WO2019111139A1 - モータサイクルの挙動を制御する制御装置及び制御方法タサイクルの挙動を制御する制御装置及び制御方法 - Google Patents

モータサイクルの挙動を制御する制御装置及び制御方法タサイクルの挙動を制御する制御装置及び制御方法 Download PDF

Info

Publication number
WO2019111139A1
WO2019111139A1 PCT/IB2018/059601 IB2018059601W WO2019111139A1 WO 2019111139 A1 WO2019111139 A1 WO 2019111139A1 IB 2018059601 W IB2018059601 W IB 2018059601W WO 2019111139 A1 WO2019111139 A1 WO 2019111139A1
Authority
WO
WIPO (PCT)
Prior art keywords
position information
lane
vehicle
motor cycle
target vehicle
Prior art date
Application number
PCT/IB2018/059601
Other languages
English (en)
French (fr)
Inventor
ラーズ プファウ
Original Assignee
口—ベルト ボッシュ ゲゼルシャフト ミット べシュレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 口—ベルト ボッシュ ゲゼルシャフト ミット べシュレンクテル ハフツング filed Critical 口—ベルト ボッシュ ゲゼルシャフト ミット べシュレンクテル ハフツング
Priority to DE112018005415.2T priority Critical patent/DE112018005415T5/de
Priority to CN201880078929.2A priority patent/CN111417994A/zh
Priority to US16/770,053 priority patent/US11524680B2/en
Priority to JP2019557711A priority patent/JP7465094B2/ja
Publication of WO2019111139A1 publication Critical patent/WO2019111139A1/ja

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/163Decentralised systems, e.g. inter-vehicle communication involving continuous checking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/20Cycle computers as cycle accessories
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/36Cycles; Motorcycles; Scooters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/10Number of lanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/30Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/12Motorcycles, Trikes; Quads; Scooters
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection

Definitions

  • Patent application title CONTROL DEVICE AND CONTROL METHOD FOR CONTROLLING MOBILE CYCLE BEHAVIOR
  • the present disclosure relates to a control device and control method that can appropriately support the operation of a motorcycle by a rider.
  • Patent Document 1 discloses that a rider of a motorcycle is approaching an obstacle improperly based on an output of a detection device for detecting an obstacle in a traveling direction or substantially in the traveling direction.
  • a driver assistance system is disclosed that warns.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 0 0 9-1 1 6 8 8 2
  • adaptive cruise operation the preceding vehicle in the driving lane on which the motor cycle travels is identified as the vehicle to be followed, the relative position information between the motor cycle and the vehicle to be followed is acquired, and the vehicle is followed from the motor cycle The behavior of the motor cycle is controlled such that the distance to the target vehicle approaches the distance reference value.
  • the present invention has been made on the background of the above-mentioned problems, and provides a control device and control method that can appropriately support the operation of a motorcycle by a rider.
  • the control device is a control device that controls the behavior of a motor cycle, and includes a tracking target vehicle identification unit that identifies a tracking target vehicle of adaptive cruise operation, and the tracking of the motor cycle while traveling.
  • a vehicle position information acquisition unit for acquiring vehicle position information, which is relative position information of a target vehicle, and the adaptive position operation based on the vehicle position information acquired by the vehicle position information acquisition unit.
  • the control amount setting unit for setting a control amount, and an execution unit for causing the motor cycle to execute the adaptive cruise operation according to the control amount set by the control amount setting unit,
  • a lane position information acquisition unit for acquiring lane position information that is relative position information of lane boundaries with respect to the motor cycle during traveling; ,
  • the control method comprises a following target vehicle identification step of specifying a target vehicle following an adaptive cruise operation, and a vehicle position that is relative position information of the following target vehicle with respect to the motor cycle during traveling.
  • the vehicle position information acquisition step of acquiring the position information and the vehicle position information acquired in the vehicle position information acquisition step (based on the control in the adaptive cruise operation) A control amount setting step of setting an amount, and an execution step of causing the motor cycle to execute the adaptive cruise operation according to the control amount set in the control amount setting step, And a lane position information acquiring step of acquiring lane position information which is relative position information of a lane boundary with respect to the motor cycle during traveling, and the lane following target vehicle specifying step includes the lane position information acquiring step.
  • the follow-up target vehicle is specified based on the lane position information acquired in the position information acquisition step.
  • the vehicle to be followed is identified based on the relative position information of the lane boundary with respect to the motor cycle. Ru.
  • the target vehicle is identified after taking into consideration where the motor cycle is traveling in the width direction of the traveling lane. Therefore, it is possible to realize an appropriate adaptive cruise operation specialized to a motor cycle characterized by a high degree of freedom of the traveling position in the width direction of the traveling lane.
  • FIG. 1 is a view showing a mounted state of a behavior control system according to a first embodiment of the present invention on a motorcycle.
  • FIG. 2 is a diagram showing a system configuration of a behavior control system according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram for explaining processing of a follow-up target vehicle identification unit of the control device in the behavior control system according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a process flow of a control device of the behavior control system according to the first embodiment of the present invention.
  • motorcycle refers to a motorcycle or a tricycle among straddle-type vehicles that a rider crosses. Further, although the case where the motor cycle is a motorcycle is described below, the motor cycle may be a three-wheeled motor vehicle.
  • FIG. 1 is a diagram showing a mounted state of a behavior control system according to a first embodiment of the present invention on a motorcycle.
  • FIG. 2 is a diagram showing a system configuration of the behavior control wholesale system according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram for explaining processing of a follow-up target vehicle identification unit of the control device in the behavior control system according to the first embodiment of the present invention.
  • the behavior control system 1 is mounted on a motorcycle 100.
  • the behavior control system 1 includes at least an image sensor 10 for imaging each surface of traveling 3 of the motorcycle 100, a distance measuring sensor 20 for receiving a reflection from the front of the motorcycle 100, and a motor cycle 1 Speed sensor for knowing the traveling speed of 0 0 ⁇ 20/11/111139 ⁇ (: 17132018/059601
  • the image sensor 10 is mounted on the front or side of the motor cycle 100 facing the road surface.
  • the detection range of the image sensor 10 is the lane boundary on both sides that defines the width direction of the traveling lane 1_ where the motorcycle 100 is traveling, and it is possible to capture V _, 1 _ ⁇ / _ 1 _ It is wide (see Figure 3).
  • Lane boundaries _ 8, 1 _ _ 1 _ on both sides may be captured by one image sensor 10 or may be captured by separate image sensors 10.
  • the distance measuring sensor 20 is attached to the front of the motor cycle 100 with its front facing.
  • the distance measuring sensor 20 is, for example, an R 3 d 3 “sensor, I ⁇ 6 3 “ sensor, ultrasonic sensor, stereo vision sensor, etc., and the distance from the motor cycle 100 to an object located in front thereof
  • the distance measuring sensor 20 may be another detecting device capable of acquiring the traffic condition ahead of the motorcycle 100, and the function of the image sensor 10. You may have a hand temple.
  • the speed sensor 30 is attached to the moving part of the motor cycle 100.
  • the speed sensor 30 detects the rotational speeds of the front and rear wheels of the motor cycle 100.
  • the speed sensor 30 may be anything as long as it can know the traveling speed of the motor cycle 100.
  • the control device 50 includes a lane position information acquisition unit 51, a following target vehicle identification unit 52, a vehicle position information acquisition unit 53, and a control amount setting unit 54. , The execution unit 55, and.
  • Each unit 6 of the control device 50 may be provided collectively in one case, or may be provided separately in a plurality of cases. Further, part or all of the control device 50 may be configured by, for example, a microcomputer, a microphone, a processor unit or the like, or may be configured by an updatable device such as firmware or the like. , 0 I), etc. It may be a program module etc. which is executed by command.
  • the output of the control device 50 (this is various sensors (image sensor 10, distance measurement sensor 20, speed sensor 30, etc.) is input.
  • the mechanism 90 (this signal is output to control the motion of the motor cycle 100.
  • the behavior control mechanism 90 includes a wheel braking mechanism, an engine drive mechanism, etc.
  • the control device 50 is a motor cycle. It is a device responsible for controlling the behavior control mechanism 90 mounted on the 100. Note that the traveling direction of the motor cycle 100 is not automatically controlled, but depends on the operation of the motorcycle 100 by the rider. Change.
  • Lane position information acquisition unit 51 is a relative position information of lane boundaries V_R, 1 — 1_ (see FIG. 3) with respect to motor cycle 100 during traveling based on the output of image sensor 10. Get lane position information.
  • lane position information acquisition unit 51 determines the lane margin based on the position of the lane boundary _, _ 1 _ in the image captured by image sensor 10.
  • the lane margin 1_M_R is defined as the difference between £ 100 between the motorcycle 100 in the width direction of the traveling lane and the lane on the right side and V_R. Is defined as the distance between the motor cycle 100 in the width direction of the traveling lane and the left lane boundary 1_ ⁇ _! _.
  • Lane margin May be defined as the distance from the image sensor 10 to the lane boundary 1_V_R, 1_ _1_, and the distance from each ⁇ 6 of the motorcycle 100 to the lane boundary _8, 1_ ⁇ _! _ It may be done. Also, lane margin 1_ The lane boundary from the motorcycle 100
  • 1_ V_R which may be defined as £ exaggeration to the center of 1_ _1 _, and also 5 lanes from the motorcycle 100 to the lane boundary and the edge closer to the motorcycle 100 of _ [ ⁇ , 1 _1 _ 1_ It may be defined as separation.
  • the lane position information acquisition unit 51 can determine the distance between the motorcycle 100 in the width direction of the traveling lane 1_ and the lane boundary 1_ _ 6 (this substantially Other distances may be obtained as or the number of pixels of the image sensor 10 may be used as a lane margin. May be
  • the follow-up target vehicle identification unit 52 has an adaptive cruise operation on the motorcycle 100 based on the output of the distance measurement sensor 20 and the lane position information acquired by the lane position information acquisition unit 51. Identify the target vehicle to follow when executing.
  • the follow-up target vehicle identification unit 52 is based on the output of the distance measurement sensor 20, and all the positions within the detection range R of the distance measurement sensor 20. Recognize leading vehicles Eighth, Eighth, Second, Eighth.
  • the characteristics of the detection range R may be controllable or non-controllable.
  • the following vehicle identification unit 52 is defined as the distance between the motor cycle 100 in the width direction of the traveling lane and each of the preceding vehicles 1, 2, and 8; , 8 1 ⁇ / 1 _ 2, 8 1 ⁇ ⁇ _ 3 based on the output of the distance measuring sensor 20.
  • the following target vehicle identification unit 52 is the preceding vehicle margin eight IV! _ 1, eight ⁇ / 1 _ 2, eight 1 ⁇ / 1 _ 3 and the lane margin 1 _ M_ R, 1 _ 1 ⁇ / 1 _ 1 _ The relationships are compared, and the leading vehicles 8 1 and 8 2 located in the traveling lane where the motorcycle 100 is traveling are extracted. In other words, the preceding vehicle 83 that is not located in the driving lane is excluded from the candidates for the follow-up target vehicle eight.
  • the preceding vehicle eight 1 traveling Le - whether located and down to half 1 ", following the target vehicle identification unit 5 2, the preceding vehicle margin eight Compare with the lane margin I M_ R pertaining to the lane boundary 1_ ⁇ _ 8 on the opposite side of the motorcycle 100 with respect to the preceding vehicle eighty, the leading vehicle margin eight 1 ⁇ / 1_ 1 If the lane margin is smaller than M_R, it is determined that the preceding vehicle 81 is located on the traveling lane 1_. On the other hand, the leading ⁇ 20/11/111139 ⁇ (: 17132018/059601
  • Ginhachi M_l is larger than M_R, it is determined that the preceding vehicle 81 is not located in the driving lane 1_.
  • leading vehicles Margin Hachi 1 ⁇ / 1_1, AM_2, 8 1 ⁇ / 1_3 may be defined as the distance from the distance measurement sensor 20 to the leading vehicles H1,2,8,3 and the motor It may be defined as the distance from each side 6 of the cycle 100 to the leading vehicle 1, 2, 3 or 8.
  • leading vehicle margin M_l, AM_2, M_3 may be defined as the distance from the motor cycle 100 to the point closest to the leading vehicle H1 8, H2, H3 3 motor cycle 100.
  • -It may be defined as the distance from Tacycle 100 to the rear end on the axles of leading vehicles 1, 2 and 3.
  • the following target vehicle identification unit 52 And other physical quantities that can be substantially converted to 8 1 ⁇ / 1_2, 1 ⁇ / 1_3 It may be obtained as 8/1 / _2 or 8/1 / _3.
  • the follow-up target vehicle identification unit 52 may use another distance that can be substantially converted to the distance between the motor cycle 100 and the preceding vehicles 1, 8 2 and 3 in the width direction of the traveling lane 1_. It may be obtained as mazin eight 1 ⁇ / 1_1, 1 ⁇ / 1 _2, eight M_3.
  • the tracking target vehicle identification unit 52 determines that the motor cycle 100 in the traveling direction of the motor cycle 100 and the motor cycle 100 Leading vehicle eight 1
  • Distance mouth_1 and mouth_2 may be defined as the distance from distance measurement sensor 20 to leading vehicles 1 and 8 or from each wheel ⁇ of motorcycle 100 to leading vehicles 1 and 8 2 It may be defined as the distance to Also,
  • 8 _1, 8 _2 may be defined as £ ⁇ from motorcycle 100 to after 1 ⁇ 8 axle of leading vehicle 8 1, 8 2 and also motor cycle 100 From this, it may be defined as the distance to the closest point to the motorcycle 100 of the leading vehicle 8 1, 8 2.
  • the following target vehicle identification unit 52 has a distance 0_1 and eight ports. ⁇ 20/11/111139 ⁇ (: 17132018/059601
  • Other physical quantities that can be substantially converted to _ 2 may be obtained as distances 8 0 _ 1 and 8 0 _ 2.
  • the following vehicle identification unit 52 determines the distance between the motor cycle 100 in the direction in which the traveling lane 1_ extends and each of the preceding vehicles 1 and 2 by the distance 0_1, 8_2.
  • the linear distances between the motorcycle 100 and the preceding vehicles 1 and 8 may be obtained as distances 8 0 1 and 8 0 2, respectively.
  • the vehicle position information acquisition unit 53 acquires vehicle position information which is relative position information of the vehicle to be followed with respect to the motor cycle 100 during traveling. Specifically, the distance between the motorcycle 100 and the preceding vehicle 1 in the traveling direction of the motor cycle 100, which is acquired by the tracking target vehicle identification unit 52, is obtained as vehicle position information. Do.
  • the vehicle position information acquisition unit 53 may separately acquire £ ⁇ _ 0 _ 1 without diverting the distance 80 _ 1 acquired by the follow-up target vehicle identification unit 52.
  • the control amount setting unit 54 is a control amount in adaptive cruise operation based on the vehicle position information acquired by the vehicle position information acquisition unit 53 and the output of the speed sensor 3 0.
  • control amount setting unit 54 sets a control amount (speed, acceleration, etc.) such that distance 80 _ 1 approaches the distance reference value.
  • the distance reference value is set as a distance from the motor cycle 1000 to the eight target vehicles to be followed so as to ensure the rider's safety.
  • the control amount setting unit 54 sets a control amount (speed, acceleration, etc.) so that the traveling speed of the motor cycle 100 does not exceed the speed reference value.
  • the speed reference value can be appropriately set by, for example, a rider.
  • the execution unit 5 5 causes the motor cycle 1 0 0 to execute the adaptive cruising operation according to the control amount set by the control amount setting unit 54. Concretely, the execution unit 55 outputs a signal corresponding to the control amount set by the control amount setting unit 54 to the behavior control mechanism 90.
  • FIG. 4 is a diagram showing a process flow of a control device of the behavior control system according to the first embodiment of the present invention. ⁇ 20/11/111139 ⁇ (: 17132018/059601
  • the control device 50 repeats the processing flow shown in FIG. 4 while the motorcycle 100 is traveling.
  • step 1 0 lane position information acquisition unit 5 1 of control device 5 0 uses lane boundary 1 _ V _ R for motor cycle 1 0 0 during traveling based on the output of image sensor 1 0. Get lane position information, which is relative position information of 1_ _ 1_.
  • step S102 the follow-up target vehicle identification unit 52 of the control device 50 outputs the output of the distance measurement sensor 20 and the lane position information acquired by the lane position information acquisition unit 51. Identify the target vehicle to follow.
  • a preceding vehicle located within a detection range R of a detection device for example, a distance measurement sensor 20 for acquiring a traffic condition ahead of the motorcycle 1000 is one, eight or eight Of the eight vehicles, the leading vehicle is located on the traveling lane 1_ of the motor vehicle 100 and is the shortest in distance from the motor cycle 100 in the traveling direction of the motor vehicle 100 Is identified as the target vehicle to be followed.
  • step 310 the vehicle position information acquisition unit 53 of the control device 50 acquires vehicle position information, which is relative position information of the vehicle to be followed with respect to the motor cycle 100 during traveling. .
  • step 5104 the control amount setting unit 54 of the control device 50 is adaptive based on the vehicle position information acquired by the vehicle position information acquisition unit 53 and the output of the speed sensor 30. Set the control amount in the cruise operation. ⁇ 20/11/111139 ⁇ (: 17132018/059601
  • step 1005 the execution unit 55 of the control device 50 causes the motor cycle 100 to execute an adaptive cruise operation according to the control amount set by the control amount setting unit 54.
  • Lane position information acquisition unit that acquires lane position information that is relative position information of lane boundary 1_ _ 6 to motor cycle 1 00 in control unit 5 0
  • the follow target vehicle identification unit 52 identifies the follow target vehicle eight on the basis of lane position information acquired by the lane position information acquisition unit 51. That is, the target vehicle to be followed is specified after taking into consideration where the motorcycle 100 travels in the width direction of the traveling lane 1_. Therefore, it is possible to realize an appropriate adaptive cruise operation specialized for the motorcycle 100, which is characterized in that the degree of freedom of the travel position in the width direction of the travel lane 1_ is large.
  • the target vehicle to be followed is identified without considering where the motorcycle 100 is traveling in the width direction of the traveling lane 1_.
  • the preceding vehicle 3 with the shortest distance from the motor cycle 100 in the traveling direction of the motor cycle 100 will be identified as the target vehicle to be followed.
  • the leading vehicle is a vehicle located on a different lane from the motorcycle 100, it is not eligible as a target vehicle to follow the adaptive cruise operation.
  • the motor cycle 100 has the feature that the freedom of the traveling position in the width direction of the traveling lane 1_ is large, so that the preceding vehicle located in the lane different from the motorcycle 100 can be obtained.
  • the vehicle 3 is likely to be identified as a target vehicle to be followed.
  • the detection range 8 of the detection device for example, the distance measurement sensor 20 for acquiring the traffic condition ahead of the motorcycle 1000 is set narrow in order to make such a case less likely to occur.
  • the leading vehicle eighty 1 is located outside the detection range R, and the motorcycle 100 follows the leading vehicle eighty 2 traveling in front of the leading vehicle eighty 1 and ⁇ 20/11/211139 (1: 17132018/059601 A leading vehicle to follow should be likely to slip through the side of the vehicle).
  • the follow-up target vehicle is identified after taking into consideration where the motorcycle 100 travels in the width direction of the travel lane 1_. Therefore, while keeping the detection range R of the detection device (for example, the distance measurement sensor 20) for acquiring the traffic condition ahead of the motor cycle 1000 in an appropriate width, the preceding vehicle that should be essentially followed It becomes possible to identify 1 appropriately.
  • the detection range R of the detection device for example, the distance measurement sensor 20
  • the preceding vehicle 8 1, 8 2 when the preceding vehicle 8 1, 8 2 is a motor cycle, the preceding vehicle in the width direction of the traveling lane 1 _ Since the degree of freedom of the travel position of 1 and 2 also increases, the detection range R of the detection device (for example, distance measurement sensor 20) for acquiring the traffic condition ahead of the motor cycle 100 should be set narrow. But it will be more difficult. Therefore, it is determined that the vehicle to be followed is identified after the motorcycle 100 is traveling in the width direction of the traveling lane, and that the motorcycle 100 is traveling in a group. Especially useful in situations where
  • follow-up target vehicle identification unit 52 is positioned in traveling lane 1_ of motor cycle 100 and in the traveling direction of motorcycle 100. Identify the leading vehicle with the shortest distance from 0 to 8 as the target vehicle to follow. Therefore, it is possible to ensure the realization of appropriate adaptive cruise operation specialized for motorcycle 100.
  • lane position information acquisition unit 51 has a lane boundary with motorcycle 100 in the width direction of traveling lane 1_. Is acquired as lane position information, and the tracking target vehicle identification unit 52 has a motor cycle 100 in the width direction of the traveling lane 1_ and a leading vehicle 1, 8, 2,
  • leading vehicles Margin 1 ⁇ ⁇ _ 1, 1 ⁇ / 1_2, 8 1 ⁇ / 1_3 are in the width direction of the traveling lane 1_ and the motor vehicle 100 0 It is recommended that the foot of the 8th, 8th, 8th and 3rd motorcycles be the closest to the point. With such a configuration, the determination as to whether or not the leading vehicle 8 1, 2 or 3 is located on the driving lane 1_ is influenced by the width of the leading vehicle 1, 8 2 or 8 3 Can be suppressed.
  • the embodiment And lane boundaries
  • the control unit 50 can obtain the width of the running lane 1_ from another information source (eg, map information etc.)
  • the image sensor 10 can Only lane boundary V_R and lane boundary_ may be imaged.
  • H. 1, H. 2, H. 8, 3 pertaining to £ £ 0 0, H. 8 _ 2, H. 0 _ 3 is obtained.
  • the leading vehicle 81 having the shortest distance from the motorcycle 100 in the traveling direction of 0 0 may be extracted.
  • control amount setting unit 5 5 execution unit, 90 behavior control mechanism, 100 motor cycle, R detection range

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

本発明は、ライダーによるモータサイクルの運転を適切に⽀援することができる制御装置及び制御方法を 得るものである。 制御装置は、アダプティブクルーズ動作の追従対象車両を特定する追従対象車両特定部と、走行中 のモータサイクルに対する追従対象車両の相対的な位置情報を取得する車両位置情報取得部と、アダプティブクルーズ動作での制御量を設定する制御量設定部と、モータサイクルにアダプティブクルーズ動作を 実行させる実行部と、を備えており、更に走行中のモータサイクルに対するレーン境界の相対的な位置情 報を取得するレーン位置情報取得部を備えており、追従対象車両特定部は、レーン位置情報取得部で 取得された位置情報に基づいて、追従対象車両を特定する。

Description

〇 2019/111139 卩(:17132018/059601
【書類名】明細書
【発明の名称】モ-タサイクルの挙動を制御する制御装置及び制御方法
【技術分野】
[ 0 0 0 1】
この開示は、ライダーによるモータサイクルの運転を適切に支援することができる制御装置及び制御方法 に関する。
【背景技術】
[ 0 0 0 2 ]
従来のモ-タサイクル (自動二輪車又は自動三輪車) に関する技術として、ライダーによる運転を支援 するためのものがある。例えば、特許文献 1には、走行方向又は実質的に走行方向にある障害物を検 出するための検出装置の出力に基づいて、不適切に障害物に接近していることをモータサイクルのライダーへ 警告する運転者支援システムが開示されている。
【先行技術文献】
【特許文献】
【0 0 0 3】
【特許文献 1】特開 2 0 0 9 - 1 1 6 8 8 2号公報
【発明の概要】
【発明が解決しようとする課題】
【0 0 0 4】
ところで、ライダーによる運転を支援するために、モータサイクルにアダプティブクルーズ動作を実行させること が考えられる。アダプティブクル-ズ動作では、モ-タサイクルが走行する走行レ-ンの先行車両が追従対象 車両として特定され、モ-タサイクルと追従対象車両の相対的な位置情報が取得され、モ-タサイクルから 追従対象車両までの距離が距離基準値に近づくように、モ-タサイクルの挙動が制御される。
[ 0 0 0 5 ]
ここで、幅広車両 (例えば 4輪を有する乗用車、トラック等) で実行されるアダプティブクル-ズ動作に 〇 2019/111139 卩(:17132018/059601 関しては、既に広く普及しており、追従対象車両を特定するための種々の方式が既に確立されている。し かしながら、モータサイクルで実行されるアダプティブクルーズ動作に関しては、追従対象車両を特定するため の好適な方式が未知であるとの課題がある。つまり、モ-タサイクルは、車幅が狭いため、走行レ-ンの幅方 向における走行位置の自由度が大きい。そのため、モータサイクルにアダプティブクルーズ動作を実行させる 場合には、幅広車両にアダプティプクル-ズ動作を実行させる場合と比較して、追従対象車両の特定の 困難性が高い。そして、モ-タサイクルにアダプティプクル-ズを実行させる場合には、追従対象車両を適切 に特定できる方式を、幅広車両で実行されるアダプティプクルーズ動作とは異なる観点で確立させなければ ならない。
[0006 ]
本発明は、上述の課題を背景としてなされたものであり、ライダーによるモータサイクルの運転を適切に支 援することができる制御装置及び制御方法を得るものである。
【課題を解決するための手段】
[ 0 0 0 7 ]
本発明に係る制御装置は、モ-タサイクルの挙動を制御する制御装置であって、アダプティブクルーズ動 作の追従対象車両を特定する追従対象車両特定部と、走行中の前記モ-タサイクルに対する前記追 従対象車両の相対的な位置情報である車両位置情報を取得する車両位置情報取得部と、前記車 両位置情報取得部で取得された前記車両位置情報に基づいて、前記アダプティプクル-ズ動作での制 御量を設定する制御量設定部と、前記モ-タサイクルに、前記制御量設定部で設定された前記制御量 に応じた前記アダプティブクルーズ動作を実行させる実行部と、を備えており、更に、走行中の前記モータサ イクルに対するレ-ン境界の相対的な位置情報であるレ-ン位置情報を取得するレ-ン位置情報取得部 を備えており、前記追従対象車両特定部は、前記レ-ン位置情報取得部で取得された前記レ-ン位置 情報に基づいて、前記追従対象車両を特定する。
【0 0 0 8】
本発明に係る制御方法は、アダプティブクル-ズ動作の追従対象車両を特定する追従対象車両特定 ステップと、走行中の前記モ-タサイクルに対する前記追従対象車両の相対的な位置情報である車両位 〇 2019/111139 卩(:17132018/059601 置情報を取得する車両位置情報取得ステップと、前記車両位置情報取得ステップで取得された前記 車両位置情報(こ基づいて、前記アダプティブクル-ズ動作での制御量を設定する制御量設定ステップと、 前記モ-タサイクルに、前記制御量設定ステップで設定された前記制御量に応じた前記アダプティブクル- ズ動作を実行させる実行ステップと、を備えており、更に、走行中の前記モータサイクルに対するレーン境界 の相対的な位置情報であるレ-ン位置情報を取得するレ-ン位置情報取得ステップを備えており、前記 追従対象車両特定ステップでは、前記レ-ン位置情報取得ステップで取得された前記レ-ン位置情報に 基づいて、前記追従対象車両が特定される。
【発明の効果】
[ 0 0 0 9 ]
本発明に係る制御装置及び制御方法では、モ-タサイクルでアダプティプクル-ズ動作が実行される際 に、追従対象車両が、モ-タサイクルに対するレ-ン境界の相対的な位置情報に基づいて特定される。つ まり、モ-タサイクルが走行レ-ンの幅方向の何処を走行しているかが加味された上で、追従対象車両が 特定される。そのため、走行レ-ンの幅方向における走行位置の自由度が大きいとの特徴があるモ-タサイ クルに特化した、適切なアダプティプクル-ズ動作が実現可能である。
【図面の簡単な説明】
[ 0 0 1 0 ]
【図 1】本発明の実施の形態 1に係る挙動制御システムの、モータサイクルへの搭載状態を示す図で ある。
【図 2】本発明の実施の形態 1に係る挙動制御システムの、システム構成を示す図である。
【図 3】本発明の実施の形態 1に係る挙動制御システムの、制御装置の追従対象車両特定部の 処理を説明するための図である。
【図 4】本発明の実施の形態 1に係る挙動制御システムの、制御装置の処理フロ-を示す図である
【発明を実施するための形態】
【0 0 1 1】 〇 2019/111139 卩(:17132018/059601 以下に、本発明に係る制御装置及び制御方法(こついて、図面を用いて説明する。
[ 0 0 1 2】
なお、「モ -タサイクル」との用語は、ライダ-が跨って搭乗する鞍乗型車両のうちの自動二輪車又は自 動三輪車を意味する。また、以下では、モ-タサイクルが自動二輪車である場合を説明しているが、モータ サイクルが自動三輪車であってもよい。
【0 0 1 3】
また、以下で説明する構成及び処理等は一例であり、本発明に係る制御装置及び制御方法は、その ような構成及び処理等である場合に限定されない。また、以下では、同一の又は類似する説明を適宜簡 田各化又は省略している。また、各図において、同一の又は類似する部材又は部分については、符号を付す ことを省略しているか、又は、同一の符号を付している。また、細かい構造については、適宜図示を簡略化 又は省略している。
【0 0 1 4】
実施の形態 1 .
以下に、実施の形態 1に係る挙動制御システムを説明する。
[ 0 0 1 5 ]
<挙動制御システムの構成>
実施の形態 1に係る挙動制御システムの構成について説明する。
図 1は、本発明の実施の形態 1に係る挙動制御システムの、モータサイクルへの搭載状態を示す図で ある。図 2は、本発明の実施の形態 1に係る挙動制彳卸システムの、システム構成を示、す図である。図 3は 、本発明の実施の形態 1に係る挙動制御システムの、制御装置の追従対象車両特定部の処理を説 明するための図である。
[ 0 0 1 6】
図 1に示されるように、挙動制御システム 1は、モータサイクル 1 0 0に搭載される。挙動制御システム 1は、少なくとも、モータサイクル 1 0 0の走行 3各面を撮像する画像センサ 1 0と、モータサイクル 1 0 0の 前方からの反射を受信する測距センサ 2 0と、モータサイクル 1 0 0の走行速度を知るための速度センサ 〇 2019/111139 卩(:17132018/059601
3 0と、制御装置 (巳(:11) 5 0と、を含む。
[ 0 0 1 7】
画像センサ 1 0は、モ-タサイクル 1 0 0の前部又は側部に、走行路面を向いた状態で取り付けられ る。画像センサ 1 0の検出範囲は、モータサイクル 1 0 0が走行している走行レーン1_の幅方向を規定す る両側のレ-ン境界し V _ 、 1_ \/ _ 1_を撮像可能な広さである (図 3参照) 。両側のレ-ン境界し _ 8、 1_ _ 1_が、 1つの画像センサ 1 0で撮像されてもよく、また、別々の画像センサ 1 0で撮像さ れてちよい。
【0 0 1 8】
測距センサ 2 0は、モ-タサイクル 1 0 0の前部に、前方を向いた状態で取り付けられる。測距センサ 2 0は、例えば、 R 3 d 3 「センサ、 I \ 6 3 「センサ、超音波センサ、ステレオビジヨンセンサ等であり、 モータサイクル 1 0 0からその前方に位置する物体までの距離及び方位を検出するものである。測距セン サ 2 0は、モータサイクル 1 0 0の前方の交通状況を取得し得る他の検出装置であってもよく、また、画 像センサ 1 0の機能を併せ手寺っていてもよい。
[ 0 0 1 9 ]
速度センサ 3 0は、モ-タサイクル 1 0 0の運動部分に取り付けられる。例えば、速度センサ 3 0は、モ —タサイクル 1 0 0の前輪及び後輪の回転速度を検出するものである。速度センサ 3 0は、モ-タサイクル 1 0 0の走行速度を知ることができるものであれば、どのようなものであってもよい。
[ 0 0 2 0 ]
図 2に示されるように、制御装置 5 0は、レ-ン位置情報取得部 5 1と、追従対象車両特定部 5 2 と、車両位置情報取得部 5 3と、制御量設定部 5 4と、実行部 5 5と、を含む。制御装置 5 0の各 咅6は、 1つの筐体に纏めて設けられていてもよく、また、複数の筐体に分けられて設けられていてもよい。また 、制御装置 5 0の一部又は全ては、例えば、マイコン、マイク□プ□セッサユニット等で構成されてもよく、ま た、ファームウエア等の更新可能なもので構成されてもよく、また、 0 I)等からの指令によって実行されるプ □グラムモジュール等であってもよい。
[ 0 0 2 1】 〇 2019/111139 卩(:17132018/059601 制御装置 50(こは、各種センサ (画像センサ 10、測距センサ 20、速度センサ 30等) の出力が 入力される。また、制御装置 50は、挙動制御機構 90(こ信号を出力して、モ-タサイクル 100の挙 動を制御する。挙動制御機構 90には、車輪制動機構、エンジン駆動機構等が含まれる。つまり、制御 装置 50は、モ-タサイクル 100に搭載されている挙動制御機構 90の制御を担う装置である。なお、 モ-タサイクル 100の走行方向は、自動的に制御されるのではなく、ライダーによるモータサイクル 100の 操作に依存して変化する。
[0022 ]
レ-ン位置情報取得部 51は、画像センサ 10の出力に基づいて、走行中のモ-タサイクル 100に 対するレ-ン境界し V_R、 1_ _1_ (図 3参照) の相対的な位置情報である、レ-ン位置情報を取 得する。
【0023】
具体的には、図 3に示される状況において、レ-ン位置情報取得部 51は、画像センサ 10に撮像さ れた画像でのレーン境界し _ 、 し _1_の位置に基づいて、レーンマージン LM_R、 1_1\/1_しを取 得する。レーンマージン 1_ M_Rは、走行レーンしの幅方向でのモータサイクル 100と右側のレーン境界し V_Rとの £巨離として定義される。
Figure imgf000008_0001
は、走行レーンしの幅方向でのモータサイク ル 100と左側のレーン境界 1_▽_!_との距離として定義される。
【0024】
なお、レーンマージン
Figure imgf000008_0002
は、画像センサ 10からレーン境界 1_ V_R、 1_ _1_までの 距離と定義されてもよく、また、モータサイクル 100の各咅6からレーン境界し _8、 1_▽_!_までの距 離と定義されてもよい。また、レーンマージン 1_
Figure imgf000008_0003
し 1\/1_しは、モータサイクル 100から、レーン境界
1_ V_R、 1_ _1_の中心までの £巨離と定義されてもよく、また、モータサイクル 100から、レーン境界し _[^、 1_ _1_のモータサイクル 100に近い側のエッジまでの 5巨離と定義されてもよい。また、レーン境 界1_ _8、し▽_!_は、レーンマーク自体と定義されてもよく、また、モータサイクル 100の走行方向に おいて断続的に並ぶ' 2つのレーンマークを結ぶ'想像上の境界と定義されてもよい。また、レーン位置情報取 得部 51が、レ-ンマ-ジン
Figure imgf000008_0004
に実質的に換算可能な他の物理量を、レ-ンマ-ジン 1_ 〇 2019/111139 卩(:17132018/059601
Figure imgf000009_0001
として取得してもよい。例えば、レ-ン位置情報取得部 5 1が、走行レ-ン 1_の幅方向 でのモータサイクル 1 0 0とレーン境界 1_ _ 6、し しとの距離(こ実質的(こ換算可能な他の距離を として取得してもよく、また、画像センサ 1 0のピクセル数をレーンマージン
Figure imgf000009_0002
てもよい。
[ 0 0 2 5 ]
追従対象車両特定部 5 2は、測距センサ 2 0の出力と、レ-ン位置情報取得部 5 1で取得された レーン位置情報と、に基づいて、モータサイクル 1 0 0にアダプティプクルーズ動作を実行させる際の追従対 象車両 丁を特定する。
[ 0 0 2 6 ]
具体的には、図 3に示される状況において、追従対象車両特定部 5 2は、まず、測距センサ 2 0の 出力に基づいて、測距センサ 2 0の検出範囲 R内に位置する全ての先行車両八 1、八 2、八 3を認識 する。ここで、検出範囲 Rの特性 (例えば、広さ、方向等) は、制御可能であってもよく、また、制御不能 であつてもよい。
[ 0 0 2 7 ]
追従対象車両特定部 5 2は、走行レ-ンしの幅方向でのモ-タサイクル 1 0 0と先行車両八 1、 2、八 3のそれぞれとの距離として定義される、先行車両マージン M_ l、八1\/1_ 2、八1\^_ 3を、測 距センサ 2 0の出力に基づいて取得する。そして、追従対象車両特定部 5 2は、先行車両マ-ジン八 IV! _ 1、八^/1_ 2、八1\/1_ 3とレーンマージン 1_ M_ R、 1_ 1\/1_ 1_の大小関係を比較し、モータサイクル 1 0 0が走行している走行レーンしに位置する先行車両八 1、八 2を抽出する。つまり、走行レーンしに位 置しない先行車両八 3は、追従対象車両八丁の候補から除外される。
【0 0 2 8】
例えば、先行車両八 1が走行レ-ンしに位置するか否かを半 1」するために、追従対象車両特定部 5 2は、先行車両マージン八
Figure imgf000009_0003
を、先行車両八 1を基準としてモータサイクル 1 0 0の反 5寸側にあるレ -ン境界 1_▽_ 8に係るレーンマージン I M_ Rと比較し、先行車両マージン八 1\/1_ 1がレーンマージンし M_ Rよりも小さい場合には、先行車両八 1は走行レ-ン1_に位置すると判別する。一方、先行車両マ 〇 2019/111139 卩(:17132018/059601
-ジン八 M_lがレーンマージンし M_Rよりも大きい場合には、先行車両八 1は走行レーン1_に位置し ないと判別する。
[0029 ]
なお、先行車両マ-ジン八1\/1_1、 AM_2、八1\/1_3は、測距センサ 20から先行車両八 1、 2、八 3までの距離と定善されてもよく、また、モータサイクル 100の各咅6から先行車両八 1、 2、八 3までの距離と定義されてもよい。また、先行車両マージン M_l、 A M_2 , M_3は、モータサイ クル 100から先行車両八 1、八 2、八 3のモータサイクル 100に最も近い箇所までの距離と定善さ れてもよく、また、モ-タサイクル 100から先行車両 1、 2、 3の車軸上の後端までの距離と定 義されてもよい。また、追従対象車両特定部 52が、先行車両マ-ジン八
Figure imgf000010_0001
、八1\/1_2、 1\/1_3 に実質的に換算可能な他の物理量を、先行車両マ-ジン八
Figure imgf000010_0002
、八1\/1_2、八1\/1_3として取得し てもよい。例えば、追従対象車両特定部 52が、走行レ-ン1_の幅方向でのモ-タサイクル 100と先行 車両 1、八 2、 3との距離に実質的に換算可能な他の距離を先行車両マ-ジン八1\/1_1、 1\/1 _2、八 M_3として取得してもよい。
【0030】
モータサイクル 100が走行している走行レーンしに位置する先行車両八 1、八 2が抽出されると、追 従対象車両特定部 52は、モ-タサイクル 100の走行方向でのモ-タサイクル 100と先行車両八 1
Figure imgf000010_0003
距離八口_1、八口_2のうちから最短のものを特定し、その最短の距離八口_1に該当する先行車 両八 1を、追従対象車両八丁として特定する。
【0031】
なお、距離 口_1、 口_2は、測距センサ 20から先行車両 1、八 2までの距離と定義されて もよく、また、モータサイクル 100の各咅^から先行車両八 1、八 2までの距離と定義されてもよい。また、
3巨離八口_1、八口_2は、モータサイクル 100から、先行車両八 1、八 2の車軸上の後] ¾までの £巨 離と定義されてもよく、また、モータサイクル 100から、先行車両八 1、八 2のモータサイクル 100に最 も近い箇所までの距離と定義されてもよい。また、追従対象車両特定部 52が、距離 0_1、八口 〇 2019/111139 卩(:17132018/059601
_ 2に実質的に換算可能な他の物理量を、距離八 0_ 1、八 0_ 2として取得してもよい。例えば、 追従対象車両特定部 5 2が、走行レ-ン1_の延在方向でのモ-タサイクル 1 0 0と先行車両八 1、 2のそれぞれとの距離を、距離 0_ 1、八 0_ 2として取得してもよく、モータサイクル 1 0 0と先行車 両八 1、八 2のそれぞれとの直線距離を、距離八 0_ 1、八 0_ 2として取得してもよい。
【0 0 3 2】 車両位置情報取得部 5 3は、走行中のモ-タサイクル 1 0 0に対する追従対象車両 丁の相対的 な位置情報である、車両位置情報を取得する。具体的には、追従対象車両特定部 5 2において取得 された、モ-タサイクル 1 0 0の走行方向でのモータサイクル 1 0 0と先行車両 1との距離八 0_ 1を 、車両位置情報として取得する。車両位置情報取得部 5 3が、追従対象車両特定部 5 2で取得さ れた距離八 0_ 1を流用することなく、 £巨離八 0_ 1を別途取得してもよい。
【0 0 3 3】 制御量設定部 5 4は、車両位置情報取得部 5 3で取得された車両位置情報と、速度センサ 3 0 の出力と、に基づいて、アダプティプクル-ズ動作での制御量を設定する。具体的には、制御量設定部 5 4は、距離八 0_ 1が距離基準値に近づくような制御量 (速度、加速度等) を設定する。距離基準 値は、モ-タサイクル 1 0 0から追従対象車両八丁までの距離としてライダ-の安全性を確保し得る値に 設定される。また、制御量設定部 5 4は、モ-タサイクル 1 0 0の走行速度が速度基準値を超えないよ うな制御量 (速度、加速度等) を設定する。速度基準値は、例えば、ライダ-によって適宜設定され得 る。
【0 0 3 4】 実行部 5 5は、制御量設定部 5 4で設定された制御量に応じたアダプティブクル-ズ動作を、モ -タサ イクル 1 0 0に実行させる。具体的(こは、実行部 5 5は、制御量設定部 5 4で設定された制御量に応 じた信号を挙動制御機構 9 0に出力する。
【0 0 3 5】
<挙動制御システムの処理>
実施の形態 1に係る挙動制御システムの処理について説明する。
図 4は、本発明の実施の形態 1に係る挙動制御システムの、制御装置の処理フロ-を示す図である。 〇 2019/111139 卩(:17132018/059601
【0 0 3 6】
制御装置 5 0は、ライダーがアダプティブクルーズ動作を 0 に設定すると、モータサイクル 1 0 0の走行 中において、図 4に示される処理フローを繰り返す。
【0 0 3 7】
(レ-ン位置情報取得ステップ)
ステップ 1 0 1において、制御装置 5 0のレ-ン位置情報取得部 5 1は、画像センサ 1 0の出力に 基づいて、走行中のモ-タサイクル 1 0 0に対するレ-ン境界 1_ V _ R、 1_ _ 1_の相対的な位置情報 である、レ-ン位置情報を取得する。
【0 0 3 8】
(追従対象車両特定ステップ)
ステップ 1 0 2において、制御装置 5 0の追従対象車両特定部 5 2は、測距センサ 2 0の出力と 、レ-ン位置情報取得部 5 1で取得されたレ-ン位置情報と、に基づいて、追従対象車両 丁を特定す る。図 3に示される例においては、モータサイクル 1 0 0の前方の交通状況を取得するための検出装置 ( 例えば、測距センサ 2 0) の検出範囲 R内に位置する先行車両八 1、八 2、八 3のうちの、モ -タサイク ル 1 0 0の走行レーン 1_に位置し、且つ、モータサイクル 1 0 0の走行方向でのモータサイクル 1 0 0から の距離が最も短い先行車両八 1が、追従対象車両 丁として特定される。
【0 0 3 9】
(車両位置情報取得ステップ)
ステップ 3 1 0 3において、制御装置 5 0の車両位置情報取得部 5 3は、走行中のモ-タサイクル 1 0 0に対する追従対象車両 丁の相対的な位置情報である、車両位置情報を取得する。
【0 0 4 0】
(制御量設定ステップ)
ステップ 5 1 0 4において、制御装置 5 0の制御量設定部 5 4は、車両位置情報取得部 5 3で取 得された車両位置情報と、速度センサ 3 0の出力と、に基づいて、アダプティブクル-ズ動作での制御量を 設定する。 〇 2019/111139 卩(:17132018/059601
【0 0 4 1】
(実行ステップ) ステップ 1 0 5において、制御装置 5 0の実行部 5 5は、制御量設定部 5 4で設定された制御 量に応じたアダプティブクルーズ動作を、モータサイクル 1 0 0に実行させる。
【0 0 4 2】
<挙動制御システムの効果>
実施の形態 1に係る挙動制御システムの効果について説明する。 制御装置 5 0が、走行中のモ-タサイクル 1 0 0に対するレ-ン境界 1_ _ 6、 し _しの相対的な 位置情報であるレ-ン位置情報を取得するレ-ン位置情報取得部 5 1を備えており、追従対象車両特 定部 5 2は、レ-ン位置情報取得部 5 1で取得されたレ-ン位置情報に基づいて、追従対象車両八丁 を特定する。つまり、モータサイクル 1 0 0が走行レーン1_の幅方向の何処を走行しているかが加味された 上で、追従対象車両 丁が特定される。そのため、走行レ-ン1_の幅方向における走行位置の自由度が 大きいとの特徴があるモータサイクル 1 0 0に特化した、適切なアダプテイプクルーズ動作が実現可能である
【0 0 4 3】 例えば、図 3に示される例において、モータサイクル 1 0 0が走行レーン1_の幅方向の何処を走行してい るかが加味されずに追従対象車両 丁が特定される場合には、モ-タサイクル 1 0 0の走行方向でのモ- クサイクル 1 0 0からの距離が最も短い先行車両 3が、追従対象車両 丁として特定されることとな る。先行車両八 3は、モータサイクル 1 0 0と異なるレーンに位置する車両であるため、アダプティブクルーズ 動作の追従対象車両八丁として不適格である。しかしながら、モ-タサイクル 1 0 0が、走行レ-ン1_の幅 方向における走行位置の自由度が大きいとの特徴を有していることで、モータサイクル 1 0 0と異なるレーン に位置する先行車両 3が追従対象車両 丁として特定されてしまうケ-スが生じやすい。他方、そのよ うなケースを生じにくくするために、モータサイクル 1 0 0の前方の交通状況を取得するための検出装置 ( 例えば、測距センサ 2 0) の検出範囲 8を狭く設定してしまうと、先行車両八 1が検出範囲 R外に位 置してしまい、モータサイクル 1 0〇が、先行車両八 1の前を走行する先行車両八 2に追従して、本来追 〇 2019/111139 卩(:17132018/059601 従すべき先行車両八 1の脇をすり抜けるケ-スが生じてやすくなってしまう。
【0 0 4 4】
それに対して、実施の形態 1に係る挙動制御システムでは、モータサイクル 1 0 0が走行レーン1_の幅 方向の何処を走行しているかが加味された上で、追従対象車両 丁が特定されるため、モ-タサイクル 1 0 0の前方の交通状況を取得するための検出装置 (例えば、測距センサ 2 0) の検出範囲 Rを適切 な広さに維持しつつ、本来追従すべき先行車両八 1を適切に特定することが可能となる。
【0 0 4 5】
特に、モータサイクル 1 0〇が複数のモータサイクルとグループ走行を行う場合、つまり、先行車両八 1、 八 2がモ-タサイクルである場合には、走行レ-ン1_の幅方向における先行車両 1、 2の走行位置の 自由度も大きくなるため、モ-タサイクル 1 0 0の前方の交通状況を取得するための検出装置 (例えば、 測距センサ 2 0) の検出範囲 Rを狭く設定することが、より困難になる。そのため、モータサイクル 1 0 0 が走行レ-ンしの幅方向の何処を走行しているかが加味された上で、追従対象車両 丁が特定されるこ とは、モータサイクル 1 0 0がグループ走行を行う状況において特に有用である。
【0 0 4 6】
好ましくは、制御装置 5 0では、追従対象車両特定部 5 2が、モ-タサイクル 1 0 0の走行レ-ン1_ に位置し、且つ、モータサイクル 1 0 0の走行方向でのモータサイクル 1 0 0からの 5巨離が最も短い先行車 両八 1を、追従対象車両八丁として特定する。そのため、モータサイクル 1 0 0に特化した、適切なアダプ ティプクル-ズ動作の実現が確実化される。
【0 0 4 7】
特に、レ-ン位置情報取得部 5 1が、走行レ-ン1_の幅方向でのモータサイクル 1 0 0とレーン境界し
Figure imgf000014_0001
を、レーン位置情報として取得し、追 従対象車両特定部 5 2が、走行レ-ン1_の幅方向でのモ-タサイクル 1 0 0と先行車両 1、八 2、
Figure imgf000014_0002
_しと、に基づいて、先行車両八 1、八 2、八 3が走行レーン1_に位置するか否かを半別するとよい。その ような構成により、モ-タサイクル 1 0 0に特化した、適切なアダプティブクル-ズ動作の実現が更に確実化 〇 2019/111139 卩(:17132018/059601 される。
【0 0 4 8】
更に、先行車両マ-ジン 1\^_ 1、 1\/1_ 2、八1\/1_ 3が、走行レ-ン1_の幅方向での、モ -タサイク ル 1 0 0と、先行車両八 1、八 2、八 3のモータサイクル 1 0 0に最も近い箇所と、の足巨離であるとよい。 そのような構成により、先行車両八 1、 2、八 3が走行レ-ン1_に位置するか否かの判別が、先行車 両 1、八 2、八 3の車幅に影響されることを抑制することができる。
【0 0 4 9】
以上、実施の形態 1について説明したが、本発明は実施の形態の説明に限定されない。例えば、実 施の形態の全て又は一部のみが実施されてもよい。また、制御装置 5 0における各ステップの順序が入れ 替えれられてもよい。
[ 0 0 5 0 ]
つまり、実施の形態
Figure imgf000015_0001
及びレーン境界
Figure imgf000015_0002
の 両方を撮像する場合を説明したが、制御装置 5 0が走行レ-ン 1_の幅を他の情報源 (例えば、地図情 報等) から取得できるのであれば、画像センサ 1 0が、レ-ン境界し V_ R及びレ-ン境界し _しの一 方のみを撮像してもよい。
[ 0 0 5 1 ]
また、実施の形態 1においては、走行レーン 1_に位置する先行車両八 1、八 2が抽出された後に、抽 出された先行車両八
Figure imgf000015_0003
ての先行車両八 1、八 2、八 3に係る £巨離八 0 _ 1、八口_ 2、八 0_ 3が取得された後に、走行レ -ンしに位置し、且つ、モータサイクル 1 0 0の走行方向でのモータサイクル 1 0 0からの距離が最も短い 先行車両八 1が抽出されてもよい。
【符号の説明】
[ 0 0 5 2 ]
1 挙動制御システム、 1〇 画像センサ、 2 0 測距センサ、 3 0 速度センサ、 5 0 制御装 置、 5 1 レ-ン位置情報取得部、 5 2 追従対象車両特定部、 5 3 車両位置情報取得部、 5 〇 2019/111139 卩(:17132018/059601
4 制御量設定部、 5 5 実行部、 9 0 挙動制御機構、 1 0 0 モ-タサイクル、 R 検出範囲
、 1_ 走行レ-ン、 1_ V— 6、 1_ V—し レ-ン境界、八 1、八 2、八 3 先行車両、八丁 追従対 象車両、 1_ 1\/1— 1_ IV!— 1_ レ-ンマ-ジン、八 IV!— 1、 IV!— 2、八 IV!— 3 先行車両マ-ジン、 八0_ 1、八0_ 2 モータサイクルと先行車両との足巨離。

Claims

〇 2019/111139 卩(:17132018/059601 【書類名】請求の範囲
【請求項 1】
モ-タサイクル(100) の挙動を制御する制御装置 (50) であって、
アダプティブクル-ズ動作の追従対象車両 (八丁) を特定する追従対象車両特定部 (52) と、 走行中の前記モ-タサイクル(100) に対する前記追従対象車両 (六丁) の相対的な位置情報 である車両位置情報を取得する車両位置情報取得部 (53) と、
前記車両位置情報取得部 (53) で取得された前記車両位置情報に基づいて、前記アダプティプ クル-ズ動作での制御量を設定する制御量設定部 (54) と、
前記モ-タサイクル (100) に、前記制御量設定部 (54) で設定された前記制御量に応じた前 記アダプティプクルーズ動作を実行させる実行咅 5 (55) と、
を備えており、
更に、走行中の前記モ-タサイクル(1〇〇) に対するレ-ン境界 (し _8、!_▽_!_) の相対的 な位置情報であるレ-ン位置情報を取得するレ-ン位置情報取得部 (51) を備えており、
前記追従対象車両特定部 (52) は、前記レ-ン位置情報取得部 (51) で取得された前記レ -ン位置情報に基づいて、前記追従対象車両 ( 丁) を特定する、
制御装置。
【請求項 2】
前記追従対象車両特定部 (52) は、前記モ-タサイクル(100) の走行レ-ン (1_) に位置し 、且つ、該モ-タサイクル (100) の走行方向での該モ-タサイクル (100) からの距離 (八0一1 、八 0_2) が最も短い先行車両 (八 1) を、前記追従対象車両 (八丁) として特定する、 請求項 1に記載の制御装置。
【請求項 3】
前記レ-ン位置情報取得部 (51) は、前記走行レ-ン (1_) の幅方向での前記モ-タサイクル ( 100) と前記レーン境界 (し ー8、 1_ ー1_) との 3巨離であるレーンマージン (1_1\/1一8、 1_1\/1一 し) を、前記レ-ン位置情報として取得し、 〇 2019/111139 卩(:17132018/059601 前記追従対象車両特定部 (52)は、前記走行レ-ン(1_)の幅方向での前記モ-タサイクル(
100)と先行車両 (八 1、八 2、八 3) との距離である先行車両マージン(八1\/1一1、 AM一 2、 八1\/1一 3) と、前記レ-ンマ-
Figure imgf000018_0001
八 3)が前記走行レ-ン(1_) に位置するか否かを判別する、
請求項 2に記載の制御装置。
【請求項 4】
前記先行車両マ-ジン( 1\/1_1、八1\^_2、八1\^_3)は、前記走行レ-ン(1_)の幅方向での 、前記モ-タサイクル(100) と、前記先行車両 ( 1、八 2、八 3)の該モ-タサイクル(100 )に最も近い箇所と、の距離である、
請求項 3に記載の制御装置。
【請求項 5】
前記車両位置情報は、測距センサ(20)の出力に基づいて取得される、
請求項 1から 4の何れか一項に記載の制御装置。
【請求項 6】
前記レ-ン位置情報は、画像センサ(10)の出力に基づいて取得される、
請求項 1から 5の何れか一項に記載の制御装置。
【請求項 7】
モ-タサイクル(100)の挙動を制御する制御方法であって、
アダプティブクル-ズ動作の追従対象車両 (八丁)を特定する追従対象車両特定ステップ(510 2) と、
走行中の前記モ-タサイクル(100) に対する前記追従対象車両 ( 丁)の相対的な位置情報 である車両位置情報を取得する車両位置情報取得ステップ( 103) と、
前記車両位置情報取得ステップ(5103)で取得された前記車両位置情報に基づいて、前記ア ダブティブクル-ズ動作での制御量を設定する制御量設定ステップ(5104) と、
前記モ-タサイクル(100)に、前記制御量設定ステップ(5104)で設定された前記制御量 〇 2019/111139 卩(:17132018/059601 に応じた前記アダプティブクルーズ動作を実行させる実行ステップ( 105) と、
を備えており、
更に、走行中の前記モ-タサイクル(100) に対するレ-ン境界 (し _6、!_▽_!_) の相対的 な位置情報であるレ-ン位置情報を取得するレ-ン位置情報取得ステップ(3101) を備えており、 前記追従対象車両特定ステップ(3102) では、前記レ-ン位置情報取得ステップ (5101 ) で取得された前記レ-ン位置情報に基づいて、前記追従対象車両 (八丁) が特定される、 制御方法。
PCT/IB2018/059601 2017-12-06 2018-12-04 モータサイクルの挙動を制御する制御装置及び制御方法タサイクルの挙動を制御する制御装置及び制御方法 WO2019111139A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018005415.2T DE112018005415T5 (de) 2017-12-06 2018-12-04 Steuergerät und Steuerungsverfahren zum Steuern des Verhaltens eines Motorrades
CN201880078929.2A CN111417994A (zh) 2017-12-06 2018-12-04 控制摩托车的行为的控制装置和控制方法
US16/770,053 US11524680B2 (en) 2017-12-06 2018-12-04 Control device and control method for controlling behavior of motorcycle
JP2019557711A JP7465094B2 (ja) 2017-12-06 2018-12-04 モータサイクルの挙動を制御する制御装置及び制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017234051A JP2019099033A (ja) 2017-12-06 2017-12-06 モータサイクルの挙動を制御する制御装置及び制御方法
JP2017-234051 2017-12-06

Publications (1)

Publication Number Publication Date
WO2019111139A1 true WO2019111139A1 (ja) 2019-06-13

Family

ID=64746597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/059601 WO2019111139A1 (ja) 2017-12-06 2018-12-04 モータサイクルの挙動を制御する制御装置及び制御方法タサイクルの挙動を制御する制御装置及び制御方法

Country Status (5)

Country Link
US (1) US11524680B2 (ja)
JP (2) JP2019099033A (ja)
CN (1) CN111417994A (ja)
DE (1) DE112018005415T5 (ja)
WO (1) WO2019111139A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021146905A (ja) * 2020-03-19 2021-09-27 本田技研工業株式会社 制御装置、制御方法およびプログラム
US11866042B2 (en) 2018-08-20 2024-01-09 Indian Motorcycle International, LLC Wheeled vehicle adaptive speed control method and system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019214121A1 (de) * 2019-09-17 2021-03-18 Continental Automotive Gmbh Verfahren zum Betrieb eines Fahrerassistenzsystems
JP2022007244A (ja) * 2020-06-26 2022-01-13 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 鞍乗型車両の制御装置、ライダー支援システム、及び、鞍乗型車両の制御方法
JP2022007246A (ja) * 2020-06-26 2022-01-13 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 鞍乗型車両の制御装置、ライダー支援システム、及び、鞍乗型車両の制御方法
DE102021113344B4 (de) * 2021-05-21 2024-03-07 Bayerische Motoren Werke Aktiengesellschaft Fahrassistenzsystem
WO2024058922A1 (en) 2022-09-16 2024-03-21 Indian Motorcycle International, LLC Vehicle proximity display on user interface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030131A1 (ja) * 2015-08-17 2017-02-23 ヤマハ発動機株式会社 リーン車両
US20170327123A1 (en) * 2014-11-28 2017-11-16 Denso Corporation Vehicle control apparatus
US20170341647A1 (en) * 2016-05-24 2017-11-30 GM Global Technology Operations LLC Automated driving system for evaluating lane cut-out and method of using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10307169A1 (de) * 2003-02-20 2004-09-02 Daimlerchrysler Ag Verfahren zur Regelung der Fahrgeschwindigkeit eines Fahrzeugs
DE102007053274B4 (de) 2007-11-08 2020-12-10 Robert Bosch Gmbh Fahrerassistenzsystem für insbesondere motorisierte Zweiräder
US7739030B2 (en) * 2007-11-13 2010-06-15 Desai Shitalkumar V Relieving urban traffic congestion
US8698639B2 (en) 2011-02-18 2014-04-15 Honda Motor Co., Ltd. System and method for responding to driver behavior
JP6410509B2 (ja) * 2014-08-04 2018-10-24 株式会社エフ・シー・シー 鞍乗り型車両
DE102014226462B4 (de) * 2014-12-18 2017-09-21 Honda Motor Co., Ltd. Adaptives fahrtsteuerungssystem mit ausscher-vorhersage
JP6520863B2 (ja) * 2016-08-11 2019-05-29 株式会社デンソー 走行制御装置
JP2018086968A (ja) * 2016-11-29 2018-06-07 株式会社デンソー 走行制御装置
CN106840181B (zh) 2016-12-09 2022-06-17 斑马信息科技有限公司 用于确定车辆位置的系统和方法
CN107364445B (zh) 2017-03-09 2019-09-06 吉利汽车研究院(宁波)有限公司 一种融合近距离探测系统的自适应巡航系统
JP2019038314A (ja) * 2017-08-23 2019-03-14 トヨタ自動車株式会社 車両運転支援装置
JP7045155B2 (ja) * 2017-09-14 2022-03-31 株式会社デンソー 物標認識装置、物標認識方法及び車両制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170327123A1 (en) * 2014-11-28 2017-11-16 Denso Corporation Vehicle control apparatus
WO2017030131A1 (ja) * 2015-08-17 2017-02-23 ヤマハ発動機株式会社 リーン車両
US20170341647A1 (en) * 2016-05-24 2017-11-30 GM Global Technology Operations LLC Automated driving system for evaluating lane cut-out and method of using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11866042B2 (en) 2018-08-20 2024-01-09 Indian Motorcycle International, LLC Wheeled vehicle adaptive speed control method and system
JP2021146905A (ja) * 2020-03-19 2021-09-27 本田技研工業株式会社 制御装置、制御方法およびプログラム

Also Published As

Publication number Publication date
JP2019099033A (ja) 2019-06-24
US20210162998A1 (en) 2021-06-03
CN111417994A (zh) 2020-07-14
DE112018005415T5 (de) 2020-07-16
US11524680B2 (en) 2022-12-13
JPWO2019111139A1 (ja) 2020-10-22
JP7465094B2 (ja) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2019111139A1 (ja) モータサイクルの挙動を制御する制御装置及び制御方法タサイクルの挙動を制御する制御装置及び制御方法
CN109572671B (zh) 车辆驾驶辅助装置
CN110770105B (zh) 驾驶辅助车辆的目标车速生成方法及目标车速生成装置
WO2013018537A1 (ja) 走行支援装置および走行支援方法
JP7109147B2 (ja) モータサイクルの挙動を制御する制御装置及び制御方法
JP6973978B2 (ja) レーン・スプリッティング中のモータサイクルの挙動を制御する制御装置及び制御方法
CN110678373A (zh) 车辆运动控制装置、车辆运动控制方法以及车辆运动控制系统
JP5790401B2 (ja) 車両用走行支援装置
JP7183438B2 (ja) 運転支援装置、運転支援方法及びプログラム
WO2018229567A1 (ja) 前方認識システムのための処理ユニット及び処理方法、前方認識システム、及び、モータサイクル
JP2013089136A (ja) 車両の道路形状予測装置及びこれを備えた車両の走行制御装置
WO2023109216A1 (zh) 端对端自动驾驶控制方法、装置、电子设备及存储介质
CN110832565B (zh) 行驶控制装置以及车辆
JP2013088409A (ja) 車両用走行支援装置
US11654931B2 (en) Driving assistance device and vehicle
WO2021060357A1 (ja) Fcw制御装置を備えたリーン車両
JP7181956B2 (ja) 移動体の制御装置及び制御方法並びに車両
WO2024069270A1 (ja) 制御装置及び制御方法
JP2013089134A (ja) 車両の道路形状予測装置及びこれを備えた車両の走行制御装置
CN114620037A (zh) 驾驶支援装置
CN113492843A (zh) 车载装置、车辆以及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557711

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18822503

Country of ref document: EP

Kind code of ref document: A1