WO2019111453A1 - 三次元計測装置 - Google Patents
三次元計測装置 Download PDFInfo
- Publication number
- WO2019111453A1 WO2019111453A1 PCT/JP2018/031883 JP2018031883W WO2019111453A1 WO 2019111453 A1 WO2019111453 A1 WO 2019111453A1 JP 2018031883 W JP2018031883 W JP 2018031883W WO 2019111453 A1 WO2019111453 A1 WO 2019111453A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- predetermined
- measurement
- axis direction
- imaging
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/021—Interferometers using holographic techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02001—Interferometers characterised by controlling or generating intrinsic radiation properties
- G01B9/02007—Two or more frequencies or sources used for interferometric measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02041—Interferometers characterised by particular imaging or detection techniques
- G01B9/02047—Interferometers characterised by particular imaging or detection techniques using digital holographic imaging, e.g. lensless phase imaging without hologram in the reference path
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02083—Interferometers characterised by particular signal processing and presentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/521—Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2210/00—Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
- G01B2210/56—Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/70—Using polarization in the interferometer
Definitions
- the present invention relates to a three-dimensional measurement apparatus that measures the shape of an object to be measured.
- a three-dimensional measurement apparatus for measuring the shape of an object to be measured
- a three-dimensional measurement apparatus using an interferometer is known.
- a three-dimensional measurement device or the like that performs measurement by a phase shift method based on a plurality of interference fringe images having different phases (for example, see Patent Document 1).
- half (for example, 750 nm) of the wavelength (for example, 1500 nm) of the measurement light is a measurable measurement range (dynamic range).
- the measurement range may be insufficient, and the shape of the measurement object may not be measured properly.
- the wavelength of the measurement light is increased, the resolution becomes coarse, and the measurement accuracy may be deteriorated.
- Patent Document 2 Although it is possible to measure the height beyond the measurement range, it is necessary to provide a focal point moving mechanism, which may complicate the configuration.
- the present invention has been made in view of the above circumstances and the like, and an object thereof is to provide a three-dimensional measurement apparatus capable of improving measurement efficiency while improving measurement accuracy.
- the predetermined light to be incident is divided into two lights, and one of the lights can be irradiated as a measurement light to the object to be measured (for example, a wafer substrate), and the other light can be irradiated as a reference light to the reference surface.
- a predetermined optical system specifically optical system
- An irradiation unit capable of emitting predetermined light to be incident on the predetermined optical system;
- An imaging unit capable of imaging the output light emitted from the predetermined optical system;
- An image processing means capable of performing three-dimensional measurement relating to a predetermined measurement area (the entire area or part of the object to be measured) of the object to be measured based on the interference fringe image (hologram) obtained by imaging by the imaging means
- the image processing means Image data capable of acquiring intensity image data of a predetermined position in the optical axis direction at each coordinate position of the measurement area by reconstruction based on an interference fringe image related to the measurement area obtained by imaging by the imaging means Acquisition means, Phase information acquisition means capable of acquiring phase information of light at a predetermined position in the optical axis direction at each coordinate position of the measurement area by reproduction based on an interference fringe image related to the measurement area obtained by imaging by the imaging means When, Based on intensity image data at a predetermined position in the optical axis direction at a predetermined coordinate position of the measurement area acquired by the
- the predetermined measurement range interval is determined in the optical axis direction.
- the order specifying means for specifying an order corresponding to the predetermined position in the optical axis direction among the determined orders as the order related to the predetermined coordinate position; Three-dimensional measurement according to the predetermined coordinate position based on phase information according to the predetermined coordinate position acquired by the phase information acquisition means and an order according to the predetermined coordinate position specified by the order specifying means And a three-dimensional measurement means capable of performing the measurement).
- the "predetermined optical system” includes not only “an optical system that internally interferes with reference light and measurement light and then outputs it as interference light”, but also “without interference between reference light and measurement light internally. Also included is an optical system that simply outputs as combined light. However, when the “output light” output from the “predetermined optical system” is the “combined light”, at least before the imaging by the “imaging device” to capture the “interference fringe image”, It will be converted into “interference light” via a predetermined interference means.
- the predetermined light to be incident is divided into two lights, and one of the lights can be irradiated on the object to be measured as measurement light, and An optical system capable of emitting the other light as a reference light to the reference surface and combining these again can be referred to as an “interference optical system”. Therefore, in the above means 1 (the same applies to the following means), "predetermined optical system (specific optical system)" may be replaced with “interference optical system”.
- the predetermined light to be incident is divided into two lights, and one of the lights can be irradiated as a measurement light to the object to be measured (for example, a wafer substrate), and the other light can be irradiated as a reference light to the reference surface.
- a predetermined optical system specifically optical system
- An irradiation unit capable of emitting predetermined light to be incident on the predetermined optical system;
- An imaging unit capable of imaging the output light emitted from the predetermined optical system;
- An image processing means capable of performing three-dimensional measurement relating to a predetermined measurement area (the entire area or part of the object to be measured) of the object to be measured based on the interference fringe image (hologram) obtained by imaging by the imaging means And a three-dimensional measuring device,
- the image processing means The intensity image data of a predetermined position in the optical axis direction at each coordinate position of the measurement area is reconstructed by reconstruction based on the interference fringe image of the measurement area obtained by imaging by the imaging unit, at least in the optical axis direction
- a plurality of image data acquisition means that can be acquired in a predetermined range at intervals of a predetermined measurement range n cycles (n is a natural number of 1 or more); Based on the plurality of intensity image data related to the predetermined coordinate position of the measurement area acquired by the image data acquisition means, a pre
- the predetermined light to be incident is divided into two lights, and one of the lights can be irradiated as a measurement light to the object to be measured (for example, a wafer substrate), and the other light can be irradiated as a reference light to the reference surface.
- a predetermined optical system specifically optical system
- An irradiation unit capable of emitting predetermined light to be incident on the predetermined optical system;
- An imaging unit capable of imaging the output light emitted from the predetermined optical system;
- An image processing means capable of performing three-dimensional measurement relating to a predetermined measurement area (the entire area or part of the object to be measured) of the object to be measured based on the interference fringe image (hologram) obtained by imaging by the imaging means and a three-dimensional measuring device,
- the image processing means At least the optical axis of the intensity image data of the predetermined position in the optical axis direction in a part of the specific areas set in advance in the measurement area by reconstruction based on the interference fringe image obtained by the imaging means.
- First image data acquisition means that can be acquired in a plurality of ways at intervals of a predetermined measurement range n cycles (n is a natural number of 1 or more) in a first direction range;
- First focusing position determination means for determining a predetermined optical axis direction focusing position in the specific area based on the plurality of intensity image data of the specific area acquired by the first image data acquisition means;
- the intensity image data of a predetermined position in the optical axis direction at each coordinate position of the measurement area is reproduced by reproducing based on the interference fringe image of the measurement area obtained by imaging by the imaging means, the optical axis direction in the specific area
- Second image data acquisition means capable of acquiring a plurality of ways at intervals of a predetermined measurement range n cycles (n is a natural number of 1 or more) at least in a second range in the optical axis direction set based on the in-focus position;
- the same function and effect as the means 1 and 2 can be obtained.
- intensity image data at a plurality of positions in the optical axis direction is acquired not for the entire measurement area but only for a part of the specific area (limited narrow area) preset in the measurement area.
- the position of the object to be measured in the optical axis direction is specified from the in-focus state.
- intensity image data at a plurality of positions in the optical axis direction is acquired based on the in-focus position of the specific area.
- Means 4 The three-dimensional measurement apparatus according to any one of the means 1 to 3, wherein the reproduction is performed by acquiring complex amplitude data at a predetermined position in the optical axis direction based on the interference fringe image.
- Phase shift means for giving a relative phase difference between the reference light and the measurement light;
- the image processing means A predetermined measurement of the object based on a plurality of interference fringe images obtained by the imaging unit imaging the output light phase-shifted into a plurality of (for example, 3 or 4) phases by the phase shift unit.
- the three-dimensional measurement apparatus according to any one of the means 1 to 4, which is configured to be able to execute measurement related to a region.
- the irradiation means is First irradiation means capable of emitting first light including polarized light of a first wavelength to be incident on the predetermined optical system; And a second irradiation unit capable of emitting second light including polarized light of a second wavelength to be incident on the predetermined optical system,
- the imaging means is First imaging means capable of imaging output light related to the first light emitted from the predetermined optical system by causing the first light to be incident on the predetermined optical system; And a second imaging unit capable of imaging output light of the second light emitted from the predetermined optical system by causing the second light to be incident on the predetermined optical system.
- the three-dimensional measurement device according to any one of the means 1 to 5.
- the measurement range can be expanded.
- the “first light” irradiated from the “first irradiation means” may be light including at least “polarization of the first wavelength (first polarization)”, and then cut in “predetermined optical system” It may be light (for example, “non-polarized light” or “circularly polarized light”) containing other extra components.
- the "second light” emitted from the “second irradiating means” may be light including at least “polarization of the second wavelength (second polarization)", and then in the "predetermined optical system” It may be light including other extra components to be cut (for example, “non-polarization” or “circular polarization”).
- the output light related to the first light output from the “predetermined optical system (specific optical system)” may be a “combined light of the reference light related to the first light and the measurement light, or the combined light.
- the output light related to the second light includes the combined light of the reference light and the measurement light related to the second light, or the interference light in which the combined light is interfered. .
- Means 7 The three-dimensional measurement apparatus according to any one of the means 1 to 6, wherein the object to be measured is a wafer substrate on which bumps are formed.
- the above-described means 7 it is possible to measure the bumps formed on the wafer substrate. As a result, in the inspection of the bump, it is possible to determine the quality of the bump based on the measured value. Therefore, in the inspection, the operation and effect of each of the above-described means are exhibited, and the quality determination can be performed with high accuracy. As a result, the inspection accuracy and inspection efficiency in the bump inspection apparatus can be improved.
- the three-dimensional measurement apparatus is a measurement apparatus that performs three-dimensional measurement using digital holography.
- digital holography refers to a technique for acquiring an interference fringe image (hologram) and reconstructing the image from it.
- FIG. 1 is a schematic view showing a schematic configuration of a three-dimensional measurement device 1 according to the present embodiment
- FIG. 2 is a block diagram showing an electrical configuration of the three-dimensional measurement device 1.
- X-axis direction the front and back direction of the paper surface of FIG. 1
- Y-axis direction the up and down direction of the paper surface
- Z-axis direction the left and right direction on the paper surface
- the three-dimensional measurement apparatus 1 is configured based on the principle of a Michelson interferometer, and two light projection systems 2A and 2B (first light projection systems 2A, A second light projection system 2B), an interference optical system 3 into which light emitted from each of the light emission systems 2A and 2B is incident, and an imaging means capable of imaging the light emitted from the interference optical system 3
- control device 5 constitutes the “image processing means” in the present embodiment
- the “interference optical system 3” constitutes the “predetermined optical system (specific optical system)” in the present embodiment.
- predetermined incident light is divided into two lights (measurement light and reference light), and An optical system that produces an optical path difference in one light and combines and outputs it again is referred to as an “interference optical system”. That is, not only an optical system that internally interferes two lights but then outputs interference light, but also an optical system that simply outputs combined light without interfering two lights internally, “interference optical system” It is called.
- interference light is obtained via a predetermined interference means.
- the first light projection system 2A includes a first light emitting unit 11A, a first optical isolator 12A, a first non-polarization beam splitter 13A, and the like.
- the "first light emitting unit 11A” constitutes the "first irradiation unit” in the present embodiment.
- the first light emitting unit 11A is a laser light source capable of outputting linear polarized light of a specific wavelength ⁇ 1 , a beam expander that expands the linear polarized light output from the laser light source and emits it as parallel light
- a polarizing plate for performing adjustment, a half-wave plate for adjusting the polarization direction, and the like are provided.
- the light is emitted leftward in the Z-axis direction.
- the “wavelength ⁇ 1 ” corresponds to the “first wavelength” in the present embodiment.
- the light of the wavelength lambda 1 emitted from the first light emitting portion 11A referred to as "first light”.
- the first optical isolator 12A is an optical element that transmits only light traveling in one direction (left direction in the Z-axis direction in this embodiment) and blocks light in the opposite direction (right direction in the Z-axis direction in this embodiment). As a result, only the first light emitted from the first light emitting unit 11A is transmitted, and damage or destabilization of the first light emitting unit 11A due to the return light can be prevented.
- the first non-polarizing beam splitter 13A is a known cube-shaped optical member in which a right-angle prism (a triangular prism having a bottom of a right-angled isosceles triangle as a base, and the same applies hereinafter) is integrated. For example, a coating such as a metal film is applied to 13 Ah.
- the "first non-polarization beam splitter 13A" constitutes the "first light guiding means" in the present embodiment.
- the non-polarization beam splitter divides incident light into transmitted light and reflected light at a predetermined ratio, including the polarization state.
- a so-called half mirror having a division ratio of 1: 1 is employed. That is, the P polarization component and the S polarization component of the transmitted light, and the P polarization component and the S polarization component of the reflected light are all divided at the same ratio, and the polarization states of the transmitted light and the reflected light are the polarization states of the incident light Will be the same.
- linearly polarized light whose polarization direction is a direction parallel to the paper surface of FIG. 1 (Y-axis direction or Z-axis direction) is called P polarization (P polarization component), and X perpendicular to the paper surface of FIG.
- P polarization component linearly polarized light whose polarization direction is the axial direction
- S-polarization component linearly polarized light whose polarization direction is the axial direction
- the first non-polarization beam splitter 13A is disposed such that one of two adjacent surfaces sandwiching the junction surface 13Ah is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 13Ah of the first non-polarization beam splitter 13A is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction. More specifically, a portion (half) of the first light incident from the first light emitting unit 11A in the Z-axis direction left direction is transmitted leftward in the Z-axis direction via the first optical isolator 12A, and the remaining (half) is Y It is arranged to reflect axially downward.
- the second light projection system 2B includes a second light emitting unit 11B, a second optical isolator 12B, a second non-polarization beam splitter 13B, and the like.
- the "second light emitting unit 11B” constitutes the “second irradiation unit” in the present embodiment.
- the second light emitting unit 11B is a laser light source capable of outputting linearly polarized light of a specific wavelength ⁇ 2 or a beam extract that expands the linearly polarized light outputted from the laser light source and emits it as parallel light.
- a panda, a polarizing plate for adjusting the intensity, a half-wave plate for adjusting the polarization direction, and the like are provided.
- the “wavelength ⁇ 2 ” corresponds to the “second wavelength” in the present embodiment.
- the light of the wavelength lambda 2 emitted from the second light emitting portion 11B referred to as "second light”.
- the second optical isolator 12B transmits only light traveling in one direction (upward in the Y-axis direction in this embodiment) and blocks light in the reverse direction (downward in the Y-axis direction in this embodiment) Optical element. As a result, only the second light emitted from the second light emitting unit 11B is transmitted, and damage or destabilization of the second light emitting unit 11B due to the return light can be prevented.
- the second non-polarization beam splitter 13B is a known cube-shaped optical member in which right angle prisms are bonded and integrated, and a bonding film such as a metal film is formed on the bonding surface 13Bh. It is coated.
- the "second non-polarization beam splitter 13B" constitutes the "second light guiding means" in the present embodiment.
- the second non-polarizing beam splitter 13B is disposed such that one of two adjacent surfaces sandwiching the junction surface 13Bh is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 13Bh of the second non-polarization beam splitter 13B is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction. More specifically, a part (half) of the second light incident upward from the second light emitting unit 11B in the Y-axis direction is transmitted upward in the Y-axis direction through the second optical isolator 12B, and the other (half) is transmitted as Z It is arranged to reflect in the axial right direction.
- the interference optical system 3 includes a polarization beam splitter (PBS) 20, quarter wavelength plates 21 and 22, a reference surface 23, an installation unit 24, and the like.
- PBS polarization beam splitter
- the polarization beam splitter 20 is a known cube-shaped optical member in which right-angle prisms are bonded and integrated, and a bonding surface (boundary surface) 20h is coated with, for example, a dielectric multilayer film.
- the polarization beam splitter 20 is for dividing linearly polarized incident light into two polarization components (P polarization component and S polarization component) whose polarization directions are orthogonal to each other.
- the polarization beam splitter 20 in the present embodiment is configured to transmit the P-polarization component and reflect the S-polarization component.
- the polarization beam splitter 20 is disposed such that one of two adjacent surfaces sandwiching the bonding surface 20 h is orthogonal to the Y-axis direction and the other is orthogonal to the Z-axis direction. That is, the bonding surface 20 h of the polarization beam splitter 20 is arranged to be inclined 45 ° with respect to the Y-axis direction and the Z-axis direction.
- the first surface (upper surface in the Y-axis direction) 20a of the polarization beam splitter 20 to which the first light reflected downward in the Y-axis direction from the first non-polarization beam splitter 13A is incident, and the first surface 20a And a third surface (lower side surface in the Y-axis direction) 20c facing each other are disposed to be orthogonal to the Y-axis direction.
- the “first surface 20 a of the polarization beam splitter 20” corresponds to the “first input / output unit” in the present embodiment.
- the second surface of the polarization beam splitter 20 which is adjacent to the first surface 20a with the bonding surface 20h interposed therebetween and into which the second light reflected to the right in the Z-axis direction from the second non-polarization beam splitter 13B is incident.
- a (left side surface in the Z-axis direction) 20b and a fourth surface (right side surface in the Z-axis direction) 20d opposite to the second surface 20b are disposed to be orthogonal to the Z-axis direction.
- the “second surface 20 b of the polarization beam splitter 20” corresponds to the “second input / output unit” in the present embodiment.
- the quarter wavelength plate 21 is disposed so as to face the third surface 20 c of the polarization beam splitter 20 in the Y axis direction, and the reference plane so as to face the quarter wavelength plate 21 in the Y axis direction. 23 are arranged.
- the quarter-wave plate 21 has a function of converting linearly polarized light into circularly polarized light and converting circularly polarized light into linearly polarized light. That is, linearly polarized light (reference light) emitted from the third surface 20 c of the polarization beam splitter 20 is converted to circularly polarized light through the 1 ⁇ 4 wavelength plate 21 and then irradiated to the reference surface 23. The reference light reflected by the reference surface 23 is converted from circularly polarized light into linearly polarized light again through the 1 ⁇ 4 wavelength plate 21, and then enters the third surface 20 c of the polarization beam splitter 20.
- linearly polarized light reference light
- the reference light reflected by the reference surface 23 is converted from circularly polarized light into linearly polarized light again through the 1 ⁇ 4 wavelength plate 21, and then enters the third surface 20 c of the polarization beam splitter 20.
- the quarter wavelength plate 22 is disposed so as to face the fourth surface 20 d of the polarization beam splitter 20 in the Z axis direction, and the installation portion so as to face the quarter wavelength plate 22 in the Z axis direction. 24 are arranged.
- the quarter-wave plate 22 has a function of converting linearly polarized light into circularly polarized light and converting circularly polarized light into linearly polarized light. That is, linearly polarized light (measurement light) emitted from the fourth surface 20 d of the polarization beam splitter 20 is converted into circularly polarized light through the 1 ⁇ 4 wavelength plate 22 and then placed as an object to be measured placed on the installation portion 24. It is irradiated to work W of this. The measurement light reflected by the work W is again converted from circularly polarized light into linearly polarized light through the 1 ⁇ 4 wavelength plate 22 and then enters the fourth surface 20 d of the polarization beam splitter 20.
- the first imaging system 4A includes a 1 ⁇ 4 wavelength plate 31A, a first polarizing plate 32A, and a first camera 33A constituting a first imaging unit.
- the 1 ⁇ 4 wavelength plate 31A is for converting linearly polarized light (reference light component of the first light and measurement light component) transmitted through the second non-polarization beam splitter 13B in the Z-axis direction to the left into circularly polarized light, respectively. is there.
- the first polarizing plate 32A selectively transmits each component of the first light converted into circularly polarized light by the 1 ⁇ 4 wavelength plate 31A. Thereby, it is possible to cause the reference light component of the first light and the measurement light component in different rotational directions to interfere with each other with respect to a specific phase.
- the "first polarizing plate 32A" constitutes the “phase shift means” and the “interference means” in the present embodiment.
- the first polarizing plate 32A is configured to be rotatable about the Z-axis direction, and is controlled so that the transmission axis direction changes by 45 °. Specifically, the transmission axis direction changes so as to be “0 °”, “45 °”, “90 °”, and “135 °” with respect to the Y-axis direction.
- the reference light component and the measurement light component of the first light transmitted through the first polarizing plate 32A can be interfered with each other in four phases. That is, it is possible to generate interference light whose phase differs by 90 °. Specifically, interference light with a phase of "0 °”, interference light with a phase of "90 °”, interference light with a phase of "180 °”, and interference light with a phase of "270 °” can be generated. .
- the first camera 33A is a known camera including a lens, an image sensor 33Aa (see FIG. 6), and the like.
- a CCD area sensor is employed as the imaging device 33Aa of the first camera 33A.
- the imaging device 33Aa is not limited to this, and, for example, a CMOS area sensor or the like may be adopted.
- the image data captured by the first camera 33A is converted into a digital signal in the first camera 33A and then input to the control device 5 (image data storage device 54) in the form of a digital signal. There is.
- an interference fringe image of phase “0 °”, an interference fringe image of phase “90 °”, an interference fringe image of phase “180 °”, and an interference fringe image of phase “270 °” related to the first light An image is taken by the first camera 33A.
- the second imaging system 4B includes a 1 ⁇ 4 wavelength plate 31B, a second polarizing plate 32B, and a second camera 33B constituting a second imaging means.
- the 1 ⁇ 4 wavelength plate 31B is for converting linearly polarized light (reference light component and measurement light component of the second light) transmitted through the first non-polarization beam splitter 13A upward in the Y-axis direction into circularly polarized light. is there.
- the second polarizing plate 32B selectively transmits each component of the second light converted into circularly polarized light by the 1 ⁇ 4 wavelength plate 31B. Thereby, it is possible to cause the reference light component and the measurement light component of the second light in different rotational directions to interfere with each other in a specific phase.
- the "second polarizing plate 32B" constitutes the “phase shift means” and the “interference means” in the present embodiment.
- the second polarizing plate 32B is configured to be rotatable with the Y axis direction as an axis, and is controlled so that the transmission axis direction changes by 45 °. Specifically, the transmission axis direction changes so as to be “0 °”, “45 °”, “90 °”, and “135 °” with respect to the X-axis direction.
- interference light with a phase of "0 °”, interference light with a phase of "90 °”, interference light with a phase of "180 °”, and interference light with a phase of "270 °” can be generated. .
- the second camera 33B is a known camera including a lens, an image sensor 33Ba (see FIG. 6), and the like.
- a CCD area sensor is employed as the imaging device 33Ba of the second camera 33B.
- the imaging device 33Ba is not limited to this, and, for example, a CMOS area sensor or the like may be adopted.
- the image data captured by the second camera 33B is converted to a digital signal in the second camera 33B, and then converted to a digital signal in the control device 5 (image data storage device 54). It is supposed to be input.
- an interference fringe image of phase "0 °”, an interference fringe image of phase "90 °”, an interference fringe image of phase "180 °”, and an interference fringe image of phase "270 °” related to the second light An image is taken by the second camera 33B.
- the control device 5 includes a CPU and an input / output interface 51 that controls the entire three-dimensional measurement device 1, an input device 52 as an “input unit” configured of a keyboard, a mouse, or a touch panel Display device 53 as a "display means" having a display screen such as a liquid crystal screen, an image data storage device 54 for sequentially storing image data etc. captured by the cameras 33A and 33B, computation for storing various computation results
- the result storage device 55 includes a setting data storage device 56 for storing various information in advance.
- the respective devices 52 to 56 are electrically connected to the CPU and the input / output interface 51.
- the optical path of the first light will be described with reference to FIG.
- the first light wavelength lambda 1 polarization direction linearly polarized light inclined by 45 ° with respect to the X-axis direction and the Y-axis direction
- the first light wavelength lambda 1 is emitted in the Z-axis direction leftward from the first light emitting portion 11A.
- the first light emitted from the first light emitting unit 11A passes through the first optical isolator 12A and enters the first non-polarization beam splitter 13A. Part of the first light incident on the first non-polarization beam splitter 13A is transmitted leftward in the Z-axis direction, and the rest is reflected downward in the Y-axis direction.
- the first light reflected downward in the Y-axis direction (linearly polarized light whose polarization direction is inclined 45 ° with respect to the X-axis direction and the Z-axis direction) is incident on the first surface 20 a of the polarization beam splitter 20.
- the first light transmitted leftward in the Z-axis direction becomes abandoned light without entering any optical system or the like.
- the first light incident downward from the first surface 20a of the polarization beam splitter 20 in the Y-axis direction has its P-polarization component transmitted downward in the Y-axis direction and emitted from the third surface 20c as reference light, while its S The polarized light component is reflected rightward in the Z-axis direction and emitted from the fourth surface 20d as measurement light.
- the reference light (P-polarized light) related to the first light emitted from the third surface 20 c of the polarization beam splitter 20 is converted into clockwise circularly polarized light by passing through the 1 ⁇ 4 wavelength plate 21, and then the reference surface 23. To reflect. Here, the rotational direction with respect to the light traveling direction is maintained. Thereafter, the reference light relating to the first light passes through the quarter-wave plate 21 again, so that the clockwise circularly polarized light is converted to S-polarized light, and then re-converted to the third surface 20 c of the polarization beam splitter 20. It will be incident.
- the measurement light (S-polarized light) related to the first light emitted from the fourth surface 20 d of the polarization beam splitter 20 is converted into counterclockwise circularly polarized light by passing through the 1 ⁇ 4 wavelength plate 22, Reflect at W.
- the rotational direction with respect to the light traveling direction is maintained.
- the measurement light relating to the first light passes through the 1 ⁇ 4 wavelength plate 22 again, so that the left-handed circularly polarized light is converted to P-polarized light, and then retransmitted to the fourth surface 20d of the polarization beam splitter 20. It will be incident.
- the reference light (S-polarized light) related to the first light re-incident from the third surface 20 c of the polarization beam splitter 20 is reflected leftward in the Z-axis direction by the junction surface 20 h and re-incident from the fourth surface 20 d
- the measurement light (P-polarized light) related to the first light transmits the bonding surface 20 h leftward in the Z-axis direction. Then, combined light in a state in which the reference light and measurement light related to the first light are combined is emitted from the second surface 20 b of the polarization beam splitter 20 as output light.
- the combined light (reference light and measurement light) related to the first light emitted from the second surface 20 b of the polarization beam splitter 20 is incident on the second non-polarization beam splitter 13 B.
- Part of the combined light relating to the first light incident on the second non-polarizing beam splitter 13B in the left Z direction is transmitted left in the Z direction, and the rest is reflected downward in the Y direction.
- the combined light (reference light and measurement light) transmitted leftward in the Z-axis direction is incident on the first imaging system 4A.
- the combined light reflected downward in the Y-axis direction is blocked by the second optical isolator 12B and becomes abandoned light.
- the combined light (reference light and measurement light) of the first light incident on the first imaging system 4A is first converted by the 1 ⁇ 4 wavelength plate 31A to a counterclockwise circularly polarized light of the reference light component (S polarization component) And the measurement light component (P polarization component) is converted to clockwise circular polarization.
- the counterclockwise circularly polarized light and the clockwise circularly polarized light do not interfere with each other because the rotational directions are different.
- the synthetic light according to the first light subsequently passes through the first polarizing plate 32A, so that the reference light component and the measurement light component interfere with each other in a phase according to the angle of the first polarizing plate 32A. Then, the interference light relating to the first light is imaged by the first camera 33A.
- second light of wavelength ⁇ 2 (linearly polarized light whose polarization direction is inclined 45 ° with respect to the X-axis direction and the Z-axis direction) is emitted upward from the second light emitting unit 11B in the Y-axis direction.
- the second light emitted from the second light emitting unit 11B passes through the second optical isolator 12B and enters the second non-polarizing beam splitter 13B.
- Part of the second light incident on the second non-polarizing beam splitter 13B is transmitted upward in the Y-axis direction, and the other part is reflected rightward in the Z-axis direction.
- the second light (linearly polarized light whose polarization direction is inclined 45 ° with respect to the X-axis direction and the Y-axis direction) reflected to the right in the Z-axis direction is incident on the second surface 20 b of the polarization beam splitter 20.
- the second light transmitted upward in the Y-axis direction becomes abandoned light without entering any optical system or the like.
- the second light incident from the second surface 20b of the polarization beam splitter 20 rightward in the Z-axis direction has its S-polarization component reflected downward in the Y-axis direction and emitted from the third surface 20c as reference light, while its P
- the polarized light component is transmitted rightward in the Z-axis direction and emitted from the fourth surface 20d as measurement light.
- the reference light (S-polarized light) related to the second light emitted from the third surface 20 c of the polarization beam splitter 20 is converted into counterclockwise circularly polarized light by passing through the 1 ⁇ 4 wavelength plate 21, and then the reference surface 23. To reflect. Here, the rotational direction with respect to the light traveling direction is maintained. Thereafter, the reference light relating to the second light passes through the 1 ⁇ 4 wavelength plate 21 again, so that the left-handed circularly polarized light is converted to P-polarized light and then re-transmitted to the third surface 20 c of the polarization beam splitter 20. It will be incident.
- measurement light (P-polarized light) related to the second light emitted from the fourth surface 20 d of the polarization beam splitter 20 is converted into clockwise circularly polarized light by passing through the 1 ⁇ 4 wavelength plate 22, Reflect at W.
- the rotational direction with respect to the light traveling direction is maintained.
- the measurement light relating to the second light passes through the 1 ⁇ 4 wavelength plate 22 again, so that it is converted from clockwise circularly polarized light to S polarized light and then re-converted to the fourth surface 20d of the polarization beam splitter 20. It will be incident.
- the reference light (P polarized light) related to the second light re-incident from the third surface 20 c of the polarization beam splitter 20 transmits the bonding surface 20 h upward in the Y-axis direction, and re-incidents from the fourth surface 20 d
- the measurement light (S-polarized light) relating to the two lights is reflected upward in the Y-axis direction at the bonding surface 20 h.
- combined light in a state in which the reference light and measurement light related to the second light are combined is emitted from the first surface 20 a of the polarization beam splitter 20 as output light.
- the combined light (reference light and measurement light) related to the second light emitted from the first surface 20a of the polarization beam splitter 20 is incident on the first non-polarization beam splitter 13A.
- Part of the combined light of the second light incident upward in the Y-axis direction with respect to the first non-polarization beam splitter 13A is transmitted upward in the Y-axis direction, and the rest is reflected rightward in the Z-axis direction.
- the combined light (reference light and measurement light) transmitted upward in the Y-axis direction is incident on the second imaging system 4B.
- the combined light reflected to the right in the Z-axis direction is blocked by the first optical isolator 12A to be discarded light.
- the combined light (reference light and measurement light) of the second light incident on the second imaging system 4B is first converted by the 1 ⁇ 4 wavelength plate 31B into a circularly polarized light whose reference light component (P polarization component) is clockwise. And the measurement light component (S polarization component) is converted to counterclockwise circularly polarized light.
- the counterclockwise circularly polarized light and the clockwise circularly polarized light do not interfere with each other because the rotational directions are different.
- the combined light according to the second light subsequently passes through the second polarizing plate 32B, so that the reference light component and the measurement light component interfere with each other in a phase according to the angle of the second polarizing plate 32B. Then, the interference light relating to the second light is imaged by the second camera 33B.
- the imaging device 33Aa surface of the first camera 33A or the imaging device 33Ba surface of the second camera 33B is an xy plane, and the optical axis direction orthogonal to this is the z direction Explain as.
- the coordinate system (x, y, z) and the coordinate system (X, Y, Z) for describing the whole three-dimensional measurement apparatus 1 are different coordinate systems.
- step S1 a process of acquiring an interference fringe image relating to a predetermined measurement area of the workpiece W (the entire region or a part of the workpiece W) is executed.
- a process of acquiring an interference fringe image relating to a predetermined measurement area of the workpiece W (the entire region or a part of the workpiece W) is executed.
- four interference fringe images different in phase relating to the first light and four interference fringe images different in phase relating to the second light are acquired here. Details will be described below.
- the transmission axis direction of the first polarizing plate 32A of the first imaging system 4A is set to a predetermined reference position (for example, "0.degree.”)
- the second imaging system 4B The transmission axis direction of the polarizing plate 32B is set to a predetermined reference position (for example, "0 °").
- the second light is emitted from the second light projecting system 2B.
- combined light (reference light and measurement light) relating to the first light is emitted from the second surface 20 b of the polarization beam splitter 20 of the interference optical system 3, and at the same time, the first surface 20 a of the polarization beam splitter 20
- the combined light (reference light and measurement light) relating to 2 light is emitted.
- the combined light related to the first light emitted from the second surface 20b of the polarization beam splitter 20 is imaged by the first imaging system 4A, and at the same time, the second light emitted from the first surface 20a of the polarization beam splitter 20
- the combined light is imaged by the second imaging system 4B.
- the transmission axis directions of the first polarizing plate 32A and the second polarizing plate 32B are respectively set to "0 °"
- the interference fringes of the phase "0 °” related to the first light in the first camera 33A An image is captured, and the second camera 33B captures an interference fringe image of the phase “0 °” related to the second light.
- image data captured by each of the cameras 33A and 33B is output to the control device 5.
- the control device 5 stores the input image data in the image data storage device 54.
- the control device 5 performs switching processing of the first polarizing plate 32A of the first imaging system 4A and the second polarizing plate 32B of the second imaging system 4B. Specifically, the first polarizing plate 32A and the second polarizing plate 32B are each rotationally displaced to a position where the transmission axis direction is "45 °".
- the control device 5 performs a second imaging process similar to the above-described series of first imaging processes. That is, the control device 5 irradiates the first light from the first light projection system 2A and at the same time irradiates the second light from the second light projection system 2B, and the first light emitted from the second surface 20b of the polarization beam splitter 20 Simultaneously with imaging the combined light of the first light by the first imaging system 4A, the combined light of the second light emitted from the first surface 20a of the polarization beam splitter 20 is imaged by the second imaging system 4B.
- the interference fringe image of the phase "90 °" related to the first light is acquired, and the interference fringe image of the phase "90 °" related to the second light is captured.
- the same imaging process as the first and second imaging processes is repeated twice. That is, the third imaging process is performed with the transmission axis direction of the first polarizing plate 32A and the second polarizing plate 32B set to "90 °", and the interference fringe image of the phase "180 °” related to the first light is While acquiring, the interference-fringe image of the phase "180 degree” concerning 2nd light is acquired.
- the fourth imaging process is performed with the transmission axis direction of the first polarizing plate 32A and the second polarizing plate 32B set to "135 °", and the interference fringe image of the phase "270 °” relating to the first light is While acquiring, the interference-fringe image of the phase "270 degree” which concerns on 2nd light is acquired.
- control device 5 executes a process of acquiring complex amplitude data of light on the imaging elements 33Aa, 33Ba.
- the first light and the second light are based on the four interference fringe images of the first light stored in the image data storage device 54 and the four interference fringe images of the second light.
- the complex amplitude data Eo (x, y) of the light on the imaging elements 33Aa and 33Ba are acquired.
- the interference fringe intensity at the same coordinate position (x, y) of four interference fringe images relating to the first light or the second light, that is, the luminances I 1 (x, y), I 2 (x, y), I 3 ( x, y) and I 4 (x, y) can be expressed by the following equation [Equation 1].
- ⁇ (x, y) represents the phase difference based on the optical path difference between the measurement light and the reference light at the coordinates (x, y).
- a (x, y) represents the amplitude of the interference light
- B (x, y) represents a bias.
- ⁇ (x, y) represents “phase of measurement light”
- a (x, y) represents “amplitude of measurement light” when viewed as a reference.
- phase ⁇ (x, y) of the measurement light that has reached the surface of the imaging elements 33Aa and 33Ba can be obtained by the following equation [2] based on the above equation [1].
- the amplitude A (x, y) of the measurement light that has reached the surface of the imaging elements 33Aa and 33Ba can be obtained by the following equation [3] based on the above equation [1].
- control device 5 executes processing for acquiring complex amplitude data at a plurality of positions in the z direction with respect to a part of specific areas V (see FIG. 7) preset in the measurement area on the workpiece W.
- a predetermined measurement range is within a predetermined range in the z direction (first range in the optical axis direction) Q1 in which the workpiece W may exist with reference to the device origin which is a reference of height measurement in the three-dimensional measurement device 1
- Complex amplitude data relating to the specific region V is acquired for each interval.
- the “specific region V” is a region arbitrarily set in order to grasp the position of the work W in the z direction in advance.
- the workpiece W is a wafer substrate 100 as shown in FIGS. 8 and 9, the pattern portion 102 which can be a reference surface for measuring the height of the bumps 101 is set as the specific region V.
- the heights set for each measurement range interval R in the vertical direction centering on the device origin H 0 serving as the reference of height measurement in three-dimensional measurement device 1 It is set to acquire complex amplitude data at each of the positions H 3 , H 2 , H 1 , H 0 , H -1 , H -2 and H -3 .
- step S3 the method of acquiring complex amplitude data in step S3 will be described in detail.
- a method of acquiring unknown complex amplitude data at different positions in the z direction from known complex amplitude data at predetermined positions in the z direction will be described.
- control device 5 executes processing for acquiring intensity image (brightness image) data of a plurality of positions in the z direction with respect to the specific region V.
- the first image data acquisition unit in the present embodiment is configured by the function of executing the series of reproduction processing according to steps S2 to S4.
- step S5 the control device 5 executes a process of determining the optimal focusing position (focusing position in the optical axis direction) related to the specific region V.
- the function to execute the process of step S5 constitutes a first focus position determination means in the present embodiment.
- the optimum in-focus position in the z direction of the specific region V is determined.
- a method of determining the optimum in-focus position of the specific region V from the contrast of the intensity image data will be described.
- the intensity contrast between the “specific coordinate position” and the “other coordinate position” is determined for the intensity image data.
- a method of determining the optimum in-focus position of the specific region V not only the method of obtaining from the contrast of the intensity image data described above, but also other methods may be adopted. For example, a method of obtaining from the luminance of intensity image data may be employed.
- the contrast or intensity image data of pattern portion 102 at height positions H 3 , H 2 , H 1 , H 0 , H -1 , H -2 and H -3 are compared.
- the average luminance is determined, and the position (for example, the height position H ⁇ 1 ) at which the intensity image data having the highest contrast or average luminance is obtained is extracted as the optimum in-focus position.
- control device 5 executes processing for acquiring complex amplitude data at a plurality of positions in the z direction at each coordinate position of the entire predetermined measurement area of the workpiece W.
- a predetermined range in the z direction (a bump 101 on the wafer substrate 100) on which a predetermined measurement target on the workpiece W may exist ( In the optical axis direction second range Q2), complex amplitude data relating to each coordinate position of the measurement area is acquired at predetermined measurement range intervals.
- height position H 1 which is set at every measurement range interval R upward in the specific focusing position (height position H ⁇ 1 ) of specific region V as a reference. It is set to acquire complex amplitude data in each of H 0 and H ⁇ 1 .
- the z-direction predetermined range Q2 is set to be narrower than the z-direction predetermined range Q1, but not limited to this, both are at the same interval or the z-direction predetermined range Q2 May be set to be wider than the z-direction predetermined range Q1.
- the range Q2 be set narrower than the z-direction predetermined range Q1.
- step S6 since the acquisition method of complex amplitude data in step S6 is the same as the acquisition method of complex amplitude data in the said step S3, detailed description is abbreviate
- the control device 5 executes processing for acquiring intensity image data of a plurality of positions in the z direction with respect to each coordinate position of the measurement area on the workpiece W. Therefore, the second image data acquisition unit in the present embodiment is configured by the function of executing the series of processes according to steps S6 and S7.
- intensity image data of a plurality of positions in the z direction are acquired for each coordinate position of the measurement area on the workpiece W based on the complex amplitude data acquired in step S6.
- the method of acquiring the intensity image data from the complex amplitude data in step S7 is the same as the method of acquiring the intensity image data in step S4, so detailed description will be omitted.
- control device 5 executes a process of determining an optimal focusing position (focusing position in the optical axis direction) for each coordinate position of the measurement area on the workpiece W.
- the second in-focus position determining means in the present embodiment is configured by the function of executing the process of step S8.
- the optimum in-focus position in the z direction of each coordinate position of the measurement area is determined.
- the method of determining the optimum in-focus position from the intensity image data of a plurality of positions in the z direction in step S8 is the same as the method of determining the optimum in-focus position in step S5, and thus the detailed description is omitted.
- step S9 the control device 5 specifies the order corresponding to the optimal focusing position related to each coordinate position of the measurement area on the workpiece W determined in step S8 as the order of the measurement range related to each coordinate position Execute the process
- the function of executing the process of step S9 constitutes an order specifying means in the present embodiment.
- the example shown in FIG. 11 is a light (two wavelengths in this embodiment) in which the measurement range (one cycle of sine wave [-180 ° to 180 °] in the phase shift method) of the wafer substrate 100 shown in FIG.
- the synthetic wavelength light of (1) is used to measure the height in the range of "-3500 (nm)" to "3500 (nm)".
- the actual height relating to the coordinate position is assumed to be a height corresponding to the vicinity of the boundary between the measurement range of order [2] and the measurement range of order [1].
- the two orders [2] and [1] are specified as the orders of the measurement range related to the coordinate position.
- step S10 the control device 5 executes a three-dimensional measurement process.
- the function of executing the process of step 10 constitutes the three-dimensional measurement means in the present embodiment.
- the control device 5 measures the complex amplitude data Eo ( ⁇ ,)) of the optimum in-focus position at each coordinate position of the measurement area determined in step S 8 based on the relational expression of [Equation 8] below.
- the light phase ⁇ ( ⁇ ,)) and the measurement light amplitude A ( ⁇ ,)) are calculated.
- phase ⁇ ( ⁇ ,)) of the measurement light can be obtained by the following equation [9].
- the phase information acquisition means in the present embodiment is constituted by the function of executing a series of reproduction processes for calculating the phase ⁇ ( ⁇ ,)) which is the phase information of the measurement light.
- the amplitude A ( ⁇ ,)) of the measurement light can be obtained by the following relational expression of [Equation 10].
- phase-height conversion processing is performed to calculate height information z ( ⁇ ,)) within the measurement range which three-dimensionally shows the concavo-convex shape of the surface of the workpiece W.
- the height information z ( ⁇ ,)) in the measurement range can be calculated by the following relational expression of [Equation 11].
- the true value related to the coordinate position Get height data (actual height).
- the candidate of true height data of the coordinate position is “3250 (nm)” of order [3], “2250 (nm)” of order [2], “1250 (nm)” of order [1], order [0] "250 (nm)", order [-1] "-750 (nm), order [-2]” -1750 (nm) ", order [-3]” -2750 (nm ).
- the height position H 2 is the optimum in-focus position, and the order [2] corresponding to this is specified as the order of the measurement range related to the coordinate position
- the true height data of the coordinate position can be identified as “2250 (nm)” corresponding to the phase [90 °] of the order [2].
- the height information z ( ⁇ ,)) in the measurement range calculated as described above corresponds to, for example, the phase “ ⁇ 180 °” at the predetermined coordinate position.
- the candidate of true height data of the coordinate position is “2500 (nm)” of order [3], “1500 (nm)” of order [2], and “500 (nm)” of order [1] , Order [0] "-500 (nm)", order [-1] “-1500 (nm)", order [-2] "-2500 (nm)", order [-3] "- It becomes "3500 (nm)".
- the height position H 2 and the height position H 1 become the optimum in-focus position, and the order [2] and the order [1] corresponding thereto are
- the true height data of the coordinate position corresponds to “1500 (nm)” corresponding to the phase “ ⁇ 180 °” of the order [2]. It can be identified.
- the absolute height HA2 of the pattern portion 102 for example, the absolute height of any one point on the pattern portion 102, the average value of the absolute height of a predetermined range on the pattern portion 102, or the like can be used.
- the “absolute height HA1 of the bump 101” and the “absolute height HA2 of the pattern portion 102” can be obtained from the height information z ( ⁇ ,)) and the order of the measurement range.
- the synthetic wavelength ⁇ 0 can be represented by the following formula (M1).
- ⁇ 0 ( ⁇ 1 ⁇ ⁇ 2 ) / ( ⁇ 2 - ⁇ 1 ) (M1) However, it is assumed that ⁇ 2 > ⁇ 1 .
- the luminances I 1 (x, y), I 2 (x, y), I 3 (x, y) of the four interference fringe images according to the first light of the wavelength ⁇ 1 ) And I 4 (x, y) see the above [Equation 1]
- the phase ⁇ 1 ( ⁇ ,)) of the measurement light related to the first light at the coordinates ( ⁇ ,)) on the work W surface It can be calculated (see the above [Equation 9]).
- the height information z ( ⁇ ,)) at the coordinates ( ⁇ ,)) can be represented by the following formula (M2).
- d 1 ( ⁇ ,)) represents the optical path difference between the measurement light related to the first light and the reference light
- m 1 ( ⁇ ,)) represents the fringe order related to the first light.
- phase ⁇ 1 ( ⁇ ,)) can be expressed by the following equation (M2 ′).
- ⁇ 1 ( ⁇ ,)) (4 ⁇ / ⁇ 1 ) ⁇ z ( ⁇ ,)) ⁇ 2 ⁇ m 1 ( ⁇ ,)) (M 2 ′)
- the phase ⁇ 2 ( ⁇ ,)) of the measurement light related to the second light at the coordinates ( ⁇ ,)) on the work W surface can be calculated based on (see the above [Equation 1]) (above 9)).
- the height information z ( ⁇ ,)) at the coordinates ( ⁇ ,)) can be represented by the following formula (M3).
- d 2 ( ⁇ ,)) represents the optical path difference between the measurement light related to the second light and the reference light
- m 2 ( ⁇ ,)) represents the fringe order related to the second light.
- phase ⁇ 2 ( ⁇ ,)) can be expressed by the following equation (M3 ′).
- ⁇ 2 ( ⁇ ,)) (4 ⁇ / ⁇ 2 ) ⁇ z ( ⁇ ,))-2 ⁇ m 2 ( ⁇ ,)) (M3 ')
- the stripe order m 1 ( ⁇ ,)) of the first light of the wavelength ⁇ 1 and the stripe order m 2 ( ⁇ ,)) of the second light of the wavelength ⁇ 2 have two types of light (wavelengths It can be determined based on the optical path difference ⁇ d of ⁇ 1 , ⁇ 2 ) and the wavelength difference ⁇ .
- the optical path difference ⁇ d and the wavelength difference ⁇ can be expressed as in the following formulas (M4) and (M5), respectively.
- the relationship between the fringe orders m 1 and m 2 can be divided into the following three cases within the measurement range of the synthetic wavelength ⁇ 0 of two wavelengths, and the fringe orders m 1 ( ⁇ ,)) and m for each case 2 Formulas for determining ( ⁇ ,)) are different.
- the case of determining the fringe order m 1 ( ⁇ ,)) will be described.
- the stripe order m 2 ( ⁇ ,)) can also be obtained by the same method.
- m 1 can be expressed as the following formula (M6).
- m 1 can be expressed as the following formula (M7).
- m 1 + 1” is obtained, and in this case, m 1 can be expressed as the following formula (M8).
- intensity image data at a plurality of positions in the z direction is acquired only for a part of specific areas V preset in the measurement area, not the entire measurement area of the workpiece W.
- measurement is performed by acquiring intensity image data at a plurality of z-direction positions with respect to each coordinate position of the entire measurement region based on the position.
- dissipate incident first light wavelength lambda 1 from the first surface 20a of the polarizing beam splitter 20, thereby entering the second optical wavelength lambda 2 from the second surface 20b of the polarizing beam splitter 20 causes the reference light and measurement light related to the first light, and the reference light and measurement light related to the second light to be split into different polarization components (P-polarized light or S-polarized light).
- the first light and the second light are separately emitted from the polarization beam splitter 20 without interfering with each other. That is, it is not necessary to separate the light emitted from the polarization beam splitter 20 into the first light and the second light using a predetermined separation means.
- the first light and the second light two types of light having near wavelengths can be used as the first light and the second light, and the measurement range related to three-dimensional measurement can be further expanded.
- the imaging of the output light related to the first light and the imaging of the output light related to the second light can be performed simultaneously, the overall imaging time can be shortened, and the measurement efficiency can be improved.
- the workpiece W as the object to be measured is not limited to the wafer substrate 100 exemplified in the above embodiment.
- a printed circuit board on which cream solder is printed may be used as the work W (a measurement object).
- a bump inspection apparatus or a solder printing inspection apparatus provided with an inspection means for inspecting the quality of bumps or cream solder to be measured according to a preset quality judgment standard is provided with the three-dimensional measurement apparatus 1 Also good.
- the phase shift method using a plurality of pieces of image data is adopted as a method of reproducing from the interference fringe image (method of obtaining complex amplitude data), but the present invention is not limited thereto.
- a method may be adopted.
- a Fourier transform method performed using one image data may be adopted.
- the reproduction method is not limited to the method of reproducing using complex amplitude data, and another reproduction method may be adopted.
- the light propagation calculation is not limited to the convolution method illustrated in the above embodiment, and another method such as angular spectrum method may be adopted.
- the configuration of the interference optical system is not limited to the above embodiment.
- the optical configuration of the Michelson interferometer is adopted as the interference optical system
- the present invention is not limited thereto.
- the optical configuration of the Mach-Zehnder interferometer or the Fizeau interferometer may be used as a reference light
- Other optical configurations may be adopted as long as they are configured to measure the workpiece W by dividing the light into measurement light.
- the first wavelength light and the second wavelength light are combined as in the conventional three-dimensional measurement device, not limited to the configuration according to the above embodiment.
- the interference light emitted from the interference optical system is wavelength separated by a predetermined optical separation means (such as a dichroic mirror), and the interference light of the first wavelength light and the interference light of the second wavelength light are separated. It is good also as composition which measures work W based on an interference-fringe picture which acquired and was individually imaged interference light concerning each wavelength light.
- the two types of light of different wavelengths emitted from the two light sources are superimposed on each other to be incident on the interference optical system, the light emitted therefrom is wavelength-separated by the optical separating means, and light of each wavelength is produced.
- the configuration for individually imaging the interference light may be combined with the above embodiment, and the measurement of the workpiece W may be performed using three or more types of light having different wavelengths.
- the configuration of the light projection systems 2A and 2B is not limited to the above embodiment.
- the wavelength of each light is not limited to this. However, in order to widen the measurement range, it is preferable to make the wavelength difference between the two lights smaller.
- phase shift means In the above embodiment, the polarizing plates 32A and 32B configured to be able to change the transmission axis direction are adopted as the phase shift means, but the configuration of the phase shift means is not limited to this. .
- a configuration may be employed in which the optical path length is physically changed by moving the reference surface 23 along the optical axis using a piezoelectric element or the like.
- a splitting means (a prism or the like) that splits the combined light (reference light component and measurement light component) related to the first light transmitted through the 1 ⁇ 4 wavelength plate 31A.
- filter means for applying different phase differences to the four lights emitted from the light separating means are provided.
- One light may be simultaneously imaged by the first camera 33A (or a plurality of cameras).
- the second imaging system 4B may have a similar configuration.
- step S10 three-dimensional measurement is performed in step S10 based on the complex amplitude data of the entire measurement region obtained in step S6.
- an intensity image of the entire measurement area may be acquired to perform two-dimensional measurement.
- a reference in which positional deviations ⁇ x, ⁇ y, outer diameter D, area S, etc. of bumps 101 (see FIG. 10) to be measured are set in advance.
- a two-dimensional inspection can be performed to determine whether the bump 101 is good or bad depending on whether the value is compared with the value and whether the comparison result is within the allowable range.
- step S10 When both two-dimensional measurement and three-dimensional measurement are performed in step S10, the location where the bump 101 to be measured exists is specified based on the result of two-dimensional measurement (two-dimensional inspection).
- a comprehensive inspection combining a plurality of types of measurements can be performed, such as performing a three-dimensional inspection or mapping an intensity image to three-dimensional data obtained by three-dimensional measurement.
- Measurement is performed by acquiring complex amplitude data and intensity image data at a plurality of positions in the z direction of the entire region.
- the process of specifying the optimum in-focus position related to the specific area V is omitted, and multiple z directions related to each coordinate position of the entire measurement area of the workpiece W directly based on the device origin of the three-dimensional
- the measurement may be performed by acquiring the complex amplitude data and the intensity image data of the position.
- the intensity image data at a plurality of positions in the z direction is obtained to determine the in-focus state at intervals of one cycle of the measurement range.
- intensity image data at a plurality of positions in the z direction may be acquired to determine the in-focus state at intervals of n measurement periods (n is a natural number of 2 or more).
- it may be configured to acquire intensity image data at a plurality of positions in the z direction at intervals of two cycles of the measurement range to determine the in-focus state.
- a height position H 3 can be identified as a best fit focus position.
- intensity image data at a plurality of positions in the z direction is acquired at each coordinate position of the measurement area, and measurement is performed by determining the in-focus state.
- intensity image data is acquired at one predetermined z-direction position for each coordinate position of the measurement area, and the in-focus state is determined (in-focus determination means), and a predetermined in-focus state satisfying the predetermined condition is obtained.
- the in-focus state is determined (in-focus determination means)
- a predetermined in-focus state satisfying the predetermined condition is obtained.
- phase information of light obtained from complex amplitude data relating to the predetermined position in the z direction and an order corresponding to the predetermined position in the z direction.
- the three-dimensional measurement according to the coordinate position may be performed.
- SYMBOLS 1 Three-dimensional measurement apparatus, 2A ... 1st light projection system, 2B ... 2nd light projection system, 3 ... Interference optical system, 4A ... 1st imaging system, 4B ... 2nd imaging system, 5 ... Control apparatus, 11A ... 11 First light emitter, 11B: second light emitter, 12A: first optical isolator, 12B: second optical isolator, 13A: first nonpolarizing beam splitter, 13B: second nonpolarizing beam splitter, 20: polarizing beam splitter, 20a ... 1st surface, 20c ... 3rd surface, 20b ... 2nd surface, 20d ... 4th surface, 21, 22 ... 1/4 wavelength plate, 23 ...
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Signal Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Image Analysis (AREA)
Abstract
計測精度の向上を図ると共に、計測効率の向上を図ることのできる三次元計測装置を提供する。三次元計測装置1は、撮像系4A,4Bにより撮像し得られた干渉縞画像を基に、ワークW上の所定の計測領域の各座標位置について、光軸方向所定位置の強度画像データを所定の計測レンジ間隔で複数通り取得する。続いて、これら複数通りの強度画像データを基に、該座標位置における光軸方向合焦位置を決定すると共に、該光軸方向合焦位置に対応する次数を該座標位置に係る次数として特定する。そして、計測領域の各座標位置における光軸方向合焦位置の光の位相情報を取得し、該座標位置に係る位相情報と、該座標位置に係る次数とを基に、該座標位置に係る三次元計測を実行する。
Description
本発明は、被計測物の形状を計測する三次元計測装置に関するものである。
従来、被計測物の形状を計測する三次元計測装置として、干渉計を利用した三次元計測装置が知られている。中には、位相の異なる複数の干渉縞画像を基に位相シフト法により計測を行う三次元計測装置などもある(例えば、特許文献1参照)。
かかる三次元計測装置においては、計測光の波長(例えば1500nm)の半分(例えば750nm)が計測可能な計測レンジ(ダイナミックレンジ)となる。
そのため、仮に被計測物上に計測光の波長の半分以上の高低差がある場合には、計測レンジが不足し、被計測物の形状を適正に計測できないおそれがある。ここで、計測光の波長を長くした場合には、分解能が粗くなり、計測精度が悪化するおそれがある。
これに対し、計測レンジを超えた高さを計測する技術として、マイケルソン型の干渉計の光源を低コヒーレント光とすることで干渉が見られる範囲を局部的とし、焦点移動機構の載物台を移動しながら干渉縞のコントラスト情報からアンラップ(次数特定)のための情報を得て、焦点移動機構により決まったステップで得た振幅画像と位相画像を用いて形状演算を行う三次元計測装置などもある(例えば、特許文献2参照)。
しかしながら、特許文献2に係る従来技術では、計測レンジを超えた高さを計測可能となるが、焦点移動機構を備える必要があり、構成が複雑化するおそれがある。
また、被計測物を移動させながら複数回の撮像を行う必要があるため、計測時間が長くなるばかりでなく、その振動等の影響を受けるため、計測精度が低下するおそれがある。
本発明は、上記事情等に鑑みてなされたものであり、その目的は、計測精度の向上を図ると共に、計測効率の向上を図ることのできる三次元計測装置を提供することにある。
以下、上記課題を解決するのに適した各手段につき項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果を付記する。
手段1.入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物(例えばウエハ基板)に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な所定の光学系(特定光学系)と、
前記所定の光学系に対し入射させる所定の光を出射可能な照射手段と、
前記所定の光学系から出射される出力光を撮像可能な撮像手段と、
前記撮像手段により撮像し得られた干渉縞画像(ホログラム)を基に前記被計測物の所定の計測領域(被計測物の全域又はその一部)に係る三次元計測を実行可能な画像処理手段とを備えた三次元計測装置であって、
前記画像処理手段は、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生(reconstruction)により、前記計測領域の各座標位置における光軸方向所定位置の強度画像データを取得可能な画像データ取得手段と、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の光の位相情報を取得可能な位相情報取得手段と、
前記画像データ取得手段により取得された前記計測領域の所定座標位置における光軸方向所定位置の強度画像データを基に、該強度画像データが所定条件(例えば所定の閾値以上の輝度を有する場合など)を満たす合焦状態にあるか否かを判定する合焦判定手段と、
前記合焦判定手段の判定結果に基づき、前記所定座標位置における光軸方向所定位置の強度画像データが前記合焦状態にあると判定された場合に、光軸方向に所定の計測レンジ間隔で定められる次数のうち、前記光軸方向所定位置に対応する次数を前記所定座標位置に係る次数として特定する次数特定手段と、
前記位相情報取得手段により取得された前記所定座標位置に係る位相情報と、前記次数特定手段により特定された前記所定座標位置に係る次数とを基に、前記所定座標位置に係る三次元計測(高さ計測)を実行可能な三次元計測手段とを備えていることを特徴とする三次元計測装置。
前記所定の光学系に対し入射させる所定の光を出射可能な照射手段と、
前記所定の光学系から出射される出力光を撮像可能な撮像手段と、
前記撮像手段により撮像し得られた干渉縞画像(ホログラム)を基に前記被計測物の所定の計測領域(被計測物の全域又はその一部)に係る三次元計測を実行可能な画像処理手段とを備えた三次元計測装置であって、
前記画像処理手段は、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生(reconstruction)により、前記計測領域の各座標位置における光軸方向所定位置の強度画像データを取得可能な画像データ取得手段と、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の光の位相情報を取得可能な位相情報取得手段と、
前記画像データ取得手段により取得された前記計測領域の所定座標位置における光軸方向所定位置の強度画像データを基に、該強度画像データが所定条件(例えば所定の閾値以上の輝度を有する場合など)を満たす合焦状態にあるか否かを判定する合焦判定手段と、
前記合焦判定手段の判定結果に基づき、前記所定座標位置における光軸方向所定位置の強度画像データが前記合焦状態にあると判定された場合に、光軸方向に所定の計測レンジ間隔で定められる次数のうち、前記光軸方向所定位置に対応する次数を前記所定座標位置に係る次数として特定する次数特定手段と、
前記位相情報取得手段により取得された前記所定座標位置に係る位相情報と、前記次数特定手段により特定された前記所定座標位置に係る次数とを基に、前記所定座標位置に係る三次元計測(高さ計測)を実行可能な三次元計測手段とを備えていることを特徴とする三次元計測装置。
尚、「所定の光学系」には、「参照光及び計測光を内部で干渉させた上で干渉光として出力する光学系」のみならず、「参照光及び計測光を内部で干渉させることなく、単に合成光として出力する光学系」も含まれる。但し、「所定の光学系」から出力される「出力光」が「合成光」の場合には、「干渉縞画像」を撮像するために、少なくとも「撮像手段」により撮像される前段階において、所定の干渉手段を介して「干渉光」に変換することとなる。
つまり、光の干渉を生じさせること(干渉縞画像を撮像すること)を目的として、入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な光学系を「干渉光学系」と称することができる。従って、上記手段1において(以下の各手段においても同様)、「所定の光学系(特定光学系)」を「干渉光学系」と換言してもよい。
上記手段1によれば、計測領域の各座標位置ごとに、計測レンジを超えた高さ計測が可能となる。また、被計測物を移動させるような大掛かりな移動機構を必要とせず、構成の簡素化を図ることができると共に、その振動等の影響を受けることもないため、計測精度の向上を図ることができる。
さらに、より少ない撮像回数で、計測に必要なすべての干渉縞画像を取得することができ、計測効率の向上を図ることができる。
手段2.入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物(例えばウエハ基板)に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な所定の光学系(特定光学系)と、
前記所定の光学系に対し入射させる所定の光を出射可能な照射手段と、
前記所定の光学系から出射される出力光を撮像可能な撮像手段と、
前記撮像手段により撮像し得られた干渉縞画像(ホログラム)を基に前記被計測物の所定の計測領域(被計測物の全域又はその一部)に係る三次元計測を実行可能な画像処理手段とを備えた三次元計測装置であって、
前記画像処理手段は、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生(reconstruction)により、前記計測領域の各座標位置における光軸方向所定位置の強度画像データを、少なくとも光軸方向所定範囲において、所定の計測レンジn周期分(nは1以上の自然数)間隔で複数通り取得可能な画像データ取得手段と、
前記画像データ取得手段により取得された前記計測領域の所定座標位置に係る前記複数通りの強度画像データを基に、該所定座標位置における所定の光軸方向合焦位置(例えば最も焦点の合う強度画像データが得られた光軸方向位置)を決定する合焦位置決定手段と、
光軸方向に前記計測レンジ間隔で定められる次数のうち、前記合焦位置決定手段により決定された前記所定座標位置の前記光軸方向合焦位置に対応する次数を、該所定座標位置に係る次数として特定する次数特定手段と、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の光の位相情報を取得可能な位相情報取得手段と、
前記位相情報取得手段により取得された前記所定座標位置に係る位相情報と、前記次数特定手段により特定された前記所定座標位置に係る次数とを基に、前記所定座標位置に係る三次元計測(高さ計測)を実行可能な三次元計測手段とを備えていることを特徴とする三次元計測装置。
前記所定の光学系に対し入射させる所定の光を出射可能な照射手段と、
前記所定の光学系から出射される出力光を撮像可能な撮像手段と、
前記撮像手段により撮像し得られた干渉縞画像(ホログラム)を基に前記被計測物の所定の計測領域(被計測物の全域又はその一部)に係る三次元計測を実行可能な画像処理手段とを備えた三次元計測装置であって、
前記画像処理手段は、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生(reconstruction)により、前記計測領域の各座標位置における光軸方向所定位置の強度画像データを、少なくとも光軸方向所定範囲において、所定の計測レンジn周期分(nは1以上の自然数)間隔で複数通り取得可能な画像データ取得手段と、
前記画像データ取得手段により取得された前記計測領域の所定座標位置に係る前記複数通りの強度画像データを基に、該所定座標位置における所定の光軸方向合焦位置(例えば最も焦点の合う強度画像データが得られた光軸方向位置)を決定する合焦位置決定手段と、
光軸方向に前記計測レンジ間隔で定められる次数のうち、前記合焦位置決定手段により決定された前記所定座標位置の前記光軸方向合焦位置に対応する次数を、該所定座標位置に係る次数として特定する次数特定手段と、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の光の位相情報を取得可能な位相情報取得手段と、
前記位相情報取得手段により取得された前記所定座標位置に係る位相情報と、前記次数特定手段により特定された前記所定座標位置に係る次数とを基に、前記所定座標位置に係る三次元計測(高さ計測)を実行可能な三次元計測手段とを備えていることを特徴とする三次元計測装置。
上記手段2によれば、上記手段1と同様の作用効果が奏される。
手段3.入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物(例えばウエハ基板)に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な所定の光学系(特定光学系)と、
前記所定の光学系に対し入射させる所定の光を出射可能な照射手段と、
前記所定の光学系から出射される出力光を撮像可能な撮像手段と、
前記撮像手段により撮像し得られた干渉縞画像(ホログラム)を基に前記被計測物の所定の計測領域(被計測物の全域又はその一部)に係る三次元計測を実行可能な画像処理手段とを備えた三次元計測装置であって、
前記画像処理手段は、
前記撮像手段により撮像し得られた干渉縞画像を基に、再生(reconstruction)により、前記計測領域内に予め設定した一部の特定領域における光軸方向所定位置の強度画像データを、少なくとも光軸方向第1範囲において、所定の計測レンジn周期分(nは1以上の自然数)間隔で複数通り取得可能な第1画像データ取得手段と、
前記第1画像データ取得手段により取得された前記特定領域に係る前記複数通りの強度画像データを基に、該特定領域における所定の光軸方向合焦位置を決定する第1合焦位置決定手段と、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の強度画像データを、前記特定領域における光軸方向合焦位置を基準に設定される少なくとも光軸方向第2範囲において、所定の計測レンジn周期分(nは1以上の自然数)間隔で複数通り取得可能な第2画像データ取得手段と、
前記第2画像データ取得手段により取得された前記計測領域の所定座標位置に係る前記複数通りの強度画像データを基に、該所定座標位置における所定の光軸方向合焦位置を決定する第2合焦位置決定手段と、
光軸方向に前記計測レンジ間隔で定められる次数のうち、前記第2合焦位置決定手段により決定された前記所定座標位置の前記光軸方向合焦位置に対応する次数を、該所定座標位置に係る次数として特定する次数特定手段と、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の光の位相情報を取得可能な位相情報取得手段と、
前記位相情報取得手段により取得された前記所定座標位置に係る位相情報と、前記次数特定手段により特定された前記所定座標位置に係る次数とを基に、前記所定座標位置に係る三次元計測(高さ計測)を実行可能な三次元計測手段とを備えていることを特徴とする三次元計測装置。
前記所定の光学系に対し入射させる所定の光を出射可能な照射手段と、
前記所定の光学系から出射される出力光を撮像可能な撮像手段と、
前記撮像手段により撮像し得られた干渉縞画像(ホログラム)を基に前記被計測物の所定の計測領域(被計測物の全域又はその一部)に係る三次元計測を実行可能な画像処理手段とを備えた三次元計測装置であって、
前記画像処理手段は、
前記撮像手段により撮像し得られた干渉縞画像を基に、再生(reconstruction)により、前記計測領域内に予め設定した一部の特定領域における光軸方向所定位置の強度画像データを、少なくとも光軸方向第1範囲において、所定の計測レンジn周期分(nは1以上の自然数)間隔で複数通り取得可能な第1画像データ取得手段と、
前記第1画像データ取得手段により取得された前記特定領域に係る前記複数通りの強度画像データを基に、該特定領域における所定の光軸方向合焦位置を決定する第1合焦位置決定手段と、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の強度画像データを、前記特定領域における光軸方向合焦位置を基準に設定される少なくとも光軸方向第2範囲において、所定の計測レンジn周期分(nは1以上の自然数)間隔で複数通り取得可能な第2画像データ取得手段と、
前記第2画像データ取得手段により取得された前記計測領域の所定座標位置に係る前記複数通りの強度画像データを基に、該所定座標位置における所定の光軸方向合焦位置を決定する第2合焦位置決定手段と、
光軸方向に前記計測レンジ間隔で定められる次数のうち、前記第2合焦位置決定手段により決定された前記所定座標位置の前記光軸方向合焦位置に対応する次数を、該所定座標位置に係る次数として特定する次数特定手段と、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の光の位相情報を取得可能な位相情報取得手段と、
前記位相情報取得手段により取得された前記所定座標位置に係る位相情報と、前記次数特定手段により特定された前記所定座標位置に係る次数とを基に、前記所定座標位置に係る三次元計測(高さ計測)を実行可能な三次元計測手段とを備えていることを特徴とする三次元計測装置。
上記手段3によれば、上記手段1,2と同様の作用効果が奏される。特に本手段によれば、まず最初に計測領域全体ではなく、計測領域内に予め設定した一部の特定領域(限られた狭い範囲)についてのみ、光軸方向複数位置における強度画像データを取得し、その合焦状況から、光軸方向における被計測物の位置を特定する。
その後、計測領域全体の各座標位置について、特定領域に係る合焦位置を基準に、光軸方向複数位置における強度画像データを取得する。
これにより、計測領域に係る三次元計測を行う上で必要なデータを取得するための処理にかかる負荷を軽減すると共に、該処理に要する時間を短縮することができる。結果として、計測精度の向上を図ると共に、計測効率の向上を図ることができる。
手段4.前記再生は、前記干渉縞画像を基に、光軸方向所定位置に係る複素振幅データを取得して行われることを特徴とする手段1乃至3のいずれかに記載の三次元計測装置。
手段5.前記参照光と前記計測光との間に相対的な位相差を付与する位相シフト手段を備え、
前記画像処理手段は、
前記位相シフト手段により複数通り(例えば3又は4通り)に位相シフトされた前記出力光を前記撮像手段により撮像し得られた複数通りの干渉縞画像を基に、前記被計測物の所定の計測領域に係る計測を実行可能に構成されていることを特徴とする手段1乃至4のいずれかに記載の三次元計測装置。
前記画像処理手段は、
前記位相シフト手段により複数通り(例えば3又は4通り)に位相シフトされた前記出力光を前記撮像手段により撮像し得られた複数通りの干渉縞画像を基に、前記被計測物の所定の計測領域に係る計測を実行可能に構成されていることを特徴とする手段1乃至4のいずれかに記載の三次元計測装置。
手段6.前記照射手段は、
前記所定の光学系に対し入射させる、第1波長の偏光を含む第1光を出射可能な第1照射手段と、
前記所定の光学系に対し入射させる、第2波長の偏光を含む第2光を出射可能な第2照射手段とを備え、
前記撮像手段は、
前記所定の光学系に対し前記第1光を入射することにより前記所定の光学系から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記所定の光学系に対し前記第2光を入射することにより前記所定の光学系から出射される前記第2光に係る出力光を撮像可能な第2撮像手段とを備えたことを特徴とする手段1乃至5のいずれかに記載の三次元計測装置。
前記所定の光学系に対し入射させる、第1波長の偏光を含む第1光を出射可能な第1照射手段と、
前記所定の光学系に対し入射させる、第2波長の偏光を含む第2光を出射可能な第2照射手段とを備え、
前記撮像手段は、
前記所定の光学系に対し前記第1光を入射することにより前記所定の光学系から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記所定の光学系に対し前記第2光を入射することにより前記所定の光学系から出射される前記第2光に係る出力光を撮像可能な第2撮像手段とを備えたことを特徴とする手段1乃至5のいずれかに記載の三次元計測装置。
上記手段6のように、波長の異なる2種類の光を利用すれば、計測レンジを広げることができる。
尚、「第1照射手段」から照射される「第1光」は、少なくとも「第1波長の偏光(第1偏光)」を含んだ光であればよく、その後「所定の光学系」においてカットされる他の余分な成分を含んだ光(例えば「無偏光」や「円偏光」)であってもよい。
同様に、「第2照射手段」から照射される「第2光」は、少なくとも「第2波長の偏光(第2偏光)」を含んだ光であればよく、その後「所定の光学系」においてカットされる他の余分な成分を含んだ光(例えば「無偏光」や「円偏光」)であってもよい。
また、「所定の光学系(特定光学系)」から出力される「第1光に係る出力光」には「第1光に係る参照光及び計測光の合成光、又は、該合成光を干渉させた干渉光」が含まれ、「第2光に係る出力光」には「第2光に係る参照光及び計測光の合成光、又は、該合成光を干渉させた干渉光」が含まれる。
手段7.前記被計測物は、バンプが形成されたウエハ基板であることを特徴とする手段1乃至6のいずれかに記載の三次元計測装置。
上記手段7によれば、ウエハ基板に形成されたバンプの計測を行うことができる。ひいては、バンプの検査において、その計測値に基づいてバンプの良否判定を行うことができる。従って、かかる検査において、上記各手段の作用効果が奏されることとなり、精度よく良否判定を行うことができる。結果として、バンプ検査装置における検査精度及び検査効率の向上を図ることができる。
以下、三次元計測装置の一実施形態について図面を参照しつつ説明する。本実施形態に係る三次元計測装置は、ディジタルホログラフィを用いて三次元計測を行う計測装置である。ここで「ディジタルホログラフィ」とは、干渉縞画像(ホログラム)を取得し、そこから画像を再生する(reconstruct)技術をいう。
図1は本実施形態に係る三次元計測装置1の概略構成を示す模式図であり、図2は三次元計測装置1の電気的構成を示すブロック図である。以下、便宜上、図1の紙面前後方向を「X軸方向」とし、紙面上下方向を「Y軸方向」とし、紙面左右方向を「Z軸方向」として説明する。
三次元計測装置1は、マイケルソン干渉計の原理に基づき構成されたものであり、特定波長の光を出力可能な照射手段としての2つの投光系2A,2B(第1投光系2A,第2投光系2B)と、該投光系2A,2Bからそれぞれ出射される光が入射される干渉光学系3と、該干渉光学系3から出射される光を撮像可能な撮像手段としての2つの撮像系4A,4B(第1撮像系4A,第2撮像系4B)と、投光系2A,2Bや干渉光学系3、撮像系4A,4Bなどに係る各種制御や画像処理、演算処理等を行う制御装置5とを備えている。
ここで、「制御装置5」が本実施形態における「画像処理手段」を構成し、「干渉光学系3」が本実施形態における「所定の光学系(特定光学系)」を構成する。尚、本実施形態においては、光の干渉を生じさせること(干渉縞画像を撮像すること)を目的として、入射する所定の光を2つの光(計測光及び参照光)に分割し、該2つの光に光路差を生じさせた上で、再度合成して出力する光学系を「干渉光学系」という。つまり、2つの光を内部で干渉させた上で干渉光として出力する光学系のみならず、2つの光を内部で干渉させることなく、単に合成光として出力する光学系についても「干渉光学系」と称している。従って、本実施形態にて後述するように、「干渉光学系」から、2つの光(計測光及び参照光)が干渉することなく合成光として出力される場合には、少なくとも撮像される前段階(例えば撮像系の内部など)において、所定の干渉手段を介して干渉光を得ることとなる。
まず、2つの投光系2A,2B(第1投光系2A,第2投光系2B)の構成について詳しく説明する。第1投光系2Aは、第1発光部11A、第1光アイソレータ12A、第1無偏光ビームスプリッタ13Aなどを備えている。ここで「第1発光部11A」が本実施形態における「第1照射手段」を構成する。
図示は省略するが、第1発光部11Aは、特定波長λ1の直線偏光を出力可能なレーザ光源や、該レーザ光源から出力される直線偏光を拡大し平行光として出射するビームエキスパンダ、強度調整を行うための偏光板、偏光方向を調整するための1/2波長板などを備えている。
かかる構成の下、本実施形態では、第1発光部11Aから、X軸方向及びY軸方向に対し45°傾斜した方向を偏光方向とする波長λ1(例えばλ1=1500nm)の直線偏光がZ軸方向左向きに出射される。ここで「波長λ1」が本実施形態における「第1波長」に相当する。以降、第1発光部11Aから出射される波長λ1の光を「第1光」という。
第1光アイソレータ12Aは、一方向(本実施形態ではZ軸方向左向き)に進む光のみを透過し逆方向(本実施形態ではZ軸方向右向き)の光を遮断する光学素子である。これにより、第1発光部11Aから出射された第1光のみを透過することとなり、戻り光による第1発光部11Aの損傷や不安定化などを防止することができる。
第1無偏光ビームスプリッタ13Aは、直角プリズム(直角二等辺三角形を底面とする三角柱状のプリズム。以下同様。)を貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面13Ahには例えば金属膜などのコーティングが施されている。「第1無偏光ビームスプリッタ13A」が本実施形態における「第1導光手段」を構成する。
以下同様であるが、無偏光ビームスプリッタは、偏光状態も含め、入射光を所定の比率で透過光と反射光とに分割するものである。本実施形態では、1:1の分割比を持った所謂ハーフミラーを採用している。つまり、透過光のP偏光成分及びS偏光成分、並びに、反射光のP偏光成分及びS偏光成分が全て同じ比率で分割されると共に、透過光と反射光の各偏光状態は入射光の偏光状態と同じとなる。
尚、本実施形態では、図1の紙面に平行な方向(Y軸方向又はZ軸方向)を偏光方向とする直線偏光をP偏光(P偏光成分)といい、図1の紙面に垂直なX軸方向を偏光方向とする直線偏光をS偏光(S偏光成分)という。
また、第1無偏光ビームスプリッタ13Aは、その接合面13Ahを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、第1無偏光ビームスプリッタ13Aの接合面13AhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。より詳しくは、第1光アイソレータ12Aを介して、第1発光部11AからZ軸方向左向きに入射する第1光の一部(半分)をZ軸方向左向きに透過させ、残り(半分)をY軸方向下向きに反射させるように配置されている。
第2投光系2Bは、上記第1投光系2Aと同様、第2発光部11B、第2光アイソレータ12B、第2無偏光ビームスプリッタ13Bなどを備えている。ここで「第2発光部11B」が本実施形態における「第2照射手段」を構成する。
第2発光部11Bは、上記第1発光部11Aと同様、特定波長λ2の直線偏光を出力可能なレーザ光源や、該レーザ光源から出力される直線偏光を拡大し平行光として出射するビームエキスパンダ、強度調整を行うための偏光板、偏光方向を調整するための1/2波長板などを備えている。
かかる構成の下、本実施形態では、第2発光部11Bから、X軸方向及びZ軸方向に対し45°傾斜した方向を偏光方向とする波長λ2(例えばλ2=1503nm)の直線偏光がY軸方向上向きに出射される。ここで「波長λ2」が本実施形態における「第2波長」に相当する。以降、第2発光部11Bから出射される波長λ2の光を「第2光」という。
第2光アイソレータ12Bは、第1光アイソレータ12Aと同様、一方向(本実施形態ではY軸方向上向き)に進む光のみを透過し逆方向(本実施形態ではY軸方向下向き)の光を遮断する光学素子である。これにより、第2発光部11Bから出射された第2光のみを透過することとなり、戻り光による第2発光部11Bの損傷や不安定化などを防止することができる。
第2無偏光ビームスプリッタ13Bは、第1無偏光ビームスプリッタ13Aと同様、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面13Bhには例えば金属膜などのコーティングが施されている。「第2無偏光ビームスプリッタ13B」が本実施形態における「第2導光手段」を構成する。
また、第2無偏光ビームスプリッタ13Bは、その接合面13Bhを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、第2無偏光ビームスプリッタ13Bの接合面13BhがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。より詳しくは、第2光アイソレータ12Bを介して、第2発光部11BからY軸方向上向きに入射する第2光の一部(半分)をY軸方向上向きに透過させ、残り(半分)をZ軸方向右向きに反射させるように配置されている。
次に干渉光学系3の構成について詳しく説明する。干渉光学系3は、偏光ビームスプリッタ(PBS)20、1/4波長板21,22、参照面23、設置部24などを備えている。
偏光ビームスプリッタ20は、直角プリズムを貼り合せて一体としたキューブ型の公知の光学部材であって、その接合面(境界面)20hには例えば誘電体多層膜などのコーティングが施されている。
偏光ビームスプリッタ20は、入射される直線偏光を偏光方向が互いに直交する2つの偏光成分(P偏光成分とS偏光成分)に分割するものである。本実施形態における偏光ビームスプリッタ20は、P偏光成分を透過させ、S偏光成分を反射する構成となっている。
偏光ビームスプリッタ20は、その接合面20hを挟んで隣り合う2面のうちの一方がY軸方向と直交しかつ他方がZ軸方向と直交するように配置されている。つまり、偏光ビームスプリッタ20の接合面20hがY軸方向及びZ軸方向に対し45°傾斜するように配置されている。
より詳しくは、上記第1無偏光ビームスプリッタ13AからY軸方向下向きに反射した第1光が入射する偏光ビームスプリッタ20の第1面(Y軸方向上側面)20a、並びに、該第1面20aと相対向する第3面(Y軸方向下側面)20cがY軸方向と直交するように配置されている。「偏光ビームスプリッタ20の第1面20a」が本実施形態における「第1入出力部」に相当する。
一方、第1面20aと接合面20hを挟んで隣り合う面であって、上記第2無偏光ビームスプリッタ13BからZ軸方向右向きに反射した第2光が入射する偏光ビームスプリッタ20の第2面(Z軸方向左側面)20b、並びに、該第2面20bと相対向する第4面(Z軸方向右側面)20dがZ軸方向と直交するように配置されている。「偏光ビームスプリッタ20の第2面20b」が本実施形態における「第2入出力部」に相当する。
また、偏光ビームスプリッタ20の第3面20cとY軸方向に相対向するように1/4波長板21が配置され、該1/4波長板21とY軸方向に相対向するように参照面23が配置されている。
1/4波長板21は、直線偏光を円偏光に変換しかつ円偏光を直線偏光に変換する機能を有する。つまり、偏光ビームスプリッタ20の第3面20cから出射される直線偏光(参照光)は1/4波長板21を介して円偏光に変換された上で参照面23に対し照射される。また、参照面23で反射した参照光は、再度、1/4波長板21を介して円偏光から直線偏光に変換された上で偏光ビームスプリッタ20の第3面20cに入射する。
一方、偏光ビームスプリッタ20の第4面20dとZ軸方向に相対向するように1/4波長板22が配置され、該1/4波長板22とZ軸方向に相対向するように設置部24が配置されている。
1/4波長板22は、直線偏光を円偏光に変換しかつ円偏光を直線偏光に変換する機能を有する。つまり、偏光ビームスプリッタ20の第4面20dから出射される直線偏光(計測光)は1/4波長板22を介して円偏光に変換された上で設置部24に置かれた被計測物としてのワークWに対し照射される。また、ワークWにて反射した計測光は、再度、1/4波長板22を介して円偏光から直線偏光に変換された上で偏光ビームスプリッタ20の第4面20dに入射する。
次に2つの撮像系4A,4B(第1撮像系4A,第2撮像系4B)の構成について詳しく説明する。第1撮像系4Aは、1/4波長板31A、第1偏光板32A、第1撮像手段を構成する第1カメラ33Aなどを備えている。
1/4波長板31Aは、第2無偏光ビームスプリッタ13BをZ軸方向左向きに透過してきた直線偏光(第1光の参照光成分及び計測光成分)をそれぞれ円偏光に変換するためのものである。
第1偏光板32Aは、1/4波長板31Aにより円偏光に変換された第1光の各成分を選択的に透過させるものである。これにより、回転方向の異なる第1光の参照光成分と計測光成分とを特定の位相について干渉させることができる。「第1偏光板32A」が本実施形態における「位相シフト手段」及び「干渉手段」を構成する。
本実施形態に係る第1偏光板32Aは、Z軸方向を軸心として回転可能に構成されると共に、その透過軸方向が45°ずつ変化するように制御される。具体的には、透過軸方向がY軸方向に対し「0°」、「45°」、「90°」、「135°」となるように変化する。
これにより、第1偏光板32Aを透過する第1光の参照光成分及び計測光成分を4通りの位相で干渉させることができる。つまり、位相が90°ずつ異なる干渉光を生成することができる。具体的には、位相が「0°」の干渉光、位相が「90°」の干渉光、位相が「180°」の干渉光、位相が「270°」の干渉光を生成することができる。
第1カメラ33Aは、レンズや撮像素子33Aa(図6参照)等を備えてなる公知のものである。本実施形態では、第1カメラ33Aの撮像素子33Aaとして、CCDエリアセンサを採用している。勿論、撮像素子33Aaは、これに限定されるものではなく、例えばCMOSエリアセンサ等を採用してもよい。また、レンズとしては、テレセントリックレンズを用いることが好ましい。
第1カメラ33Aによって撮像された画像データは、第1カメラ33A内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置5(画像データ記憶装置54)に入力されるようになっている。
具体的には、第1光に係る位相「0°」の干渉縞画像、位相「90°」の干渉縞画像、位相「180°」の干渉縞画像、位相「270°」の干渉縞画像が第1カメラ33Aにより撮像されることとなる。
第2撮像系4Bは、第1撮像系4Aと同様、1/4波長板31B、第2偏光板32B、第2撮像手段を構成する第2カメラ33Bなどを備えている。
1/4波長板31Bは、第1無偏光ビームスプリッタ13AをY軸方向上向きに透過してきた直線偏光(第2光の参照光成分及び計測光成分)をそれぞれ円偏光に変換するためのものである。
第2偏光板32Bは、第1偏光板32Aと同様、1/4波長板31Bにより円偏光に変換された第2光の各成分を選択的に透過させるものである。これにより、回転方向の異なる第2光の参照光成分と計測光成分とを特定の位相について干渉させることができる。「第2偏光板32B」が本実施形態における「位相シフト手段」及び「干渉手段」を構成する。
本実施形態に係る第2偏光板32Bは、Y軸方向を軸心として回転可能に構成されると共に、その透過軸方向が45°ずつ変化するように制御される。具体的には、透過軸方向がX軸方向に対し「0°」、「45°」、「90°」、「135°」となるように変化する。
これにより、第2偏光板32Bを透過する第2光の参照光成分及び計測光成分を4通りの位相で干渉させることができる。つまり、位相が90°ずつ異なる干渉光を生成することができる。具体的には、位相が「0°」の干渉光、位相が「90°」の干渉光、位相が「180°」の干渉光、位相が「270°」の干渉光を生成することができる。
第2カメラ33Bは、第1カメラ33Aと同様、レンズや撮像素子33Ba(図6参照)等を備えてなる公知のものである。本実施形態では、第1カメラ33Aと同様、第2カメラ33Bの撮像素子33Baとして、CCDエリアセンサを採用している。勿論、撮像素子33Baは、これに限定されるものではなく、例えばCMOSエリアセンサ等を採用してもよい。また、レンズとしては、テレセントリックレンズを用いることが好ましい。
第1カメラ33Aと同様、第2カメラ33Bによって撮像された画像データは、第2カメラ33B内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置5(画像データ記憶装置54)に入力されるようになっている。
具体的には、第2光に係る位相「0°」の干渉縞画像、位相「90°」の干渉縞画像、位相「180°」の干渉縞画像、位相「270°」の干渉縞画像が第2カメラ33Bにより撮像されることとなる。
ここで制御装置5の電気的構成について説明する。図2に示すように、制御装置5は、三次元計測装置1全体の制御を司るCPU及び入出力インターフェース51、キーボードやマウス、あるいは、タッチパネルで構成される「入力手段」としての入力装置52、液晶画面などの表示画面を有する「表示手段」としての表示装置53、カメラ33A,33Bにより撮像された画像データ等を順次記憶するための画像データ記憶装置54、各種演算結果を記憶するための演算結果記憶装置55、各種情報を予め記憶しておく設定データ記憶装置56を備えている。なお、これら各装置52~56は、CPU及び入出力インターフェース51に対し電気的に接続されている。
次に三次元計測装置1の作用について説明する。尚、後述するように、本実施形態における第1光及び第2光の照射は同時に行われるものであり、第1光の光路と第2光の光路が一部で重なることとなるが、ここでは、より分かりやすくするため、第1光及び第2光の光路ごとに異なる図面を用いて個別に説明する。
まず第1光の光路について図3を参照して説明する。図3に示すように、波長λ1の第1光(偏光方向がX軸方向及びY軸方向に対し45°傾斜した直線偏光)が第1発光部11AからZ軸方向左向きに出射される。
第1発光部11Aから出射された第1光は、第1光アイソレータ12Aを通過し、第1無偏光ビームスプリッタ13Aに入射する。第1無偏光ビームスプリッタ13Aに入射した第1光の一部はZ軸方向左向きに透過し、残りはY軸方向下向きに反射する。
このうち、Y軸方向下向きに反射した第1光(偏光方向がX軸方向及びZ軸方向に対し45°傾斜した直線偏光)は、偏光ビームスプリッタ20の第1面20aに入射する。一方、Z軸方向左向きに透過した第1光は、何らかの光学系等に入射することなく、捨て光となる。
ここで、捨て光となる光を、必要に応じて波長計測あるいは光のパワー計測に利用すれば、光源を安定化させ如いては計測精度の向上を図ることができる。
偏光ビームスプリッタ20の第1面20aからY軸方向下向きに入射した第1光は、そのP偏光成分がY軸方向下向きに透過して第3面20cから参照光として出射される一方、そのS偏光成分がZ軸方向右向きに反射して第4面20dから計測光として出射される。
偏光ビームスプリッタ20の第3面20cから出射した第1光に係る参照光(P偏光)は、1/4波長板21を通過することにより右回りの円偏光に変換された後、参照面23で反射する。ここで、光の進行方向に対する回転方向は維持される。その後、第1光に係る参照光は、再度、1/4波長板21を通過することで、右回りの円偏光からS偏光に変換された上で偏光ビームスプリッタ20の第3面20cに再入射する。
一方、偏光ビームスプリッタ20の第4面20dから出射した第1光に係る計測光(S偏光)は、1/4波長板22を通過することにより左回りの円偏光に変換された後、ワークWで反射する。ここで、光の進行方向に対する回転方向は維持される。その後、第1光に係る計測光は、再度、1/4波長板22を通過することで、左回りの円偏光からP偏光に変換された上で偏光ビームスプリッタ20の第4面20dに再入射する。
ここで、偏光ビームスプリッタ20の第3面20cから再入射した第1光に係る参照光(S偏光)が接合面20hにてZ軸方向左向きに反射する一方、第4面20dから再入射した第1光に係る計測光(P偏光)は接合面20hをZ軸方向左向きに透過する。そして、第1光に係る参照光及び計測光が合成された状態の合成光が出力光として偏光ビームスプリッタ20の第2面20bから出射される。
偏光ビームスプリッタ20の第2面20bから出射された第1光に係る合成光(参照光及び計測光)は、第2無偏光ビームスプリッタ13Bに入射する。第2無偏光ビームスプリッタ13Bに対しZ軸方向左向きに入射した第1光に係る合成光は、その一部がZ軸方向左向きに透過し、残りがY軸方向下向きに反射する。このうち、Z軸方向左向きに透過した合成光(参照光及び計測光)は第1撮像系4Aに入射することとなる。一方、Y軸方向下向きに反射した合成光は、第2光アイソレータ12Bによりその進行を遮断され、捨て光となる。
第1撮像系4Aに入射した第1光に係る合成光(参照光及び計測光)は、まず1/4波長板31Aにより、その参照光成分(S偏光成分)が左回りの円偏光に変換され、その計測光成分(P偏光成分)が右回りの円偏光に変換される。ここで、左回りの円偏光と右回りの円偏光は回転方向が異なるので干渉しない。
第1光に係る合成光は、続いて第1偏光板32Aを通過することにより、その参照光成分と計測光成分とが第1偏光板32Aの角度に応じた位相で干渉する。そして、かかる第1光に係る干渉光が第1カメラ33Aにより撮像される。
次に第2光の光路について図4を参照して説明する。図4に示すように、波長λ2の第2光(偏光方向がX軸方向及びZ軸方向に対し45°傾斜した直線偏光)が第2発光部11BからY軸方向上向きに出射される。
第2発光部11Bから出射された第2光は、第2光アイソレータ12Bを通過し、第2無偏光ビームスプリッタ13Bに入射する。第2無偏光ビームスプリッタ13Bに入射した第2光の一部はY軸方向上向きに透過し、残りはZ軸方向右向きに反射する。
このうち、Z軸方向右向きに反射した第2光(偏光方向がX軸方向及びY軸方向に対し45°傾斜した直線偏光)は、偏光ビームスプリッタ20の第2面20bに入射する。一方、Y軸方向上向きに透過した第2光は、何らかの光学系等に入射することなく、捨て光となる。
ここで、捨て光となる光を、必要に応じて波長計測あるいは光のパワー計測に利用すれば、光源を安定化させ如いては計測精度の向上を図ることができる。
偏光ビームスプリッタ20の第2面20bからZ軸方向右向きに入射した第2光は、そのS偏光成分がY軸方向下向きに反射して第3面20cから参照光として出射される一方、そのP偏光成分がZ軸方向右向きに透過して第4面20dから計測光として出射される。
偏光ビームスプリッタ20の第3面20cから出射した第2光に係る参照光(S偏光)は、1/4波長板21を通過することにより左回りの円偏光に変換された後、参照面23で反射する。ここで、光の進行方向に対する回転方向は維持される。その後、第2光に係る参照光は、再度、1/4波長板21を通過することで、左回りの円偏光からP偏光に変換された上で偏光ビームスプリッタ20の第3面20cに再入射する。
一方、偏光ビームスプリッタ20の第4面20dから出射した第2光に係る計測光(P偏光)は、1/4波長板22を通過することにより右回りの円偏光に変換された後、ワークWで反射する。ここで、光の進行方向に対する回転方向は維持される。その後、第2光に係る計測光は、再度、1/4波長板22を通過することで、右回りの円偏光からS偏光に変換された上で偏光ビームスプリッタ20の第4面20dに再入射する。
ここで、偏光ビームスプリッタ20の第3面20cから再入射した第2光に係る参照光(P偏光)は接合面20hをY軸方向上向きに透過する一方、第4面20dから再入射した第2光に係る計測光(S偏光)は接合面20hにてY軸方向上向きに反射する。そして、第2光に係る参照光及び計測光が合成された状態の合成光が出力光として偏光ビームスプリッタ20の第1面20aから出射される。
偏光ビームスプリッタ20の第1面20aから出射された第2光に係る合成光(参照光及び計測光)は、第1無偏光ビームスプリッタ13Aに入射する。第1無偏光ビームスプリッタ13Aに対しY軸方向上向きに入射した第2光に係る合成光は、その一部がY軸方向上向きに透過し、残りがZ軸方向右向きに反射する。このうち、Y軸方向上向きに透過した合成光(参照光及び計測光)は第2撮像系4Bに入射することとなる。一方、Z軸方向右向きに反射した合成光は、第1光アイソレータ12Aによりその進行を遮断され、捨て光となる。
第2撮像系4Bに入射した第2光に係る合成光(参照光及び計測光)は、まず1/4波長板31Bにより、その参照光成分(P偏光成分)が右回りの円偏光に変換され、その計測光成分(S偏光成分)が左回りの円偏光に変換される。ここで、左回りの円偏光と右回りの円偏光は回転方向が異なるので干渉しない。
第2光に係る合成光は、続いて第2偏光板32Bを通過することにより、その参照光成分と計測光成分とが第2偏光板32Bの角度に応じた位相で干渉する。そして、かかる第2光に係る干渉光が第2カメラ33Bにより撮像される。
次に、制御装置5によって実行される計測処理の手順について図5のフローチャート等を参照しつつ詳しく説明する。以下、この計測処理について説明する際には、第1カメラ33Aの撮像素子33Aa面、又は、第2カメラ33Bの撮像素子33Ba面をx-y平面とし、これに直交する光軸方向をz方向として説明する。勿論、この座標系(x,y,z)と、三次元計測装置1全体を説明するための座標系(X,Y,Z)は異なる座標系である。
先ずステップS1において、ワークWの所定の計測領域(ワークWの全域又はその一部)に係る干渉縞画像を取得する処理を実行する。本実施形態では、ここで第1光に係る位相の異なる4通りの干渉縞画像、及び、第2光に係る位相の異なる4通りの干渉縞画像を取得する。以下、詳しく説明する。
ワークWを設置部24へ設置した後、第1撮像系4Aの第1偏光板32Aの透過軸方向を所定の基準位置(例えば「0°」)に設定すると共に、第2撮像系4Bの第2偏光板32Bの透過軸方向を所定の基準位置(例えば「0°」)に設定する。
続いて、第1投光系2Aから第1光を照射すると同時に、第2投光系2Bから第2光を照射する。その結果、干渉光学系3の偏光ビームスプリッタ20の第2面20bから第1光に係る合成光(参照光及び計測光)が出射されると同時に、偏光ビームスプリッタ20の第1面20aから第2光に係る合成光(参照光及び計測光)が出射される。
そして、偏光ビームスプリッタ20の第2面20bから出射された第1光に係る合成光を第1撮像系4Aにより撮像すると同時に、偏光ビームスプリッタ20の第1面20aから出射された第2光に係る合成光を第2撮像系4Bにより撮像する。
尚、ここでは第1偏光板32A及び第2偏光板32Bの透過軸方向がそれぞれ「0°」に設定されているため、第1カメラ33Aでは第1光に係る位相「0°」の干渉縞画像が撮像され、第2カメラ33Bでは第2光に係る位相「0°」の干渉縞画像が撮像されることとなる。
そして、各カメラ33A,33Bからそれぞれ撮像された画像データが制御装置5へ出力される。制御装置5は、入力した画像データを画像データ記憶装置54に記憶する。
次に制御装置5は、第1撮像系4Aの第1偏光板32A、及び、第2撮像系4Bの第2偏光板32Bの切替処理を行う。具体的には、第1偏光板32A及び第2偏光板32Bをそれぞれ透過軸方向が「45°」となる位置まで回動変位させる。
該切替処理が終了すると、制御装置5は、上記一連の1回目の撮像処理と同様の2回目の撮像処理を行う。つまり、制御装置5は、第1投光系2Aから第1光を照射すると同時に、第2投光系2Bから第2光を照射し、偏光ビームスプリッタ20の第2面20bから出射された第1光に係る合成光を第1撮像系4Aにより撮像すると同時に、偏光ビームスプリッタ20の第1面20aから出射された第2光に係る合成光を第2撮像系4Bにより撮像する。これにより、第1光に係る位相「90°」の干渉縞画像が取得されると共に、第2光に係る位相「90°」の干渉縞画像が撮像されることとなる。
以降、上記1回目及び2回目の撮像処理と同様の撮像処理が2回繰り返し行われる。つまり、第1偏光板32A及び第2偏光板32Bの透過軸方向を「90°」に設定した状態で3回目の撮像処理を行い、第1光に係る位相「180°」の干渉縞画像を取得すると共に、第2光に係る位相「180°」の干渉縞画像を取得する。
その後、第1偏光板32A及び第2偏光板32Bの透過軸方向を「135°」に設定した状態で4回目の撮像処理を行い、第1光に係る位相「270°」の干渉縞画像を取得すると共に、第2光に係る位相「270°」の干渉縞画像を取得する。
このように、4回の撮像処理を行うことにより、ワークWの所定の計測領域に係る計測を行う上で必要な全ての画像データ(第1光に係る4通りの干渉縞画像、及び、第2光に係る4通りの干渉縞画像からなる計8つの干渉縞画像)を取得することができる。
続くステップS2において、制御装置5は、撮像素子33Aa,33Ba面における光の複素振幅データを取得する処理を実行する。
本実施形態では、画像データ記憶装置54に記憶された第1光に係る4通りの干渉縞画像、及び、第2光に係る4通りの干渉縞画像を基に、第1光及び第2光それぞれに係る撮像素子33Aa,33Ba面での光の複素振幅データEo(x,y)を取得する。
第1光又は第2光に係る4通りの干渉縞画像の同一座標位置(x,y)における干渉縞強度、すなわち輝度I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)は、下記[数1]の関係式で表すことができる。
ここで、Δφ(x,y)は、座標(x,y)における計測光と参照光との光路差に基づく位相差を表している。また、A(x,y)は干渉光の振幅、B(x,y)はバイアスを表している。但し、参照光は均一であるため、これを基準として見ると、Δφ(x,y)は「計測光の位相」を表し、A(x,y)は「計測光の振幅」を表すこととなる。
従って、撮像素子33Aa,33Ba面に到達した計測光の位相Δφ(x,y)は、上記[数1]の関係式を基に、下記[数2]の関係式で求めることができる。
また、撮像素子33Aa,33Ba面に到達した計測光の振幅A(x,y)は、上記[数1]の関係式を基に、下記[数3]の関係式で求めることができる。
そして、上記位相Δφ(x,y)と振幅A(x,y)から、下記[数4]の関係式を基に撮像素子33Aa,33Ba面における複素振幅データEo(x,y)を算出することができる。ここで、iは虚数単位を表している。
続くステップS3において、制御装置5は、ワークW上の計測領域内に予め設定した一部の特定領域V(図7参照)について、z方向複数位置の複素振幅データを取得する処理を実行する。
本実施形態では、三次元計測装置1における高さ計測の基準となる装置原点を基準に、ワークWが存在し得るz方向所定範囲(光軸方向第1範囲)Q1内において、所定の計測レンジ間隔ごとに、特定領域Vに係る複素振幅データを取得する。
ここで「特定領域V」は、z方向におけるワークWの位置を事前に把握するために任意に設定された領域である。例えばワークWが図8,9に示すようなウエハ基板100である場合には、バンプ101の高さ計測の基準面となり得るパターン部102が特定領域Vとして設定される。
また、図8に示すウエハ基板100の計測例では、三次元計測装置1における高さ計測の基準となる装置原点H0を中心にして上下方向にそれぞれ計測レンジ間隔Rごとに設定された高さ位置H3,H2,H1,H0,H-1,H-2,H-3それぞれにおける複素振幅データを取得するように設定されている。
以下、ステップS3における複素振幅データの取得方法について詳しく説明する。まずz方向の所定位置における既知の複素振幅データから、z方向の異なる位置における未知の複素振幅データを取得する方法について説明する。
ここでは、z方向に距離d離れた2つの座標系(x-y座標系とξ-η座標系)を考える。そして、x-y座標系をz=0とし、x-y座標系での既知の光の複素振幅データをEo(x,y)で表し、x-y平面から距離d離れたξ-η平面での未知の光の複素振幅データをEo(ξ,η)と表すと、下記[数5]に示す関係となる。ここで、λは波長を表す。
これをEo(ξ,η)について解くと、下記[数6]のようになる。
従って、ステップS3においては、図6,7に示すように、上記ステップS2で取得した撮像素子33Aa,33Ba面における複素振幅データEo(x,y)を基に、撮像素子33Aa,33Ba面からz方向への距離LがL0,L1,L2・・・Ln離れた位置(z=L0,L1,・・・,Ln)それぞれにおける複素振幅データEoL0(ξ,η),EoL1(ξ,η),・・・,EoLn(ξ,η)を取得することとなる。
続くステップS4において、制御装置5は、特定領域Vについて、z方向複数位置の強度画像(輝度画像)データを取得する処理を実行する。
詳しくは、上記ステップS3において取得した特定領域Vに係るz方向複数位置の複素振幅データEoL0(ξ,η),EoL1(ξ,η),・・・,EoLn(ξ,η)からそれぞれ強度画像データを取得する。従って、上記ステップS2~S4に係る一連の再生処理を実行する機能により、本実施形態における第1画像データ取得手段が構成されることとなる。
尚、ξ-η平面における複素振幅データがEo(ξ,η)で表されるとき、ξ-η平面における強度画像データI(ξ,η)は下記[数7]の関係式で求めることができる。
続くステップS5において、制御装置5は、特定領域Vに係る最適合焦位置(光軸方向合焦位置)を決定する処理を実行する。かかるステップS5の処理を実行する機能により、本実施形態における第1合焦位置決定手段が構成される。
詳しくは、上記ステップS4にて取得した特定領域Vに係るz方向複数位置の強度画像データを基に、特定領域Vのz方向における最適合焦位置を決定する。以下、強度画像データのコントラストから特定領域Vの最適合焦位置を決定する方法について説明する。
まず撮像素子33Aa,33Ba面からz方向への距離LがL0,L1,L2,・・・,Ln離れたz方向各位置(z=L0,L1,・・・,Ln)における特定領域Vの強度画像データについて「特定座標位置」と「その他の座標位置」との輝度のコントラストを求める。続いて、この中で最もコントラストが高い強度画像データが得られた位置(z=Lm)を最適合焦位置として抽出する。
尚、特定領域Vの最適合焦位置を決定する方法としては、上述した強度画像データのコントラストから求める方法のみならず、他の方法を採用してもよい。例えば強度画像データの輝度から求める方法を採用してもよい。
かかる方法では、強度画像データは実際に物体がある面で最も強くなるという性質を利用する。具体的には、z方向各位置(z=L0,L1,・・・,Ln)における特定領域Vの強度画像データにおいて、特定領域Vの各座標位置の平均輝度を求める。続いて、この中で最も平均輝度が高い強度画像データが得られた位置(z=Lm)を最適合焦位置として抽出する。
例えば図8に示すウエハ基板100の計測例では、高さ位置H3,H2,H1,H0,H-1,H-2,H-3におけるパターン部102の強度画像データについてコントラスト又は平均輝度が求められると共に、この中で最もコントラスト又は平均輝度が高い強度画像データが得られる位置(例えば高さ位置H-1)が最適合焦位置として抽出される。
続くステップS6において、制御装置5は、ワークWの所定の計測領域全体の各座標位置について、z方向複数位置の複素振幅データを取得する処理を実行する。
本実施形態では、上記ステップS5において決定した特定領域Vの最適合焦位置を基準に、ワークW上の所定の計測対象(例えばウエハ基板100上のバンプ101)が存在し得るz方向所定範囲(光軸方向第2範囲)Q2内において、所定の計測レンジ間隔ごとに、計測領域の各座標位置に係る複素振幅データを取得する。
例えば図8に示すウエハ基板100の計測例では、特定領域Vの最適合焦位置(高さ位置H-1)を基準として上方向に計測レンジ間隔Rごとに設定された高さ位置H1,H0,H-1それぞれにおける複素振幅データを取得するように設定されている。
また、図8に示す例では、z方向所定範囲Q2がz方向所定範囲Q1よりも狭くなるように設定されているが、これに限らず、両者が同一間隔に、又は、z方向所定範囲Q2がz方向所定範囲Q1よりも広くなるように設定される構成としてもよい。但し、計測領域全体の各座標位置に係る三次元計測を行う上で必要なデータを取得するための処理にかかる負荷を軽減すると共に、該処理に要する時間を短縮できる点においては、z方向所定範囲Q2がz方向所定範囲Q1よりも狭く設定されることが好ましい。
尚、ステップS6における複素振幅データの取得方法は、上記ステップS3における複素振幅データの取得方法と同様であるため、詳細な説明は省略する。
続くステップS7において、制御装置5は、ワークW上の計測領域の各座標位置について、z方向複数位置の強度画像データを取得する処理を実行する。従って、上記ステップS6,7に係る一連の処理を実行する機能により、本実施形態における第2画像データ取得手段が構成されることとなる。
詳しくは、上記ステップS6において取得した複素振幅データを基に、ワークW上の計測領域の各座標位置について、z方向複数位置の強度画像データを取得する。尚、ステップS7において複素振幅データから強度画像データを取得する方法は、上記ステップS4における強度画像データの取得方法と同様であるため、詳細な説明は省略する。
続くステップS8において、制御装置5は、ワークW上の計測領域の各座標位置について最適合焦位置(光軸方向合焦位置)を決定する処理を実行する。かかるステップS8の処理を実行する機能により本実施形態における第2合焦位置決定手段が構成される。
詳しくは、上記ステップS7にて取得した計測領域の各座標位置に係るz方向複数位置の強度画像データを基に、計測領域の各座標位置のz方向における最適合焦位置を決定する。尚、ステップS8においてz方向複数位置の強度画像データから最適合焦位置を決定する方法は、上記ステップS5における最適合焦位置の決定方法と同様であるため、詳細な説明は省略する。
続くステップS9において、制御装置5は、ステップS8において決定したワークW上の計測領域の各座標位置に係る最適合焦位置に対応する次数を、該各座標位置に係る計測レンジの次数として特定する処理を実行する。かかるステップS9の処理を実行する機能により、本実施形態における次数特定手段が構成される。
ここで、計測レンジの次数の特定方法について図11に例示した具体例を基に説明する。図11に示す例は、図8に示すウエハ基板100を、計測レンジ(位相シフト法における正弦波の1周期分[-180°~180°])が1000nmとなる光(本実施形態では2波長の合成波長光)を使用して、「-3500(nm)」~「3500(nm)」の範囲の高さ計測を行った場合の例である。
図11に示す「ケース1」では、所定座標位置について、高さ位置H3,H2,H1,H0,H-1,H-2,H-3において再生した強度画像データ(再生画像[1]~[7])のうち、高さ位置H2にて再生した強度画像データ(再生画像[2])に係る輝度値が「250」で最大となっている。このため、該座標位置について、高さ位置H2が最適合焦位置となり、これに対応する次数[2]が、該座標位置に係る計測レンジの次数として特定される。
図11に示す「ケース2」では、所定座標位置について、高さ位置H3,H2,H1,H0,H-1,H-2,H-3において再生した強度画像データ(再生画像[1]~[7])のうち、高さ位置H2にて再生した強度画像データ(再生画像[2])及び高さ位置H1にて再生した強度画像データ(再生画像[1])に係る輝度値が共に「128」で最大となっている。
かかる場合、該座標位置に係る実際の高さは、次数[2]の計測レンジと、次数[1]の計測レンジとの境界部付近に相当する高さであると想定されるため、この時点においては、2つの次数[2]、[1]を該座標位置に係る計測レンジの次数として特定しておく。
続くステップS10において、制御装置5は、三次元計測処理を実行する。かかるステップ10の処理を実行する機能により、本実施形態における三次元計測手段が構成される。
ここで、まず制御装置5は、ステップS8において決定した計測領域の各座標位置における最適合焦位置の複素振幅データEo(ξ,η)から、下記[数8]の関係式を基に、計測光の位相φ(ξ,η)と、計測光の振幅A(ξ,η)を算出する。
計測光の位相φ(ξ,η)は、下記[数9]の関係式により求めることができる。ここで、計測光の位相情報である位相φ(ξ,η)を算出する一連の再生処理を実行する機能により、本実施形態における位相情報取得手段が構成されることとなる。
計測光の振幅A(ξ,η)は、下記[数10]の関係式により求めることができる。
その後、位相-高さ変換処理を行い、ワークWの表面の凹凸形状を3次元的に示す計測レンジ内の高さ情報z(ξ,η)を算出する。
計測レンジ内の高さ情報z(ξ,η)は、下記[数11]の関係式により算出することができる。
そして、上記のように算出した計測レンジ内の高さ情報z(ξ,η)と、ステップS9にて特定した各座標位置に係る計測レンジの次数とを基に、該座標位置に係る真の高さデータ(実際の高さ)を取得する。
例えば図11に示す例において、所定座標位置について、上記のように算出した計測レンジ内の高さ情報z(ξ,η)が例えば位相「+90°」に相当するものであった場合には、該座標位置の真の高さデータの候補は、次数[3]の「3250(nm)」、次数[2]の「2250(nm)」、次数[1]の「1250(nm)」、次数[0]の「250(nm)」、次数[-1]の「-750(nm)」、次数[-2]の「-1750(nm)」、次数[-3]の「-2750(nm)」となる。
ここで、例えば「ケース1」のように、該座標位置について、高さ位置H2が最適合焦位置となり、これに対応する次数[2]が、該座標位置に係る計測レンジの次数として特定された場合には、該座標位置の真の高さデータは、次数[2]の位相[90°]に対応する「2250(nm)」と特定することができる。
また、図11に示す例において、所定座標位置について、上記のように算出した計測レンジ内の高さ情報z(ξ,η)が例えば位相「-180°」に相当するものであった場合には、該座標位置の真の高さデータの候補は、次数[3]の「2500(nm)」、次数[2]の「1500(nm)」、次数[1]の「500(nm)」、次数[0]の「-500(nm)」、次数[-1]の「-1500(nm)」、次数[-2]の「-2500(nm)」、次数[-3]の「-3500(nm)」となる。
ここで、例えば「ケース2」のように、該座標位置について、高さ位置H2及び高さ位置H1が最適合焦位置となり、これに対応する次数[2]及び次数[1]が、該座標位置に係る計測レンジの次数として特定されている場合には、該座標位置の真の高さデータは、次数[2]の位相「-180°」に対応する「1500(nm)」と特定することができる。
さて、ワークWがウエハ基板100(図9参照)でバンプ101が計測対象となっている場合、計測基準面であるパターン部102に対するバンプ101の高さHBは、バンプ101の絶対高さHA1から、該バンプ101周辺のパターン部102の絶対高さHA2を減算することにより求めることができる〔HB=HA1-HA2〕。
ここで、パターン部102の絶対高さHA2としては、例えばパターン部102上の任意の1点の絶対高さや、パターン部102上の所定範囲の絶対高さの平均値などを用いることができる。また、「バンプ101の絶対高さHA1」や、「パターン部102の絶対高さHA2」は、高さ情報z(ξ,η)及び計測レンジの次数により求めることができる。
そして、このように求められたワークWの計測結果は、制御装置5の演算結果記憶装置55に格納される。
尚、波長の異なる2種類の光(波長λ1,λ2)を用いて計測を行った場合には、その合成波長λ0の光で計測を行ったことと同じこととなる。そして、その計測レンジはλ0/2に拡大することとなる。合成波長λ0は、下記式(M1)で表すことができる。
λ0=(λ1×λ2)/(λ2-λ1) ・・・(M1)
但し、λ2>λ1とする。
但し、λ2>λ1とする。
例えばλ1=1500nm、λ2=1503nmとすると、上記式(M1)から、λ0=751.500μmとなり、計測レンジはλ0/2=375.750μmとなる。
より詳しく説明すると、本実施形態では、まず波長λ1の第1光に係る4通りの干渉縞画像の輝度I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)を基に(上記[数1]参照)、ワークW面上の座標(ξ,η)における第1光に係る計測光の位相φ1(ξ,η)を算出することができる(上記[数9]参照)。
第1光に係る計測の下、座標(ξ,η)における高さ情報z(ξ,η)は、下記式(M2)で表すことができる。
z(ξ,η)=d1(ξ,η)/2
={λ1×φ1(ξ,η)/4π}+{m1(ξ,η)×λ1/2} ・・・(M2)
但し、d1(ξ,η)は、第1光に係る計測光と参照光との光路差を表し、m1(ξ,η)は、第1光に係る縞次数を表す。
={λ1×φ1(ξ,η)/4π}+{m1(ξ,η)×λ1/2} ・・・(M2)
但し、d1(ξ,η)は、第1光に係る計測光と参照光との光路差を表し、m1(ξ,η)は、第1光に係る縞次数を表す。
よって、位相φ1(ξ,η)は下記式(M2´)で表すことができる。
φ1(ξ,η)=(4π/λ1)×z(ξ,η)-2πm1(ξ,η) ・・・(M2´)
同様に、波長λ2の第2光に係る4通りの干渉縞画像の輝度I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)を基に(上記[数1]参照)、ワークW面上の座標(ξ,η)における第2光に係る計測光の位相φ2(ξ,η)を算出することができる(上記[数9]参照)。
同様に、波長λ2の第2光に係る4通りの干渉縞画像の輝度I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)を基に(上記[数1]参照)、ワークW面上の座標(ξ,η)における第2光に係る計測光の位相φ2(ξ,η)を算出することができる(上記[数9]参照)。
第2光に係る計測の下、座標(ξ,η)における高さ情報z(ξ,η)は、下記式(M3)で表すことができる。
z(ξ,η)=d2(ξ,η)/2
={λ2×φ2(ξ,η)/4π}+{m2(ξ,η)×λ2/2} ・・・(M3)
但し、d2(ξ,η)は、第2光に係る計測光と参照光との光路差を表し、m2(ξ,η)は、第2光に係る縞次数を表す。
={λ2×φ2(ξ,η)/4π}+{m2(ξ,η)×λ2/2} ・・・(M3)
但し、d2(ξ,η)は、第2光に係る計測光と参照光との光路差を表し、m2(ξ,η)は、第2光に係る縞次数を表す。
よって、位相φ2(ξ,η)は下記式(M3´)で表すことができる。
φ2(ξ,η)=(4π/λ2)×z(ξ,η)-2πm2(ξ,η) ・・・(M3´)
ここで、波長λ1の第1光に係る縞次数m1(ξ,η)、及び、波長λ2の第2光に係る縞次数m2(ξ,η)は、2種類の光(波長λ1,λ2)の光路差Δd及び波長差Δλを基に求めることができる。光路差Δd及び波長差Δλは、それぞれ下記式(M4),(M5)のように表すことができる。
ここで、波長λ1の第1光に係る縞次数m1(ξ,η)、及び、波長λ2の第2光に係る縞次数m2(ξ,η)は、2種類の光(波長λ1,λ2)の光路差Δd及び波長差Δλを基に求めることができる。光路差Δd及び波長差Δλは、それぞれ下記式(M4),(M5)のように表すことができる。
Δd=(λ1×φ1-λ2×φ2)/2π ・・・(M4)
Δλ=λ2-λ1 ・・・(M5)
但し、λ2>λ1とする。
Δλ=λ2-λ1 ・・・(M5)
但し、λ2>λ1とする。
尚、2波長の合成波長λ0の計測レンジ内において、縞次数m1,m2の関係は、以下の3つの場合に分けられ、各場合ごとに縞次数m1(ξ,η)、m2(ξ,η)を決定する計算式が異なる。ここで、例えば縞次数m1(ξ,η)を決定する場合について説明する。勿論、縞次数m2(ξ,η)についても、同様の手法により求めることができる。
例えば「φ1-φ2<-π」の場合には「m1-m2=-1」となり、かかる場合、m1は下記式(M6)のように表すことができる。
m1=(Δd/Δλ)-(λ2/Δλ)
=(λ1×φ1-λ2×φ2)/2π(λ2-λ1)-λ2/(λ2-λ1)・・・(M6)
「-π<φ1-φ2<π」の場合には「m1-m2=0」となり、かかる場合、m1は下記式(M7)のように表すことができる。
=(λ1×φ1-λ2×φ2)/2π(λ2-λ1)-λ2/(λ2-λ1)・・・(M6)
「-π<φ1-φ2<π」の場合には「m1-m2=0」となり、かかる場合、m1は下記式(M7)のように表すことができる。
m1=Δd/Δλ
=(λ1×φ1-λ2×φ2)/2π(λ2-λ1)・・・(M7)
「φ1-φ2>π」の場合には「m1-m2=+1」となり、かかる場合、m1は下記式(M8)のように表すことができる。
=(λ1×φ1-λ2×φ2)/2π(λ2-λ1)・・・(M7)
「φ1-φ2>π」の場合には「m1-m2=+1」となり、かかる場合、m1は下記式(M8)のように表すことができる。
m1=(Δd/Δλ)+(λ2/Δλ)
=(λ1×φ1-λ2×φ2)/2π(λ2-λ1)+λ2/(λ2-λ1)・・・(M8)
このようにして得られた縞次数m1(ξ,η)又はm2(ξ,η)を基に、上記式(M2),(M3)から高さ情報z(ξ,η)を得ることができる。
=(λ1×φ1-λ2×φ2)/2π(λ2-λ1)+λ2/(λ2-λ1)・・・(M8)
このようにして得られた縞次数m1(ξ,η)又はm2(ξ,η)を基に、上記式(M2),(M3)から高さ情報z(ξ,η)を得ることができる。
以上詳述したように、本実施形態では、ワークW上の計測領域の各座標位置ごとに、計測レンジを超えた高さ計測が可能となる。また、ワークWを移動させるような大掛かりな移動機構を必要とせず、構成の簡素化を図ることができると共に、その振動等の影響を受けることもないため、計測精度の向上を図ることができる。
さらに、より少ない撮像回数で、計測に必要なすべての干渉縞画像を取得することができ、計測効率の向上を図ることができる。
加えて、本実施形態では、まず最初にワークWの計測領域全体ではなく、計測領域内に予め設定した一部の特定領域Vについてのみ、z方向複数位置における強度画像データを取得し、その合焦状況からワークWのz方向位置を特定した後、かかる位置を基準にして計測領域全体の各座標位置について、z方向複数位置における強度画像データを取得して計測を行う構成となっている。
これにより、計測領域に係る三次元計測を行う上で必要なデータを取得するための処理にかかる負荷を軽減すると共に、該処理に要する時間を短縮することができる。結果として、計測精度の向上を図ると共に、計測効率の向上を図ることができる。
また、本実施形態では、波長λ1の第1光を偏光ビームスプリッタ20の第1面20aから入射させると共に、波長λ2の第2光を偏光ビームスプリッタ20の第2面20bから入射させることにより、第1光に係る参照光及び計測光と、第2光に係る参照光及び計測光がそれぞれ異なる偏光成分(P偏光又はS偏光)に分割されるため、偏光ビームスプリッタ20に入射した第1光と第2光は互いに干渉することなく、別々に偏光ビームスプリッタ20から出射されることとなる。つまり、偏光ビームスプリッタ20から出射される光を所定の分離手段を用いて第1光と第2光とに分離する必要がない。
その結果、第1光及び第2光として波長の近い2種類の光を用いることができ、三次元計測に係る計測レンジをより広げることができる。加えて、第1光に係る出力光の撮像と、第2光に係る出力光の撮像を同時に行うことができるため、総体的な撮像時間を短縮でき、計測効率の向上を図ることができる。
尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
(a)被計測物としてのワークWは、上記実施形態に例示したウエハ基板100に限定されるものではない。例えばクリーム半田が印刷されたプリント基板などをワークW(被計測物)としてもよい。
また、予め設定された良否の判定基準に従い、計測対象となるバンプやクリーム半田の良否を検査する検査手段を設けたバンプ検査装置や半田印刷検査装置において、三次元計測装置1を備えた構成としても良い。
(b)上記実施形態では、干渉縞画像から再生を行う方法(複素振幅データを得る方法)として、複数枚の画像データを用いる位相シフト法を採用しているが、これに限らず、他の方法を採用してもよい。例えば1枚の画像データを用いて行うフーリエ変換法を採用してもよい。
また、再生に関しても、複素振幅データを用いて再生する方法に限定されず、他の再生方法を採用してもよい。
さらに、光伝搬計算に関しても、上記実施形態において例示したコンボリューション法に限らず、例えば角スペクトル法など他の方法を採用してもよい。
(c)干渉光学系(所定の光学系)の構成は上記実施形態に限定されるものではない。例えば上記実施形態では、干渉光学系として、マイケルソン干渉計の光学構成を採用しているが、これに限らず、例えばマッハ・ツェンダー干渉計やフィゾー干渉計の光学構成など、入射光を参照光と計測光に分割してワークWの計測を行う構成であれば、他の光学構成を採用してもよい。
(d)上記実施形態では、波長の異なる2種類の光を利用してワークWの計測を行う構成となっているが、これに限らず、1種類の光のみを利用してワークWの計測を行う構成としてもよい。
また、波長の異なる2種類の光を利用する場合においては、上記実施形態に係る構成に限らず、従来の三次元計測装置と同様に、第1波長光と第2波長光を合成した状態で干渉光学系へ入射させ、ここから出射される干渉光を所定の光学分離手段(ダイクロイックミラー等)により波長分離し、第1波長光に係る干渉光と、第2波長光に係る干渉光とを得て、各波長光に係る干渉光を個別に撮像した干渉縞画像を基にワークWの計測を行う構成としてもよい。
また、2つの光源から出射される波長の異なる2種類の光を重ね合わせた状態で干渉光学系へ入射させ、ここから出射される光を光学分離手段により波長分離し、上記各波長の光に係る干渉光を個別に撮像する構成を上記実施形態に組み合わせ、波長の異なる3種類以上の光を利用してワークWの計測を行う構成としてもよい。
(e)投光系2A,2Bの構成は上記実施形態に限定されるものではない。例えば上記実施形態では、第1投光系2Aから波長λ1=1500nmの光が照射され、第2投光系2Bから波長λ2=1503nmの光が照射される構成を例示しているが、各光の波長はこれに限定されるものではない。但し、計測レンジを広げるためには、2つの光の波長差をより小さくすることが好ましい。
(f)上記実施形態では、第1光及び第2光について、それぞれ位相が90°ずつ異なる4通りの干渉縞画像を取得する構成となっているが、位相シフト回数及び位相シフト量は、これらに限定されるものではない。例えば位相が120°(又は90°)ずつ異なる3通りの干渉縞画像を取得してワークWの計測を行う構成としてもよい。
(g)上記実施形態では、位相シフト手段として、透過軸方向を変更可能に構成された偏光板32A,32Bを採用しているが、位相シフト手段の構成は、これに限定されるものではない。
例えばピエゾ素子等により参照面23を光軸に沿って移動させることで物理的に光路長を変化させる構成を採用してもよい。
但し、かかる構成や上記実施形態では、計測に必要なすべての干渉縞画像を取得するまでに一定時間を要するため、計測時間が長くなるばかりでなく、その空気の揺らぎや振動等の影響を受けるため、計測精度が低下するおそれがある。
これに対し、例えば第1撮像系4Aにおいて、1/4波長板31Aを透過した第1光に係る合成光(参照光成分及び計測光成分)を4つの光に分割する分光手段(プリズム等)を備えると共に、位相シフト手段として、第1偏光板32Aに代えて、前記分光手段から出射された4つの光に対してそれぞれ異なる位相差を付与するフィルタ手段を備え、該フィルタ手段を透過した4つの光を第1カメラ33A(又は複数のカメラ)により同時撮像する構成としてもよい。勿論、第2撮像系4Bについても同様の構成としてもよい。
かかる構成とすれば、計測に必要なすべての干渉縞画像を同時に取得することができる。つまり、2種類の光に係る計8通りの干渉縞画像を同時に取得することができる。結果として、計測精度の向上を図ると共に、総体的な撮像時間を大幅に短縮でき、計測効率の飛躍的な向上を図ることができる。
(h)上記実施形態では、z方向におけるワークWの位置(特定領域Vの最適合焦位置)を決定する過程において、高さ計測の計測レンジ間隔で複素振幅データ等を取得する構成となっているが、これに限らず、例えば合焦範囲間隔で複素振幅データ等を取得する構成としてもよい。
(i)上記実施形態では、ステップS6において得られた計測領域全体の複素振幅データを基に、ステップS10において三次元計測を行う構成となっている。これに加えて、ステップS6において得られた計測領域全体の複素振幅データを基に、計測領域全体の強度画像を取得し、二次元計測を行う構成としてもよい。
計測領域全体の強度画像を取得する場合において、例えば計測領域のうち第1の領域については、光軸方向における第1位置におけるデータを用い、第2の領域については、光軸方向における第2位置におけるデータを用いるといったように、計測領域の各座標位置における光軸方向の合焦位置の違いに応じて用いるデータを異ならせることにより、仮に被計測物が反っていたり、傾いた状態となっている等して、計測領域に高低差が生じているような場合であっても、計測領域全体に焦点の合った強度画像を取得することが可能となる。
二次元計測を行う場合には、その計測結果を基に、例えば計測対象となったバンプ101(図10参照)の位置ズレΔx,Δyや、外径D、面積Sなどを、予め設定した基準値と比較判定し、この比較結果が許容範囲内にあるか否かによって、バンプ101の良否を判定する二次元検査を行うことができる。
また、ステップS10において二次元計測及び三次元計測の両方を行う場合には、二次元計測(二次元検査)の結果を基にして、計測対象となるバンプ101が存在する場所を特定してから三次元検査を行ったり、三次元計測により得られた三次元データに対し強度画像をマッピングするなど、複数種類の計測を組み合せた総合的な検査を行うことができる。
(j)上記実施形態においては、レンズを備えたカメラを使用しているが、必ずしもレンズは必要なく、レンズのないカメラを使用しても、上記実施形態によれば、焦点の合った画像を計算により求めることができる。
(k)上記実施形態では、ワークWの計測領域内に予め設定した一部の特定領域Vに係る最適合焦位置、すなわちワークWのz方向位置を特定した後、かかる位置を基準にして計測領域全体のz方向複数位置における複素振幅データ及び強度画像データを取得して計測を行う構成となっている。
これに限らず、特定領域Vに係る最適合焦位置を特定する工程を省略し、三次元計測装置1の装置原点を基準に直接、ワークWの計測領域全体の各座標位置に係るz方向複数位置の複素振幅データ及び強度画像データを取得して計測を行う構成としてもよい。
(l)上記実施形態では、計測レンジ1周期分の間隔ごとに、z方向複数位置における強度画像データを取得して合焦状況を判断する構成となっている。これに代えて、計測レンジn周期分(nは2以上の自然数)間隔ごとに、z方向複数位置における強度画像データを取得して合焦状況を判断する構成としてもよい。
例えば図12に示す具体例のように、計測レンジ2周期分間隔ごとに、z方向複数位置における強度画像データを取得して合焦状況を判断する構成としてもよい。
図12に示す「ケース1」では、所定座標位置について、高さ位置H3,H1,H-1,H-3において再生した強度画像データ(再生画像[1]~[4])のうち、高さ位置H3にて再生した強度画像データ(再生画像[1])に係る輝度値が「135」で最大となっている。これにより、該座標位置について、高さ位置H3を最適合焦位置として特定することができる。
同様に、図12に示す「ケース2」では、所定座標位置について、高さ位置H3,H1,H-1,H-3において再生した強度画像データ(再生画像[1]~[4])のうち、高さ位置H1にて再生した強度画像データ(再生画像[2])に係る輝度値が「128」で最大となっている。これにより、該座標位置について、高さ位置H3を最適合焦位置として特定することができる。
尚、ここで高さ位置H3,H1,H-1,H-3において再生した強度画像データ(再生画像[1]~[4])を基に、高さ位置H2,H0,H-2に係る補間データを求め、これを含めて、最適合焦位置を特定する構成としてもよい。
(m)上記実施形態では、計測領域の各座標位置についてz方向複数位置における強度画像データを取得し、その合焦状況を判断して計測を行う構成となっている。これに限らず、計測領域の各座標位置についてz方向所定位置1箇所で強度画像データを取得し、その合焦状況を判断し(合焦判定手段)、所定条件を満たす所定の合焦状態にある場合(例えば所定の閾値以上の輝度を有する場合等)には、該z方向所定位置に係る複素振幅データから求められる光の位相情報と、該z方向所定位置に対応する次数とを基に、該座標位置に係る三次元計測を実行する構成としてもよい。
1…三次元計測装置、2A…第1投光系、2B…第2投光系、3…干渉光学系、4A…第1撮像系、4B…第2撮像系、5…制御装置、11A…第1発光部、11B…第2発光部、12A…第1光アイソレータ、12B…第2光アイソレータ、13A…第1無偏光ビームスプリッタ、13B…第2無偏光ビームスプリッタ、20…偏光ビームスプリッタ、20a…第1面、20c…第3面、20b…第2面、20d…第4面、21,22…1/4波長板、23…参照面、24…設置部、31A…1/4波長板、31B…1/4波長板、32A…第1偏光板、32B…第2偏光板、33A…第1カメラ、33B…第2カメラ、33Aa,33Ba…撮像素子、100…ウエハ基板、101…バンプ、102…パターン部、R…計測レンジ間隔、V…特定領域、W…ワーク。
Claims (7)
- 入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な所定の光学系と、
前記所定の光学系に対し入射させる所定の光を出射可能な照射手段と、
前記所定の光学系から出射される出力光を撮像可能な撮像手段と、
前記撮像手段により撮像し得られた干渉縞画像を基に前記被計測物の所定の計測領域に係る三次元計測を実行可能な画像処理手段とを備えた三次元計測装置であって、
前記画像処理手段は、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の強度画像データを取得可能な画像データ取得手段と、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の光の位相情報を取得可能な位相情報取得手段と、
前記画像データ取得手段により取得された前記計測領域の所定座標位置における光軸方向所定位置の強度画像データを基に、該強度画像データが所定条件を満たす合焦状態にあるか否かを判定する合焦判定手段と、
前記合焦判定手段の判定結果に基づき、前記所定座標位置における光軸方向所定位置の強度画像データが前記合焦状態にあると判定された場合に、光軸方向に所定の計測レンジ間隔で定められる次数のうち、前記光軸方向所定位置に対応する次数を前記所定座標位置に係る次数として特定する次数特定手段と、
前記位相情報取得手段により取得された前記所定座標位置に係る位相情報と、前記次数特定手段により特定された前記所定座標位置に係る次数とを基に、前記所定座標位置に係る三次元計測を実行可能な三次元計測手段とを備えていることを特徴とする三次元計測装置。 - 入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な所定の光学系と、
前記所定の光学系に対し入射させる所定の光を出射可能な照射手段と、
前記所定の光学系から出射される出力光を撮像可能な撮像手段と、
前記撮像手段により撮像し得られた干渉縞画像を基に前記被計測物の所定の計測領域に係る三次元計測を実行可能な画像処理手段とを備えた三次元計測装置であって、
前記画像処理手段は、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の強度画像データを、少なくとも光軸方向所定範囲において、所定の計測レンジn周期分(nは1以上の自然数)間隔で複数通り取得可能な画像データ取得手段と、
前記画像データ取得手段により取得された前記計測領域の所定座標位置に係る前記複数通りの強度画像データを基に、該所定座標位置における所定の光軸方向合焦位置を決定する合焦位置決定手段と、
光軸方向に前記計測レンジ間隔で定められる次数のうち、前記合焦位置決定手段により決定された前記所定座標位置の前記光軸方向合焦位置に対応する次数を、該所定座標位置に係る次数として特定する次数特定手段と、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の光の位相情報を取得可能な位相情報取得手段と、
前記位相情報取得手段により取得された前記所定座標位置に係る位相情報と、前記次数特定手段により特定された前記所定座標位置に係る次数とを基に、前記所定座標位置に係る三次元計測を実行可能な三次元計測手段とを備えていることを特徴とする三次元計測装置。 - 入射する所定の光を2つの光に分割し、一方の光を計測光として被計測物に照射可能としかつ他方の光を参照光として参照面に照射可能とすると共に、これらを再び合成して出射可能な所定の光学系と、
前記所定の光学系に対し入射させる所定の光を出射可能な照射手段と、
前記所定の光学系から出射される出力光を撮像可能な撮像手段と、
前記撮像手段により撮像し得られた干渉縞画像を基に前記被計測物の所定の計測領域に係る三次元計測を実行可能な画像処理手段とを備えた三次元計測装置であって、
前記画像処理手段は、
前記撮像手段により撮像し得られた干渉縞画像を基に、再生により、前記計測領域内に予め設定した一部の特定領域における光軸方向所定位置の強度画像データを、少なくとも光軸方向第1範囲において、所定の計測レンジn周期分(nは1以上の自然数)間隔で複数通り取得可能な第1画像データ取得手段と、
前記第1画像データ取得手段により取得された前記特定領域に係る前記複数通りの強度画像データを基に、該特定領域における所定の光軸方向合焦位置を決定する第1合焦位置決定手段と、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の強度画像データを、前記特定領域における光軸方向合焦位置を基準に設定される少なくとも光軸方向第2範囲において、所定の計測レンジn周期分(nは1以上の自然数)間隔で複数通り取得可能な第2画像データ取得手段と、
前記第2画像データ取得手段により取得された前記計測領域の所定座標位置に係る前記複数通りの強度画像データを基に、該所定座標位置における所定の光軸方向合焦位置を決定する第2合焦位置決定手段と、
光軸方向に前記計測レンジ間隔で定められる次数のうち、前記第2合焦位置決定手段により決定された前記所定座標位置の前記光軸方向合焦位置に対応する次数を、該所定座標位置に係る次数として特定する次数特定手段と、
前記撮像手段により撮像し得られた前記計測領域に係る干渉縞画像を基に、再生により、前記計測領域の各座標位置における光軸方向所定位置の光の位相情報を取得可能な位相情報取得手段と、
前記位相情報取得手段により取得された前記所定座標位置に係る位相情報と、前記次数特定手段により特定された前記所定座標位置に係る次数とを基に、前記所定座標位置に係る三次元計測を実行可能な三次元計測手段とを備えていることを特徴とする三次元計測装置。 - 前記再生は、前記干渉縞画像を基に、光軸方向所定位置に係る複素振幅データを取得して行われることを特徴とする請求項1乃至3のいずれかに記載の三次元計測装置。
- 前記参照光と前記計測光との間に相対的な位相差を付与する位相シフト手段を備え、
前記画像処理手段は、
前記位相シフト手段により複数通りに位相シフトされた前記出力光を前記撮像手段により撮像し得られた複数通りの干渉縞画像を基に、前記被計測物の所定の計測領域に係る計測を実行可能に構成されていることを特徴とする請求項1乃至4のいずれかに記載の三次元計測装置。 - 前記照射手段は、
前記所定の光学系に対し入射させる、第1波長の偏光を含む第1光を出射可能な第1照射手段と、
前記所定の光学系に対し入射させる、第2波長の偏光を含む第2光を出射可能な第2照射手段とを備え、
前記撮像手段は、
前記所定の光学系に対し前記第1光を入射することにより前記所定の光学系から出射される前記第1光に係る出力光を撮像可能な第1撮像手段と、
前記所定の光学系に対し前記第2光を入射することにより前記所定の光学系から出射される前記第2光に係る出力光を撮像可能な第2撮像手段とを備えたことを特徴とする請求項1乃至5のいずれかに記載の三次元計測装置。 - 前記被計測物は、バンプが形成されたウエハ基板であることを特徴とする請求項1乃至6のいずれかに記載の三次元計測装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207006987A KR102345277B1 (ko) | 2017-12-07 | 2018-08-29 | 삼차원 계측장치 |
DE112018006245.7T DE112018006245T5 (de) | 2017-12-07 | 2018-08-29 | Vorrichtung zur dreidimensionalen Messung |
CN201880056431.6A CN111051810B (zh) | 2017-12-07 | 2018-08-29 | 三维测量装置 |
US16/874,222 US11118895B2 (en) | 2017-12-07 | 2020-05-14 | Three-dimensional measurement device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017234859A JP7028623B2 (ja) | 2017-12-07 | 2017-12-07 | 三次元計測装置 |
JP2017-234859 | 2017-12-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/874,222 Continuation US11118895B2 (en) | 2017-12-07 | 2020-05-14 | Three-dimensional measurement device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019111453A1 true WO2019111453A1 (ja) | 2019-06-13 |
Family
ID=66751375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/031883 WO2019111453A1 (ja) | 2017-12-07 | 2018-08-29 | 三次元計測装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11118895B2 (ja) |
JP (1) | JP7028623B2 (ja) |
KR (1) | KR102345277B1 (ja) |
CN (1) | CN111051810B (ja) |
DE (1) | DE112018006245T5 (ja) |
TW (1) | TWI686585B (ja) |
WO (1) | WO2019111453A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI813095B (zh) * | 2021-12-10 | 2023-08-21 | 財團法人工業技術研究院 | 三維量測系統及其校正方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101860347B1 (ko) * | 2016-11-29 | 2018-05-23 | 국방과학연구소 | 마이켈슨 간섭계의 하우징 시스템 |
JP7043555B2 (ja) * | 2020-09-04 | 2022-03-29 | Ckd株式会社 | 三次元計測装置 |
US12045008B2 (en) * | 2020-12-28 | 2024-07-23 | Korea Photonics Technology Institute | Holographic microscope |
JP7442145B2 (ja) * | 2021-02-25 | 2024-03-04 | Ckd株式会社 | 三次元計測装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777742A (en) * | 1993-03-11 | 1998-07-07 | Environmental Research Institute Of Michigan | System and method for holographic imaging with discernible image of an object |
JP2012083233A (ja) * | 2010-10-12 | 2012-04-26 | Canon Inc | 三次元形状測定装置、三次元形状測定方法及びコンピュータプログラム |
JP2014001965A (ja) * | 2012-06-15 | 2014-01-09 | Keyence Corp | 形状測定装置および形状測定方法 |
JP2017053832A (ja) * | 2015-05-25 | 2017-03-16 | Ckd株式会社 | 三次元計測装置 |
JP2017125707A (ja) * | 2016-01-12 | 2017-07-20 | キヤノン株式会社 | 計測方法および計測装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3401783B2 (ja) | 1998-06-23 | 2003-04-28 | 株式会社高岳製作所 | 表面形状計測装置 |
WO2007002898A2 (en) * | 2005-06-29 | 2007-01-04 | University Of South Florida | Variable tomographic scanning with wavelength scanning digital interface holography |
CN101918789A (zh) * | 2007-09-16 | 2010-12-15 | 梅厄·本-利维 | 利用周期图案照明和tdi的成像测量系统 |
JP5339535B2 (ja) * | 2007-11-22 | 2013-11-13 | 国立大学法人京都工芸繊維大学 | デジタルホログラフィ装置及び位相板アレイ |
JP5339934B2 (ja) * | 2009-01-22 | 2013-11-13 | キヤノン株式会社 | 光断層撮像装置および光断層撮像方法 |
JP6091864B2 (ja) * | 2012-11-27 | 2017-03-08 | 株式会社キーエンス | 形状測定装置、形状測定方法および形状測定プログラム |
JP2014228486A (ja) * | 2013-05-24 | 2014-12-08 | インスペック株式会社 | 三次元プロファイル取得装置、パターン検査装置及び三次元プロファイル取得方法 |
JP6254849B2 (ja) * | 2014-01-17 | 2017-12-27 | キヤノン株式会社 | 画像処理装置、画像処理方法 |
-
2017
- 2017-12-07 JP JP2017234859A patent/JP7028623B2/ja active Active
-
2018
- 2018-08-29 CN CN201880056431.6A patent/CN111051810B/zh active Active
- 2018-08-29 KR KR1020207006987A patent/KR102345277B1/ko active IP Right Grant
- 2018-08-29 DE DE112018006245.7T patent/DE112018006245T5/de active Pending
- 2018-08-29 WO PCT/JP2018/031883 patent/WO2019111453A1/ja active Application Filing
- 2018-09-03 TW TW107130794A patent/TWI686585B/zh active
-
2020
- 2020-05-14 US US16/874,222 patent/US11118895B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777742A (en) * | 1993-03-11 | 1998-07-07 | Environmental Research Institute Of Michigan | System and method for holographic imaging with discernible image of an object |
JP2012083233A (ja) * | 2010-10-12 | 2012-04-26 | Canon Inc | 三次元形状測定装置、三次元形状測定方法及びコンピュータプログラム |
JP2014001965A (ja) * | 2012-06-15 | 2014-01-09 | Keyence Corp | 形状測定装置および形状測定方法 |
JP2017053832A (ja) * | 2015-05-25 | 2017-03-16 | Ckd株式会社 | 三次元計測装置 |
JP2017125707A (ja) * | 2016-01-12 | 2017-07-20 | キヤノン株式会社 | 計測方法および計測装置 |
Non-Patent Citations (1)
Title |
---|
TONOOKA, MASAHITO ET AL.: "Surface Profile Measurement by Phase and Contrast Detection using Grating Projection Method", JOURNAL OF THE JAPAN SOCIETY FOR PRECISION ENGINEERING, vol. 66, no. 1, 5 January 2000 (2000-01-05), pages 132 - 136 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI813095B (zh) * | 2021-12-10 | 2023-08-21 | 財團法人工業技術研究院 | 三維量測系統及其校正方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20200092934A (ko) | 2020-08-04 |
CN111051810A (zh) | 2020-04-21 |
US11118895B2 (en) | 2021-09-14 |
US20200271434A1 (en) | 2020-08-27 |
KR102345277B1 (ko) | 2021-12-29 |
TWI686585B (zh) | 2020-03-01 |
JP7028623B2 (ja) | 2022-03-02 |
CN111051810B (zh) | 2022-05-03 |
DE112018006245T5 (de) | 2020-09-03 |
TW201937129A (zh) | 2019-09-16 |
JP2019100961A (ja) | 2019-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019111453A1 (ja) | 三次元計測装置 | |
JP6246875B1 (ja) | 計測装置 | |
JP6271493B2 (ja) | 三次元計測装置 | |
JP6279013B2 (ja) | 三次元計測装置 | |
US20150002852A1 (en) | Coherence scanning interferometry using phase shifted interferometrty signals | |
JP6513619B2 (ja) | 三次元計測装置 | |
JP6766995B2 (ja) | 位相シフト干渉計 | |
WO2016190151A1 (ja) | 三次元計測装置 | |
JP7043555B2 (ja) | 三次元計測装置 | |
JP2017026494A (ja) | 白色干渉計による形状測定装置 | |
JP2020153992A (ja) | 白色干渉計による形状測定装置 | |
WO2022091508A1 (ja) | 三次元計測装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18886581 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18886581 Country of ref document: EP Kind code of ref document: A1 |