WO2019109658A1 - 一种营养盐原位分析仪及营养盐含量分析方法 - Google Patents

一种营养盐原位分析仪及营养盐含量分析方法 Download PDF

Info

Publication number
WO2019109658A1
WO2019109658A1 PCT/CN2018/099845 CN2018099845W WO2019109658A1 WO 2019109658 A1 WO2019109658 A1 WO 2019109658A1 CN 2018099845 W CN2018099845 W CN 2018099845W WO 2019109658 A1 WO2019109658 A1 WO 2019109658A1
Authority
WO
WIPO (PCT)
Prior art keywords
syringe
motor
microprocessor
way valve
port connected
Prior art date
Application number
PCT/CN2018/099845
Other languages
English (en)
French (fr)
Inventor
陈总威
马方方
谢佳裕
杨建洪
徐亦安
董俊
桓清柳
Original Assignee
深圳市朗诚科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市朗诚科技股份有限公司 filed Critical 深圳市朗诚科技股份有限公司
Publication of WO2019109658A1 publication Critical patent/WO2019109658A1/zh
Priority to US16/835,332 priority Critical patent/US20200222897A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1813Water specific cations in water, e.g. heavy metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/182Water specific anions in water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/023Sending and receiving of information, e.g. using bluetooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0622Valves, specific forms thereof distribution valves, valves having multiple inlets and/or outlets, e.g. metering valves, multi-way valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N2021/754Reagent flow and intermittent injection of sample or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type
    • G01N2021/7763Sample through flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/227Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for nitrates or nitrites

Definitions

  • the invention relates to a water quality analyzer, in particular to a nutrient salt in-situ analyzer and a nutrient salt content analysis method.
  • Nutrients are the material basis necessary for the growth of marine phytoplankton.
  • the different concentrations and composition of nutrients in seawater affect the primary productivity of the oceans and regulate the community structure of phytoplankton, thus affecting the structure of marine ecosystems.
  • proper nutrients can promote the reproduction and growth of organisms, but excessive nutrients can promote the rapid reproduction of certain marine organisms, thus consuming large amounts of dissolved oxygen in seawater, causing oxygen deficiency in seawater, causing fish.
  • a large number of shrimps, crabs, and shellfish died.
  • the pollution of the oceans by organic matter and nutrients is now called “eutrophication”.
  • the commonly used measurement method for traditional seawater nutrients is based on the on-site sampling of the survey vessel and then the method of laboratory measurement.
  • the method has shortcomings such as poor real-time performance, waste of manpower, financial resources and time, and the sample is susceptible to pollution.
  • the measurement error caused by the processes of collection, pretreatment, loading, transportation, etc. can reach -20% to +45%; continuous data cannot be provided. It is difficult to detect drastic changes in nutrient concentration caused by intermittent events such as rainfall and algal blooms. Marine monitoring studies over the past few decades have confirmed that traditional methods are no longer sufficient to meet real-world needs. There is an urgent need to solve the problems of the complicated process of the existing seawater nutrient analyzer, consumables, off-line analysis, and inability to meet low-level measurement requirements.
  • an on-line analyzer with compact structure design, good water tightness, high resolution, high reliability, low detection limit and low analysis content can be developed to provide on-site data in real time and timely grasp the changes of marine ecological environment and eutrophication.
  • Seawater nutrient analyzers that make quick decisions and can study temporal and spatial variations at different scales of the ocean are important.
  • the measurement and analysis of seawater nutrient salt in China is carried out according to the method specified in the “Marine Monitoring Code”, that is, traditional sampling and laboratory analysis are used.
  • This traditional laboratory analytical measurement method has the following defects: poor representativeness of samples, sample contamination during collection and pretreatment, loss of nutrients during salt preservation and transportation, and variations, etc. Continuous monitoring and the need for increasingly catastrophic disaster prevention and scientific research.
  • the first object of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide a nutrient salt in-situ analyzer with simple structure, strong function, strong applicability and high reliability, and the nutrient salt in-situ analyzer can be continuously and automatically Sampling and analysis of nutrient salt content, and online analysis of multiple components.
  • a second object of the present invention is to provide an analytical method for the above nutrient salt in-situ analyzer.
  • a nutrient salt in-situ analyzer including a microprocessor, a driving component, a multi-way valve, a syringe, a colorimetric detector, a mixing ring, a sample pipe, and pure water.
  • a warehouse a standard solution chamber and various reagent compartments; wherein the syringe, the colorimetric detector, the mixing ring, the sample pipe, the pure water tank and the standard solution tank, and the various reagent bins are respectively connected to the respective ports of the multi-way valve;
  • the driving component includes a first motor driver, a first motor, a second motor driver, and a second motor; the microprocessor sequentially connects the first motor driver and the first motor and then connects the syringe of the syringe to control the syringe pump The microprocessor is connected to the second motor driver and the second motor in sequence to connect the multi-way valve, and the port for controlling the connection between the multi-way valve and the syringe is sequentially connected with the other ports of the multi-way valve;
  • the colorimetric detector is coupled to the microprocessor to transmit a detection signal to the microprocessor, and the microprocessor determines the nutrient salt content of the sample based on the detection signal.
  • the waste liquid collecting device and the cadmium column are further included, and the waste liquid collecting device and the cadmium column are respectively connected to the two ports of the multi-way valve.
  • the colorimetric detector comprises a light source, a colorimetric cell, a coupling lens and a photoelectric converter; the light source and the coupling lens are respectively disposed at opposite ends of the colorimetric cell; the photoelectric converter is connected to the microprocessor and The light exit end of the coupling lens is disposed; in the colorimetric detector, the colorimeter is in communication with a port of the multi-way valve.
  • the light source is a composite LED light source
  • the colorimetric cell is a 1 cm optical path quartz flow cell.
  • the sample channel is a Teflon tube; the multi-way valve is an 8- to 24-way valve.
  • the microprocessor communicates with the intelligent terminal through a wireless communication module or a signal line, and sends a nutrient salt content data signal of the sample to the intelligent terminal.
  • the method further includes a waterproof protective cover and an upper protective cover, the upper protective cover sealingly covering the waterproof protective cover;
  • the waterproof protective case is divided into two upper and lower bins by an intermediate partition layer, which are respectively a water path protection bin and a circuit protection bin, wherein the microprocessor, the first motor driver and the second motor driver are all placed in the circuit protection bin,
  • the multi-way valve, the syringe, the syringe pump, the first motor, the second motor, the colorimetric detector, and the mixing ring are all placed in the waterway protection bin;
  • the pure water tank, standard solution tank and various reagent compartments are all in the protection compartment.
  • Each reagent pipe connected to the warehouse passes through the protection bin and the upper protective cover, respectively corresponding to each port of the multi-way valve;
  • sample tube and each reagent tube are sealed through the upper protective cover; the respective reagent tubes are sealed through the protective chamber.
  • the waterproof protective shell is installed in the marine buoy monitoring system, and the microprocessor in the circuit protection bin communicates with the buoy data collector in the marine buoy monitoring system through a signal line or a wireless communication module; buoy data acquisition
  • the microprocessor controls the microprocessor to initiate an analysis process at regular intervals, and the buoy data collector collects the nutrient salt content data of the sample determined by the microprocessor and transmits it to the data center of the marine buoy monitoring system through the wireless communication network.
  • the second object of the present invention is achieved by the following technical solution: a nutrient salt content analysis method of the above nutrient salt in-situ analyzer, when a sample is required to mix a certain reagent to obtain a corresponding nutrient salt content in the sample, the specific steps are as follows : Step A1: The microprocessor obtains a detection signal when pure water and various standard solutions are respectively mixed with a certain reagent;
  • Step a11 injecting pure water into the pure water tank, and the microprocessor is connected to the port connected to the pure water tank in the multi-pass valve through the second motor control multi-way valve and the syringe connection; then the microprocessor passes The first motor controls the injection pump to work, and draws a certain amount of pure water into the syringe;
  • the microprocessor controls the port connected to the syringe through the second motor to be connected to the port connected to the reagent cartridge in the multi-way valve; then the microprocessor controls the injection pump to work through the first motor, and a certain amount of certain The corresponding reagent in the reagent cartridge is drawn into the syringe;
  • Step a12 the microprocessor controls the port connected to the syringe through the second motor control and the port connected to the hybrid ring in the multi-way valve; then the microprocessor controls the injection pump through the first motor to operate the syringe
  • the reagent and pure water are continuously injected and withdrawn from the mixing circle to mix the pure water and the reagent; after the mixing is completed, the mixture is finally drawn into the syringe;
  • Step a13 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the colorimetric detector in the multi-pass valve, and then the microprocessor controls the injection pump to work through the first motor, The mixture in the syringe is injected into the colorimetric detector;
  • Step a14 the colorimetric detector detects the injected mixed liquid, and sends the detected first detection signal to the microprocessor;
  • step a21 the microprocessor is connected to the port connected to the standard solution chamber in the multi-way valve through the second motor control multi-way valve and the syringe connection port; then the microprocessor controls the injection pump to work through the first motor, and the standard is A certain amount of the standard solution in the solution chamber is drawn into the syringe;
  • Step a23 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the colorimetric detector in the multi-pass valve, and then the microprocessor controls the injection pump to work through the first motor, The mixture in the syringe is injected into the colorimetric detector;
  • Step a24 the colorimetric detector detects the injected mixed liquid, and sends the detected second detection signal to the microprocessor; wherein each concentration of the standard solution is sequentially injected into the standard solution chamber, and the above steps are Each standard solution is separately mixed with a certain reagent to obtain each second detection signal after each standard solution is mixed with a certain reagent;
  • Step A2 When the operating salt content in the sample is to be performed, the sample and a reagent are mixed to obtain a third detection signal, and the specific process is as follows:
  • Step a31 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the sample channel of the multi-pass valve; then the microprocessor controls the injection pump through the first motor, and the corresponding The amount of sample is drawn into the syringe;
  • Step a32 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the hybrid ring in the multi-way valve; then the microprocessor controls the injection pump to work through the first motor, and the syringe is placed in the syringe The reagent and the sample are continuously injected and withdrawn from the mixing circle to mix the sample and the reagent; after the mixing is completed, the mixture is finally drawn into the syringe;
  • Step a33 The microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the colorimetric detector in the multi-pass valve, and then the microprocessor controls the injection pump to work through the first motor, The mixture in the syringe is injected into the colorimetric detector;
  • Step a34 the colorimetric detector detects the injected mixed liquid, and sends the detected third detection signal to the microprocessor;
  • Step A3 The microprocessor separately obtains the first detection signal sent by the colorimetric detector when the pure water and a certain reagent are mixed, and each second detection sent by the colorimetric detector when each standard solution and a certain reagent are respectively mixed.
  • the signal and the third detection signal sent by the colorimetric detector are mixed with the sample and a certain reagent, the third detection signal is compared with the first detection signal and each of the second detection signals, and corresponding samples are obtained according to the comparison result.
  • Step B1 The microprocessor acquires a detection signal when pure water is mixed with some reagents, and a detection signal when various standard solutions are mixed with certain reagents respectively;
  • Step b11 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the pure water tank in the multi-pass valve; then the microprocessor controls the injection pump to work through the first motor, corresponding to a certain amount of pure water is drawn into the syringe;
  • the microprocessor For each reagent compartment for storing various reagents that need to be mixed with pure water, at each moment, the microprocessor is connected to the multi-port valve and the syringe through the second motor control multi-port valve and each port connected to each reagent cartridge.
  • the ports are respectively turned on; each time when the port connected to one of the reagent cartridges in the multi-way valve is connected to the port connected to the syringe in the multi-way valve, the microprocessor controls the injection pump to work through the first motor, corresponding to A certain amount of reagent in the reagent cartridge is drawn into the syringe;
  • Step b12 the microprocessor controls the port connected to the syringe through the second motor to be connected to the port connected to the mixing ring; then the microprocessor controls the injection pump to work through the first motor, and the pure water in the syringe is The reagent is continuously injected and the mixing loop is withdrawn to mix the pure water and the plurality of reagents; after the mixing is completed, the mixture is finally drawn into the syringe;
  • Step b13 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the colorimetric detector in the multi-pass valve, and then the microprocessor controls the injection pump to work through the first motor, The mixture in the syringe is injected into the colorimetric detector;
  • Step b14 the colorimetric detector detects the injected mixed liquid, and sends the detected fourth detection signal to the microprocessor;
  • Step b21 The microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the standard solution chamber in the multi-way valve; then the microprocessor controls the injection pump to work through the first motor, corresponding to a certain amount of standard solution is drawn into the syringe;
  • Step b22 the microprocessor controls the port connected to the syringe through the second motor to be connected to the port connected to the mixing ring; then the microprocessor controls the injection pump to work through the first motor, and the standard solution in the syringe is more The reagent is continuously injected and the mixing loop is withdrawn to mix the standard solution and the plurality of reagents; after the mixing is completed, the mixture is finally drawn into the syringe;
  • Step b23 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the colorimetric detector in the multi-pass valve, and then the microprocessor controls the injection pump to work through the first motor, The mixture in the syringe is injected into the colorimetric detector;
  • Step b24 the colorimetric detector detects the injected mixed liquid, and sends the detected fifth detection signal to the microprocessor; wherein each concentration of the standard solution is sequentially injected into the standard solution chamber, and the above steps are Each standard solution is separately mixed with a certain number of reagents to obtain each of the fifth detection signals after mixing each standard solution with a certain number of reagents;
  • the microprocessor For each reagent compartment for storing various reagents that need to be mixed with the sample, at each moment, the microprocessor is connected to the multi-port valve and the syringe through the second motor control multi-port valve and each port connected to each reagent cartridge.
  • the ports are respectively turned on; wherein each time the port connected to one of the reagent cartridges in the multi-way valve is connected to the port connected to the syringe in the multi-pass valve, the microprocessor controls the injection pump to operate through the first motor, and the corresponding reagent is A certain amount of reagent in the cartridge is drawn into the syringe;
  • Step b32 the microprocessor controls the port connected to the syringe through the second motor to be connected to the port connected to the mixing ring; then the microprocessor controls the injection pump to work through the first motor, and samples and samples in the syringe The reagent is continuously injected and the mixing loop is withdrawn to mix the sample and the plurality of reagents; after the mixing is completed, the mixture is finally drawn into the syringe;
  • Step b34 the colorimetric detector detects the injected mixed liquid, and sends the detected sixth detection signal to the microprocessor;
  • Step B3 The microprocessor separately obtains the fourth detection signal sent by the colorimetric detector when the pure water and some reagents are mixed, and each of the colorimetric detectors is sent when each standard solution is separately mixed with some reagents. And comparing the sixth detection signal and the sixth detection signal sent by the colorimetric detector when the sample and the certain reagents are mixed, comparing the sixth detection signal with the fourth detection signal and each of the fifth detection signals, and obtaining according to the comparison result The corresponding nutrient salt content in the sample.
  • the steps are as follows:
  • Step C1 The microprocessor obtains a detection signal when the pure water and the buffer solution are mixed, and when the various standard solutions are respectively mixed with the buffer solution;
  • the microprocessor is connected to the port of the multi-way valve and the reagent reservoir connected to the buffer solution through the second motor control multi-way valve and the port connected with the syringe; then the microprocessor controls the injection pump to work through the first motor, and will store a certain amount of buffer reagent in the reagent chamber of the buffer solution is drawn into the syringe;
  • Step c12 The microprocessor controls the port connected to the syringe through the second motor to be connected to the port connected to the hybrid ring; then the microprocessor controls the injection pump through the first motor to operate the pure water in the syringe and The buffer solution is continuously injected and the mixing ring is withdrawn to mix the pure water and the buffer solution; after the mixing is completed, the mixture is finally drawn into the syringe;
  • Step c13 The microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the cadmium column in the multi-way valve; then the microprocessor controls the injection pump through the first motor to operate the syringe The mixed solution is injected into the cadmium column, and the nitrate is reduced to nitrite by the cadmium column; after waiting for a certain time, the microprocessor controls the injection pump through the first motor to pump the solution of the cadmium column reduction into the syringe. ;
  • Step c14 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the colorimetric detector in the multi-pass valve, and then the microprocessor controls the injection pump to work through the first motor, The solution of the solution reduced by the cadmium column in the syringe is injected into the colorimetric detector;
  • Step c15 the colorimetric detector detects the solution of the injected cadmium column, and sends the detected seventh detection signal to the microprocessor;
  • Step c21 The microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the standard solution chamber in the multi-way valve; then the microprocessor controls the injection pump to work through the first motor, and will be certain a quantity of the standard solution is drawn into the syringe;
  • the microprocessor is connected to the port of the multi-way valve and the reagent reservoir connected to the buffer solution through the second motor control multi-way valve and the port connected with the syringe; then the microprocessor controls the injection pump to work through the first motor, and will store a certain amount of buffer reagent in the reagent chamber of the buffer solution is drawn into the syringe;
  • Step c23 The microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the cadmium column in the multi-way valve; then the microprocessor controls the injection pump through the first motor to operate the syringe The mixed solution is injected into the cadmium column, and the nitrate is reduced to nitrite by the cadmium column; after waiting for a certain time, the microprocessor controls the injection pump through the first motor to pump the solution of the cadmium column reduction into the syringe. ;
  • Step c24 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the colorimetric detector in the multi-pass valve, and then the microprocessor controls the injection pump to work through the first motor, The solution of the solution reduced by the cadmium column in the syringe is injected into the colorimetric detector;
  • Step C2 When the nitrate detection in the sample is required, the sample and the buffer solution are mixed to obtain a ninth detection signal, and the specific steps are as follows:
  • Step c31 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the sample channel in the multi-pass valve; then the microprocessor controls the injection pump to work through the first motor, and a certain amount The sample is drawn into the syringe;
  • the microprocessor is connected to the port of the multi-way valve and the reagent reservoir connected to the buffer solution through the second motor control multi-way valve and the port connected with the syringe; then the microprocessor controls the injection pump to work through the first motor, and will store a certain amount of buffer reagent in the reagent chamber of the buffer solution is drawn into the syringe;
  • Step c32 The microprocessor controls the port connected to the syringe through the second motor to be connected to the port connected to the mixing ring; then the microprocessor controls the injection pump to work through the first motor, and samples and buffers in the syringe The solution is continuously injected and the mixing loop is withdrawn to mix the sample and the buffer solution; after the mixing is completed, the mixture is finally drawn into the syringe;
  • Step c34 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the colorimetric detector in the multi-pass valve, and then the microprocessor controls the injection pump to work through the first motor, The solution of the solution reduced by the cadmium column in the syringe is injected into the colorimetric detector;
  • Step c35 the colorimetric detector detects the solution of the injected cadmium column, and sends the detected ninth detection signal to the microprocessor;
  • the nutrient salt in-situ analyzer of the present invention comprises a microprocessor, a driving component, a multi-way valve, a syringe, a colorimetric detector, a mixing ring, a sample pipe, a pure water tank, a standard solution chamber, and various reagent chambers; a colorimetric detector, a mixing ring, a sample tube, a pure water tank, a standard solution chamber, and various reagent chambers are respectively connected to respective ports of the multi-way valve; wherein the microprocessor can be connected to the syringe through the motor control multi-way valve
  • the port is in communication with any other port of the multi-way valve, and the microprocessor can control the operation of the syringe pump by the motor to control the solution in the syringe to be drawn in or discharged; in the present invention, the port connected to the syringe in the multi-way valve When in communication with any of the other ports of the multi-way valve, the microprocessor can
  • the present invention can control pure water, standard solution, sample and any one or several reagents by the control of the microprocessor, and inject the finally mixed solution into the colorimetric detector for detection, and the microprocessor finally
  • the nutrient salt content in the sample can be obtained from the detection signal output from the colorimetric detector.
  • the present invention can realize continuous on-line automatic sampling and analysis of the nutrient content of the sample by controlling the microprocessor as long as one end of the sample channel is placed in the sample and the corresponding reagents are loaded on the various reagent cartridges;
  • Various reagent chambers are respectively connected to the ports of the multi-way valve, so the microprocessor can mix pure water, standard solution or sample with any other reagent or reagents according to actual analysis requirements, thereby realizing various components. Online analysis.
  • the multi-way valve is used as a positioning system, and the syringe is used as a core power component to realize nutrient salt content analysis, and has the advantages of simple structure, strong function, strong applicability and high reliability.
  • the microprocessor can control the first motor connected to the syringe pump so that the syringe draws a certain amount of pure water, a standard solution, a sample or a reagent at a time, so
  • the inventive nutrient salt in-situ analyzer can realize flexible control of sample amount and reagent amount through the microprocessor, thereby realizing efficient, stable and accurate detection of nutrient salt content.
  • a port of the multi-way valve is connected with a waste liquid collecting device, so that the microprocessor passes the multi-pass valve and the syringe pump for the solution that has been detected by the colorimetric detector.
  • the control can extract the solution in the cuvette of the colorimetric detector to the waste collection device to avoid waste liquid pollution.
  • a port of the multi-way valve is connected with a cadmium column. When a nitrate analysis is required for the sample, the microprocessor can inject a mixture of the sample and the buffer solution into the cadmium by controlling the multi-way valve and the syringe pump.
  • the nitrate in the sample is reduced to nitrite by the cadmium column; finally, the microprocessor reduces the solution of the cadmium column into the colorimetric detector through the control of the multi-way valve and the syringe pump.
  • the microprocessor reduces the solution of the cadmium column into the colorimetric detector through the control of the multi-way valve and the syringe pump. The detection, therefore, the nutrient salt in-situ analyzer of the present invention can simultaneously realize the analysis of the sample nitrate.
  • the nutrient salt in-situ analyzer of the present invention can be integrated into a protective shell, so that the structure is simpler, smaller and more portable; in addition, the waterproof protective casing of the present invention separates the waterway protection compartment from the circuit protection compartment. Open, can make the circuit protection compartment to achieve moisture and moisture resistance, effectively avoiding leakage.
  • the nutrient salt in-situ analyzer of the present invention when the nutrient salt in-situ analysis is integrated into a waterproof protective shell, since the protective shell is waterproof and sealed, the nutrient salt in-situ analyzer of the present invention can be used externally.
  • the 12V DC power supply is used in the laboratory or in the field to complete the analysis and measurement. It can also be directly installed to the marine buoy monitoring system.
  • the buoy 12V lead-acid battery provides power supply for analysis and measurement.
  • the micro-processing of the present invention can communicate with the buoy data collector of the marine buoy monitoring system through a wireless communication module or a signal line, and the buoy data collector can control the microprocessor to start an analysis process at regular intervals; the buoy data collector controls the microprocessor every interval.
  • the analysis process is started for a certain period of time, and the buoy data collector collects the nutrient salt content data signal of the sample determined by the microprocessor, and transmits it to the data center of the marine buoy monitoring system through a wireless communication network (such as GPRS or Beidou satellite), thereby Real-time measurement of long-term stability of marine nutrients.
  • a wireless communication network such as GPRS or Beidou satellite
  • FIG. 1 is a schematic view showing the structure of a nutrient salt in-situ analyzer of the present invention.
  • FIG. 2 is a circuit schematic diagram of the nutrient salt in-situ analyzer of the present invention.
  • Figure 3 is a schematic view showing the structure of a colorimetric detector in the nutrient salt in-situ analyzer of the present invention.
  • FIG. 4 is a schematic view showing the structure of the nutrient salt in-situ analyzer of the present invention integrated into a protective shell.
  • the driving component includes a first motor driver, a first motor, a second motor driver, and a second motor; the microprocessor sequentially connects the first motor driver and the first motor and then connects the injector a syringe pump for controlling the operation of the syringe pump; the microprocessor sequentially connects the second motor driver and the second motor and then connects the multi-way valve for controlling the port of the multi-way valve and the syringe connection and the other ports of the multi-way valve.
  • the colorimetric detectors are connected in sequence; the colorimetric detector is connected to the microprocessor, and the detection signal is sent to the microprocessor, and the microprocessor determines the nutrient salt content of the sample according to the detection signal.
  • the signal, and then the sample is mixed with a reagent, and the detection signal output by the colorimetric detector is compared with the above detection signal to obtain a certain nutrient salt content in the sample.
  • the microprocessor obtains pure water and various standard solutions are mixed with certain reagents respectively, and the colorimetric detector outputs.
  • the various detection signals, and then the sample is mixed with a certain number of reagents, the detection signal output by the colorimetric detector is compared with the above detection signal, and a certain nutrient salt content in the sample can be obtained.
  • the detection signal output by the colorimetric detector, and the pure water and various standard solutions are respectively obtained when the microprocessor obtains pure water and various standard solutions respectively mixed with various reagents.
  • the sample nutrient content can be realized online by controlling the microprocessor by placing one end of the sample channel in the sample and the corresponding reagents in various reagent cartridges. Continuous automatic sampling and analysis.
  • the colorimetric detector includes a light source, a colorimetric cell, a coupling lens, and a photoelectric converter; the light source and the coupling lens are respectively disposed at opposite ends of the colorimetric cell;
  • the microprocessor is connected and disposed at a light exit end of the coupling lens; in the colorimetric detector, the colorimeter is in communication with a port of the multi-way valve.
  • the specific detection work of the colorimetric detector after the solution enters is as follows: when the solution in the syringe enters the colorimetric cell in the colorimetric detector, the light emitted by the light source passes through the colorimeter and reaches the coupling lens, coupled by the coupling.
  • the lens couples the light and transmits it to the photoelectric converter.
  • the photoelectric converter converts the received optical signal into an electrical signal and transmits it to the microprocessor.
  • the micro-processing determines the nutrient salt content of the sample according to the received electrical signal.
  • the intelligent terminal can download the control program of the corresponding first motor and the second motor according to the nutrient salt analysis requirements, such as the reagents to be mixed in the sample, the amount of the sample required for each mixing, and the amount of the reagent used in each mixing.
  • the microprocessor controls the first motor and the second motor to achieve a corresponding analysis of the operating salt content.
  • the waterproof protective case is divided into upper and lower two compartments through the intermediate partition layer 2, which are respectively a waterway protection compartment 3 and a circuit protection compartment 4, wherein the microprocessor, the first motor driver and the second motor driver are placed In the circuit protection compartment, the multi-way valve 5, the injector, the syringe pump 6, the cadmium column 8, the first motor 9, the second motor 10, the colorimetric detector 11 and the mixing ring 12 are all placed in the waterway protection bin;
  • a protective compartment 13 is placed above the upper protective cover, wherein the pure water tank, the standard solution tank and the various reagent bins are placed in the protection bin, and the pure water pipe connected to the pure water tank and the standard solution tank are connected.
  • the standard solution pipe and the various reagent pipes connected to the various reagent bins pass through the protection bin and the upper protective cover, respectively, corresponding to the respective ports of the multi-way valve.
  • a nutrient salt content analysis method based on the nutrient salt in-situ analyzer is also disclosed.
  • the specific steps are as follows:
  • the microprocessor For each reagent compartment for storing various reagents that need to be mixed with the sample, at each moment, the microprocessor is connected to the multi-port valve and the syringe through the second motor control multi-port valve and each port connected to each reagent cartridge.
  • the ports are respectively turned on; wherein each time the port connected to one of the reagent cartridges in the multi-way valve is connected to the port connected to the syringe in the multi-pass valve, the microprocessor controls the injection pump to operate through the first motor, and the corresponding reagent is A certain amount of reagent in the cartridge is drawn into the syringe;
  • Step b32 the microprocessor controls the port connected to the syringe through the second motor to be connected to the port connected to the mixing ring; then the microprocessor controls the injection pump to work through the first motor, and samples and samples in the syringe The reagent is continuously injected and the mixing loop is withdrawn to mix the sample and the plurality of reagents; after the mixing is completed, the mixture is finally drawn into the syringe;
  • Step b34 the colorimetric detector detects the injected mixed liquid, and sends the detected sixth detection signal to the microprocessor; step B3, the microprocessor separately obtains the color detection when the pure water and some reagents are mixed.
  • the fourth detection signal sent by the device, each of the standard solutions is mixed with each of the several reagents, and each of the fifth detection signals sent by the colorimetric detector, and the colorimetric detector sends the sample when mixed with the sample and the several reagents.
  • the sixth detection signal is compared with the fourth detection signal and each of the fifth detection signals, and the corresponding nutrient salt content in the sample is obtained according to the comparison result.
  • the microprocessor obtains the detection signal when the pure water and the buffer solution are mixed, and the various standard solutions are respectively mixed with the buffer solution;
  • Step c12 The microprocessor controls the port connected to the syringe through the second motor to be connected to the port connected to the hybrid ring; then the microprocessor controls the injection pump through the first motor to operate the pure water in the syringe and The buffer solution is continuously injected and the mixing ring is withdrawn to mix the pure water and the buffer solution; after the mixing is completed, the mixture is finally drawn into the syringe;
  • Step c15 the colorimetric detector detects the solution of the injected cadmium column, and sends the detected seventh detection signal to the microprocessor;
  • Step c21 The microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the standard solution chamber in the multi-way valve; then the microprocessor controls the injection pump to work through the first motor, and will be certain a quantity of the standard solution is drawn into the syringe;
  • the microprocessor is connected to the port of the multi-way valve and the reagent reservoir connected to the buffer solution through the second motor control multi-way valve and the port connected with the syringe; then the microprocessor controls the injection pump to work through the first motor, and will store a certain amount of buffer reagent in the reagent chamber of the buffer solution is drawn into the syringe;
  • step c22 the microprocessor controls the port connected to the syringe through the second motor to be connected to the port connected to the hybrid ring; then the microprocessor controls the injection pump through the first motor to operate the standard solution in the syringe and The buffer solution is continuously injected and the mixing ring is withdrawn to mix the standard solution and the buffer solution; after the mixing is completed, the mixture is finally drawn into the syringe;
  • Step c23 The microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the cadmium column in the multi-way valve; then the microprocessor controls the injection pump through the first motor to operate the syringe The mixed solution is injected into the cadmium column, and the nitrate is reduced to nitrite by the cadmium column; after waiting for a certain time, the microprocessor controls the injection pump through the first motor to pump the solution of the cadmium column reduction into the syringe. ;
  • Step c24 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the colorimetric detector in the multi-pass valve, and then the microprocessor controls the injection pump to work through the first motor, The solution of the solution reduced by the cadmium column in the syringe is injected into the colorimetric detector;
  • Step c31 the microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the sample channel in the multi-pass valve; then the microprocessor controls the injection pump to work through the first motor, and a certain amount The sample is drawn into the syringe;
  • the microprocessor is connected to the port of the multi-way valve and the reagent reservoir connected to the buffer solution through the second motor control multi-way valve and the port connected with the syringe; then the microprocessor controls the injection pump to work through the first motor, and will store a certain amount of buffer reagent in the reagent chamber of the buffer solution is drawn into the syringe;
  • Step c33 The microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the cadmium column in the multi-way valve; then the microprocessor controls the injection pump through the first motor to operate the syringe The mixed solution is injected into the cadmium column, and the nitrate is reduced to nitrite by the cadmium column; after waiting for a certain time, the microprocessor controls the injection pump through the first motor to pump the solution of the cadmium column reduction into the syringe. ;
  • Step D2 The microprocessor controls the port connected to the syringe through the second motor control multi-way valve and the port connected to the waste collection device in the multi-way valve; then the microprocessor controls the injection pump through the first motor, and The solution in the syringe is injected into the waste collection device;
  • the microprocessor controls the order in which the pure water, the standard solution or the sample and the reagent are drawn into the syringe.
  • the microprocessor can control the pumping of pure water, standard solution or sample into the syringe, and then pumping the reagent into the syringe.
  • the reagent is multiple, each reagent and pure water.
  • the order in which the standard solution or sample is drawn into the syringe can also be arbitrary.

Abstract

一种营养盐原位分析仪及营养盐含量分析方法,分析仪包括:微处理器、驱动部件、多通阀(5)、注射器、比色检测器(11)、混合圈(12)、样品管道、纯水仓、标准溶液仓和各种试剂仓;其中注射器、比色检测器(11)、混合圈(12)、样品管道、纯水仓、标准溶液仓和各种试剂仓分别与多通阀(5)的各个端口对应连接;微处理器依次连接第一电机驱动器和第一电机后连接注射器的注射泵(6);微处理器依次连接第二电机驱动器和第二电机后连接多通阀(5),控制多通阀(5)中和注射器连接的端口与多通阀(5)中其他各端口分别依次连通;比色检测器(11)连接微处理器。

Description

一种营养盐原位分析仪及营养盐含量分析方法 技术领域
本发明涉及一种水质分析仪,特别涉及一种营养盐原位分析仪及营养盐含量分析方法。
背景技术
营养盐是海洋浮游植物生长所必需的物质基础。营养盐在海水中的不同浓度和组成,影响海洋初级生产力,对浮游植物的群落结构产生调节作用,从而影响海洋生态系统结构。在正常的海水中,适量营养盐可以促进生物的繁殖和生长,但是过量的营养盐,可以促使某些海洋生物急剧繁殖,从而大量消耗海水中的溶解氧,使海水中缺氧,从而引起鱼、虾、蟹、贝的大量死亡。现在把有机质和营养盐对海洋的污染称之为“富营养化”。了解海洋中营养盐的时空分布和变化,对于了解海洋生态系统的关键过程、评价和控制海洋水体富营养化具有重要的意义。海水中的营养盐是海洋浮游植物生长繁殖所必需的成分,也是海洋初级生产力和食物链的基础。因此,海水中营养盐的含量是海洋生态环境监测的重要参数,是海洋监测的海洋常规项目之一。
传统海水营养盐常用的测定方法是基于调查船的现场采样,然后到实验室测定的方法。该方法存在实时性差、浪费人力、财力及时间等缺陷,且样品易受污染,在采集、预处理、装载、运输等过程造成的测定误差可达-20%~+45%;不能提供连续数据;不易监测到降雨、藻华爆发等间歇性事件造成的营养盐浓度急剧变化。过去几十年的海洋监测研究证实,传统方法已不能完全满足现实的需求。亟需解决现有海水营养盐分析仪的流程复杂、耗材多、离线分析、不能满足低含量测量要求等问题。因此开发一种结构设计紧凑、水密性好、分辨率高、可靠性高、检出限低且能分析低含量的在线分析仪,实时提供现场资料、及时掌握海洋生态环境变化及富营养化程度、快速做出决策且可研究海洋不同尺度上的时空变化的海水营养盐分析仪具有重要意义。
我国海水营养盐测量分析依据《海洋监测规范》规定的方法进行,即采用传统采样和实验室分析。这种传统的实验室分析测量方法存在如下缺陷:所采样品代表性差、样品在采集和预处理过程中易受污染、保存和运输样品过程中营养盐的损失和变异等诸多弊端、不能满足现场连续监测及日益急迫的减灾防灾和科学研究的需要。
为发展海水营养盐现场监测技术,我国海洋技术研究所在863-818经费支持下,开展了营养盐监测技术的研究,目前已研制出分离式的海水营养盐现场自动分析仪样机,分别以磷酸盐现场自动分析仪、亚硝酸盐现场自动分析仪和硝酸盐现场自动分析仪等三种单机的形式存在,但是,尚未有可实现多种成分分析的全自动海水营养盐在线分析仪。
发明内容
本发明的第一目的在于克服现有技术的缺点与不足,提供一种结构简单、功能强大、适用性强以及可靠性高的营养盐原位分析仪,该营养盐原位分析仪可连续自动采样和分析出营养盐的含量,并且能够实现多种成分的在线分析。
本发明的第二目在于提供一种上述营养盐原位分析仪的分析方法。
本发明的第一目的通过下述技术方案实现:一种营养盐原位分析仪,,包括微处理器、驱动部件、多通阀、注射器、比色检测器、混合圈、样品管道、纯水仓、标准溶液仓和各种试剂仓;其中注射器、比色检测器、混合圈、样品管道、纯水仓和标准溶液仓以及各种试剂仓分别与多通阀的各个端口对应连接;
所述驱动部件包括第一电机驱动器、第一电机、第二电机驱动器和第二电机;所述微处理器依次连接第一电机驱动器和第一电机后连接注射器的注射泵,用于控制注射泵的工作;所述微处理器依次连接第二电机驱动器和第二电机后连接多通阀,用于控制多通阀中和注射器连接的端口与多通阀中其他各端口分别依次连通;
所述比色检测器连接微处理器,将检测信号发送给微处理器,由微处理器根据检测信号判定出样品的营养盐含量。
优选的,还包括废液收集装置和镉柱,所述废液收集装置和镉柱分别与多通阀的两个端口对应连接。
优选的,所述比色检测器包括光源、比色池、耦合透镜以及光电转换器;所述光源和耦合透镜分别设置在比色池相对的两端;所述光电转换器连接微处理器并且设置在耦合透镜的光线出射端;所述比色检测器中,比色池与多通阀的一个端口连接相通。
更进一步的,所述光源为复合LED灯源,所述比色池为1cm光程的石英流通池。
优选的,所述样品通道为一特氟伦管;所述多通阀为8~24通阀。
优选的,所述微处理器通过无线通信模块或信号线与智能终端进行通信,将样品的营养盐含量数据信号发送给智能终端。
优选的,还包括一防水保护壳和一上保护盖,所述上保护盖密封盖住防水保护壳;
所述防水保护壳中通过中间分隔层分成上下两个仓,分别为水路保护仓和电路保护仓,其中微处理器、第一电机驱动器和第二电机驱动器均置于电路保护仓中,所述多通阀、注射器、注射泵、第一电机、第二电机、比色检测器以及混合圈均置于水路保护仓中;
在上保护盖上方放置一个保护仓,纯水仓、标准溶液仓和各种试剂仓置均于保护仓中,纯水仓连接的纯水管道、标准溶液仓连接的标准溶液管道以及各种试剂仓连接的各条试剂管道穿过保护仓和上保护盖后分别对应连接多通阀的各个端口;
所述样品管道一端连接多通阀的其中一个端口,另一端穿过上保护盖置于防水保护壳外部;
所述样品管道和各条试剂管道穿过上保护盖处进行密封处理;所述各条试剂管道穿过保护仓处进行密封处理。
更进一步的,所述防水保护壳安装于海洋浮标监测系统中,所述电路保护仓中微处理器通过信号线或者无线通信模块与海洋浮标监测系统中的浮标数据采集器进行通信;浮标数据采集器控制微处理器每隔一 定时间启动一次分析处理,同时浮标数据采集器采集微处理器判定出的样品的营养盐含量数据信号,并且通过无线通信网络传输给海洋浮标监测系统的数据中心。
本发明的第二目的通过下述技术方案实现:一种上述营养盐原位分析仪的营养盐含量分析方法,当需要样品混合某种试剂得到样品中相应的营养盐含量时,则具体步骤如下:步骤A1、微处理器获取到纯水以及各种标准溶液分别与某种试剂进行混合时的检测信号;
其中获取到纯水与某种试剂进行混合时的检测信号的过程如下:
步骤a11、将纯水注入到纯水仓中,微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和纯水仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量的纯水抽入到注射器中;
微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和某试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的某试剂仓中的相应试剂抽入到注射器中;
步骤a12、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中试剂以及纯水不断的注入和抽出混合圈,以将纯水和试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
步骤a13、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
步骤a14、比色检测器对注入的混合液进行检测,将检测到的第一检测信号发送给微处理器;
其中获取到每种标准溶液与某种试剂进行混合时的检测信号的过程如下:
步骤a21、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和标准溶液仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将标准溶液仓中对应一定量的标准溶液抽入到注射器中;
微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和某试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的某试剂仓中的相应试剂抽入到注射器中;
步骤a22、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中试剂以及标准溶液不断的注入和抽出混合圈,以将标准溶液和试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
步骤a23、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
步骤a24;比色检测器对注入的混合液进行检测,将检测到的第二检测信号发送给微处理器;其中将每种浓度的标准溶液分别依次注入到标准溶液仓中,通过上述步骤将每种标准溶液与某种试剂分别进行混合,得到每种标准溶液与某种试剂混合后的每种第二检测信号;
步骤A2、当要进行样品中的营业盐含量时,将样品和某种试剂进行混合,得到第三检测信号,具体过程如下:
步骤a31、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和样品通道连接的端 口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量的样品抽入到注射器中;
微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和某试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的某试剂仓中的相应试剂抽入到注射器中;
步骤a32、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中试剂以及样品不断的注入和抽出混合圈,以将样品和试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
步骤a33、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
步骤a34、比色检测器对注入的混合液进行检测,将检测到的第三检测信号发送给微处理器;
步骤A3、微处理器分别获取到纯水和某种试剂混合时比色检测器发送的第一检测信号、每种标准溶液和某种试剂分别混合时比色检测器发送的每种第二检测信号以及样品和某种试剂混合时比色检测器发送的第三检测信号时,将第三检测信号和第一检测信号以及每种第二检测信号进行对比,根据对比结果获取到样品中相应的营养盐含量;
当需要样品混合某几种试剂得到样品中相应的营养盐含量时,则具体步骤如下:
步骤B1、微处理器获取到纯水与某几种试剂进行混合时的检测信号以及各种标准溶液分别与某几种试剂进行混合时的检测信号;
其中获取到纯水与某几种试剂进行混合时的检测信号的过程如下:
步骤b11、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和纯水仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量纯水抽入到注射器中;
针对于存储需要与纯水进行混合的各种试剂的各个试剂仓,在各时刻,微处理器通过第二电机控制多通阀中和各个试剂仓连接的各个端口与多通阀中和注射器连接的端口分别接通;其中每次当多通阀中和其中一个试剂仓连接的端口与多通阀中和注射器连接的端口接通后,微处理器通过第一电机控制注射泵工作,将对应试剂仓中一定量的试剂抽入到注射器中;
步骤b12、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中纯水和多种试剂不断的注入以及抽出混合圈,以将纯水和多种试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
步骤b13、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
步骤b14;比色检测器对注入的混合液进行检测,将检测到的第四检测信号发送给微处理器;
其中获取到每种标准溶液分别与某几种试剂进行混合时的检测信号的过程如下:
步骤b21、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和标准溶液仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量标准溶液抽入到注射器中;
针对于存储需要与标准溶液进行混合的各种试剂的各个试剂仓,在各时刻,微处理器通过第二电机控制多通阀中和各个试剂仓连接的各个端口与多通阀中和注射器连接的端口分别接通;其中每次当多通阀中和其中一个试剂仓连接的端口与多通阀中和注射器连接的端口接通后,微处理器通过第一电机控制注射泵工作,将对应试剂仓中一定量的试剂抽入到注射器中;
步骤b22、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中标准溶液和多种试剂不断的注入以及抽出混合圈,以将标准溶液和多种试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
步骤b23、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
步骤b24;比色检测器对注入的混合液进行检测,将检测到的第五检测信号发送给微处理器;其中将每种浓度的标准溶液分别依次注入到标准溶液仓中,通过上述步骤将每种标准溶液分别与某几种试剂分别进行混合,得到每种标准溶液与某几种试剂混合后的每种第五检测信号;
步骤B2、当要进行样品中的营业盐含量时,将样品和某几种试剂进行混合,得到第六检测信号,具体过程如下:
步骤b31、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和样品通道连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量样品抽入到注射器中;
针对于存储需要与样品进行混合的各种试剂的各个试剂仓,在各时刻,微处理器通过第二电机控制多通阀中和各个试剂仓连接的各个端口与多通阀中和注射器连接的端口分别接通;其中每次当多通阀中和其中一个试剂仓连接的端口与多通阀中和注射器连接的端口接通后,微处理器通过第一电机控制注射泵工作,将对应试剂仓中一定量的试剂抽入到注射器中;
步骤b32、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中样品和多种试剂不断的注入以及抽出混合圈,以将样品和多种试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
步骤b33、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
步骤b34;比色检测器对注入的混合液进行检测,将检测到的第六检测信号发送给微处理器;
步骤B3、微处理器分别获取到纯水和某几种试剂混合时比色检测器发送的第四检测信号、每种标准溶液分别和某几种试剂分别混合时比色检测器发送的每种第五检测信号、以及样品和某几种试剂混合时比色检测器发送的第六检测信号时,将第六检测信号和第四检测信号以及每种第五检测信号进行对比,根据对比结果获取到样品中相应的营养盐含量。
优选的,当需要检测样品中的硝酸盐含量时,则步骤如下:
步骤C1、微处理器获取到纯水与缓冲溶液进行混合时的检测信号以及各种标准溶液分别与缓冲溶液进行混合时;
其中获取到纯水与缓冲溶液进行混合时的检测信号的过程如下:
步骤c11、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和纯水仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的纯水抽入到注射器中;
微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和存储缓冲溶液的试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将存储缓冲溶液的试剂仓中一定量的缓冲试剂抽入到注射器中;
步骤c12、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的纯水和缓冲溶液不断的注入以及抽出混合圈,以将纯水和缓冲溶液进行混合;在混合完成后,将混合液最终抽入到注射器中;
步骤c13、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和镉柱连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入至镉柱中,由镉柱将硝酸盐还原成亚硝酸盐;在等待一定时间后,微处理器通过第一电机再控制注射泵工作,将镉柱还原的溶液抽入到注射器中;
步骤c14、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中镉柱还原的溶液的液注入到比色检测器中;
步骤c15;比色检测器对注入的镉柱还原的溶液进行检测,将检测到的第七检测信号发送给微处理器;
其中获取到每种标准溶液与缓冲溶液进行混合时的检测信号的过程如下:
步骤c21、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和标准溶液仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的标准溶液抽入到注射器中;
微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和存储缓冲溶液的试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将存储缓冲溶液的试剂仓中一定量的缓冲试剂抽入到注射器中;
步骤c22、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的标准溶液和缓冲溶液不断的注入以及抽出混合圈,以将标准溶液和缓冲溶液进行混合;在混合完成后,将混合液最终抽入到注射器中;
步骤c23、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和镉柱连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入至镉柱中,由镉柱将硝酸盐还原成亚硝酸盐;在等待一定时间后,微处理器通过第一电机再控制注射泵工作,将镉柱还原的溶液抽入到注射器中;
步骤c24、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中镉柱还原的溶液的液注入到比色检测器中;
步骤c25;比色检测器对注入的镉柱还原的溶液进行检测,将检测到的第七检测信号发送给微处理器;其中将每种浓度的标准溶液分别依次注入到标准溶液仓中,通过上述步骤将每种标准溶液与缓冲溶液分别 进行混合,得到每种标准溶液与缓冲溶液混合后的每种第八检测信号;
步骤C2、当需要进行样品中硝酸盐检测时,将样品和缓冲溶液进行混合,得到第九检测信号,具体步骤如下:
步骤c31、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和样品通道连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的样品抽入到注射器中;
微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和存储缓冲溶液的试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将存储缓冲溶液的试剂仓中一定量的缓冲试剂抽入到注射器中;
步骤c32、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的样品和缓冲溶液不断的注入以及抽出混合圈,以将样品和缓冲溶液进行混合;在混合完成后,将混合液最终抽入到注射器中;
步骤c33、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和镉柱连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入至镉柱中,由镉柱将硝酸盐还原成亚硝酸盐;在等待一定时间后,微处理器通过第一电机再控制注射泵工作,将镉柱还原的溶液抽入到注射器中;
步骤c34、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中镉柱还原的溶液的液注入到比色检测器中;
步骤c35;比色检测器对注入的镉柱还原的溶液进行检测,将检测到的第九检测信号发送给微处理器;
C3、微处理器分别获取到纯水和缓冲溶液混合时比色检测器发送的第七检测信号、每种标准溶液和缓冲溶液分别混合时比色检测器发送的每种第八检测信号以及样品和缓冲溶液混合时比色检测器发送的第九检测信号时,将第九检测信号和第七检测信号以及每种第八检测信号进行对比,根据对比结果获取到样品中相应的硝酸盐含量;
当需要进行比色检测器中废液回收时,具体步骤如下:
步骤D1、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将比色检测器中的溶液抽入到注射器中;
步骤D2、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和废液收集装置连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的溶液注入到废液收集装置中;
步骤D3、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和纯水仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将纯水仓中的纯水抽入到注射器中;
步骤D4、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中纯水不断的注入以及抽出混合圈,以通过纯水对混合圈和注射器进行清洗,最后将清洗后的溶液抽入到注射器中;接着,微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和废液收集装置连接的端口接通;然后微处理器通过第一电机控制注射泵 工作,将注射器中的溶液注入到废液收集装置中。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明营养盐原位分析仪包括微处理器、驱动部件、多通阀、注射器、比色检测器、混合圈、样品管道、纯水仓、标准溶液仓和各种试剂仓;注射器、比色检测器、混合圈、样品管道、纯水仓、标准溶液仓以及各种试剂仓分别与多通阀的各个端口连接;其中微处理器可以通过电机控制多通阀中和注射器连接的端口与多通阀中其他任何一个端口连通,微处理器可以通过电机控制注射泵工作,从而控制注射器中的溶液进行抽入或排出;在本发明中,当多通阀中和注射器连接的端口与多通阀中其他任一个端口连通时,微处理器可以控制注射泵动作,注射器从对应端口将溶液抽入或排出。因此本发明通过微处理器的控制可以将纯水、标准溶液、样品与任何一种或几种试剂进行混合,并且将最终混合后的溶液注入到比色检测器中进行检测,微处理器最终根据比色检测器输出的检测信号即可获取到样品中营养盐含量。由上述可知,本发明只要将样品通道一端置于样品中,以及各种试剂仓装上相应试剂,通过微处理器的控制就可实现样品营养盐含量在线连续自动采样和分析;另外,本发明中有各种试剂仓分别与多通阀各端口连接,因此微处理器可以根据实际分析需求使得纯水、标准溶液或样品和其他任一种或任几种试剂进行混合,从而实现多种成分的在线分析。可见,本发明由多通阀作为定位系统、由注射器作为核心动力部件来实现营养盐含量分析,实现具有结构简单、功能强大、适用性强以及可靠性高的优点。
(2)本发明营养盐原位分析仪中,多通阀的一个端口连接有混合圈,当注射器中已经抽入纯水、标准溶液或样品和一种或多种试剂时,微处理器控制多通阀中和注射器连接的端口与多通阀中和混合圈连接的端口连通,然后控制注射泵工作,使得注射器中的溶液可以不断的注入和抽出混合圈,从而使得纯水、标准溶液或样品和一种或多种试剂能够充分均匀的混合,提高样品中营养盐含量检测的精确度。
(3)本发明营养盐原位分析仪中,微处理器可以通过对注射泵所连接的第一电机的控制,使得注射器每次抽入定量的纯水、标准溶液、样品或试剂,因此本发明营养盐原位分析仪通过微处理器可以实现样品量和试剂量的灵活控制,从而实现营养盐含量的高效、稳定以及准确检测。
(4)本发明营养盐原位分析仪中,多通阀的一个端口连接有废液收集装置,因此针对于比色检测器已经检测完的溶液,微处理器通过对多通阀和注射泵的控制,可以将比色检测器的比色池中的溶液抽出至废液收集装置,避免产生废液污染。另外,多通阀的一个端口连接有镉柱,当需要针对样品进行硝酸盐分析时,微处理器可以通过对多通阀和注射泵的控制,可以将样品和缓冲溶液的混合液注入到镉柱中,由镉柱将样品中的硝酸盐还原成亚硝酸盐;最后由微处理器通过对多通阀和注射泵的控制,将镉柱还原后的溶液注入到比色检测器中进行最终检测,因此本发明营养盐原位分析仪可以同时实现样品硝酸盐的分析。
(5)本发明营养盐原位分析仪中,比色检测器包括光源、比色池、耦合透镜以及光电转换器;其中光源和耦合透镜分别置于比色池相对的两端,通过耦合透镜可以对光进行耦合聚焦,减少光信号的损失;另外本发明中,光源可以为复合LED灯源,实现低功耗冷光源目的,能够有效避免营养盐原位分析仪发热现象。本发明中,比色池为1cm光程的石英流通池,因此满足长光程原位监测目的,有利于低浓度样品的痕量样品分析。
(6)本发明营养盐原位分析仪中,包括一防水保护壳以及密封设置盖住保护壳的上保护盖,其中防水保护壳中通过中间分隔层分成上下两个仓,分别为水路保护仓和电路保护仓,其中微处理器、第一电机 驱动器和第二电机驱动器均置于电路保护仓中,多通阀、注射器、注射泵、第一电机、第二电机、比色检测器以及混合圈均置于水路保护仓中,各种试剂仓置于上保护盖上方,通过各条试剂通道连接多通阀各端口;与多通阀端口连接的样品管道以及各条试剂管道穿过上保护盖,并且穿过之处经过密封处理。由上述可见,本发明营养盐原位分析仪可以一体化到一个保护壳中,使得结构更简单、体积更小且更加便携;另外本发明防水保护壳中将水路保护仓和电路保护仓分隔开来,能够使得电路保护仓达到防潮和防湿的功能,有效避免出现漏电情况。
(7)本发明营养盐原位分析仪中,当将营养盐原位分析一体化到一个防水保护壳中时,由于保护壳为防水密封,因此本发明营养盐原位分析仪既可以使用外接12V直流电源单独在实验室或野外使用来完成分析测量,也可以直接安装至海洋浮标监测系统,由浮标12V铅酸蓄电池提供电源完成分析测量;当安装于海洋浮标监测系统时,本发明微处理器可以通过无线通信模块或者信号线与海洋浮标监测系统的浮标数据采集器进行通信,浮标数据采集器可以控制微处理器每隔一定时间启动一次分析处理;浮标数据采集器控制微处理器每隔一定时间启动一次分析处理,同时浮标数据采集器采集微处理器判定出的样品的营养盐含量数据信号,并且通过无线通信网络(如GPRS或北斗卫星)传输给海洋浮标监测系统的数据中心,从而实现海洋营养盐长期稳定的实时测量。
附图说明
图1是本发明营养盐原位分析仪的结构示意图。
图2是本发明营养盐原位分析仪中电路原理图。
图3是本发明营养盐原位分析仪中比色检测器的结构原理图。
图4是本发明营养盐原位分析仪一体化到保护壳中的结构示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例
本实施例公开了一种营养盐原位分析仪,包括微处理器、驱动部件、多通阀、注射器、比色检测器、混合圈、样品管道、镉柱、废液收集装置、纯水仓、标准溶液仓和各种试剂仓;其中如图1所示,注射器、比色检测器、混合圈、样品管道、镉柱、废液收集装置、纯水仓、标准溶液仓和各种试剂仓分别与多通阀的各个端口对应连接。在本实施例中,如图2所示,驱动部件包括第一电机驱动器、第一电机、第二电机驱动器和第二电机;微处理器依次连接第一电机驱动器和第一电机后连接注射器的注射泵,用于控制注射泵的工作;微处理器依次连接第二电机驱动器和第二电机后连接多通阀,用于控制多通阀中和注射器连接的端口与多通阀中其他各端口分别依次连通;比色检测器连接微处理器,将检测信号发送给微处理器,由微处理器根据检测信号判定出样品的营养盐含量。
在本实施例中,微处理器可以通过电机控制多通阀中和注射器连接的端口与多通阀中其他任何一个端口连通,微处理器可以通过电机控制注射泵工作,从而控制注射器中的溶液进行抽入或排出;当多通阀中和注射器连接的端口与多通阀中其他任一个端口连通时,微处理器可以控制注射泵动作,注射器从对应端口将溶液抽入或排出。因此本实施例通过微处理器的控制可以将纯水、标准溶液或样品与任何一种或几种 试剂进行混合,并且将最终混合后的溶液注入到比色检测器中进行检测,微处理器最终根据比色检测器的检测信号即可获取到样品营养盐含量。例如当需要将样品和某种试剂混合检测出某种营养盐含量时,首先微处理器获取到纯水以及各种标准溶液分别与某种试剂进行混合时,比色检测器输出的各种检测信号,然后将样品与某种试剂进行混合时比色检测器输出的检测信号与上述检测信号进行对比,即可获取到样品中某种营养盐含量。同理,当需要将样品和某几种试剂混合检测出某种营养盐含量时,首先微处理器获取到纯水以及各种标准溶液分别与某几种试剂进行混合时,比色检测器输出的各种检测信号,然后将样品与某几种试剂进行混合时比色检测器输出的检测信号与上述检测信号进行对比,即可获取到样品中某种营养盐含量。
由上述可见,本实施例中,在微处理器事先获取到纯水和各种标准溶液分别与各种试剂进行混合时比色检测器输出的检测信号,以及纯水和各种标准溶液分别与各几种试剂进行混合时比色检测器输出的检测信号后,只要将样品通道一端置于样品中以及各种试剂仓装上相应试剂,通过微处理器的控制就可实现样品营养盐含量在线连续自动采样和分析。
本实施例营养盐原位分析仪中,多通阀的一个端口连接有混合圈,当注射器中已经抽入样品和一种或多种试剂时,微处理器控制多通阀中和注射器连接的端口与多通阀中和混合圈连接的端口连通,然后控制注射泵工作,使得注射器中的溶液可以不断的注入和抽出混合圈,从而使得样品和一种或多种试剂能够充分均匀的混合,提高样品中营养盐含量检测的精确度。另外,微处理器可以通过对注射泵所连接的第一电机的控制,使得注射器每次抽入相应量的样品或试剂,因此本实施例营养盐原位分析仪通过微处理器中设定的第一电机的控制程序可以实现样品量和试剂量的灵活控制,从而实现营养盐含量的高效、稳定以及准确检测。
在本实施例中,如图3所示,比色检测器包括光源、比色池、耦合透镜以及光电转换器;所述光源和耦合透镜分别设置在比色池相对的两端;光电转换器连接微处理器并且设置在耦合透镜的光线出射端;比色检测器中,比色池与多通阀的一个端口连接相通。其中比色检测器在溶液进入后的具体检测工作具体如下:当注射器中的溶液进入到比色检测器中的比色池时,光源出射的光穿过比色池后到达耦合透镜,由耦合透镜对光线进行耦合处理后传输给光电转换器,光电转换器将接收的光信号转换成电信号后传输给微处理器,微处理根据接收到的电信号判定出样品营养盐含量。
在本实施例中光源采用复合LED灯源,实现低功耗冷光源目的,能够有效避免营养盐原位分析仪发热现象。本实施例中,比色池为1cm光程的石英流通池,因此满足长光程原位监测目的,有利于低浓度样品的痕量样品分析。
在本实施例中,样品通道为一特氟伦管;本实施例中多通阀根据注射器、比色检测器、混合圈、样品管道、镉柱、废液收集装置、纯水仓、标准溶液仓和各种试剂仓总共所需要连接的端口进行选择,一般为8~24通阀。在本实施例中,如图1所示,当包括9种试剂仓时,分别为第一试剂仓至第九试剂仓,则选用的多通阀为16通阀。微处理器通过第二电机控制16通阀中和注射器所连接的端口与16通阀中和比色检测器、混合圈、样品管道、镉柱、废液收集装置、纯水仓、标准溶液仓和9种试剂仓所连接的端口中的任一端口接通。
在本实施例中,微处理器通过无线通信模信号线与智能终端进行通信,将样品的营养盐含量数据信号 发送给智能终端,同时也可以通过智能终端控制微处理器每隔一定时间启动一次分析处理。所谓的一次分析处理是指完成一次样品中营养样含量检测的过程;每次分析处理时,均需要将样品和其中一种试剂或几种试剂混合后的溶液注入到比色检测器中,当需要进行下一次分析处理时,需要重新将样品和其中一种试剂或几种试剂混合后的溶液注入到比色检测器中。
另外智能终端可以根据营养盐分析需求,如样品需要混合的试剂、每次混合时需要样品的用量以及每次混合时试剂的用量等需求将相应的第一电机和第二电机的控制程序下载到微处理器中,使得微处理器控制第一电机和第二电机,实现相应的营业盐含量分析。
在本实施例中,如图4所示,还包括一防水保护壳和一上保护盖1,上保护盖1密封盖住防水保护壳。
在本实施例中,防水保护壳中通过中间分隔层2分成上下两个仓,分别为水路保护仓3和电路保护仓4,其中微处理器、第一电机驱动器和第二电机驱动器均置于电路保护仓中,多通阀5、注射器、注射泵6、镉柱8、第一电机9、第二电机10、比色检测器11和混合圈12均置于水路保护仓中;
在本实施例中,在上保护盖上方放置一个保护仓13,其中纯水仓、标准溶液仓以及各种试剂仓均置于保护仓中,纯水仓连接的纯水管道、标准溶液仓连接的标准溶液管道以及各种试剂仓连接的各条试剂管道穿过保护仓和上保护盖后分别对应连接多通阀的各个端口。
在本实施例中,样品管道一端连接多通阀的其中一个端口,另一端穿过上保护盖置于防水保护壳外部,用于取保护壳体外部的样品。
在本实施例中,废液收集装置于防水保护壳外部,也可以放在上保护盖上方,废液收集装置连接的废水管道穿过上保护盖连接多通阀的一个端口。
在本实施例中,纯水管道、标准溶液管道、样品管道、各条试剂管道以及废水管道穿过上保护盖处进行密封处理,以保证防水性;各条试剂管道穿过保护仓出进行密封处理
在本实施例中,防水保护壳可安装于海洋浮标监测系统中,当防水保护壳可安装于海洋浮标监测系统中时,如图2所示,电路保护仓中微处理器通过信号线或者无线通信模块与海洋浮标监测系统中的浮标数据采集器进行通信;浮标数据采集器控制微处理器每隔一定时间启动一次分析处理,同时浮标数据采集器采集微处理器判定出的样品的营养盐含量数据信号,并且通过无线通信网络(如GPRS或北斗卫星)传输给海洋浮标监测系统的数据中心,从而实现海洋营养盐长期稳定的实时测量。
本实施例中,还公开了一种基于上述营养盐原位分析仪实现的营养盐含量分析方法,当需要样品混合某种试剂得到样品中相应的营养盐含量时,则具体步骤如下:
步骤A1、微处理器获取到纯水以及各种标准溶液分别与某种试剂进行混合时的检测信号;
其中获取到纯水与某种试剂进行混合时的检测信号的过程如下:
步骤a11、将纯水注入到纯水仓中,微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和纯水仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量的纯水抽入到注射器中;
微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和某试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的某试剂仓中的相应试剂抽入到注射器中;
步骤a12、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中试剂以及纯水不断的注入和抽出混合圈,以将纯水和试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
步骤a13、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
步骤a14、比色检测器对注入的混合液进行检测,将检测到的第一检测信号发送给微处理器;
其中获取到每种标准溶液与某种试剂进行混合时的检测信号的过程如下:
步骤a21、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和标准溶液仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将标准溶液仓中对应一定量的标准溶液抽入到注射器中;
微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和某试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的某试剂仓中的相应试剂抽入到注射器中;
步骤a22、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中试剂以及标准溶液不断的注入和抽出混合圈,以将标准溶液和试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
步骤a23、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
步骤a24;比色检测器对注入的混合液进行检测,将检测到的第二检测信号发送给微处理器;其中将每种浓度的标准溶液分别依次注入到标准溶液仓中,通过上述步骤将每种标准溶液与某种试剂分别进行混合,得到每种标准溶液与某种试剂混合后的每种第二检测信号;
步骤A2、当要进行样品中的营业盐含量时,将样品和某种试剂进行混合,得到第三检测信号,具体过程如下:
步骤a31、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和样品通道连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量的样品抽入到注射器中;
微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和某试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的某试剂仓中的相应试剂抽入到注射器中;
步骤a32、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中试剂以及样品不断的注入和抽出混合圈,以将样品和试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
步骤a33、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
步骤a34、比色检测器对注入的混合液进行检测,将检测到的第三检测信号发送给微处理器;
步骤A3、微处理器分别获取到纯水和某种试剂混合时比色检测器发送的第一检测信号、每种标准溶液和某种试剂分别混合时比色检测器发送的每种第二检测信号以及样品和某种试剂混合时比色检测器发送 的第三检测信号时,将第三检测信号和第一检测信号以及每种第二检测信号进行对比,根据对比结果获取到样品中相应的营养盐含量;
当需要样品混合某几种试剂得到样品中相应的营养盐含量时,则具体步骤如下:
步骤B1、微处理器获取到纯水与某几种试剂进行混合时的检测信号以及各种标准溶液分别与某几种试剂进行混合时的检测信号;
其中获取到纯水与某几种试剂进行混合时的检测信号的过程如下:
步骤b11、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和纯水仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量纯水抽入到注射器中;
针对于存储需要与纯水进行混合的各种试剂的各个试剂仓,在各时刻,微处理器通过第二电机控制多通阀中和各个试剂仓连接的各个端口与多通阀中和注射器连接的端口分别接通;其中每次当多通阀中和其中一个试剂仓连接的端口与多通阀中和注射器连接的端口接通后,微处理器通过第一电机控制注射泵工作,将对应试剂仓中一定量的试剂抽入到注射器中;
步骤b12、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中纯水和多种试剂不断的注入以及抽出混合圈,以将纯水和多种试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
步骤b13、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
步骤b14;比色检测器对注入的混合液进行检测,将检测到的第四检测信号发送给微处理器;
其中获取到每种标准溶液分别与某几种试剂进行混合时的检测信号的过程如下:
步骤b21、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和标准溶液仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量标准溶液抽入到注射器中;
针对于存储需要与标准溶液进行混合的各种试剂的各个试剂仓,在各时刻,微处理器通过第二电机控制多通阀中和各个试剂仓连接的各个端口与多通阀中和注射器连接的端口分别接通;其中每次当多通阀中和其中一个试剂仓连接的端口与多通阀中和注射器连接的端口接通后,微处理器通过第一电机控制注射泵工作,将对应试剂仓中一定量的试剂抽入到注射器中;
步骤b22、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中标准溶液和多种试剂不断的注入以及抽出混合圈,以将标准溶液和多种试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
步骤b23、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
步骤b24;比色检测器对注入的混合液进行检测,将检测到的第五检测信号发送给微处理器;其中将每种浓度的标准溶液分别依次注入到标准溶液仓中,通过上述步骤将每种标准溶液分别与某几种试剂分别进行混合,得到每种标准溶液与某几种试剂混合后的每种第五检测信号;
步骤B2、当要进行样品中的营业盐含量时,将样品和某几种试剂进行混合,得到第六检测信号,具体 过程如下:
步骤b31、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和样品通道连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量样品抽入到注射器中;
针对于存储需要与样品进行混合的各种试剂的各个试剂仓,在各时刻,微处理器通过第二电机控制多通阀中和各个试剂仓连接的各个端口与多通阀中和注射器连接的端口分别接通;其中每次当多通阀中和其中一个试剂仓连接的端口与多通阀中和注射器连接的端口接通后,微处理器通过第一电机控制注射泵工作,将对应试剂仓中一定量的试剂抽入到注射器中;
步骤b32、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中样品和多种试剂不断的注入以及抽出混合圈,以将样品和多种试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
步骤b33、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
步骤b34;比色检测器对注入的混合液进行检测,将检测到的第六检测信号发送给微处理器;步骤B3、微处理器分别获取到纯水和某几种试剂混合时比色检测器发送的第四检测信号、每种标准溶液分别和某几种试剂分别混合时比色检测器发送的每种第五检测信号、以及样品和某几种试剂混合时比色检测器发送的第六检测信号时,将第六检测信号和第四检测信号以及每种第五检测信号进行对比,根据对比结果获取到样品中相应的营养盐含量。
当需要检测样品中的硝酸盐含量时,则步骤如下:
C1、微处理器获取到纯水与缓冲溶液进行混合时的检测信号以及各种标准溶液分别与缓冲溶液进行混合时;
其中获取到纯水与缓冲溶液进行混合时的检测信号的过程如下:
步骤c11、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和纯水仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的纯水抽入到注射器中;
微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和存储缓冲溶液的试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将存储缓冲溶液的试剂仓中一定量的缓冲试剂抽入到注射器中;
步骤c12、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的纯水和缓冲溶液不断的注入以及抽出混合圈,以将纯水和缓冲溶液进行混合;在混合完成后,将混合液最终抽入到注射器中;
步骤c13、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和镉柱连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入至镉柱中,由镉柱将硝酸盐还原成亚硝酸盐;在等待一定时间后,微处理器通过第一电机再控制注射泵工作,将镉柱还原的溶液抽入到注射器中;本步骤中,上述等待时间根据镉柱和样品中的硝酸盐反应时间,通过微处理器进行设定。
步骤c14、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的 端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中镉柱还原的溶液的液注入到比色检测器中;
步骤c15;比色检测器对注入的镉柱还原的溶液进行检测,将检测到的第七检测信号发送给微处理器;
其中获取到每种标准溶液与缓冲溶液进行混合时的检测信号的过程如下:
步骤c21、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和标准溶液仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的标准溶液抽入到注射器中;
微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和存储缓冲溶液的试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将存储缓冲溶液的试剂仓中一定量的缓冲试剂抽入到注射器中;
步骤c22、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的标准溶液和缓冲溶液不断的注入以及抽出混合圈,以将标准溶液和缓冲溶液进行混合;在混合完成后,将混合液最终抽入到注射器中;
步骤c23、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和镉柱连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入至镉柱中,由镉柱将硝酸盐还原成亚硝酸盐;在等待一定时间后,微处理器通过第一电机再控制注射泵工作,将镉柱还原的溶液抽入到注射器中;
步骤c24、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中镉柱还原的溶液的液注入到比色检测器中;
步骤c25;比色检测器对注入的镉柱还原的溶液进行检测,将检测到的第七检测信号发送给微处理器;其中将每种浓度的标准溶液分别依次注入到标准溶液仓中,通过上述步骤将每种标准溶液与缓冲溶液分别进行混合,得到每种标准溶液与缓冲溶液混合后的每种第八检测信号;
步骤C2、当需要进行样品中硝酸盐检测时,将样品和缓冲溶液进行混合,得到第九检测信号,具体步骤如下:
步骤c31、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和样品通道连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的样品抽入到注射器中;
微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和存储缓冲溶液的试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将存储缓冲溶液的试剂仓中一定量的缓冲试剂抽入到注射器中;
步骤c32、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的样品和缓冲溶液不断的注入以及抽出混合圈,以将样品和缓冲溶液进行混合;在混合完成后,将混合液最终抽入到注射器中;
步骤c33、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和镉柱连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入至镉柱中,由镉柱将硝酸盐还原 成亚硝酸盐;在等待一定时间后,微处理器通过第一电机再控制注射泵工作,将镉柱还原的溶液抽入到注射器中;
步骤c34、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中镉柱还原的溶液的液注入到比色检测器中;
步骤c35;比色检测器对注入的镉柱还原的溶液进行检测,将检测到的第九检测信号发送给微处理器;
C3、微处理器分别获取到纯水和缓冲溶液混合时比色检测器发送的第七检测信号、每种标准溶液和缓冲溶液分别混合时比色检测器发送的每种第八检测信号以及样品和缓冲溶液混合时比色检测器发送的第九检测信号时,将第九检测信号和第七检测信号以及每种第八检测信号进行对比,根据对比结果获取到样品中相应的硝酸盐含量;
当需要进行比色检测器中废液回收时,具体步骤如下:
步骤D1、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将比色检测器中的溶液抽入到注射器中;
步骤D2、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和废液收集装置连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的溶液注入到废液收集装置中;
步骤D3、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和纯水仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将纯水仓中的纯水抽入到注射器中;
步骤D4、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中纯水不断的注入以及抽出混合圈,以通过纯水对混合圈和注射器进行清洗,最后将清洗后的溶液抽入到注射器中;接着,微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和废液收集装置连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的溶液注入到废液收集装置中。
其中在本实施例上述步骤中,当纯水、标准溶液或样品需要和某种试剂或者某些试剂进行混合时,微处理器控制纯水、标准溶液或样品和试剂抽入到注射器的顺序可以为任意,即微处理器可以控制先将纯水、标准溶液或样品抽入到注射器中,后将试剂抽入到注射器中,也可以反过来,当试剂为多种时,各试剂和纯水、标准溶液或样品抽入到注射器中的顺序也可以是随意的。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种营养盐原位分析仪,其特征在于,包括微处理器、驱动部件、多通阀、注射器、比色检测器、混合圈、样品管道、纯水仓、标准溶液仓和各种试剂仓;其中注射器、比色检测器、混合圈、样品管道、纯水仓和标准溶液仓以及各种试剂仓分别与多通阀的各个端口对应连接;
    所述驱动部件包括第一电机驱动器、第一电机、第二电机驱动器和第二电机;所述微处理器依次连接第一电机驱动器和第一电机后连接注射器的注射泵,用于控制注射泵的工作;所述微处理器依次连接第二电机驱动器和第二电机后连接多通阀,用于控制多通阀中和注射器连接的端口与多通阀中其他各端口分别依次连通;
    所述比色检测器连接微处理器,将检测信号发送给微处理器,由微处理器根据检测信号判定出样品的营养盐含量。
  2. 根据权利要求1所述的营养盐原位分析仪,其特征在于,还包括废液收集装置和镉柱,所述废液收集装置和镉柱分别与多通阀的两个端口对应连接。
  3. 根据权利要求1所述的营养盐原位分析仪,其特征在于,所述比色检测器包括光源、比色池、耦合透镜以及光电转换器;所述光源和耦合透镜分别设置在比色池相对的两端;所述光电转换器连接微处理器并且设置在耦合透镜的光线出射端;所述比色检测器中,比色池与多通阀的一个端口连接相通。
  4. 根据权利要求3所述的营养盐原位分析仪,其特征在于,所述光源为复合LED灯源,所述比色池为1cm光程的石英流通池。
  5. 根据权利要求1所述的营养盐原位分析仪,其特征在于,所述样品通道为一特氟伦管;所述多通阀为8~24通阀。
  6. 根据权利要求1所述的营养盐原位分析仪,其特征在于,所述微处理器通过无线通信模块或信号线与智能终端进行通信,将样品的营养盐含量数据信号发送给智能终端。
  7. 根据权利要求1所述的营养盐原位分析仪,其特征在于,还包括一防水保护壳和一上保护盖,所述上保护盖密封盖住防水保护壳;
    所述防水保护壳中通过中间分隔层分成上下两个仓,分别为水路保护仓和电路保护仓,其中微处理器、第一电机驱动器和第二电机驱动器均置于电路保护仓中,所述多通阀、注射器、注射泵、第一电机、第二电机、比色检测器以及混合圈均置于水路保护仓中;
    在上保护盖上方放置一个保护仓,纯水仓、标准溶液仓和各种试剂仓置均于保护仓中,纯水仓连接的纯水管道、标准溶液仓连接的标准溶液管道以及各种试剂仓连接的各条试剂管道穿过保护仓和上保护盖后分别对应连接多通阀的各个端口;
    所述样品管道一端连接多通阀的其中一个端口,另一端穿过上保护盖置于防水保护壳外部;
    所述样品管道和各条试剂管道穿过上保护盖处进行密封处理;所述各条试剂管道穿过保护仓处进行密封处理。
  8. 根据权利要求7所述的营养盐原位分析仪,其特征在于,所述防水保护壳安装于海洋浮标监测系统中,所述电路保护仓中微处理器通过信号线或者无线通信模块与海洋浮标监测系统中的浮标数据采集器进 行通信;浮标数据采集器控制微处理器每隔一定时间启动一次分析处理,同时浮标数据采集器采集微处理器判定出的样品的营养盐含量数据信号,并且通过无线通信网络传输给海洋浮标监测系统的数据中心。
  9. 一种基于权利要求1所述的营养盐原位分析仪的营养盐含量分析方法,其特征在于,当需要样品混合某种试剂得到样品中相应的营养盐含量时,则具体步骤如下:步骤A1、微处理器获取到纯水以及各种标准溶液分别与某种试剂进行混合时的检测信号;
    其中获取到纯水与某种试剂进行混合时的检测信号的过程如下:
    步骤a11、将纯水注入到纯水仓中,微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和纯水仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量的纯水抽入到注射器中;
    微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和某试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的某试剂仓中的相应试剂抽入到注射器中;
    步骤a12、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中试剂以及纯水不断的注入和抽出混合圈,以将纯水和试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
    步骤a13、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
    步骤a14、比色检测器对注入的混合液进行检测,将检测到的第一检测信号发送给微处理器;
    其中获取到每种标准溶液与某种试剂进行混合时的检测信号的过程如下:
    步骤a21、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和标准溶液仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将标准溶液仓中对应一定量的标准溶液抽入到注射器中;
    微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和某试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的某试剂仓中的相应试剂抽入到注射器中;
    步骤a22、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中试剂以及标准溶液不断的注入和抽出混合圈,以将标准溶液和试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
    步骤a23、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
    步骤a24;比色检测器对注入的混合液进行检测,将检测到的第二检测信号发送给微处理器;其中将每种浓度的标准溶液分别依次注入到标准溶液仓中,通过上述步骤将每种标准溶液与某种试剂分别进行混合,得到每种标准溶液与某种试剂混合后的每种第二检测信号;
    步骤A2、当要进行样品中的营业盐含量时,将样品和某种试剂进行混合,得到第三检测信号,具体过程如下:
    步骤a31、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和样品通道连接的端 口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量的样品抽入到注射器中;
    微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和某试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的某试剂仓中的相应试剂抽入到注射器中;
    步骤a32、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中试剂以及样品不断的注入和抽出混合圈,以将样品和试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
    步骤a33、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
    步骤a34、比色检测器对注入的混合液进行检测,将检测到的第三检测信号发送给微处理器;
    步骤A3、微处理器分别获取到纯水和某种试剂混合时比色检测器发送的第一检测信号、每种标准溶液和某种试剂分别混合时比色检测器发送的每种第二检测信号以及样品和某种试剂混合时比色检测器发送的第三检测信号时,将第三检测信号和第一检测信号以及每种第二检测信号进行对比,根据对比结果获取到样品中相应的营养盐含量;
    当需要样品混合某几种试剂得到样品中相应的营养盐含量时,则具体步骤如下:
    步骤B1、微处理器获取到纯水与某几种试剂进行混合时的检测信号以及各种标准溶液分别与某几种试剂进行混合时的检测信号;
    其中获取到纯水与某几种试剂进行混合时的检测信号的过程如下:
    步骤b11、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和纯水仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量纯水抽入到注射器中;
    针对于存储需要与纯水进行混合的各种试剂的各个试剂仓,在各时刻,微处理器通过第二电机控制多通阀中和各个试剂仓连接的各个端口与多通阀中和注射器连接的端口分别接通;其中每次当多通阀中和其中一个试剂仓连接的端口与多通阀中和注射器连接的端口接通后,微处理器通过第一电机控制注射泵工作,将对应试剂仓中一定量的试剂抽入到注射器中;
    步骤b12、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中纯水和多种试剂不断的注入以及抽出混合圈,以将纯水和多种试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
    步骤b13、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
    步骤b14;比色检测器对注入的混合液进行检测,将检测到的第四检测信号发送给微处理器;
    其中获取到每种标准溶液分别与某几种试剂进行混合时的检测信号的过程如下:
    步骤b21、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和标准溶液仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量标准溶液抽入到注射器中;
    针对于存储需要与标准溶液进行混合的各种试剂的各个试剂仓,在各时刻,微处理器通过第二电机控制多通阀中和各个试剂仓连接的各个端口与多通阀中和注射器连接的端口分别接通;其中每次当多通阀中 和其中一个试剂仓连接的端口与多通阀中和注射器连接的端口接通后,微处理器通过第一电机控制注射泵工作,将对应试剂仓中一定量的试剂抽入到注射器中;
    步骤b22、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中标准溶液和多种试剂不断的注入以及抽出混合圈,以将标准溶液和多种试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
    步骤b23、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
    步骤b24;比色检测器对注入的混合液进行检测,将检测到的第五检测信号发送给微处理器;其中将每种浓度的标准溶液分别依次注入到标准溶液仓中,通过上述步骤将每种标准溶液分别与某几种试剂分别进行混合,得到每种标准溶液与某几种试剂混合后的每种第五检测信号;
    步骤B2、当要进行样品中的营业盐含量时,将样品和某几种试剂进行混合,得到第六检测信号,具体过程如下:
    步骤b31、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和样品通道连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将对应一定量样品抽入到注射器中;
    针对于存储需要与样品进行混合的各种试剂的各个试剂仓,在各时刻,微处理器通过第二电机控制多通阀中和各个试剂仓连接的各个端口与多通阀中和注射器连接的端口分别接通;其中每次当多通阀中和其中一个试剂仓连接的端口与多通阀中和注射器连接的端口接通后,微处理器通过第一电机控制注射泵工作,将对应试剂仓中一定量的试剂抽入到注射器中;
    步骤b32、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中样品和多种试剂不断的注入以及抽出混合圈,以将样品和多种试剂进行混合;在混合完成后将混合液最终抽入到注射器中;
    步骤b33、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入到比色检测器中;
    步骤b34;比色检测器对注入的混合液进行检测,将检测到的第六检测信号发送给微处理器;
    步骤B3、微处理器分别获取到纯水和某几种试剂混合时比色检测器发送的第四检测信号、每种标准溶液分别和某几种试剂分别混合时比色检测器发送的每种第五检测信号、以及样品和某几种试剂混合时比色检测器发送的第六检测信号时,将第六检测信号和第四检测信号以及每种第五检测信号进行对比,根据对比结果获取到样品中相应的营养盐含量。
  10. 根据权利要求9所述的营养盐原位分析仪的营养盐含量分析方法,其特征在于,当需要检测样品中的硝酸盐含量时,则步骤如下:
    步骤C1、微处理器获取到纯水与缓冲溶液进行混合时的检测信号以及各种标准溶液分别与缓冲溶液进行混合时;
    其中获取到纯水与缓冲溶液进行混合时的检测信号的过程如下:
    步骤c11、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和纯水仓连接的端口 接通;然后微处理器通过第一电机控制注射泵工作,将一定量的纯水抽入到注射器中;
    微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和存储缓冲溶液的试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将存储缓冲溶液的试剂仓中一定量的缓冲试剂抽入到注射器中;
    步骤c12、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的纯水和缓冲溶液不断的注入以及抽出混合圈,以将纯水和缓冲溶液进行混合;在混合完成后,将混合液最终抽入到注射器中;
    步骤c13、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和镉柱连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入至镉柱中,由镉柱将硝酸盐还原成亚硝酸盐;在等待一定时间后,微处理器通过第一电机再控制注射泵工作,将镉柱还原的溶液抽入到注射器中;
    步骤c14、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中镉柱还原的溶液的液注入到比色检测器中;
    步骤c15;比色检测器对注入的镉柱还原的溶液进行检测,将检测到的第七检测信号发送给微处理器;
    其中获取到每种标准溶液与缓冲溶液进行混合时的检测信号的过程如下:
    步骤c21、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和标准溶液仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的标准溶液抽入到注射器中;
    微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和存储缓冲溶液的试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将存储缓冲溶液的试剂仓中一定量的缓冲试剂抽入到注射器中;
    步骤c22、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的标准溶液和缓冲溶液不断的注入以及抽出混合圈,以将标准溶液和缓冲溶液进行混合;在混合完成后,将混合液最终抽入到注射器中;
    步骤c23、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和镉柱连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入至镉柱中,由镉柱将硝酸盐还原成亚硝酸盐;在等待一定时间后,微处理器通过第一电机再控制注射泵工作,将镉柱还原的溶液抽入到注射器中;
    步骤c24、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中镉柱还原的溶液的液注入到比色检测器中;
    步骤c25;比色检测器对注入的镉柱还原的溶液进行检测,将检测到的第七检测信号发送给微处理器;其中将每种浓度的标准溶液分别依次注入到标准溶液仓中,通过上述步骤将每种标准溶液与缓冲溶液分别进行混合,得到每种标准溶液与缓冲溶液混合后的每种第八检测信号;
    步骤C2、当需要进行样品中硝酸盐检测时,将样品和缓冲溶液进行混合,得到第九检测信号,具体步骤如下:
    步骤c31、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和样品通道连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将一定量的样品抽入到注射器中;
    微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和存储缓冲溶液的试剂仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将存储缓冲溶液的试剂仓中一定量的缓冲试剂抽入到注射器中;
    步骤c32、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的样品和缓冲溶液不断的注入以及抽出混合圈,以将样品和缓冲溶液进行混合;在混合完成后,将混合液最终抽入到注射器中;
    步骤c33、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和镉柱连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中混合液注入至镉柱中,由镉柱将硝酸盐还原成亚硝酸盐;在等待一定时间后,微处理器通过第一电机再控制注射泵工作,将镉柱还原的溶液抽入到注射器中;
    步骤c34、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通,然后微处理器通过第一电机控制注射泵工作,将注射器中镉柱还原的溶液的液注入到比色检测器中;
    步骤c35;比色检测器对注入的镉柱还原的溶液进行检测,将检测到的第九检测信号发送给微处理器;
    C3、微处理器分别获取到纯水和缓冲溶液混合时比色检测器发送的第七检测信号、每种标准溶液和缓冲溶液分别混合时比色检测器发送的每种第八检测信号以及样品和缓冲溶液混合时比色检测器发送的第九检测信号时,将第九检测信号和第七检测信号以及每种第八检测信号进行对比,根据对比结果获取到样品中相应的硝酸盐含量;
    当需要进行比色检测器中废液回收时,具体步骤如下:
    步骤D1、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和比色检测器连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将比色检测器中的溶液抽入到注射器中;
    步骤D2、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和废液收集装置连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的溶液注入到废液收集装置中;
    步骤D3、微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和纯水仓连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将纯水仓中的纯水抽入到注射器中;
    步骤D4、微处理器通过第二电机控制多通阀中和注射器连接的端口与和混合圈连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中纯水不断的注入以及抽出混合圈,以通过纯水对混合圈和注射器进行清洗,最后将清洗后的溶液抽入到注射器中;接着,微处理器通过第二电机控制多通阀中和注射器连接的端口与多通阀中和废液收集装置连接的端口接通;然后微处理器通过第一电机控制注射泵工作,将注射器中的溶液注入到废液收集装置中。
PCT/CN2018/099845 2017-12-04 2018-08-10 一种营养盐原位分析仪及营养盐含量分析方法 WO2019109658A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/835,332 US20200222897A1 (en) 2017-12-04 2020-03-31 In-situ analyzer for nutritive salt and nutritive salt content analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711260674.5A CN107782724A (zh) 2017-12-04 2017-12-04 一种营养盐原位分析仪及营养盐含量分析方法
CN201711260674.5 2017-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/835,332 Continuation US20200222897A1 (en) 2017-12-04 2020-03-31 In-situ analyzer for nutritive salt and nutritive salt content analysis method

Publications (1)

Publication Number Publication Date
WO2019109658A1 true WO2019109658A1 (zh) 2019-06-13

Family

ID=61430111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099845 WO2019109658A1 (zh) 2017-12-04 2018-08-10 一种营养盐原位分析仪及营养盐含量分析方法

Country Status (3)

Country Link
US (1) US20200222897A1 (zh)
CN (1) CN107782724A (zh)
WO (1) WO2019109658A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782724A (zh) * 2017-12-04 2018-03-09 深圳市朗诚科技股份有限公司 一种营养盐原位分析仪及营养盐含量分析方法
CN108318424A (zh) * 2018-04-09 2018-07-24 浙江大学 一种水下浮游生物自动成像装置及成像方法
CN109030842B (zh) * 2018-08-09 2019-10-08 中国科学院南海海洋研究所 一种海水营养盐原位分析装置
CN110514610A (zh) * 2019-09-30 2019-11-29 南京润驰工程技术有限公司 一种硅酸盐测量装置及测量方法
CN112161978A (zh) * 2020-09-29 2021-01-01 上海亨通海洋装备有限公司 营养盐水质分析仪
CN112378863A (zh) * 2020-09-30 2021-02-19 深圳市朗诚科技股份有限公司 水质分析仪的水质分析方法
CN112444487B (zh) * 2020-10-13 2023-02-21 南京南瑞水利水电科技有限公司 一种水质多参数分析方法及系统
CN114088648B (zh) * 2021-12-07 2024-03-01 广东盈峰科技有限公司 一种多通阀微试剂取样的气液双重隔离方法
CN114235730A (zh) * 2022-02-21 2022-03-25 中国科学院烟台海岸带研究所 一种海水营养盐在线监测系统及海水营养盐检测方法
CN116519610B (zh) * 2023-05-11 2023-11-03 原生代(青岛)科技有限公司 一种营养盐原位分析装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266677A (ja) * 1999-01-14 2000-09-29 Shimadzu Corp 窒素化合物、リン化合物及び有機汚濁物質の分析計
CN101769863A (zh) * 2010-01-26 2010-07-07 宇星科技发展(深圳)有限公司 低检测下限总砷在线分析仪及其分析方法
CN202676591U (zh) * 2012-07-17 2013-01-16 西安洛克仪器设备有限公司 水质自动检测仪
CN203720190U (zh) * 2014-03-06 2014-07-16 深圳市朗诚实业有限公司 硝酸盐镉柱自动检测装置
CN204536209U (zh) * 2015-04-24 2015-08-05 厦门大学 营养盐现场自动分析仪
CN106053631A (zh) * 2016-05-19 2016-10-26 电子科技大学 一种全自动分散液‑液微萃取系统及其应用
CN106290952A (zh) * 2016-08-01 2017-01-04 河北科技大学 一种水体中总氮、总磷监测系统及监测方法
CN106556598A (zh) * 2016-11-08 2017-04-05 厦门斯坦道科学仪器股份有限公司 用于海水监测的原位营养盐自动分析装置
CN107782724A (zh) * 2017-12-04 2018-03-09 深圳市朗诚科技股份有限公司 一种营养盐原位分析仪及营养盐含量分析方法
CN207457079U (zh) * 2017-12-04 2018-06-05 深圳市朗诚科技股份有限公司 一种营养盐原位分析仪

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048386B2 (en) * 2002-02-25 2011-11-01 Cepheid Fluid processing and control
US6794836B2 (en) * 2001-02-06 2004-09-21 Invacare Corporation Electric motor drive controller with voltage control circuit operative in different modes
JP2009115758A (ja) * 2007-11-09 2009-05-28 Osaka Prefecture Univ 海水中の溶存態無機窒素の測定方法
CN101655501B (zh) * 2009-09-30 2012-02-01 河北科技大学 海水中总氮及总磷的在线自动监测系统及监测方法
CN101672775A (zh) * 2009-10-18 2010-03-17 中国海洋大学 海水中总有机碳自动在线监测仪
CN206161538U (zh) * 2016-11-11 2017-05-10 厦门斯坦道科学仪器股份有限公司 一种用于硝酸盐和亚硝酸盐的监测装置
AU2018269707B2 (en) * 2017-05-17 2022-12-15 Spogen Biotech Inc. Devices, systems, and methods for agrochemical detection and agrochemical compositions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266677A (ja) * 1999-01-14 2000-09-29 Shimadzu Corp 窒素化合物、リン化合物及び有機汚濁物質の分析計
CN101769863A (zh) * 2010-01-26 2010-07-07 宇星科技发展(深圳)有限公司 低检测下限总砷在线分析仪及其分析方法
CN202676591U (zh) * 2012-07-17 2013-01-16 西安洛克仪器设备有限公司 水质自动检测仪
CN203720190U (zh) * 2014-03-06 2014-07-16 深圳市朗诚实业有限公司 硝酸盐镉柱自动检测装置
CN204536209U (zh) * 2015-04-24 2015-08-05 厦门大学 营养盐现场自动分析仪
CN106053631A (zh) * 2016-05-19 2016-10-26 电子科技大学 一种全自动分散液‑液微萃取系统及其应用
CN106290952A (zh) * 2016-08-01 2017-01-04 河北科技大学 一种水体中总氮、总磷监测系统及监测方法
CN106556598A (zh) * 2016-11-08 2017-04-05 厦门斯坦道科学仪器股份有限公司 用于海水监测的原位营养盐自动分析装置
CN107782724A (zh) * 2017-12-04 2018-03-09 深圳市朗诚科技股份有限公司 一种营养盐原位分析仪及营养盐含量分析方法
CN207457079U (zh) * 2017-12-04 2018-06-05 深圳市朗诚科技股份有限公司 一种营养盐原位分析仪

Also Published As

Publication number Publication date
CN107782724A (zh) 2018-03-09
US20200222897A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2019109658A1 (zh) 一种营养盐原位分析仪及营养盐含量分析方法
CN106556598B (zh) 用于海水监测的原位营养盐自动分析装置
CN207300895U (zh) 水中痕量铬的检测系统
CN209821226U (zh) 一种基于改进sia技术的水下微型现场自动营养盐分析仪
CN102980858B (zh) 小型顺序注射亚硝酸盐分析系统
CN213302004U (zh) 一种水质高锰酸盐指数在线分析仪
CN212008633U (zh) 藻类光合抑制法水质毒性监测仪自动进样制样装置
CN113125361A (zh) 用于氨氮自动监测的分析系统与方法
CN206177825U (zh) 一种用于海水监测的原位营养盐自动分析装置
CN207457079U (zh) 一种营养盐原位分析仪
CN111289711A (zh) 一种水质生物毒性在线监测装置及方法
CN102590540A (zh) 深海微量离子浓度原位探测系统
CN216560257U (zh) 一种在线挥发酚水质分析仪
CN212391398U (zh) 海水中痕量硝酸盐或亚硝酸盐自动分析仪
CN214668555U (zh) 一种水质在线监测系统
CN211603025U (zh) 一种用于水环境现场监测的毛细管电泳仪
CN211697482U (zh) 紫外分光测油仪
CN202903672U (zh) 小型顺序注射亚硝酸盐分析系统
CN208902597U (zh) 海水亚硝酸盐/硝酸盐检测装置
CN113125360A (zh) 用于高锰酸盐指数自动监测的分析系统与方法
CN111751307A (zh) 营养盐分析仪
CN113125362A (zh) 用于总氮自动监测的分析系统与方法
CN212540370U (zh) 一种便携式水质快速自动分析系统
CN212301311U (zh) 营养盐分析仪
CN112798548B (zh) 一种便携直读式溶解性氮磷测定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886993

Country of ref document: EP

Kind code of ref document: A1