdの50%乃至70%とすることが適切であるものと考えられる。
 また、始端部と中央部を合わせた長さx-xを、塗布領域全体の長さx-xの88%乃至93%の範囲とすることで、漸近的にダイヘッドの吐出口から吐出されるスラリ量を減らしながらも、終端部に塗布される厚さを安定に中央部の厚さと同等に保ちながら、尾引きのみを低減することができるものと考えられる。
 次いで、時刻tになったとき(ステップS32のYES)、非塗布領域12の形成(ステップS40)に移行する。非塗布領域12の形成に移行する時刻tにおいて、塗工弁201を閉じてダイヘッド200からスラリを吐出することなく(ステップS41)、ローラ27の回転によって金属箔9を所望の長さだけ搬送する。この非塗布領域12の終了位置であり、次の塗布領域の始端部301の開始位置をx、非塗布領域12の形成を終了した時刻をtとする(ステップS42のYES)。
 以降の時間において、このような塗布領域の始端部301、中央部302、終端部303、非塗布領域12の形成を順番に繰り返して(ステップS12に戻る)、多数の活物質層(塗布領域11)を形成する。なお、活物質層塗布領域始端部301と中央部302の厚さや、活物質層塗布領域の始端部301、中央部302、終端部303を合わせた長さと幅、非塗布領域12の長さは、電池の大きさに応じて、適宜決定することができる。
 こうして、集電体層である金属箔9の一方の面9aに、活物質塗布領域11が塗布された集電体電極シート10を、乾燥機25を通して乾燥させた後、金属箔9の他方の面9bにも同様の手法で活物質塗布領域11を形成する。このとき、他方の面9bにおいて、始端検出器24が一方の面9aに形成された活物質塗布領域の位置を検出する。始端検出器24の検出信号を受信して動作するダイコータ22等を用いて、一方の面9aにおいて検出した位置に対応する位置の、一方の面9aの裏面となる他方の面9bの部位に活物質塗布領域11を形成することで、集電体電極シート10の両面に形成する活物質塗布領域11の位置をそれぞれ一致させる。また、活物質(スラリ)の塗布始め及び塗布終わり位置も集電体電極シート10の両面でそれぞれ一致させる。集電体電極シート10の両面における活物質(スラリ)の塗布始めの位置ずれ量は、その巻取方向Dxにおいて、例えば1mm未満となるように調整する。乾燥方法としては特に限定されないが、例えば、加熱ロールを用いて集電体層側または既に乾燥した電極活物質層側から電極スラリを間接的に加熱し、電極スラリを乾燥させる方法;赤外線、遠赤外線・近赤外線のヒーター等の電磁波を用いて電極スラリを乾燥させる方法;集電体層側または既に乾燥した電極活物質層側から熱風を当てて電極スラリを間接的に加熱し、電極スラリを乾燥させる方法等が挙げられる。
 図8は、本発明の実施形態に係る集電体電極シート10の圧縮装置40の概要を示す模式図である。
 圧縮工程(図12のS5)において、図4に示すスラリ塗布装置20で、集電体層の両面に活物質塗布領域11を形成した集電体電極シート10を、図8で示すように一対の圧縮ローラ50で圧縮する。集電体電極シート10は、一対の圧縮ローラ50の隙間を通過する際に加圧圧縮されて、巻取方向Dxに巻き取られる。
 なお、この圧縮工程では、集電体電極シート10を流れる方向、すなわち巻取方向Dxを塗布終端側から塗布始端側になるように設定しても、反対に塗布始端側から塗布終端側になるように設定しても良い。
 圧縮工程において、圧縮装置40は、活物質層が形成された集電体層である金属箔9のうち、塗布領域11の中央部にかかる荷重は、所望する電極の密度に応じて適宜設定することができるが、例えば0.2乃至3ton/cmとなるように加圧する。また、圧縮ロールの大きさについては、特に限定されないが、例えばロールの半径rが250mm乃至375mmのものを用いることができる。
 この圧縮工程において、従来の方法では、尾引き部14は塗布領域の中央部よりも圧縮され、活物質粒子が集電体層に大きく食い込む現象がしばしば発生する。この活物質粒子が集電体層に食い込んだ部分の集電体層の残肉量がきわめて薄くなっているため、図示しないが箔の破断のもととなるクラックが発生しやすい。一方、本発明の本実施形態に示す方法で形成された集電体電極シートは、前記の圧縮工程においても、尾引き部14にクラックは発生しない。この理由は必ずしも明らかではないが、以下の理由が考えられる。従来の方法によって形成された尾引き部14には巻取方向Dxと垂直な方向Dyに活物質層が断続的にしか存在しないため、巻取方向Dxと垂直な方向Dyに活物質層が連続的に存在する塗布領域の中央部分よりも大きな線圧がかかることになる。一方、本発明の本実施形態に示す方法では、尾引き部14の長さが十分短く、尾引き部14においても前記方向Dyに活物質層がほぼ連続的に存在する。このため、線圧が塗布中央部と尾引き部14でほとんど相違なくなり、活物質粒子が集電体層に食い込むことも抑制されるため、箔のクラックも発生しないものと考えられる。
 図9は、本発明の各実施形態に係る裁断装置60の概要を示す模式図である。
 裁断装置60は、集電体電極シート10を複数のシートに裁断する。裁断装置60は、第1の裁断刃61と、第2の裁断刃62と、2つのバックアップローラ63と、一対のガイドローラ64と、を備える。
 集電体電極シート10を所定の大きさに切断して複数の電極を得ることができる。集電体電極シート10から電極を切り出す方法は特に限定されないが、例えば、集電体電極シート10の長手方向と平行に裁断し(図1の巻取方向裁断予定線17に沿って裁断)、所定幅の複数の電極を切り出す方法が挙げられる。さらに用途に応じて所定の寸法に打ち抜いて、電池用の電極を得ることができる。ここで、集電体電極シート10の裁断方法は特に限定されず、例えば金属等からなる刃を用いて集電体電極シート10を裁断することができる。
 この裁断工程(図12のS6)において、従来の方法では、圧縮工程時に帯基部に前記のクラックが発生しているところを基点としてバリが発生するが、本発明の本実施形態に示す方法を用いると、箔のクラックが発生していないため、バリの発生は見られない。
 以上で、本発明の電池のうち、電極が完成する。引き続き、作製された電極を用いて電池を作製する方法について説明する。
<電池>
 図10は、本発明に係る実施形態の積層型電池150の構成の一例を示す概略図である。
 本実施形態に係る電池は、本実施形態に係る集電体電極シート10を備える。以下、本実施形態に係る電池について、電池がリチウムイオン電池の積層型電池150である場合を代表例として説明する。
 積層型電池150は、正極121と負極126とが、セパレータ120を介して交互に複数層積層された電池要素を備えており、これらの電池要素は電解液(図示せず)とともに可撓性フィルム140からなる容器に収納されている。電池要素には正極端子131および負極端子136が電気的に接続されており、正極端子131および負極端子136の一部または全部が可撓性フィルム140の外部に引き出されている構成になっている。
 正極121には正極集電体層123の表裏に、正極活物質の塗布部(正極活物質層122)と非塗布領域がそれぞれ設けられており、負極126には負極集電体層128の表裏に、負極活物質の塗布部(負極活物質層127)と非塗布領域が設けられている。
 正極集電体層123における正極活物質の非塗布領域を正極端子131と接続するための正極タブ130とし、負極集電体層128における負極活物質の非塗布領域を負極端子136と接続するための負極タブ125とする。
 正極タブ130同士は正極端子131上にまとめられ、正極端子131とともに超音波溶接等で互いに接続され、負極タブ125同士は負極端子136上にまとめられ、負極端子136とともに超音波溶接等で互いに接続される。そのうえで、正極端子131の一端は可撓性フィルム140の外部に引き出され、負極端子136の一端も可撓性フィルム140の外部に引き出されている。
 正極活物質の塗布部(塗布領域11)(正極活物質層122)と非塗布領域12の境界部124には、必要に応じて絶縁部材を形成することができ、当該絶縁部材は境界部124だけでなく、正極タブ130と正極活物質の双方の境界部付近に形成することができる。
 負極活物質の塗布部(負極活物質層127)と非塗布領域の境界部129にも同様に、必要に応じて絶縁部材を形成することができ、負極タブ125と負極活物質の双方の境界部付近に形成することができる。
 通常、負極活物質層127の外形寸法は正極活物質層122の外形寸法よりも大きく、セパレータ120の外形寸法よりも小さい。
(リチウム塩を含有する非水電解液)
 本実施形態に用いるリチウム塩を含有する非水電解液は、電極活物質の種類やリチウムイオン電池の用途等に応じて公知のものの中から適宜選択することができる。
 具体的なリチウム塩の例としては、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl4、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等を挙げることができる。
 リチウム塩を溶解する溶媒としては、電解質を溶解させる液体として通常用いられるものであれば特に限定されるものではなく、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC),ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミド等の含窒素溶媒;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等の有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホラン等のスルホラン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトン等のスルトン類等が挙げられる。これらは、一種単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
(容器)
 本実施形態において容器には公知の部材を用いることができ、電池の軽量化の観点からは可撓性フィルム140を用いることが好ましい。可撓性フィルム140は、基材となる金属層の表裏面に樹脂層が設けられたものを用いることができる。金属層には電解液の漏出や外部からの水分の侵入を防止する等のバリア性を有するものを選択することができ、アルミニウム、ステンレス鋼等を用いることができる。金属層の少なくとも一方の面には変性ポリオレフィン等の熱融着性の樹脂層が設けられ、可撓性フィルム140の熱融着性の樹脂層同士を電池要素を介して対向させ、電池要素を収納する部分の周囲を熱融着することで外装体を形成する。熱融着性の樹脂層が形成された面と反対側の面となる外装体表面にはナイロンフィルム、ポリエステルフィルム等の樹脂層を設けることができる。
(端子)
 本実施形態において、正極端子131にはアルミニウムやアルミニウム合金で構成されたもの、負極端子136には銅や銅合金あるいはそれらにニッケルメッキを施したもの等を用いることができる。それぞれの端子は容器の外部に引き出されるが、それぞれの端子における外装体の周囲を熱溶着する部分に位置する箇所には熱融着性の樹脂をあらかじめ設けることができる。
(絶縁部材)
 活物質の塗布部と非塗布領域の境界部124、129に絶縁部材を形成する場合には、ポリイミド、ガラス繊維、ポリエステル、ポリプロピレンあるいはこれらを構成中に含むものを用いることができる。これらの部材に熱を加えて境界部124、129に溶着させるか、または、ゲル状の樹脂を境界部124、129に塗布、乾燥させることで絶縁部材を形成することができる。
(セパレータ)
 本実施形態に係るセパレータ120は、耐熱性樹脂を主成分として含む樹脂層を備えることが好ましい。
 ここで、前記樹脂層は主成分である耐熱性樹脂により形成されている。ここで、「主成分」とは、樹脂層中における割合が50質量%以上であることをいい、好ましくは70質量%以上であり、さらに好ましくは90質量%以上であり、100質量%であってもよいことを意味する。
 本実施形態に係るセパレータ120を構成する樹脂層は、単層であっても、二種以上の層であってもよい。
 前記樹脂層を形成する耐熱性樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ-m-フェニレンテレフタレート、ポリ-p-フェニレンイソフタレート、ポリカーボネート、ポリエステルカーボネート、脂肪族ポリアミド、全芳香族ポリアミド、半芳香族ポリアミド、全芳香族ポリエステル、ポリフェニレンサルファイド、ポリパラフェニレンベンゾビスオキサゾール、ポリイミド、ポリアリレート、ポリエーテルイミド、ポリアミドイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルホン、フッ素系樹脂、ポリエーテルニトリル、変性ポリフェニレンエーテル等から選択される一種または二種以上を挙げることができる。
 これらの中でも、耐熱性や機械的強度、伸縮性、価格等のバランスに優れる観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、脂肪族ポリアミド、全芳香族ポリアミド、半芳香族ポリアミドおよび全芳香族ポリエステルから選択される一種または二種以上が好ましく、ポリエチレンテレフタレート、ポリブチレンテレフタレート、脂肪族ポリアミド、全芳香族ポリアミドおよび半芳香族ポリアミドから選択される一種または二種以上がより好ましく、ポリエチレンテレフタレートおよび全芳香族ポリアミドから選択される一種または二種以上がさらに好ましく、ポリエチレンテレフタレートがより好ましい。
 本実施形態に係るセパレータ120を構成する樹脂層は多孔性樹脂層であることが好ましい。これにより、リチウムイオン電池に異常電流が発生し、電池の温度が上昇した場合等に多孔性樹脂層の微細孔が閉塞して電流の流れを遮断することができ、電池の熱暴走を回避することができる。
 前記多孔性樹脂層の空孔率は、機械的強度およびリチウムイオン伝導性のバランスの観点から、20%以上80%以下が好ましく、30%以上70%以下がより好ましく、40%以上60%以下が特に好ましい。
 空孔率は、下記式から求めることができる。
 ε={1-Ws/(ds・ts)}×100
 ここで、ε:空孔率(%)、Ws:目付(g/m)、ds:真密度(g/cm)、ts:膜厚(μm)である。
 本実施形態に係るセパレータ120の平面形状は、特に限定されず、電極や集電体の形状に合わせて適宜選択することが可能であり、例えば、矩形とすることができる。
 本実施形態に係るセパレータ120の厚みは、機械的強度およびリチウムイオン伝導性のバランスの観点から、好ましくは5μm以上50μm以下である。
 以上、説明したように、本実施形態によれば、前記実施形態の製造方法により作製された集電体電極シート10を用いて電池を製造することができる。
 本発明の電極の製造方法によれば、集電体層等の厚さの薄い集電体上に活物質層を形成し、乾燥後に圧縮、裁断する工程を経て電極を作製する場合に生じる集電体のバリの発生を抑制した電池等の電気化学デバイスの組み立てを実施することができ、特性が良好な電池等の電気化学デバイスを提供することが可能となる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、前記以外の様々な構成を採用することもできる。
 また、本発明は前記の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 以下、具体的な実施例について、さらに詳しく説明する。
(実施例1)
 正極活物質として、粒度分布測定値から求めた50%累積径(D50)が8μm、同じく90%累積径(D90)が12μmである、Li(Ni0.6Co0.2Mn0.2)Oを質量94.8%、導電補助材として黒鉛材料を質量2.5%、バインダとしてポリフッ化ビニリデンを質量2.7%とを混合したものに、N-メチルピロリドンを加えてさらに混合して正極スラリを作製した。できあがったスラリの粘度をB型粘度計(ブルックフィールド社製、回転粘度計)を用いて、25℃、せん断速度3.4s-1の条件で測定したところ、4850mPa・sであった。また、スラリの固形分濃度は66質量%となった。
 始端部と中央部と終端部を合わせた塗布領域全体の長さlを222mm、ローラの回転速度vを30m/min、始端部301と中央部302におけるダイヘッドと金属箔との間隔(ギャップ)dを130μm、始端部301と中央部302を合わせた長さx-xを202mm、終端部303におけるダイヘッドと金属箔との間隔(ギャップ)dを80μmに設定した。そして、目付け量23.5mg/cmとなるように、前記スラリを、ダイヘッドから吐出することで、バックアップローラ26上を移動する厚さ12μmの帯状アルミ箔集電箔面(9a、9b)上に、塗布領域11と非塗布領域12が箔9の巻取方向Dxに交互に形成されるように間欠的に塗布した。
 さらに、引き続き設置された乾燥炉(乾燥機25)によって、アルミ箔9に塗布された前記活物質等含むスラリを、乾燥固化させた。さらに、塗布工程でスラリを塗布させた裏面9bに対して、表面9aに塗布された塗布領域11の始端を検出し、裏面9bの塗布領域11の始端のずれが1mm以下になるよう制御しつつ、同様の方法でスラリ塗布、乾燥固化を行い、アルミ箔9両面にスラリの塗布された集電体電極シート10を得た。なお、前記のスラリ塗布工程においては同一アルミ箔ロール内で塗布領域11の長さのずれ量が2mm以下になるように調整した。得られた集電体電極シート10の一部を抽出し、測定した尾引き部の最大長さは0.5mmであった。
 次に、上下2個で1対を成したロール半径が250mmである圧縮ローラ50を備える加圧圧縮装置40を用いて、前記で間欠的にスラリが塗布された集電体電極シート10を、前記ギャップ幅前記圧縮ローラの間を通り、巻取張力が230Nになるよう設置し、バックアップローラ51上を回転速度60m/分で移動させることで加圧圧縮を行った。このとき、圧縮圧は活物質スラリの塗工域上の線圧が1.8t/cmになるように調整しており、上下圧縮ローラ50のギャップは平均0.4mm、ローラ圧縮圧は平均19MPaとなった。得られた集電体電極シート10の一部を抽出し、片面活物質層の平均厚さは65μmであり、塗布終端部まで一定の膜厚となった。また、圧縮装置40に付随する外観検査機を用いて、非塗布領域12にスラリの付着がないことを確認した。
 引き続き、上部にシャー刃61、下部にギャング刃62を備えた裁断装置60を用いて、前記で加圧圧縮された集電体電極シート10を、前記刃の間を通し、巻取張力が一定になるよう設置し、バックアップローラ63上を一定速度で移動させることで裁断を行った。得られた裁断シートの一部を抽出し、裁断工程後の尾引き部からのバリの有無を確認した。
 得られた評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 塗布領域終端部の膜厚不足、非塗布領域へのスラリの付着、およびバリの発生は、それぞれ10検体観察し、発生が1検体でもあった場合を発生とした。
(実施例2~6、比較例1~6)
 終端部におけるダイヘッドと金属箔との間隔(ギャップ)dおよび始端部と中央部を合わせた長さx-xを表1に示す値に変化させた以外は実施例1と同様にそれぞれ帯状アルミ箔集電箔面上に、塗布領域11と非塗布領域12が箔の巻取方向Dxに交互に形成されるように間欠的に塗布し、尾引き部の最大長さ測定と、塗布乾燥後の塗布領域終端部での膜厚不足等の有無、非塗布領域へのスラリの付着の有無の確認、および裁断工程後の尾引き部からのバリの有無の確認をそれぞれおこなった。得られた結果を表1に示す。
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 以下、参考形態の例を付記する。
1. シート状の集電体層の両面に活物質が塗布された集電体電極シートであって、
 前記集電体層の両面に、前記活物質を含むスラリを間欠的に塗布、乾燥して形成される、前記スラリの塗布領域と、非塗布領域と、を含み、
 前記塗布領域と前記非塗布領域は、帯状の前記集電体層の巻取方向に交互に形成され、
 各前記塗布領域の終端における尾引き部の長さの値が、加圧圧縮後の片面活物質層の厚さの値の12倍以下である、集電体電極シート。
2. シート状の集電体層の両面に活物質を含むスラリをダイヘッドから吐出させることによって、間欠的に塗布、乾燥して、前記スラリの塗布領域と、非塗布領域とを前記集電体層の巻取方向に交互に形成して集電体電極シートを製造する方法であって、
 前記塗布領域の始端部を形成する工程と、前記塗布領域の中央部を形成する工程と、前記塗布領域の終端部を形成する工程と、を含み、
 前記終端部を形成する工程において、前記ダイヘッドと前記集電体層の間隔が、前記中央部を形成する工程における前記ダイヘッドと前記集電体層の間隔よりも狭い状態で、前記スラリを前記ダイヘッドから吐出させる集電体電極シートの製造方法。
3. 2.に記載の集電体電極シートの製造方法において、
 前記塗布領域の終端部を形成する工程における、前記ダイヘッドと前記集電体層との間隔は、前記塗布領域の中央部を形成する工程における、前記ダイヘッドと前記集電体層との間隔の50%以上90%以下である、集電体電極シートの製造方法。
4. 3.に記載の集電体電極シートの製造方法において、
 前記塗布領域の終端部を形成する工程における、前記ダイヘッドと前記集電体層との間隔は、前記塗布領域の中央部を形成する工程における、前記ダイヘッドと前記集電体層との間隔の50%以上70%以下である、集電体電極シートの製造方法。
5. 2.乃至4.のいずれか1つに記載の集電体電極シートの製造方法において、
 間欠的にスラリを塗布して形成する各塗布領域における、塗布領域全体の長さの88%乃至93%の長さの点まで塗布が完了した時、前記塗布領域の中央部を形成する工程から、前記塗布領域の終端部を形成する工程に移行するために、前記ダイヘッドと前記集電体層との間隔を狭める処置を行う、集電体電極シートの製造方法。
6. 2.乃至5.のいずれか1つに記載の集電体電極シートの製造方法において、
 前記ダイヘッドと前記集電体層との間隔の変更は、前記ダイヘッドの移動によって行うものである、集電体電極シートの製造方法。
7. 2.乃至6.のいずれか1つに記載の集電体電極シートの製造方法を用いて製造された集電体電極シート。
8. シート状の集電体層の両面に正極活物質層を形成して正極集電体電極シートを形成する工程と、シート状の集電体層の両面に負極活物質層を形成して負極集電体電極シートを形成する工程と、前記正極集電体電極シートと前記負極集電体電極シートとをそれぞれ所定の大きさに切断して、それぞれ正極電極と、負極電極を形成する工程と、前記正極電極と、前記負極電極とを、セパレータを介して積層する工程と、を含む電池の製造方法であって、
 前記正極集電体電極シートを形成する工程および前記負極集電体電極シートを形成する工程のいずれか一方または両方が、2.乃至6.のいずれか1つに記載の集電体電極シートの製造方法の各工程を含む、電池の製造方法。
9. 正極と、負極と、電解質と、を少なくとも備えた電池であって、
 前記正極と負極のいずれか一方または両方が、1.又は7.に記載の集電体電極シートを所定の大きさに切断して形成したものである電極を含む電池。
 この出願は、2017年12月6日に出願された日本出願特願2017-234647号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (9)

  1.  シート状の集電体層の両面に活物質が塗布された集電体電極シートであって、
     前記集電体層の両面に、前記活物質を含むスラリを間欠的に塗布、乾燥して形成される、前記スラリの塗布領域と、非塗布領域と、を含み、
     前記塗布領域と前記非塗布領域は、帯状の前記集電体層の巻取方向に交互に形成され、
     各前記塗布領域の終端における尾引き部の長さの値が、加圧圧縮後の片面活物質層の厚さの値の12倍以下である、集電体電極シート。
  2.  シート状の集電体層の両面に活物質を含むスラリをダイヘッドから吐出させることによって、間欠的に塗布、乾燥して、前記スラリの塗布領域と、非塗布領域とを前記集電体層の巻取方向に交互に形成して集電体電極シートを製造する方法であって、
     前記塗布領域の始端部を形成する工程と、前記塗布領域の中央部を形成する工程と、前記塗布領域の終端部を形成する工程と、を含み、
     前記終端部を形成する工程において、前記ダイヘッドと前記集電体層の間隔が、前記中央部を形成する工程における前記ダイヘッドと前記集電体層の間隔よりも狭い状態で、前記スラリを前記ダイヘッドから吐出させる集電体電極シートの製造方法。
  3.  請求項2に記載の集電体電極シートの製造方法において、
     前記塗布領域の終端部を形成する工程における、前記ダイヘッドと前記集電体層との間隔は、前記塗布領域の中央部を形成する工程における、前記ダイヘッドと前記集電体層との間隔の50%以上90%以下である、集電体電極シートの製造方法。
  4.  請求項3に記載の集電体電極シートの製造方法において、
     前記塗布領域の終端部を形成する工程における、前記ダイヘッドと前記集電体層との間隔は、前記塗布領域の中央部を形成する工程における、前記ダイヘッドと前記集電体層との間隔の50%以上70%以下である、集電体電極シートの製造方法。
  5.  請求項2乃至4のいずれか1項に記載の集電体電極シートの製造方法において、
     間欠的にスラリを塗布して形成する各塗布領域における、塗布領域全体の長さの88%乃至93%の長さの点まで塗布が完了した時、前記塗布領域の中央部を形成する工程から、前記塗布領域の終端部を形成する工程に移行するために、前記ダイヘッドと前記集電体層との間隔を狭める処置を行う、集電体電極シートの製造方法。
  6.  請求項2乃至5のいずれか1項に記載の集電体電極シートの製造方法において、
     前記ダイヘッドと前記集電体層との間隔の変更は、前記ダイヘッドの移動によって行うものである、集電体電極シートの製造方法。
  7.  請求項2乃至6のいずれか1項に記載の集電体電極シートの製造方法を用いて製造された集電体電極シート。
  8.  シート状の集電体層の両面に正極活物質層を形成して正極集電体電極シートを形成する工程と、シート状の集電体層の両面に負極活物質層を形成して負極集電体電極シートを形成する工程と、前記正極集電体電極シートと前記負極集電体電極シートとをそれぞれ所定の大きさに切断して、それぞれ正極電極と、負極電極を形成する工程と、前記正極電極と、前記負極電極とを、セパレータを介して積層する工程と、を含む電池の製造方法であって、
     前記正極集電体電極シートを形成する工程および前記負極集電体電極シートを形成する工程のいずれか一方または両方が、請求項2乃至6のいずれか1項に記載の集電体電極シートの製造方法の各工程を含む、電池の製造方法。
  9.  正極と、負極と、電解質と、を少なくとも備えた電池であって、
     前記正極と負極のいずれか一方または両方が、請求項1又は7に記載の集電体電極シートを所定の大きさに切断して形成したものである電極を含む電池。
PCT/JP2018/041120 2017-12-06 2018-11-06 集電体電極シート、その製造方法、電池、およびその製造方法 WO2019111616A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880079029.XA CN111433944B (zh) 2017-12-06 2018-11-06 集电体电极片及其制造方法、电池及其制造方法
JP2019558085A JP6936873B2 (ja) 2017-12-06 2018-11-06 集電体電極シートの製造方法、および電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-234647 2017-12-06
JP2017234647 2017-12-06

Publications (1)

Publication Number Publication Date
WO2019111616A1 true WO2019111616A1 (ja) 2019-06-13

Family

ID=66751523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041120 WO2019111616A1 (ja) 2017-12-06 2018-11-06 集電体電極シート、その製造方法、電池、およびその製造方法

Country Status (3)

Country Link
JP (1) JP6936873B2 (ja)
CN (1) CN111433944B (ja)
WO (1) WO2019111616A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145061A1 (ja) * 2020-01-17 2021-07-22 パナソニックIpマネジメント株式会社 塗工方法及び塗布装置
CN113745627A (zh) * 2020-05-27 2021-12-03 松山湖材料实验室 柔性电池及其折叠电芯和制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055844A1 (ja) * 2002-12-16 2004-07-01 Dai Nippon Printing Co., Ltd. 電気二重層キャパシタ用の分極性電極及びその製造方法、並びに電気二重層キャパシタ
JP2004281234A (ja) * 2003-03-17 2004-10-07 Dainippon Printing Co Ltd 電極合剤層用スラリ及び電極極板、並びに非水電解液電池
JP2012030193A (ja) * 2010-08-02 2012-02-16 Toppan Printing Co Ltd 間欠塗工装置及び間欠塗工方法
JP2012169107A (ja) * 2011-02-14 2012-09-06 Toppan Printing Co Ltd 電池用電極の製造方法
JP2012245423A (ja) * 2011-05-25 2012-12-13 Panasonic Corp 塗布装置
WO2016186209A1 (ja) * 2015-05-20 2016-11-24 Necエナジーデバイス株式会社 二次電池用の電極および二次電池の製造方法と製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157076A (zh) * 2007-11-14 2008-04-09 中国乐凯胶片集团公司 一种极片涂布方法和涂布嘴
CN104011907B (zh) * 2011-12-27 2017-04-05 株式会社东芝 电极的制造方法以及非水电解质电池的制造方法
CN105489843A (zh) * 2015-12-29 2016-04-13 湖北宇电能源科技股份有限公司 一种安全锂离子动力电池正极极片的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055844A1 (ja) * 2002-12-16 2004-07-01 Dai Nippon Printing Co., Ltd. 電気二重層キャパシタ用の分極性電極及びその製造方法、並びに電気二重層キャパシタ
JP2004281234A (ja) * 2003-03-17 2004-10-07 Dainippon Printing Co Ltd 電極合剤層用スラリ及び電極極板、並びに非水電解液電池
JP2012030193A (ja) * 2010-08-02 2012-02-16 Toppan Printing Co Ltd 間欠塗工装置及び間欠塗工方法
JP2012169107A (ja) * 2011-02-14 2012-09-06 Toppan Printing Co Ltd 電池用電極の製造方法
JP2012245423A (ja) * 2011-05-25 2012-12-13 Panasonic Corp 塗布装置
WO2016186209A1 (ja) * 2015-05-20 2016-11-24 Necエナジーデバイス株式会社 二次電池用の電極および二次電池の製造方法と製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145061A1 (ja) * 2020-01-17 2021-07-22 パナソニックIpマネジメント株式会社 塗工方法及び塗布装置
CN113745627A (zh) * 2020-05-27 2021-12-03 松山湖材料实验室 柔性电池及其折叠电芯和制作方法

Also Published As

Publication number Publication date
JP6936873B2 (ja) 2021-09-22
CN111433944A (zh) 2020-07-17
CN111433944B (zh) 2023-05-26
JPWO2019111616A1 (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
JP6531652B2 (ja) 非水電解質二次電池用負極
JP7144433B2 (ja) 集電体電極シートの製造方法
JP6237791B2 (ja) 非水電解質二次電池用負極
JP7372045B2 (ja) リチウムイオン二次電池用の正極電極、リチウムイオン二次電池用の正極電極シート、その製造方法
JP6038813B2 (ja) 電極の製造方法及び非水電解質電池の製造方法
JP7281944B2 (ja) リチウムイオン二次電池用の正極電極、リチウムイオン二次電池用の正極電極シート、その製造方法
KR102202013B1 (ko) 전기화학소자용 전극 및 이를 제조하는 방법
WO2015001871A1 (ja) 非水電解液二次電池及びその製造方法
JP6542755B2 (ja) リチウムイオン二次電池用黒鉛系活物質材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2019111616A1 (ja) 集電体電極シート、その製造方法、電池、およびその製造方法
JP2019145378A (ja) 圧縮装置、集電体電極シートの製造方法、集電体電極シート、および電池
JP2014026932A (ja) 非水電解液二次電池及びその製造方法
WO2019082575A1 (ja) 集電体電極シートの製造方法、圧縮ローラ、集電体電極シート、および電池
JP2018170142A (ja) リチウムイオン二次電池
JP6237777B2 (ja) 負極活物質、それを用いた負極、及びリチウムイオン二次電池
WO2013098969A1 (ja) 電極の製造方法及び非水電解質電池の製造方法
JP2020091944A (ja) 集電体電極シートの製造方法および集電体電極シート、ならびに、電池
WO2020116080A1 (ja) 集電体電極シートおよび電池
WO2019077931A1 (ja) 電極の製造方法、電極および電池
JP6128228B2 (ja) 負極活物質、それを用いた負極、及びリチウムイオン二次電池
JP2008226555A (ja) 非水電解質電池
JP2015187961A (ja) 蓄電デバイスの製造装置および蓄電デバイスの製造方法
JP2019133786A (ja) 圧縮装置、集電体電極シートの製造方法、集電体電極シート、および電池
JPWO2013098969A1 (ja) 電極の製造方法及び非水電解質電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558085

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886756

Country of ref document: EP

Kind code of ref document: A1