WO2019107078A1 - ケトール化合物の製造方法。 - Google Patents

ケトール化合物の製造方法。 Download PDF

Info

Publication number
WO2019107078A1
WO2019107078A1 PCT/JP2018/040945 JP2018040945W WO2019107078A1 WO 2019107078 A1 WO2019107078 A1 WO 2019107078A1 JP 2018040945 W JP2018040945 W JP 2018040945W WO 2019107078 A1 WO2019107078 A1 WO 2019107078A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
ketol
reaction
carbon atoms
producing
Prior art date
Application number
PCT/JP2018/040945
Other languages
English (en)
French (fr)
Inventor
伸一 古里
俊行 川邉
耕平 立花
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Publication of WO2019107078A1 publication Critical patent/WO2019107078A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/17Saturated compounds containing keto groups bound to acyclic carbon atoms containing hydroxy groups

Definitions

  • the present invention relates to a method of producing a ketol.
  • the present invention relates to a highly efficient method for producing a ketole which has a high yield, is low in impurities, and is easy to purify.
  • ketol compounds are important raw material intermediates such as medicines and agrochemicals and are useful compounds.
  • many synthesis methods have been proposed.
  • Patent Document 1 discloses the synthesis of a selective oxidation reaction of 1,3-butanediol.
  • this method does not become an inexpensive method because 1,3-butanediol is expensive.
  • Patent Document 2 discloses a synthesis example in which acetone (26 equivalents) and paraformaldehyde are reacted in the presence of a catalyst (Amberlyst A26 OH), but the yield is as low as 10%, and a large excess of acetone is used. It can not be said that it is an industrial manufacturing method.
  • Non-Patent Document 1 a yield of 90% is achieved by passing acetone (15 equivalents) and formalin in a continuous flow reactor under high temperature and high pressure conditions, but a large excess of acetone is used, and It can not be said that it is a typical manufacturing method.
  • An industrial manufacturing method should be an environmentally friendly manufacturing process that minimizes the use of raw materials without waste.
  • the method described above is not always the optimum reaction method because the amount of acetone used is large, and recovery of unreacted acetone takes a lot of energy.
  • Non-patent Document 1 it was necessary to use a large excess of acetone as in Non-patent Document 1 in order to maintain a high reaction yield.
  • the study of reducing the amount of acetone used has not been studied because of the concern about the decrease in yield.
  • the present invention has been made in view of such problems, and it is an object of the present invention to obtain a ketol compound in high yield and high purity without using a large excess of acetone.
  • the present inventors reduce the molar ratio of ketone to formaldehyde (the number of moles of ketone / the number of moles of formaldehyde) by performing strict control of reaction time in consideration of the physical properties of the reaction solution in the production of ketol compounds.
  • the present inventors have succeeded in achieving the present invention by finding out that the compound of interest can be obtained with high efficiency and high yield.
  • the present invention is a process for producing a ketol compound, a. Continuously feeding the ketone compound and the formaldehyde solution to the reactor; b. Mixing the ketone compound and the formaldehyde solution and converting it to a ketol compound; c. Continuously removing the reaction product from said reactor; d. The step of rapidly supplying the taken out reaction product to a cooling pipe; e. And cooling the reaction tube to 150 ° C. or lower with the cooling pipe to continuously take out the reaction product whose reaction has stopped.
  • the microreactor is a reactor in which the flow passage inner diameter of the reactor is 100 to 4000 ⁇ m.
  • the method for producing a ketol compound of the present invention is an environmentally friendly production process without the need to use a large excess of raw materials, and can obtain the target compound in high yield and high purity. Furthermore, since no catalyst is used, decomposition of the product by so-called reverse aldol reaction does not occur, the content of impurities is small, and the types of impurities are also small, so purification is easy. In addition, a ketol compound is used as important raw material intermediates, such as a pharmaceutical and a pesticide, and the manufacturing method obtained by high yield of these is useful.
  • a method for producing a ketol compound which comprises the following steps: Step (a) continuously supplying the ketone compound and the formaldehyde solution to the heating part of the reactor; Step (b) mixing the ketone compound and the formaldehyde solution to form a ketol compound in a heating unit, Step (c) continuously removing the reaction product from the heating unit Step (d) a step of rapidly supplying the reaction product taken out to a cooling unit, Step (e):
  • the molar ratio of the ketone compound is 1 to 10 equivalents with respect to the formaldehyde, including in the order of the step of continuously removing the reaction product which has been cooled down to 150 ° C. or less in the cooling unit and the reaction is stopped.
  • There is a method for producing a ketol compound There is a method for producing a ketol compound.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or 3 to 6 carbon atoms 20 cycloalkyl groups or aryl groups having 4 to 30 carbon atoms, and R 1 and R 2 may combine to form a cyclic structure.
  • FIG. 1 is used to explain an example of the reactor 10 and the production method used in the production method of the present invention.
  • the formaldehyde solution, which is another raw material, is continuously supplied from the storage container by the pump 14 through the tube 13 to the heating unit 15.
  • Parts of the reactor 10 such as the heating unit 15, the cooling unit 16, the tube 11, and the tube 13 are connected by a joint 17.
  • the ketone compound is supplied to the heating unit by the pressure from the pump 12
  • the formaldehyde solution is supplied to the heating unit by the pressure from the pump 14
  • the liquid of the reaction product is removed from the heating unit by the pressure from the pump 12 or the pump 14. And supplied to the cooling unit.
  • the ketone compound that can be used in the present production method is not particularly limited as long as it is a compound that can be used in general organic synthesis.
  • the preferred ketone compound is a ketone compound represented by the following general formula (1).
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or 3 to 6 carbon atoms 20 cycloalkyl groups or aryl groups having 4 to 30 carbon atoms, and R 1 and R 2 may combine to form a cyclic structure.
  • the formaldehyde solution that can be used in the present production method is not particularly limited as long as it is a formaldehyde solution that can be used in general organic synthesis.
  • the preferred formaldehyde solution is formalin, more preferably 1 to 50 wt% formalin.
  • Ketol which is a reaction product includes compounds represented by the following formula.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or 3 to 6 carbon atoms 20 cycloalkyl groups or aryl groups having 4 to 30 carbon atoms, and R 1 and R 2 may combine to form a cyclic structure.
  • step (b) the reaction temperature is 150 to 400 ° C. Within this range, by appropriately controlling the reaction time, the reaction proceeds sufficiently to obtain a high purity ketol compound. In this respect, the temperature is preferably 200 to 400 ° C., more preferably 230 to 350 ° C., and still more preferably 270 to 330 ° C.
  • the pressure is 0.1 to 100 MPa. Within this range, the reaction proceeds sufficiently to obtain a high purity ketol compound. From this viewpoint, it is preferably 3 to 50 MPa, more preferably 5 to 40 MPa, and still more preferably 10 to 20 MPa.
  • the reaction time is 1 second to 8 minutes. Within this range, the reaction proceeds sufficiently to obtain a high purity ketol compound. In this respect, it is preferably 10 seconds to 5 minutes, more preferably 20 seconds to 2 minutes, and still more preferably 30 seconds to 1 minute.
  • Example 1 The condensation reaction of acetone and formalin was carried out using a reactor 10 shown in the figure.
  • Tubes 11, 13 and 19 had an inner diameter of 1.0 mm (outer diameter 1/16 inch, 1.59 mm), and used tubes each having a length of 2 m.
  • the section of the heating unit 15 used a tube with an inner diameter of 2.2 mm (1/8 inch outer diameter, 3.18 mm) and a length of 10 m.
  • the section of the cooling unit 16 used a tube with an inner diameter of 1.0 mm (outside diameter 1/16 inch, 1.59 mm) and a length of 3 m.
  • the tube joint 17 used was a Swagelok tube joint.
  • the pumps 12 and 14 were NP-KX-520 double plunger pumps manufactured by Japan Precision Science Co., Ltd., and the back pressure valves 18 used air load type back pressure valves manufactured by Tescom Co., Ltd.
  • the heating unit 15 was used by inserting a tube into a thermostatic chamber of a gas chromatograph manufactured by Shimadzu Corporation and set to a predetermined reaction temperature.
  • the cooling unit 16 performs air cooling to keep the temperature in the range of 20 to 150.degree.
  • Acetone and 37 wt% formalin were fed to the heating unit 15 using the pumps 12 and 14.
  • the feed rates of acetone and formalin were set to 20.00 mL / min and 4.56 mL / min, respectively.
  • the molar ratio of acetone to formaldehyde in formalin under this condition is 5.
  • the temperature of the heating unit 15 was set to 310 ° C., and the pressure of the back pressure valve 18 was set to 17 MPa.
  • the reaction time under this condition is 0.77 min.
  • Five minutes after the start of the reaction 2 mL of the reaction solution was collected from the tube 19 into a sampling tube.
  • the reaction solution obtained was analyzed by GC, and the yield was calculated by quantitative analysis by the internal standard substance method. As a result, the yield of 4-hydroxy-2-butanone was 78.3 GC%.
  • the space-time yield was 6110 g / Hr ⁇ L.
  • the quantitative analysis by GC was performed as follows.
  • GC-2014 type gas chromatograph made by Shimadzu Corporation was used.
  • the column is from Agilent Technologies Inc.
  • a capillary column DB-WAX (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m) fixed liquid phase made of polyethylene glycol; high polarity) was used.
  • Helium was used as a carrier gas, and the flow rate was adjusted to 2.19 ml / min.
  • the temperature of the sample vaporization chamber was set to 250 ° C., and the temperature of the detector (FID) portion was set to 250 ° C.
  • the sample is dissolved in THF to prepare a 1 wt% solution, and 25 wt% decane of the sample is added as an internal standard. 1 ⁇ L of the obtained solution was injected into the sample vaporization chamber.
  • a dilution solvent of a sample you may use chloroform and ethanol, for example.
  • a column Phenomenex Inc. Capillary column ZB-WAX (length 30 m, inner diameter 0.32 mm, thickness 0.25 ⁇ m), Rtx-Wax (length 30 m, inner diameter 0.32 mm, thickness 0.25 ⁇ m) manufactured by Restek Corporation, GL Sciences Inc. InertCap WAX (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m) or the like may be used.
  • an internal standard method by gas chromatogram is used.
  • the peak of the test component obtained and the peak of the internal standard material obtained by simultaneous gas chromatography of 4-hydroxy-2-butanone (test component) and reference compound (internal standard material) weighed accurately and accurately Calculate the relative intensity of the area ratio with.
  • the concentration of 4-hydroxy-2-butanone in the sample can be determined more accurately from gas chromatography analysis by correcting using the relative intensity of the peak area of each component to the internal standard substance.
  • Example 2 to 8 A reaction was performed in the same manner as in Example 1 except that the molar ratio of acetone to formaldehyde in formalin, the temperature of heating unit 15, and the reaction time in Example 1 were changed to the conditions shown in Table 1. The results are shown in Table 1. [Table 1]
  • Example 9 The reaction was carried out in the same manner as in Example 1 except that ethyl methyl ketone was used instead of acetone, the temperature of the heating unit 15 was changed to 250 ° C., and the reaction time was changed to 2.00 min.
  • the yield of 4-hydroxy-3-methyl-2-butanone is 44.4 GC%, that of 5-hydroxy-3-butanone is 47.8 GC%, and the yield of the total formaldehyde adduct is 92.2 GC%. there were.
  • the total space-time yield was 3353 g / hr ⁇ L.
  • Example 1 Comparative Example 1 In Example 1, the reaction was performed in the same manner as in Example 1 except that the molar ratio of acetone to formaldehyde in formalin was 15, the temperature of heating unit 15 was 230 ° C., and the reaction time was changed to 4.00 min. The As a result, the yield was 76.9 GC%, and the space-time yield was 276 g / Hr ⁇ L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

アセトンを大過剰用いることなく、ケトール化合物を高収率、高純度、でかつ高効率で得る。 ケトール化合物の製造方法であって、 a.反応器に、ケトン化合物およびホルムアルデヒド溶液を連続的に供給する工程と、 b.前記ケトン化合物および前記ホルムアルデヒド溶液を混合してケトール化合物に転化する工程と、 c.前記の反応器から、反応生成物を連続的に取り出す工程と、 d.取り出した前記反応生成物を速やかに冷却管に供給する工程と、 e.前記冷却管で150℃以下に冷やして、反応が停止した反応生成物を連続的に取り出す工程 を含む、方法である。

Description

ケトール化合物の製造方法。
 本発明は、ケトールの製造方法に関する。特に、高収率であり、不純物が少なく精製が容易である、高効率なケトールの製造方法に関する。
 ケトール化合物は、医農薬などの重要な原料中間体であり有用な化合物である。その骨格を簡便かつ安価に合成する手法が求められた結果、多くの合成法が提案されている。例えば、4-ヒドロキシ-2-ブタノンの合成法において、特許文献1には、1,3-ブタンジオールの選択的酸化反応の合成が開示されている。しかし、1,3-ブタンジオールは価格が高いため、この方法は安価な手法にならない。特許文献2には、アセトン(26当量)とパラホルムアルデヒドを触媒(アンバーリスト A26 OH)共存下で反応させた合成例が開示されているが、収率は10%と低く、アセトンを大過剰使用しており、工業的な製造方法とは言えない。
 一方、触媒を添加せずに、アセトンとホルムアルデヒドを縮合反応させ、比較的良好な収率を得た報告例がある。非特許文献1には、アセトン(15当量)とホルマリンを連続式流通反応装置に高温高圧条件で通すことで、収率90%を達成しているが、アセトンを大過剰使用しており、工業的な製造方法とはいえない。
 工業的な製造方法とは、原料の使用量を無駄なく最小限に抑え、環境に調和した製造プロセスでなければならない。上記手法はアセトンの使用量が多く、未反応のアセトン回収に多大なエネルギーがかかることから、必ずしも最適な反応方法とは言えないものであった。
 このように、従来法では、高い反応収率を維持するために非特許文献1のようにアセトンを大過剰用いる必要があった。しかし、非特許文献1のように連続流通式反応装置を利用した製造方法において、アセトンの使用量を削減する検討は、収率低下が懸念されることから検討されていない。
中国公開公報106631732号 国際公開2008/145350号
Chemical Engineering Science,2015年,131巻,213頁-218頁
 本発明は、このような問題点を鑑みてなされたもので、アセトンを大過剰用いることなく、ケトール化合物を高収率に、かつ高純度で得ることを目的とする。
 本発明者らは、ケトール化合物の製造において、反応液の物性を考慮した厳密な反応時間の制御を行うことによって、ホルムアルデヒドに対するケトンのモル比(ケトンのモル数/ホルムアルデヒドのモル数)を低減する事に成功し、その結果高い収率で目的の化合物を高効率で得られることを見出し、本発明を完成させた。
 本発明は、ケトール化合物の製造方法であって、
a.反応器に、ケトン化合物およびホルムアルデヒド溶液を連続的に供給する工程と、
b.ケトン化合物およびホルムアルデヒド溶液を混合してケトール化合物に転化する工程と、
c.前記の反応器から、反応生成物を連続的に取り出す工程と、
d.取り出した前記反応生成物を速やかに冷却管に供給する工程と、
e.前記冷却管で150℃以下に冷やして、反応が停止した反応生成物を連続的に取り出す工程
を含む、方法である。
 ここで、本明細書において用いる用語について説明しておく。マイクロリアクターとは、反応器の流路内径が100~4000μmである反応器である。
 本発明のケトール化合物の製造方法は、原料を大過剰用いる必要がなく環境に調和した製造プロセスであり、目的の化合物を高収率でかつ高純度で得ることができる。さらに、触媒を用いないため、いわゆる逆アルドール反応による生成物の分解が起こらず、不純物の含有量が少なく、不純物の種類も少ないため、精製が容易である。なお、ケトール化合物は、医農薬などの重要な原料中間体として用いられるものであり、これらを高収率で得られる製造方法は有用である。
本発明の製造方法で用いる反応器の一例の模式図である。
本発明は以下の項を含む。
[1]ケトール化合物の製造方法であって、以下の工程を、
工程(a)反応器の加熱部に、ケトン化合物およびホルムアルデヒド溶液を連続的に供給する工程、
工程(b)加熱部で、前記ケトン化合物および前記ホルムアルデヒド溶液を混合してケトール化合物を生成させる工程、
工程(c)前記の加熱部から、反応生成物を連続的に取り出す工程、
工程(d)取り出した前記反応生成物を速やかに冷却部に供給する工程、
工程(e)前記冷却部で150℃以下に冷やして、反応が停止した反応生成物を連続的に取り出す工程
の順に含む、前記ケトン化合物のモル比が前記ホルムアルデヒドに対して、1~10当量である、ケトール化合物の製造方法。
[2]前記ケトン化合物が、下記一般式(1)で示されるケトン化合物である、[1]に記載のケトール化合物の製造方法。

Figure JPOXMLDOC01-appb-I000002

ここで、RおよびRはそれぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数2~20のアルケニル基、炭素数3~20のシクロアルキル基、または炭素数4~30のアリール基、であり、RおよびRが結合して環状構造を形成していてもよい。
[3]前記ホルムアルデヒド溶液が、1~50wt%ホルマリンである、[1]または[2]に記載のケトール化合物の製造方法。
「4」前記工程(b)において、反応温度150~400℃、圧力0.1~100MPa、反応時間1秒~8分である、[1]~[3]のいずれか一項に記載の方法。
[5]前記工程(b)において、滞留時間を制御し、前記の工程(c)から工程(d)の合計時間を0.1秒~60秒とする、[4]に記載のケトール化合物の製造方法。
[6]前記反応器が、流路内径100μm~4000μmのマイクロリアクターである、[5]に記載のケトール化合物の製造方法。
1.反応器および反応
 図1を用いて、本発明の製造方法に用いる反応器10と製造方法の一例を説明する。
工程(a):原料であるケトン化合物は、貯蔵容器からポンプ12によりチューブ11を通って加熱部15に連続的に供給される。もう一方の原料であるホルムアルデヒド溶液は、貯蔵容器からポンプ14によりチューブ13を通って加熱部15に連続的に供給される。工程(b):加熱部15内でケトン化合物とホルムアルデヒド溶液が混合され、反応生成物(ケトール化合物)が生成する。
工程(c):その反応生成物の液を速やかに加熱部15から連続的に取り出し、
工程(d):その反応生成物の液を速やかに冷却部16に供給し、
工程(e):冷却部16内で150℃以下に冷やして、反応を停止させ、反応生成物の液を、背圧弁18を介してチューブ19を通って連続的に取り出す。
 反応器10における、加熱部15、冷却部16、チューブ11、チューブ13などの各部分は、継手17により接続されている。
 ケトン化合物はポンプ12からの圧力により加熱部に供給され、ホルムアルデヒド溶液はポンプ14からの圧力により加熱部に供給され、反応生成物の液はポンプ12またはポンプ14からの圧力により、加熱部から取り出され、冷却部に供給されている。
2.製造方法
2-1.ケトン化合物
 本製造方法に用いることができるケトン化合物としては、一般的な有機合成に用いることができる化合物であれば、特に制限はない。好ましいケトン化合物は、下記一般式(1)で示されるケトン化合物である。

Figure JPOXMLDOC01-appb-I000003

ここで、RおよびRはそれぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数2~20のアルケニル基、炭素数3~20のシクロアルキル基、または炭素数4~30のアリール基、であり、RおよびRが結合して環状構造を形成していてもよい。
2-2.ホルムアルデヒド溶液
 本製造方法に用いることができるホルムアルデヒド溶液としては、一般的な有機合成に用いることができるホルムアルデヒド溶液であれば、特に制限はない。好ましいホルムアルデヒド溶液は、ホルマリンであり、より好ましくは、1~50wt%ホルマリンである。
2-3.ケトール
 反応生成物であるケトールとしては、以下の式で表される化合物が挙げられる。

Figure JPOXMLDOC01-appb-I000004

ここで、RおよびRはそれぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数2~20のアルケニル基、炭素数3~20のシクロアルキル基、または炭素数4~30のアリール基、であり、RおよびRが結合して環状構造を形成していてもよい。
2-4.反応
反応スキームの一例を以下に示す。

Figure JPOXMLDOC01-appb-I000005

ここで、各式のRおよびRは前述の通りである。
2-4.反応条件
 工程(b)において、反応温度は150~400℃である。この範囲であれば、適切に反応時間を制御することによって、反応が十分に進み、高純度のケトール化合物が得られる。この観点から、好ましくは200~400℃であり、より好ましくは230~350℃であり、さらに好ましくは270~330℃である。圧力は0.1~100MPaである。この範囲であれば、反応が十分に進み、高純度のケトール化合物が得られる。この観点から、好ましくは3~50MPaであり、より好ましくは5~40MPaであり、さらに好ましくは10~20MPaである。反応時間は1秒~8分である。この範囲であれば、反応が十分に進み、高純度のケトール化合物が得られる。この観点から、好ましくは10秒~5分であり、より好ましくは20秒~2分であり、さらに好ましくは30秒~1分である。
 まず、実施例および比較例で用いられる用語を定義しておく。
〔生成したケトール化合物の収率〕
収率(%)=((生成したケトール化合物のモル数)/(供給したホルムアルデヒドのモル数))×100
〔生成したケトール化合物の空時収量の計算式〕
空時収量(g/Hr・L)=(1時間当たりに生成したケトール化合物の重量)/(加熱部内の反応管内の体積)
〔実施例1〕
 アセトンとホルマリンの縮合反応を図に示す反応器10を用いて行った。チューブ11、13および19は内径1.0mm(外径1/16インチ、1.59mm)で、長さはそれぞれ2mのチューブを使用した。加熱部15の区間は、内径2.2mm(外径1/8インチ、3.18mm)、長さ10mのチューブを使用した。冷却部16の区間は、内径1.0mm(外径1/16インチ、1.59mm)、長さ3mのチューブを使用した。なお、チューブの継手17は、スウェージロック社製チューブ継手を使用した。ポンプ12、14は、日本精密科学(株)製NP-KX-520型ダブルプランジャーポンプを、背圧弁18は、(株)テスコム製エアロード型背圧弁を各々使用した。加熱部15は、(株)島津製作所製ガスクロマトグラフ装置の恒温槽にチューブを挿入して使用し、所定の反応温度に設定した。冷却部16は、風冷による冷却を行ない、20~150℃の範囲内に保った。
 ポンプ12、14を用いて、アセトン、37wt%ホルマリンを加熱部15に送液した。
 アセトン、ホルマリンの送液速度は、各々20.00mL/min、4.56mL/minに設定した。この条件におけるホルマリン中のホルムアルデヒドに対するアセトンのモル比は5となる。加熱部15の温度は310℃、背圧弁18の圧力は17MPaに設定した。この条件における反応時間は、0.77minとなる。反応開始後、5分後の反応液2mLをチューブ19からサンプリング管に採取した。
得られた反応液はGCで分析を行い、内部標準物質法による定量分析により収率を算出した。その結果、4-ヒドロキシ-2-ブタノンの収率は、78.3GC%であった。空時収量は6110g/Hr・Lであった。
 GCでの定量分析は以下のようにおこなった。
 測定装置は、島津製作所製のGC-2014型ガスクロマトグラフを用いた。カラムは、Agilent Technologies Inc.製のキャピラリカラムDB-WAX(長さ30m、内径0.32mm、膜厚0.25μm)固定液相はポリエチレングリコール;高極性)を用いた。キャリアーガスとしてはヘリウムを用い、流量は2.19ml/分に調整した。試料気化室の温度を250℃、検出器(FID)部分の温度を250℃に設定した。
 試料はTHFに溶解して、1重量%の溶液となるように調製し、試料の25wt%のデカンを内部標準物質として添加する。得られた溶液1μLを試料気化室に注入した。
 なお、試料の希釈溶媒としては、たとえば、クロロホルム、エタノールを用いてもよい。また、カラムとしては、Phenomenex Inc.製のキャピラリカラムZB-WAX(長さ30m、内径0.32mm、膜厚0.25μm)、Restek Corporation製のRtx-Wax(長さ30m、内径0.32mm、膜厚0.25μm)、GL Sciences Inc.製のInertCap WAX(長さ30m、内径0.32mm、膜厚0.25μm)などを用いてもよい。
ガスクロマトグラムにより成分化合物の組成比をより正確に求めるには、ガスクロマトグラムによる内部標準法を用いる。一定量正確に秤量された4-ヒドロキシ-2-ブタノン(被検成分)と基準となる化合物(内部標準物質)を同時にガスクロ測定して、得られた被検成分のピークと内部標準物質のピークとの面積比の相対強度をあらかじめ算出する。内部標準物質に対する各成分のピーク面積の相対強度を用いて補正すると、試料中の4-ヒドロキシ-2-ブタノンの濃度をガスクロ分析からより正確に求めることができる。
〔実施例2~8〕
 実施例1において、ホルマリン中のホルムアルデヒドに対するアセトンのモル比、加熱部15の温度、および反応時間を表1に示す条件に変更した他は、実施例1と同様の操作で反応を行った。結果を表1に示した。
〔表1〕
Figure JPOXMLDOC01-appb-I000006
〔実施例9〕
 実施例1において、アセトンの代わりにエチルメチルケトンを用い、加熱部15の温度を250℃、および反応時間を2.00minに変更した他は、実施例1と同様の操作で反応を行った。4-ヒドロキシ-3-メチル-2-ブタノンの収率は44.4GC%、5-ヒドロキシ-3-ブタノンの収率は47.8GC%、合計したホルムアルデヒド付加化合物の収率は92.2GC%であった。合計した空時収量は3353g/Hr・Lであった。
〔比較例1〕
 実施例1において、ホルマリン中のホルムアルデヒドに対するアセトンのモル比を15、加熱部15の温度を230℃、および反応時間を4.00minに変更した他は、実施例1と同様の操作で反応を行った。その結果、収率は76.9GC%、空時収量は276g/Hr・Lであった。
10      反応器
11      チューブ
12      ポンプ
13      チューブ
14      ポンプ
15      加熱部
16      冷却部
17      継手
18      背圧弁
19      チューブ

Claims (6)

  1. ケトール化合物の製造方法であって、以下の工程を、
    工程(a)反応器の加熱部に、ケトン化合物およびホルムアルデヒド溶液を連続的に供給する工程、
    工程(b)加熱部で、前記ケトン化合物および前記ホルムアルデヒド溶液を混合してケトール化合物を生成させる工程、
    工程(c)前記の加熱部から、反応生成物を連続的に取り出す工程、
    工程(d)取り出した前記反応生成物を速やかに冷却部に供給する工程、
    工程(e)前記冷却部で150℃以下に冷やして、反応が停止した反応生成物を連続的に取り出す工程
    の順に含む、前記ケトン化合物のモル比が前記ホルムアルデヒドに対して、1~10当量である、ケトール化合物の製造方法。
  2. 前記ケトン化合物が、下記一般式(1)で示されるケトン化合物である、請求項1に記載のケトール化合物の製造方法。

    Figure JPOXMLDOC01-appb-I000001

    ここで、RおよびRはそれぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数2~20のアルケニル基、炭素数3~20のシクロアルキル基、または炭素数4~30のアリール基であり、RおよびRが結合して環状構造を形成していてもよい。
  3. 前記ホルムアルデヒド溶液が、1~50wt%ホルマリンである、請求項1または請求項2に記載のケトール化合物の製造方法。
  4. 前記工程(b)において、反応温度150~400℃、
    圧力0.1~100MPa、反応時間1秒~8分である、請求項1~3のいずれか一項に記載の方法。
  5. 前記工程(b)において、滞留時間を制御し、前記の工程(c)から工程(d)の合計時間を0.1秒~60秒とする、請求項4に記載のケトール化合物の製造方法。
  6. 前記反応器が、流路内径100μm~4000μmのマイクロリアクターである、請求項5に記載のケトール化合物の製造方法。
PCT/JP2018/040945 2017-11-29 2018-11-05 ケトール化合物の製造方法。 WO2019107078A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-228523 2017-11-29
JP2017228523A JP2019099464A (ja) 2017-11-29 2017-11-29 ケトール化合物の製造方法。

Publications (1)

Publication Number Publication Date
WO2019107078A1 true WO2019107078A1 (ja) 2019-06-06

Family

ID=66664442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040945 WO2019107078A1 (ja) 2017-11-29 2018-11-05 ケトール化合物の製造方法。

Country Status (2)

Country Link
JP (1) JP2019099464A (ja)
WO (1) WO2019107078A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1191006A (en) * 1966-09-15 1970-05-06 Basf Ag Production of 3-Ketobutanol-(1)
US3662001A (en) * 1968-05-07 1972-05-09 Basf Ag Production of 3-ketobutanol-(1)
JPH11128740A (ja) * 1996-02-29 1999-05-18 Elf Atochem Sa 固体触媒と、その製造方法
JP2004269388A (ja) * 2003-03-06 2004-09-30 Takasago Internatl Corp アルドール反応生成物の製造方法
JP2008214257A (ja) * 2007-03-02 2008-09-18 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai スルホキシド化合物の製造方法
JP2015017115A (ja) * 2008-11-14 2015-01-29 ディーエスエム ファイン ケミカルズ オーストリア エヌエフジー ゲーエムベーハー ウント ツェーオー カーゲー シクロプロパン誘導体の生成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1191006A (en) * 1966-09-15 1970-05-06 Basf Ag Production of 3-Ketobutanol-(1)
US3662001A (en) * 1968-05-07 1972-05-09 Basf Ag Production of 3-ketobutanol-(1)
JPH11128740A (ja) * 1996-02-29 1999-05-18 Elf Atochem Sa 固体触媒と、その製造方法
JP2004269388A (ja) * 2003-03-06 2004-09-30 Takasago Internatl Corp アルドール反応生成物の製造方法
JP2008214257A (ja) * 2007-03-02 2008-09-18 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai スルホキシド化合物の製造方法
JP2015017115A (ja) * 2008-11-14 2015-01-29 ディーエスエム ファイン ケミカルズ オーストリア エヌエフジー ゲーエムベーハー ウント ツェーオー カーゲー シクロプロパン誘導体の生成方法

Also Published As

Publication number Publication date
JP2019099464A (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
Clegg et al. Cyclic carbonates as sustainable solvents for proline-catalysed aldol reactions
US20220220089A1 (en) Catalytic cannabinoid processes and precursors
EP3700887B1 (en) Processes for the preparation of aryl cycloalkylamine derivatives
EP3763696B1 (en) Production method for gamma, delta-unsaturated alcohols
Shang et al. An I2O5-promoted decarboxylative trifluoromethylation of cinnamic acids
EP3305747B1 (en) Method for producing conjugated diene
US20210261517A1 (en) Method for simultaneously preparing 2-ethoxyphenol and 1,3-benzodioxolane-2-one
EP3541776B1 (en) Novel process for the manufacture of gamma, delta-unsaturated ketones
KR102560200B1 (ko) γ,δ-불포화 알코올의 제조 방법
WO2019107078A1 (ja) ケトール化合物の製造方法。
KR101679717B1 (ko) 알릴 알코올의 제조방법 및 이에 의하여 제조된 알릴 알코올
Gutmann et al. Continuous-flow difluoromethylation with chlorodifluoromethane under biphasic conditions
WO2016043264A1 (ja) 乳酸を含む蒸気組成物の製造方法
Halperin et al. Lithium aldol reactions of α-chloroaldehydes provide versatile building blocks for natural product synthesis
CN104086525B (zh) 一种具有抗菌活性的螺[萘满酮-四氢噻吩]衍生物及合成方法和应用
CN112661667B (zh) 一种三氟乙脒的制备方法
Bogel-Łukasik Selective catalytic conversion of pulegone in supercritical carbon dioxide towards natural compounds: carvone, thymol or menthone
JP5798871B2 (ja) イソプレンの製造方法
JP3873123B2 (ja) アクリル酸及び/又はピルビン酸の合成方法
CN107382640B (zh) β-芳基苯丙酮类化合物的合成方法
Reddy et al. Tandem vinylcyclopropane ring opening/Prins cyclization for the synthesis of 2, 3-disubstituted tetrahydropyrans
CN107118084B (zh) 一种两步法合成1,3-双取代基-2-丙醇的方法
JP6807695B2 (ja) 2−メトキシエチルビニルエーテルの製造方法
Suerbaev et al. Biological active esters of the isovaleric acid
Flores et al. Synthesis of the omega-brominated alpha-trifluoroacetylcycloalkanones and their isoxazole derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884372

Country of ref document: EP

Kind code of ref document: A1