WO2019106953A1 - Resin sheet, semiconductor device and method for producing semiconductor device - Google Patents

Resin sheet, semiconductor device and method for producing semiconductor device Download PDF

Info

Publication number
WO2019106953A1
WO2019106953A1 PCT/JP2018/037093 JP2018037093W WO2019106953A1 WO 2019106953 A1 WO2019106953 A1 WO 2019106953A1 JP 2018037093 W JP2018037093 W JP 2018037093W WO 2019106953 A1 WO2019106953 A1 WO 2019106953A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin sheet
semiconductor device
epoxy resin
sheet
Prior art date
Application number
PCT/JP2018/037093
Other languages
French (fr)
Japanese (ja)
Inventor
須藤 信博
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2019106953A1 publication Critical patent/WO2019106953A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a resin sheet, a semiconductor device, and a method of manufacturing the semiconductor device.
  • a communication device terminal used by being attached to a human body such as a human arm or head is called a wearable device.
  • the concept of wearable devices has existed for a long time, and various forms of wearable devices have been depicted as fictional things in video works etc., but there are also products that can be implemented as practical products in the past few years It has come to attract attention.
  • Semiconductor packages are generally manufactured by transfer molding using a solid epoxy resin encapsulant.
  • LOC Lead on Chip
  • QFP Quad Flat Package
  • CSP Chip Size Package
  • BGA Ball Grid Array
  • face-down type package flip chip, wafer level CSP and the like have been developed in which the circuit surface of the semiconductor element is mounted on the wiring substrate side.
  • a film-like resin sheet for semiconductor encapsulation capable of producing a semiconductor package by being disposed on both sides of a substrate on which a semiconductor element is fixed and compression-molded instead of sealing by conventional transfer molding has been proposed (patent document 1).
  • a film-like resin sheet for semiconductor encapsulation which can be sealed with a small wire flow and high filling property, which is formed into a sheet having a thickness of 3 mm or less Patent Document 2.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a resin sheet which has flexibility even after sealing of a semiconductor element and is suitable for sealing of the semiconductor element. Furthermore, another object of the present invention is to provide a resin-sealed semiconductor device which is sealed using this resin sheet, which is excellent in flexibility and excellent in product reliability.
  • the present inventors obtained a resin sheet having excellent flexibility and excellent product reliability even after sealing by using a specific epoxy resin. It has been found that the present invention has been completed.
  • the resin sheet of the present invention is an epoxy resin represented by (A) the following general formula (1) (Wherein n is an integer of 1 to 10, A is an alkylene group represented by (CH 2 ) r (r is an integer of 1 to 20), B is an organic group of CH 2 or C (CH 3 ) 2 Group), sheet-like epoxy resin composition containing (B) phenolic resin curing agent, (C) curing accelerator and (D) inorganic filler as essential components It is characterized by comprising a molded body.
  • A is an alkylene group represented by (CH 2 ) r
  • B is an organic group of CH 2 or C (CH 3 ) 2 Group
  • sheet-like epoxy resin composition containing (B) phenolic resin curing agent, (C) curing accelerator and (D) inorganic filler as essential components It is characterized by comprising a molded body.
  • the semiconductor device of the present invention is a semiconductor device having a semiconductor element fixed on a substrate and a sealing resin for sealing the semiconductor element, wherein the sealing resin is the resin sheet of the present invention. It is characterized by being a cured product.
  • the resin sheet according to the present invention is covered on the semiconductor element fixed on the substrate, and the resin sheet is sealed by heating while adhering to the semiconductor element. It is characterized by stopping.
  • the semiconductor element can be sealed efficiently and favorably by the compression molding method.
  • the semiconductor element can be sealed efficiently and favorably, and the semiconductor device obtained by this is flexible. Can have high quality and high reliability.
  • the epoxy resin (A) used in the present embodiment is an epoxy resin represented by the following general formula (1). (Wherein n is an integer of 1 to 10, A is an alkylene group represented by (CH 2 ) r (r is an integer of 1 to 20), B is an organic group of CH 2 or C (CH 3 ) 2 Represents a group)
  • (A) epoxy resin YX7105 (epoxy equivalent 480 manufactured by Mitsubishi Plastics, Inc .; n is 1 to 5 in the general formula (1); A is represented by (CH 2 ) r In the alkylene group, r represents the number of repeating units, and is an integer of 1 to 3, and B is a compound represented by C (CH 3 ) 2 ).
  • This (A) epoxy resin is an epoxy resin which has a structure which satisfy
  • a cured product of the resin composition containing an epoxy resin as a main component is flexible.
  • having flexibility means that the cured product is flexible and can be bent.
  • the preferred flexibility is to allow winding on a 60 mm diameter cylinder in the flexibility test described also in the characterization in the examples.
  • This (A) epoxy resin imparts good curability and the like to the resin composition as well as a general sealing epoxy resin, and the characteristics such as low hygroscopicity and high heat resistance to the cured product thereof In addition to imparting, it is a component which makes it easy to maintain the flexibility of the cured resin even if the (D) inorganic filler described later is highly filled in the epoxy resin composition.
  • the epoxy equivalent of this (A) epoxy resin is preferably 450 to 2,000.
  • an epoxy resin may be used alone, or another epoxy resin may be mixed to form a resin component.
  • another epoxy resin it can be blended in a range that does not inhibit the effects of the present embodiment regardless of liquid state, crystallinity and non-crystallinity.
  • epoxy resins When other epoxy resins are mixed and used, they can be mixed in such a range that the glass transition temperature of the molded product can ensure 0 to 30 ° C.
  • the epoxy resin to be used is made into 100 mass%, it is preferable to contain 50 mass% or more of (A) epoxy resin, and it is more preferable to contain 70 mass% or more.
  • epoxy resin for example, biphenyl epoxy resin, cresol novolac epoxy resin, phenol novolac epoxy resin, bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, dicyclopentadiene epoxy resin
  • heterocyclic epoxy resins such as triphenolmethane epoxy resins and triazine nucleus-containing epoxy resins, stilbene bifunctional epoxy compounds, naphthalene epoxy resins, fused ring aromatic hydrocarbon-modified epoxy resins, alicyclic epoxy resins and the like It can be mentioned.
  • Examples of the (B) phenol resin curing agent used in the present embodiment include compounds having a phenolic hydroxyl group that can be cured by reacting with the epoxy group of the (A) epoxy resin, and known phenols for epoxy resins Resin curing agents may be mentioned.
  • the (B) phenol resin curing agent can be used without particular limitation as long as it has two or more phenolic hydroxyl groups capable of reacting with the epoxy group in the (A) epoxy resin in the molecule.
  • novolac type phenol resins such as phenol novolac resin and cresol novolac resin obtained by reacting phenols such as phenol and alkylphenol with formaldehyde or paraformaldehyde, and these novolak resins
  • Novolak type phenol resin obtained by epoxidation or butylation of n-type phenol resin, dicyclopentadiene modified phenol resin, paraxylene modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin, triphenol alkane type phenol resin, polyfunctional phenol resin, etc. Can be mentioned. One of these may be used alone, or two or more may be mixed and used.
  • the compounding amount of the (B) phenolic resin curing agent is the ratio (b) of the number of phenolic hydroxyl groups (b) possessed by the (B) phenolic resin curing agent to the number of epoxy groups (a) possessed by the (A) epoxy resin.
  • the range in which a) is 0.3 or more and 1.5 or less is preferable, and the range in which 0.5 or more and 1.2 or less is more preferable.
  • the ratio (b) / (a) is less than 0.3, the moisture resistance reliability of the cured product is reduced, and conversely, if it exceeds 1.5, the strength of the cured product is reduced.
  • the curing accelerator (C) used in the present embodiment is a component that accelerates the curing reaction of (A) epoxy resin and (B) phenolic resin curing agent. Any known curing accelerator can be used without particular limitation as long as the (C) curing accelerator exerts the above-mentioned action.
  • the (C) curing accelerator examples include 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-undecylimidazole, 1,2-dimethylimidazole, 2,4-dimethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 4-methylimidazole, 4-ethylimidazole, 2-phenyl-4-hydroxymethylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole Imidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenyl Imidazole Imidazoles such as 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl
  • Diazabicyclo compounds such as 7 and their salts; triethylamine, triethylenediamine, benzyldimethylamine, ⁇ -methylbenzyldimethylamine, triethanolamine, dimethylaminoethanol, tertiary amines such as tris (dimethylaminomethyl) phenol; trimethylphosphine , Triethylphos Fin, tributyl phosphine, diphenyl phosphine, triphenyl phosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, methyl diphenyl phosphine, dibutyl phenyl phosphine, tricyclohexyl phosphine, bis (diphenyl phosphino) methane, 1, Organic phosphine compounds such as 2-bis (diphenylphosphino) ethane and the like can be mentioned. Among these,
  • the compounding amount of the (C) curing accelerator is preferably in the range of 0.1 to 5% by mass with respect to the entire resin composition. If this compounding amount is less than 0.1% by mass, there is little effect on promoting the curability, and if it exceeds 5% by mass, the moisture resistance reliability of the molded article may be lowered.
  • the (D) inorganic filler used in the present embodiment is a component which is filled in a resin composition to adjust the viscosity of the resin composition and to improve the handleability and the formability when the resin sheet is to be described later.
  • known inorganic fillers generally used in this type of resin composition can be used without particular limitation.
  • the (D) inorganic filler may be, for example, fused silica, crystalline silica, crushed silica, synthetic silica, alumina, titanium oxide, oxide powder such as magnesium oxide, aluminum hydroxide, magnesium hydroxide and the like. Examples thereof include hydroxide powders, nitride powders such as boron nitride, aluminum nitride and silicon nitride.
  • One of these inorganic fillers may be used alone, or two or more thereof may be mixed and used.
  • the (D) inorganic filler is preferably a silica powder among the above-mentioned examples, more preferably fused silica, and particularly preferably spherical fused silica. Moreover, fused silica and silica other than fused silica can be used together, and in that case, it is preferable to make the ratio of silica other than fused silica less than 30 mass% of the whole silica powder.
  • the average particle diameter of the (D) inorganic filler is preferably 0.5 to 40 ⁇ m, and more preferably 5 to 30 ⁇ m. Further, the maximum particle size of the (D) inorganic filler is more preferably 105 ⁇ m or less.
  • the flowability of the resin composition may be lowered, and the moldability may be impaired.
  • the average particle diameter exceeds 40 ⁇ m, a molded article obtained by curing the resin composition may be warped or the dimensional accuracy may be deteriorated.
  • the maximum particle size exceeds 105 ⁇ m, the moldability of the resin composition may be reduced.
  • the average particle size of the (D) inorganic filler can be determined, for example, by a laser diffraction type particle size distribution measuring apparatus, and the average particle size is 50% of the cumulative volume in the particle size distribution measured by the same apparatus. It is the particle size (d50) which becomes%.
  • the blending amount of the inorganic filler (D) is preferably 70 to 95% by mass, more preferably 75 to 90% by mass, with respect to the entire resin composition.
  • this compounding amount is less than 70% by mass, the linear expansion coefficient of the resin composition is increased, and the dimensional accuracy, the moisture resistance, the mechanical strength and the like of the molded product are lowered.
  • the compounding amount exceeds 95% by mass, the resin sheet obtained by molding the resin composition may be easily broken or the melt viscosity of the resin composition may be increased to reduce the flowability, and the moldability may There is a risk of decline or loss.
  • components generally compounded in this kind of resin composition, to the extent that the effects of the present embodiment are not inhibited such as coupling agents; Mold release agents such as natural waxes, higher fatty acids, metal salts of higher fatty acids; coloring agents such as carbon black and cobalt blue; low stress imparting agents such as silicone oil and silicone rubber; hydrotalcites; can do.
  • coupling agents such as epoxysilane type, aminosilane type, ureidosilane type, vinylsilane type, alkylsilane type, organic titanate type and aluminum alcoholate type are used. One of these may be used alone, or two or more may be mixed and used.
  • this coupling agent is preferably an aminosilane coupling agent, and in particular, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyl Methyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane and the like are preferable.
  • the compounding amount of the coupling agent is preferably in the range of 0.01% by mass to 3% by mass of the entire resin composition, and more preferably in the range of 0.1% by mass to 1% by mass. If the amount is less than 0.01% by mass of the entire resin composition, the improvement of the moldability is not so effective, and if it exceeds 3% by mass, there is a possibility that the molded product may be foamed and void or surface swelling may occur. is there.
  • This resin composition can be obtained by a known method for producing a resin composition, and can be prepared, for example, as follows.
  • the above-mentioned (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, (D) inorganic filler, and the various components to be blended according to the necessity described above are sufficiently used by a mixer etc. After mixing (dry blending), the mixture is melt-kneaded by a kneader such as a heat roll or a kneader, and after cooling, the resin composition can be obtained by grinding to an appropriate size.
  • a kneader such as a heat roll or a kneader
  • the grinding method is not particularly limited, and a common grinder such as a speed mill, a cutting mill, a ball mill, a cyclone mill, a hammer mill, a vibration mill, a cutter mill, a grinder mill, etc. can be used.
  • a speed mill is preferable.
  • the pulverized material can then be prepared by adjusting the characteristics as a particle assembly having a predetermined particle size distribution by sieving classification, air classification or the like.
  • the resin sheet of the present embodiment is a sheet-like molded product obtained by molding the epoxy resin composition prepared as described above into a sheet.
  • This resin sheet is obtained, for example, by heating, melting and compressing the resin composition of the present embodiment between pressure members and forming it into a sheet. More specifically, the above resin composition is supplied on a heat resistant release film such as a polyester film so as to have a substantially uniform thickness to form a resin layer, and then the resin layer is heated and softened to form a roll. And rolling by heat press. At that time, a heat resistant film such as a polyester film may be disposed on the resin layer.
  • a heat resistant release film such as a polyester film
  • the resin layer After rolling the resin layer to a desired thickness in this manner, the resin layer is cooled and solidified, and the heat resistant film is peeled off to obtain a resin sheet. Furthermore, it can be set as the resin sheet of arbitrary sizes by cutting into a desired size and shape as needed.
  • the heating temperature for softening the resin layer is usually about 80 to 150 ° C.
  • the heating temperature is less than 80 ° C., the melt mixing becomes insufficient, and when the heating temperature exceeds 150 ° C., the curing reaction proceeds too much, and the moldability may be deteriorated at the time of heat curing.
  • the resin sheet is suitable for sealing a component such as a semiconductor element, and is provided by appropriately adjusting the size in accordance with the size or the like of the component to be sealed.
  • the size of this resin sheet can be arbitrarily made, but for example, 200 mm ⁇ 50 mm to 600 mm ⁇ 600 mm is preferable.
  • the resin sheet preferably has a thickness of 0.05 mm to 2 mm. If the thickness is 0.05 mm or more, there is no fear of cutting the sheet, the handling property is excellent, and the loading into the compression molding die can be easily performed without any problem. In addition, if the thickness is 2 mm or less, melting of the resin sheet in the mold is not delayed at the time of semiconductor sealing, and molding does not become defective.
  • the resin sheet preferably has a glass transition temperature of 0 to 30 ° C.
  • a glass transition point manufactures a stick-like sample from the hardened
  • TMA thermal analyzer
  • the resin-sealed semiconductor device of the present embodiment can be manufactured by sealing the semiconductor element fixed on the substrate using the above-mentioned resin sheet.
  • an example of the method will be described.
  • a resin sheet is placed on the semiconductor element by placing the resin sheet on the substrate on which the semiconductor element is mounted, and the resin sheet is placed at a predetermined position in a cavity of a compression molding die. Molding with compression.
  • the molding conditions are preferably a temperature of 100 to 190 ° C. and a pressure of 4 to 12 MPa.
  • post curing is performed at a temperature of 130 to 190 ° C. for about 2 to 8 hours. By this heat curing, the resin sheet closely contacts and cures the semiconductor element, and a resin-sealed semiconductor device sealed so that the semiconductor element does not contact the external atmosphere can be manufactured.
  • the semiconductor device obtained in this manner is sealed by compression molding using a resin sheet that is easy to handle even if it is thin and is excellent in moldability, so it is flexible, and high quality and high even if it is thin Reliability can be provided.
  • a substrate to be used is also a flexible substrate. Any known flexible substrate can be used without particular limitation.
  • the semiconductor element sealed in the semiconductor device of the present embodiment is not particularly limited as long as it is a known semiconductor element and, for example, an IC, an LSI, a diode, a thyristor, a transistor and the like are exemplified. Ru.
  • manufacture of a semiconductor device using the above resin sheet The method is particularly useful.
  • Examples 1 to 4 and Comparative Examples 1 to 9 The respective raw materials were mixed at normal temperature so as to have the composition (mass%) shown in Tables 1 to 3, and then heat-kneaded at 80 to 130 ° C. using a heat roll. After cooling, it was ground using a speed mill to prepare an epoxy resin composition.
  • the obtained epoxy resin composition was sandwiched between release films made of polyester, placed between hot plates at 80 ° C., heated and pressed at a pressure of 10 MPa for 1 minute, and a resin sheet having a thickness of 0.5 mm was produced.
  • sealing of the semiconductor chip was performed using the obtained resin sheet. That is, first, a 150 mm ⁇ 40 mm sheet was cut out from the obtained resin sheet. The resin sheet thus cut out was placed in a compression molding die, a substrate on which a semiconductor chip was mounted was stacked thereon, and compression molding was performed under a pressure of 8.0 MPa and a condition of 175 ° C. for 3 minutes. Thereafter, post curing was performed at 175 ° C. for 4 hours to manufacture a semiconductor device.
  • Epoxy resin Epoxy resin 1 YX7105 (Mitsubishi Chemical Corporation, trade name; in the general formula (1), n is an integer of 1 to 5 and A is an alkylene group represented by (CH 2 ) r ( r represents an integer of 1 to 3), and B represents an organic group of C (CH 3 ) 2 .
  • Epoxy resin 2 EXA-4850-1000 (manufactured by DIC Corporation, trade name)
  • Epoxy resin 3 EXA-4816 (trade name of DIC Corporation)
  • Biphenyl type epoxy resin YX-4000H (Mitsubishi Chemical Corporation, trade name)
  • Bisphenol F type epoxy resin YDF-8170C (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name)
  • Ortho cresol type epoxy resin CNE-200 ELB (manufactured by Changchun Japan Co., Ltd., trade name)
  • Phenolic resin curing agent Phenolic novolac type phenolic resin: BRG-557 (manufactured by Showa Denko KK, trade name) Zyloc-type phenolic resin: HE100C-15 (manufactured by Air Water Co., Ltd., trade name) Triphenol methane type phenol resin: MEH-7500 (manufactured by Meiwa Kasei Co., Ltd., trade name)
  • Silane coupling agent Z-6883 (manufactured by Toray Dow Corning Co., Ltd., trade name; 3-phenylaminopropyltrimethoxysilane) Colorant: MA-600 (Mitsubishi Chemical Co., Ltd., trade name; carbon black) Silicone oil: SF-8421 (made by Toray Dow Corning Co., Ltd., trade name)
  • ⁇ Resin sheet> (2) Flexibility A resin sheet of 10 mm in width, 50 mm in length and 0.5 mm in thickness is cut out, and a portion of 15 mm is clamped from one end and set at 18 mm in height on a gantry, one end of the sheet being a gantry by its own weight The time to contact the upper surface was measured (initial). From the viewpoint of workability, the flexibility is preferably less than 600 seconds, more preferably less than 300 seconds.
  • a resin sheet of 10 mm in width, 50 mm in length and 0.5 mm in thickness is cut out and left at 25 ° C. for 168 hours, and similarly, a portion of 15 mm from one end is clamped, and the frame is high.
  • the sheet was set to 18 mm, and the time taken for one end of the sheet to come in contact with the upper surface of the mount by its own weight was measured.
  • Tg Glass transition point
  • the resin composition is compression molded into a 300 ⁇ m thick cured product on an 8-inch wafer (725 ⁇ m thick) for 10 minutes at a molding temperature of 150 ° C. and a molding pressure of 100 kg / cm 2 to obtain a molded article. , The presence or absence of the unfilled of this molded article was confirmed. The thing with no unfilled part was evaluated as "good”, and the thing with an unfilled part was evaluated as "unfilled”.
  • the resin sheet of this example had flexibility even when it was left at normal temperature for a long time, and had good handling properties. Also, there was flexibility after curing.
  • the semiconductor device manufactured using the resin sheet has obtained good results in any of the MSL test, the pressure cooker test, and the highly accelerated life test, and is highly reliable as a resin-sealed semiconductor device. It could be confirmed that it had a sex.
  • the resin sheet of the present invention is excellent in handleability and moldability even when the thickness is reduced. It also has flexibility after curing. Therefore, it is useful as a sealing material for compression molding of a thinned semiconductor element, particularly as a semiconductor sealing application for wearable devices, and a high-quality, highly reliable resin-sealed semiconductor device can be manufactured.

Abstract

Provided are: a resin sheet which is capable of maintaining flexibility after curing, and which is suitable for sealing of semiconductor elements; and a semiconductor device which is produced using this resin sheet. A resin sheet which is obtained using a resin composition that contains, as essential ingredients, (A) an epoxy resin that satisfies a specific chemical formula, (B) a phenolic resin curing agent, (C) a curing accelerator and (D) an inorganic filler; a resin-sealed semiconductor device which is obtained by sealing a semiconductor element with use of this resin sheet; and a method for producing this semiconductor device.

Description

樹脂シート、半導体装置及び半導体装置の製造方法Resin sheet, semiconductor device, and method of manufacturing semiconductor device
 本発明は、樹脂シート、半導体装置及び該半導体装置の製造方法に関する。 The present invention relates to a resin sheet, a semiconductor device, and a method of manufacturing the semiconductor device.
 人間の腕や頭部などの身体に装着して利用する通信機器端末は、ウエアラブルデバイスと呼ばれる。ウエアラブルデバイスのコンセプト自体は古くから存在し、映像作品等において、架空のものとして様々な形態のウエアラブルデバイスが描かれてきたが、ここ数年で実用性のある製品として実施可能となるものもあり注目を集めるようになってきた。 A communication device terminal used by being attached to a human body such as a human arm or head is called a wearable device. The concept of wearable devices has existed for a long time, and various forms of wearable devices have been depicted as fictional things in video works etc., but there are also products that can be implemented as practical products in the past few years It has come to attract attention.
 ウエアラブルデバイスが、急速に実用化、商用化が進んだ背景には、半導体パッケージの小型化、軽量化が進み、使用者の装着時の負担や違和感が大幅に軽減したこともある。 Background of the rapid commercialization and commercialization of wearable devices is that semiconductor packages have become smaller and lighter, and the burden and discomfort when worn by the user have been significantly reduced.
 半導体パッケージは、一般に、固形のエポキシ樹脂封止材を用いたトランスファー成形により製造されている。半導体パッケージの小型化では、LOC(Lead on Chip)、QFP(Quad Flat Package)、CSP(Chip Size Package)、BGA(Ball Grid Array)等が開発されている。さらに最近では、半導体素子の回路面を配線基板側に向けて搭載する、いわゆるフェイスダウン型パッケージのフリップチップやウエハレベルCSP等も開発されてきている。 Semiconductor packages are generally manufactured by transfer molding using a solid epoxy resin encapsulant. In order to miniaturize semiconductor packages, LOC (Lead on Chip), QFP (Quad Flat Package), CSP (Chip Size Package), BGA (Ball Grid Array), and the like have been developed. Furthermore, recently, so-called face-down type package flip chip, wafer level CSP and the like have been developed in which the circuit surface of the semiconductor element is mounted on the wiring substrate side.
 従来のトランスファー成形による封止に代わり、半導体素子が固定された基板の両面に配置して圧縮成形することにより半導体パッケージを製造できるフィルム状の半導体封止用樹脂シートが提案されている(特許文献1参照)。
 また、厚さ3mm以下のシート状に成形した、ワイヤ流れが小さく、充填性が高い封止を行うことのできるフィルム状の半導体封止用樹脂シートが提案されている(特許文献2)。
A film-like resin sheet for semiconductor encapsulation capable of producing a semiconductor package by being disposed on both sides of a substrate on which a semiconductor element is fixed and compression-molded instead of sealing by conventional transfer molding has been proposed (patent document 1).
In addition, a film-like resin sheet for semiconductor encapsulation which can be sealed with a small wire flow and high filling property, which is formed into a sheet having a thickness of 3 mm or less (Patent Document 2).
 しかしながら、これらの半導体パッケージは、硬化後に柔軟性をもたない樹脂によって封止されているため、ウェアラブルデバイスとして、腕や頭部等の曲面に沿った形状に設置することが困難であった。 However, since these semiconductor packages are sealed with a non-flexible resin after curing, it has been difficult to install them as a wearable device in a shape along a curved surface such as an arm or a head.
特開平8-073621号公報JP-A-8-073621 特開2006-216899号公報JP, 2006-216899, A
 本発明は、上記課題を解決するためになされたもので、半導体素子の封止後も柔軟性を有し、半導体素子の封止に好適な樹脂シートを提供することを目的とする。さらに、この樹脂シートを用いて封止され、柔軟性が良好で製品の信頼性が優れた樹脂封止型の半導体装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a resin sheet which has flexibility even after sealing of a semiconductor element and is suitable for sealing of the semiconductor element. Furthermore, another object of the present invention is to provide a resin-sealed semiconductor device which is sealed using this resin sheet, which is excellent in flexibility and excellent in product reliability.
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、特定のエポキシ樹脂を使用することにより、封止後も柔軟性が良好で製品の信頼性が優れた樹脂シートが得られることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above object, the present inventors obtained a resin sheet having excellent flexibility and excellent product reliability even after sealing by using a specific epoxy resin. It has been found that the present invention has been completed.
 すなわち、本発明の樹脂シートは、(A)下記一般式(1)で表されるエポキシ樹脂
Figure JPOXMLDOC01-appb-C000002
(式中、nは1~10の整数、Aは(CHで表されるアルキレン基(rは1~20の整数を表す)、BはCHまたはC(CHの有機基、を表す。)と、(B)フェノール樹脂硬化剤と、(C)硬化促進剤と、(D)無機充填材と、を必須成分として含有するエポキシ樹脂組成物を材料とした、シート状成形体からなることを特徴とする。
That is, the resin sheet of the present invention is an epoxy resin represented by (A) the following general formula (1)
Figure JPOXMLDOC01-appb-C000002
(Wherein n is an integer of 1 to 10, A is an alkylene group represented by (CH 2 ) r (r is an integer of 1 to 20), B is an organic group of CH 2 or C (CH 3 ) 2 Group), sheet-like epoxy resin composition containing (B) phenolic resin curing agent, (C) curing accelerator and (D) inorganic filler as essential components It is characterized by comprising a molded body.
 本発明の半導体装置は、基板上に固定された半導体素子と、前記半導体素子を封止する封止樹脂と、を有する半導体装置であって、前記封止樹脂が、上記本発明の樹脂シートの硬化物であることを特徴とする。 The semiconductor device of the present invention is a semiconductor device having a semiconductor element fixed on a substrate and a sealing resin for sealing the semiconductor element, wherein the sealing resin is the resin sheet of the present invention. It is characterized by being a cured product.
 また、本発明の半導体装置の製造方法は、基板上に固定された半導体素子上に、上記本発明の樹脂シートを被せ、前記樹脂シートを加熱により前記半導体素子に密着させながら硬化させることで封止する、ことを特徴とする。 In the method of manufacturing a semiconductor device according to the present invention, the resin sheet according to the present invention is covered on the semiconductor element fixed on the substrate, and the resin sheet is sealed by heating while adhering to the semiconductor element. It is characterized by stopping.
 本発明の樹脂シートによれば、半導体素子をコンプレッション成形法により効率よく、かつ良好に封止できる。 According to the resin sheet of the present invention, the semiconductor element can be sealed efficiently and favorably by the compression molding method.
 本発明の半導体装置及び半導体装置の製造方法によれば、上記本発明の樹脂シートを用いているため半導体素子を効率よく、かつ良好に封止でき、これにより得られた半導体装置は、柔軟性を有し高品質で高い信頼性を備えたものとできる。 According to the semiconductor device and the method of manufacturing the semiconductor device of the present invention, since the resin sheet of the present invention is used, the semiconductor element can be sealed efficiently and favorably, and the semiconductor device obtained by this is flexible. Can have high quality and high reliability.
 以下、本発明について、一実施形態である樹脂シート、半導体装置及び半導体装置の製造方法を参照しながら詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to a resin sheet, a semiconductor device, and a method of manufacturing the semiconductor device according to an embodiment.
 本実施形態に用いられる(A)エポキシ樹脂は、下記の一般式(1)で表されるエポキシ樹脂である。
Figure JPOXMLDOC01-appb-C000003
(式中、nは1~10の整数、Aは(CHで表されるアルキレン基(rは1~20の整数を表す)、BはCHまたはC(CHの有機基、を表す。)
The epoxy resin (A) used in the present embodiment is an epoxy resin represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
(Wherein n is an integer of 1 to 10, A is an alkylene group represented by (CH 2 ) r (r is an integer of 1 to 20), B is an organic group of CH 2 or C (CH 3 ) 2 Represents a group)
 この(A)エポキシ樹脂のより具体的な例としては、三菱樹脂社製のYX7105(エポキシ当量480;一般式(1)中のnが1~5、Aは(CHで表されるアルキレン基で、rは繰り返し単位数を表し、1~3の整数、BはC(CH、で表される化合物)が挙げられる。 As a more specific example of this (A) epoxy resin, YX7105 (epoxy equivalent 480 manufactured by Mitsubishi Plastics, Inc .; n is 1 to 5 in the general formula (1); A is represented by (CH 2 ) r In the alkylene group, r represents the number of repeating units, and is an integer of 1 to 3, and B is a compound represented by C (CH 3 ) 2 ).
 この(A)エポキシ樹脂は、上記のように一般式(1)を満たす構造を有するエポキシ樹脂である。一般に、このエポキシ樹脂を主成分とした樹脂組成物の硬化物は可撓性を有するものである。ここで、可撓性を有するとは、硬化物は柔軟性があり曲げることができることを意味する。好ましい可撓性は、実施例での特性評価でも記載している柔軟性試験において、直径60mmの円筒への巻き付けを可能とするものである。 This (A) epoxy resin is an epoxy resin which has a structure which satisfy | fills General formula (1) as mentioned above. In general, a cured product of the resin composition containing an epoxy resin as a main component is flexible. Here, having flexibility means that the cured product is flexible and can be bent. The preferred flexibility is to allow winding on a 60 mm diameter cylinder in the flexibility test described also in the characterization in the examples.
 この(A)エポキシ樹脂は、一般の封止用のエポキシ樹脂と同様に、良好な硬化性等を樹脂組成物に付与し、かつ、低吸湿性、高耐熱性等の特性をその硬化物に付与するのに加え、後述する(D)無機充填材をエポキシ樹脂組成物中に高充填にしても、樹脂硬化物の柔軟性を維持しやすくする成分である。この(A)エポキシ樹脂は、エポキシ当量が450~2000が好ましい。 This (A) epoxy resin imparts good curability and the like to the resin composition as well as a general sealing epoxy resin, and the characteristics such as low hygroscopicity and high heat resistance to the cured product thereof In addition to imparting, it is a component which makes it easy to maintain the flexibility of the cured resin even if the (D) inorganic filler described later is highly filled in the epoxy resin composition. The epoxy equivalent of this (A) epoxy resin is preferably 450 to 2,000.
 エポキシ樹脂組成物中の樹脂成分として、(A)エポキシ樹脂を単独で使用してもよいし、他のエポキシ樹脂を混合して樹脂成分としてもよい。ここで他のエポキシ樹脂としては、液状、結晶性、非結晶性にかかわらず、本実施形態の効果を阻害しない範囲で配合することができる。 As the resin component in the epoxy resin composition, (A) an epoxy resin may be used alone, or another epoxy resin may be mixed to form a resin component. Here, as another epoxy resin, it can be blended in a range that does not inhibit the effects of the present embodiment regardless of liquid state, crystallinity and non-crystallinity.
 他のエポキシ樹脂を混合して使用する場合、成形物のガラス転移温度が0~30℃を確保できる範囲で混合することができる。なお、使用するエポキシ樹脂を100質量%としたとき(A)エポキシ樹脂を50質量%以上含有させることが好ましく、70質量%以上含有させることがより好ましい。 When other epoxy resins are mixed and used, they can be mixed in such a range that the glass transition temperature of the molded product can ensure 0 to 30 ° C. In addition, when the epoxy resin to be used is made into 100 mass%, it is preferable to contain 50 mass% or more of (A) epoxy resin, and it is more preferable to contain 70 mass% or more.
 また他のエポキシ樹脂としては、例えば、ビフェニルエポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂等の複素環型エポキシ樹脂、スチルベン型二官能エポキシ化合物、ナフタレン型エポキシ樹脂、縮合環芳香族炭化水素変性エポキシ樹脂、脂環型エポキシ樹脂等が挙げられる。 Moreover, as another epoxy resin, for example, biphenyl epoxy resin, cresol novolac epoxy resin, phenol novolac epoxy resin, bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, dicyclopentadiene epoxy resin And heterocyclic epoxy resins such as triphenolmethane epoxy resins and triazine nucleus-containing epoxy resins, stilbene bifunctional epoxy compounds, naphthalene epoxy resins, fused ring aromatic hydrocarbon-modified epoxy resins, alicyclic epoxy resins and the like It can be mentioned.
 本実施形態に用いられる(B)フェノール樹脂硬化剤としては、(A)エポキシ樹脂のエポキシ基と反応して硬化させることができるフェノール性水酸基を有する化合物が挙げられ、公知のエポキシ樹脂用のフェノール樹脂硬化剤が挙げられる。 Examples of the (B) phenol resin curing agent used in the present embodiment include compounds having a phenolic hydroxyl group that can be cured by reacting with the epoxy group of the (A) epoxy resin, and known phenols for epoxy resins Resin curing agents may be mentioned.
 この(B)フェノール樹脂硬化剤は、上記(A)エポキシ樹脂中のエポキシ基と反応し得るフェノール性水酸基を分子中に2個以上有するものであれば、特に制限されることなく使用できる。 The (B) phenol resin curing agent can be used without particular limitation as long as it has two or more phenolic hydroxyl groups capable of reacting with the epoxy group in the (A) epoxy resin in the molecule.
 (B)フェノール樹脂硬化剤としては、具体的には、フェノール、アルキルフェノール等のフェノール類とホルムアルデヒド又はパラホルムアルデヒドを反応させて得られるフェノールノボラック樹脂やクレゾールノボラック樹脂等のノボラック型フェノール樹脂、これらのノボラック型フェノール樹脂をエポキシ化又はブチル化した変性ノボラック型フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、パラキシレン変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリフェノールアルカン型フェノール樹脂、多官能型フェノール樹脂等が挙げられる。これらは1種を単独で使用してもよく、2種以上を混合して使用してもよい。 (B) As the phenol resin curing agent, specifically, novolac type phenol resins such as phenol novolac resin and cresol novolac resin obtained by reacting phenols such as phenol and alkylphenol with formaldehyde or paraformaldehyde, and these novolak resins Novolak type phenol resin obtained by epoxidation or butylation of n-type phenol resin, dicyclopentadiene modified phenol resin, paraxylene modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin, triphenol alkane type phenol resin, polyfunctional phenol resin, etc. Can be mentioned. One of these may be used alone, or two or more may be mixed and used.
 この(B)フェノール樹脂硬化剤の配合量は、上記(A)エポキシ樹脂が有するエポキシ基数(a)に対する(B)フェノール樹脂硬化剤が有するフェノール性水酸基数(b)の比(b)/(a)が0.3以上1.5以下となる範囲が好ましく、0.5以上1.2以下となる範囲がより好ましい。比(b)/(a)が0.3未満では、硬化物の耐湿信頼性が低下し、逆に1.5を超えると、硬化物の強度が低下する。 The compounding amount of the (B) phenolic resin curing agent is the ratio (b) of the number of phenolic hydroxyl groups (b) possessed by the (B) phenolic resin curing agent to the number of epoxy groups (a) possessed by the (A) epoxy resin. The range in which a) is 0.3 or more and 1.5 or less is preferable, and the range in which 0.5 or more and 1.2 or less is more preferable. When the ratio (b) / (a) is less than 0.3, the moisture resistance reliability of the cured product is reduced, and conversely, if it exceeds 1.5, the strength of the cured product is reduced.
 本実施形態に用いられる(C)硬化促進剤は、(A)エポキシ樹脂と(B)フェノール樹脂硬化剤の硬化反応を促進する成分である。この(C)硬化促進剤は、上記作用を奏するものであれば、特に制限されることなく公知の硬化促進剤が使用できる。 The curing accelerator (C) used in the present embodiment is a component that accelerates the curing reaction of (A) epoxy resin and (B) phenolic resin curing agent. Any known curing accelerator can be used without particular limitation as long as the (C) curing accelerator exerts the above-mentioned action.
 この(C)硬化促進剤としては、具体的には、2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、2-ウンデシルイミダゾール、1,2-ジメチルイミダゾール、2,4-ジメチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、4-メチルイミダゾール、4-エチルイミダゾール、2-フェニル-4-ヒドロキシメチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、等のイミダゾール類;1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン、5,6-ジブチルアミノ-1,8-ジアザビシクロ[5.4.0]ウンデセン-7等のジアザビシクロ化合物及びこれらの塩;トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、α-メチルベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン類;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン、トリ(p-メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィン、メチルジフェニルホスフィン、ジブチルフェニルホスフィン、トリシクロヘキシルホスフィン、ビス(ジフェニルホスフィノ)メタン、1,2‐ビス(ジフェニルホスフィノ)エタン等の有機ホスフィン化合物等が挙げられる。これらのなかでも、流動性及び成形性が良好であるという観点から、イミダゾール類が好ましい。これらは1種を単独で使用してもよく、2種以上を混合して使用してもよい。 Specific examples of the (C) curing accelerator include 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-undecylimidazole, 1,2-dimethylimidazole, 2,4-dimethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 4-methylimidazole, 4-ethylimidazole, 2-phenyl-4-hydroxymethylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole Imidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenyl Imidazole Imidazoles such as 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, etc. 1,8- Diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene, 5,6-dibutylamino-1,8-diazabicyclo [5.4.0] undecene- 7. Diazabicyclo compounds such as 7 and their salts; triethylamine, triethylenediamine, benzyldimethylamine, α-methylbenzyldimethylamine, triethanolamine, dimethylaminoethanol, tertiary amines such as tris (dimethylaminomethyl) phenol; trimethylphosphine , Triethylphos Fin, tributyl phosphine, diphenyl phosphine, triphenyl phosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, methyl diphenyl phosphine, dibutyl phenyl phosphine, tricyclohexyl phosphine, bis (diphenyl phosphino) methane, 1, Organic phosphine compounds such as 2-bis (diphenylphosphino) ethane and the like can be mentioned. Among these, imidazoles are preferable from the viewpoint of good flowability and moldability. One of these may be used alone, or two or more may be mixed and used.
 この(C)硬化促進剤の配合量は、樹脂組成物全体に対し、0.1~5質量%の範囲が好ましい。この配合量が0.1質量%未満では、硬化性の促進にあまり効果がなく、逆に5質量%を超えると、成形品の耐湿信頼性が低下するおそれがある。 The compounding amount of the (C) curing accelerator is preferably in the range of 0.1 to 5% by mass with respect to the entire resin composition. If this compounding amount is less than 0.1% by mass, there is little effect on promoting the curability, and if it exceeds 5% by mass, the moisture resistance reliability of the molded article may be lowered.
 本実施形態に用いられる(D)無機充填材は、樹脂組成物中に充填して、樹脂組成物の粘度の調整や、後述する樹脂シートとしたときの取り扱い性及び成形性を高める成分である。この(D)無機充填材としては、この種の樹脂組成物に一般的に使用されている公知の無機充填材であれば、特に制限されることなく使用することができる。 The (D) inorganic filler used in the present embodiment is a component which is filled in a resin composition to adjust the viscosity of the resin composition and to improve the handleability and the formability when the resin sheet is to be described later. . As the (D) inorganic filler, known inorganic fillers generally used in this type of resin composition can be used without particular limitation.
 この(D)無機充填材は、具体的には、例えば、溶融シリカ、結晶シリカ、破砕シリカ、合成シリカ、アルミナ、酸化チタン、酸化マグネシウムなどの酸化物粉末、水酸化アルミニウム、水酸化マグネシウムなどの水酸化物粉末、窒化ホウ素、窒化アルミニウム、窒化ケイ素などの窒化物粉末などが挙げられる。これらの無機充填材は、1種を単独で使用してもよく、2種以上を混合して使用してもよい。 Specifically, the (D) inorganic filler may be, for example, fused silica, crystalline silica, crushed silica, synthetic silica, alumina, titanium oxide, oxide powder such as magnesium oxide, aluminum hydroxide, magnesium hydroxide and the like. Examples thereof include hydroxide powders, nitride powders such as boron nitride, aluminum nitride and silicon nitride. One of these inorganic fillers may be used alone, or two or more thereof may be mixed and used.
 この(D)無機充填材としては、樹脂シートの取り扱い性や成形性を高める観点からは、上記例示したなかでもシリカ粉末が好ましく、溶融シリカがより好ましく、球状溶融シリカが特に好ましい。また、溶融シリカと溶融シリカ以外のシリカを併用することもでき、その場合、溶融シリカ以外のシリカの割合はシリカ粉末全体の30質量%未満とすることが好ましい。 From the viewpoint of enhancing the handleability and moldability of the resin sheet, the (D) inorganic filler is preferably a silica powder among the above-mentioned examples, more preferably fused silica, and particularly preferably spherical fused silica. Moreover, fused silica and silica other than fused silica can be used together, and in that case, it is preferable to make the ratio of silica other than fused silica less than 30 mass% of the whole silica powder.
 また、(D)無機充填材は、平均粒径が0.5~40μmであることが好ましく、5~30μmであることがより好ましい。また、(D)無機充填材の最大粒径は105μm以下であることがさらに好ましい。 The average particle diameter of the (D) inorganic filler is preferably 0.5 to 40 μm, and more preferably 5 to 30 μm. Further, the maximum particle size of the (D) inorganic filler is more preferably 105 μm or less.
 平均粒径が0.5μm未満では、樹脂組成物としたときの流動性が低下し、成形性が損なわれるおそれがある。一方、平均粒径が40μmを超えると、樹脂組成物を硬化して得られる成形品に反りが発生したり、寸法精度が低下したりするおそれがある。また、最大粒径が105μmを超えると、樹脂組成物の成形性が低下するおそれがある。 If the average particle size is less than 0.5 μm, the flowability of the resin composition may be lowered, and the moldability may be impaired. On the other hand, when the average particle diameter exceeds 40 μm, a molded article obtained by curing the resin composition may be warped or the dimensional accuracy may be deteriorated. When the maximum particle size exceeds 105 μm, the moldability of the resin composition may be reduced.
 本明細書において、(D)無機充填材の平均粒径は、例えば、レーザー回折式粒度分布測定装置により求めることができ、平均粒径は、同装置で測定された粒度分布において積算体積が50%になる粒径(d50)である。 In the present specification, the average particle size of the (D) inorganic filler can be determined, for example, by a laser diffraction type particle size distribution measuring apparatus, and the average particle size is 50% of the cumulative volume in the particle size distribution measured by the same apparatus. It is the particle size (d50) which becomes%.
 (D)無機充填材の配合量は、樹脂組成物全体に対し、70~95質量%の範囲が好ましく、75~90質量%の範囲がより好ましい。この配合量が70質量%未満では、樹脂組成物の線膨張係数が増大して、成形品の寸法精度、耐湿性、機械的強度等が低下してしまう。また、この配合量が95質量%を超えると、樹脂組成物を成形して得た樹脂シートが割れやすくなったり、樹脂組成物の溶融粘度が増大して流動性が低下するととともに、成形性が低下したり、するおそれがある。 The blending amount of the inorganic filler (D) is preferably 70 to 95% by mass, more preferably 75 to 90% by mass, with respect to the entire resin composition. When this compounding amount is less than 70% by mass, the linear expansion coefficient of the resin composition is increased, and the dimensional accuracy, the moisture resistance, the mechanical strength and the like of the molded product are lowered. In addition, if the compounding amount exceeds 95% by mass, the resin sheet obtained by molding the resin composition may be easily broken or the melt viscosity of the resin composition may be increased to reduce the flowability, and the moldability may There is a risk of decline or loss.
 本実施形態の樹脂組成物には、以上の各成分の他、本実施形態の効果を阻害しない範囲で、この種の樹脂組成物に一般に配合される成分、例えば、カップリング剤;合成ワックス、天然ワックス、高級脂肪酸、高級脂肪酸の金属塩等の離型剤;カーボンブラック、コバルトブルー等の着色剤;シリコーンオイル、シリコーンゴム等の低応力付与剤;ハイドロタルサイト類;イオン捕捉剤等を配合することができる。 In the resin composition of the present embodiment, in addition to the above-described components, components generally compounded in this kind of resin composition, to the extent that the effects of the present embodiment are not inhibited, such as coupling agents; Mold release agents such as natural waxes, higher fatty acids, metal salts of higher fatty acids; coloring agents such as carbon black and cobalt blue; low stress imparting agents such as silicone oil and silicone rubber; hydrotalcites; can do.
 カップリング剤としては、エポキシシラン系、アミノシラン系、ウレイドシラン系、ビニルシラン系、アルキルシラン系、有機チタネート系、アルミニウムアルコレート系等のカップリング剤が使用される。これらは1種を単独で使用してもよく、2種以上を混合して用いてもよい。 As the coupling agent, coupling agents such as epoxysilane type, aminosilane type, ureidosilane type, vinylsilane type, alkylsilane type, organic titanate type and aluminum alcoholate type are used. One of these may be used alone, or two or more may be mixed and used.
 成形性、難燃性、硬化性等の観点からは、このカップリング剤はアミノシラン系カップリング剤が好ましく、特に、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン等が好ましい。 From the viewpoint of moldability, flame retardancy, curability, etc., this coupling agent is preferably an aminosilane coupling agent, and in particular, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyl Methyldimethoxysilane, γ-aminopropylmethyldiethoxysilane and the like are preferable.
 カップリング剤の配合量は、樹脂組成物全体の0.01質量%以上3質量%以下となる範囲が好ましく、0.1質量%以上1質量%以下となる範囲がより好ましい。樹脂組成物全体の0.01質量%未満では、成形性の向上にあまり効果がなく、逆に3質量%を超えると、成形時に発泡して成形品にボイドや表面膨れ等が発生するおそれがある。 The compounding amount of the coupling agent is preferably in the range of 0.01% by mass to 3% by mass of the entire resin composition, and more preferably in the range of 0.1% by mass to 1% by mass. If the amount is less than 0.01% by mass of the entire resin composition, the improvement of the moldability is not so effective, and if it exceeds 3% by mass, there is a possibility that the molded product may be foamed and void or surface swelling may occur. is there.
 この樹脂組成物は、公知の樹脂組成物の製造方法により得ることができ、例えば、次のように調製できる。 This resin composition can be obtained by a known method for producing a resin composition, and can be prepared, for example, as follows.
 まず、上記した(A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、(D)無機充填材、及び上述した必要に応じて配合される各種成分をミキサー等によって十分に混合(ドライブレンド)した後、熱ロールやニーダ等の混練装置により溶融混練し、冷却後、適当な大きさに粉砕することで、上記樹脂組成物を得ることができる。 First, the above-mentioned (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, (D) inorganic filler, and the various components to be blended according to the necessity described above are sufficiently used by a mixer etc. After mixing (dry blending), the mixture is melt-kneaded by a kneader such as a heat roll or a kneader, and after cooling, the resin composition can be obtained by grinding to an appropriate size.
 粉砕方法は、特に制限されず、一般的な粉砕機、例えば、スピードミル、カッティングミル、ボールミル、サイクロンミル、ハンマーミル、振動ミル、カッターミル、グラインダーミル等を用いることができる。粉砕方法としては、スピードミルが好ましい。粉砕物は、その後、篩い分級やエアー分級等によって所定の粒度分布を持つ粒子集合体として、特性を整えて調製することができる。 The grinding method is not particularly limited, and a common grinder such as a speed mill, a cutting mill, a ball mill, a cyclone mill, a hammer mill, a vibration mill, a cutter mill, a grinder mill, etc. can be used. As a grinding method, a speed mill is preferable. The pulverized material can then be prepared by adjusting the characteristics as a particle assembly having a predetermined particle size distribution by sieving classification, air classification or the like.
 次に、本実施形態の樹脂シートについて説明する。本実施形態の樹脂シートは、上記のように調製されたエポキシ樹脂組成物を材料とし、これをシート状に成形したシート状成形体である。 Next, the resin sheet of the present embodiment will be described. The resin sheet of the present embodiment is a sheet-like molded product obtained by molding the epoxy resin composition prepared as described above into a sheet.
 この樹脂シートは、例えば、本実施形態の樹脂組成物を加圧部材間で加熱溶融し圧縮してシート状に成形することにより得られる。より具体的には、ポリエステルフィルム等の耐熱性の離型フィルム上に上記樹脂組成物を略均一な厚さになるように供給して樹脂層を形成した後、樹脂層を加熱軟化させながらロール及び熱プレスにより圧延する。その際、樹脂層の上にもポリエステルフィルム等の耐熱性フィルムを配置してもよい。 This resin sheet is obtained, for example, by heating, melting and compressing the resin composition of the present embodiment between pressure members and forming it into a sheet. More specifically, the above resin composition is supplied on a heat resistant release film such as a polyester film so as to have a substantially uniform thickness to form a resin layer, and then the resin layer is heated and softened to form a roll. And rolling by heat press. At that time, a heat resistant film such as a polyester film may be disposed on the resin layer.
 このようにして樹脂層を所望の厚さに圧延した後、これを冷却固化し、耐熱性フィルムを剥離することで樹脂シートが得られる。さらに必要に応じて所望の大きさ、形状に切断することにより、任意の大きさの樹脂シートとできる。 After rolling the resin layer to a desired thickness in this manner, the resin layer is cooled and solidified, and the heat resistant film is peeled off to obtain a resin sheet. Furthermore, it can be set as the resin sheet of arbitrary sizes by cutting into a desired size and shape as needed.
 なお、樹脂層を軟化させる際の加熱温度は、通常、80~150℃程度である。加熱温度が80℃未満では、溶融混合が不十分となり、150℃を超えると、硬化反応が進み過ぎて加熱硬化の際に、成形性が低下するおそれがある。 The heating temperature for softening the resin layer is usually about 80 to 150 ° C. When the heating temperature is less than 80 ° C., the melt mixing becomes insufficient, and when the heating temperature exceeds 150 ° C., the curing reaction proceeds too much, and the moldability may be deteriorated at the time of heat curing.
 この樹脂シートは、半導体素子等の部品の封止に好適であり、その封止対象の部品の大きさ等に応じて、その大きさを適宜調整して設けられる。この樹脂シートの大きさは、任意に作成できるが、例えば、200mm×50mm~600mm×600mm等が好ましい。 The resin sheet is suitable for sealing a component such as a semiconductor element, and is provided by appropriately adjusting the size in accordance with the size or the like of the component to be sealed. The size of this resin sheet can be arbitrarily made, but for example, 200 mm × 50 mm to 600 mm × 600 mm is preferable.
 また、この樹脂シートは、厚さが0.05mm~2mmであることが好ましい。厚さが0.05mm以上であればシートが切れるおそれはなく、取り扱い性に優れ、コンプレッション成形用金型への搬入も支障なく容易に行うことができる。また、厚さが2mm以下であれば、半導体封止時に金型内での樹脂シートの溶融が遅延して成形が不良になることもない。 The resin sheet preferably has a thickness of 0.05 mm to 2 mm. If the thickness is 0.05 mm or more, there is no fear of cutting the sheet, the handling property is excellent, and the loading into the compression molding die can be easily performed without any problem. In addition, if the thickness is 2 mm or less, melting of the resin sheet in the mold is not delayed at the time of semiconductor sealing, and molding does not become defective.
 この樹脂シートは、そのガラス転移点が0~30℃であることが好ましい。ガラス転移点が0℃未満であると樹脂の耐熱性が劣り、30℃を超えると室温での樹脂の可撓性がなくなるため、耐久性、可撓性の点で好ましい。
 なお、ガラス転移点は、樹脂組成物を175℃で3分間加熱し硬化させて得た硬化物からスティック状のサンプルを作製し、熱分析装置(TMA)(セイコーインスツル(株)製、製品名:TMA SS-150)により、昇温速度10℃/分の条件で昇温してTMAチャートを測定し、2接線の交点から求められる。
The resin sheet preferably has a glass transition temperature of 0 to 30 ° C. When the glass transition point is less than 0 ° C., the heat resistance of the resin is poor, and when it exceeds 30 ° C., the flexibility of the resin at room temperature is lost, which is preferable in terms of durability and flexibility.
In addition, a glass transition point manufactures a stick-like sample from the hardened | cured material obtained by heating and hardening a resin composition at 175 degreeC for 3 minutes, and a thermal analyzer (TMA) (Seiko Instruments Co., Ltd. product, product) Name: TMA SS-150) The temperature is raised under the condition of a temperature rising rate of 10 ° C./min, the TMA chart is measured, and the value is obtained from the intersection of two tangents.
 本実施形態の樹脂封止型半導体装置は、基板上に固定された半導体素子に対して、上記樹脂シートを用いて封止することにより製造することができる。以下、その方法の一例を記載する。 The resin-sealed semiconductor device of the present embodiment can be manufactured by sealing the semiconductor element fixed on the substrate using the above-mentioned resin sheet. Hereinafter, an example of the method will be described.
 まず、半導体素子を実装した基板に対し、上記樹脂シート載せる等して半導体素子上に樹脂シートを被せ、コンプレッション成形用金型のキャビティー内の所定位置に配置させ、所定の温度、所定の圧力でコンプレッション成形する。成形条件は、温度100~190℃、圧力4~12MPaとすることが好ましい。成形後、130~190℃の温度で、2~8時間程度の後硬化を行う。この加熱硬化により、樹脂シートは半導体素子に密着して硬化し、半導体素子が外部雰囲気と接触しないように封止された樹脂封止型の半導体装置が製造できる。 First, a resin sheet is placed on the semiconductor element by placing the resin sheet on the substrate on which the semiconductor element is mounted, and the resin sheet is placed at a predetermined position in a cavity of a compression molding die. Molding with compression. The molding conditions are preferably a temperature of 100 to 190 ° C. and a pressure of 4 to 12 MPa. After molding, post curing is performed at a temperature of 130 to 190 ° C. for about 2 to 8 hours. By this heat curing, the resin sheet closely contacts and cures the semiconductor element, and a resin-sealed semiconductor device sealed so that the semiconductor element does not contact the external atmosphere can be manufactured.
 このようにして得られる半導体装置は、薄くても取扱いやすく、かつ成形性に優れる樹脂シートを用いたコンプレッション成形により封止されているので、柔軟性があり、薄型であっても高い品質及び高い信頼性を具備することができる。なお、半導体装置自体を柔軟にするためには、使用する基板もフレキシブル基板とする。このフレキシブル基板は、公知のものが特に制限されずに使用できる。 The semiconductor device obtained in this manner is sealed by compression molding using a resin sheet that is easy to handle even if it is thin and is excellent in moldability, so it is flexible, and high quality and high even if it is thin Reliability can be provided. Note that in order to make the semiconductor device flexible, a substrate to be used is also a flexible substrate. Any known flexible substrate can be used without particular limitation.
 なお、本実施形態の半導体装置において封止される半導体素子は、公知の半導体素子であればよいため、特に限定されるものではなく、例えば、IC、LSI、ダイオード、サイリスタ、トランジスタ等が例示される。特に、従来の封止材料では封止が困難であった、封止後の厚さが0.1~1.5mmとなるような半導体素子の場合に、上記樹脂シートを用いた半導体装置の製造方法は特に有用である。 The semiconductor element sealed in the semiconductor device of the present embodiment is not particularly limited as long as it is a known semiconductor element and, for example, an IC, an LSI, a diode, a thyristor, a transistor and the like are exemplified. Ru. In particular, in the case of a semiconductor element having a thickness of 0.1 to 1.5 mm after sealing, which is difficult to seal with a conventional sealing material, manufacture of a semiconductor device using the above resin sheet The method is particularly useful.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、以下の実施例及び比較例において使用した原料は表1~3に示した通りである。 EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto. The raw materials used in the following examples and comparative examples are as shown in Tables 1 to 3.
(実施例1~4、比較例1~9)
 各原料を表1~3に示す組成(質量%)となるように常温で混合し、次いで、熱ロールを用いて80~130℃で加熱混練した。冷却後、スピードミルを用いて粉砕してエポキシ樹脂組成物を調製した。
(Examples 1 to 4 and Comparative Examples 1 to 9)
The respective raw materials were mixed at normal temperature so as to have the composition (mass%) shown in Tables 1 to 3, and then heat-kneaded at 80 to 130 ° C. using a heat roll. After cooling, it was ground using a speed mill to prepare an epoxy resin composition.
 得られたエポキシ樹脂組成物をポリエステルからなる離型フィルムで挟んで、80℃の熱板間に置き、10MPaの圧力で1分間加熱及び加圧して、厚さ0.5mmの樹脂シートを作製した、 The obtained epoxy resin composition was sandwiched between release films made of polyester, placed between hot plates at 80 ° C., heated and pressed at a pressure of 10 MPa for 1 minute, and a resin sheet having a thickness of 0.5 mm was produced. ,
 さらに、得られた樹脂シートを用いて半導体チップの封止を行った。すなわち、まず、得られた樹脂シートから150mm×40mmのシートを切り出した。この切り出した樹脂シートをコンプレッション成形用金型内に置き、その上に半導体チップを実装した基板を重ね、8.0MPaの加圧下、175℃で3分間の条件でコンプレッション成形した。その後、175℃、4時間の後硬化を行い、半導体装置を製造した。 Furthermore, sealing of the semiconductor chip was performed using the obtained resin sheet. That is, first, a 150 mm × 40 mm sheet was cut out from the obtained resin sheet. The resin sheet thus cut out was placed in a compression molding die, a substrate on which a semiconductor chip was mounted was stacked thereon, and compression molding was performed under a pressure of 8.0 MPa and a condition of 175 ° C. for 3 minutes. Thereafter, post curing was performed at 175 ° C. for 4 hours to manufacture a semiconductor device.
 なお、ここで用いた原料は、以下の通りである。
(A)エポキシ樹脂
 エポキシ樹脂1:YX7105(三菱ケミカル(株)製、商品名;一般式(1)において、nは1~5の整数、Aは(CHで表されるアルキレン基(rは1~3の整数を表す)、BはC(CHの有機基、を表す。
 エポキシ樹脂2:EXA-4850-1000(DIC(株)製、商品名)
 エポキシ樹脂3:EXA-4816(DIC(株)製、商品名)
 ビフェニル型エポキシ樹脂:YX-4000H(三菱ケミカル(株)製、商品名)
 ビスフェノールF型エポキシ樹脂:YDF-8170C(新日鉄住金化学(株)製、商品名)
 オルソクレゾール型エポキシ樹脂:CNE-200ELB(長春ジャパン(株)製、商品名)
In addition, the raw material used here is as follows.
(A) Epoxy resin Epoxy resin 1: YX7105 (Mitsubishi Chemical Corporation, trade name; in the general formula (1), n is an integer of 1 to 5 and A is an alkylene group represented by (CH 2 ) r ( r represents an integer of 1 to 3), and B represents an organic group of C (CH 3 ) 2 .
Epoxy resin 2: EXA-4850-1000 (manufactured by DIC Corporation, trade name)
Epoxy resin 3: EXA-4816 (trade name of DIC Corporation)
Biphenyl type epoxy resin: YX-4000H (Mitsubishi Chemical Corporation, trade name)
Bisphenol F type epoxy resin: YDF-8170C (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name)
Ortho cresol type epoxy resin: CNE-200 ELB (manufactured by Changchun Japan Co., Ltd., trade name)
(B)フェノール樹脂硬化剤
 フェノールノボラック型フェノール樹脂:BRG-557(昭和電工(株)製、商品名)
 ザイロック型フェノール樹脂:HE100C-15(エア・ウォーター(株)製、商品名)
 トリフェノールメタン型フェノール樹脂:MEH-7500(明和化成(株)製、商品名)
(B) Phenolic resin curing agent Phenolic novolac type phenolic resin: BRG-557 (manufactured by Showa Denko KK, trade name)
Zyloc-type phenolic resin: HE100C-15 (manufactured by Air Water Co., Ltd., trade name)
Triphenol methane type phenol resin: MEH-7500 (manufactured by Meiwa Kasei Co., Ltd., trade name)
(C)硬化促進剤
 イミダゾール:2P4MHZ(四国化成(株)製、商品名)
(D)無機充填材
 溶融シリカ1:FB-105(デンカ(株)製、商品名)
 溶融シリカ2:FB-875FC(デンカ(株)製、商品名)
 溶融シリカ3:SC4500-SQ((株)アドマテックス製、商品名)
(C) Hardening accelerator Imidazole: 2P4 MHZ (manufactured by Shikoku Kasei Co., Ltd., trade name)
(D) Inorganic filler Fused silica 1: FB-105 (Denka Co., Ltd. product name)
Fused silica 2: FB-875FC (Denka Co., Ltd., trade name)
Fused silica 3: SC4500-SQ (trade name of Admatex Co., Ltd.)
(その他の添加剤)
 シランカップリング剤:Z-6883(東レ・ダウコーニング(株)製、商品名;3-フェニルアミノプロピルトリメトキシシラン)
 着色剤:MA-600(三菱ケミカル(株)製、商品名;カーボンブラック)
 シリコーンオイル:SF-8421(東レ・ダウコーニング(株)製、商品名)
(Other additives)
Silane coupling agent: Z-6883 (manufactured by Toray Dow Corning Co., Ltd., trade name; 3-phenylaminopropyltrimethoxysilane)
Colorant: MA-600 (Mitsubishi Chemical Co., Ltd., trade name; carbon black)
Silicone oil: SF-8421 (made by Toray Dow Corning Co., Ltd., trade name)
 また、上記各実施例及び各比較例で得られたエポキシ樹脂組成物、樹脂シート、及び半導体装置(製品)について、以下に示す方法で各種特性を評価した。その結果を表1に併せて示した。 Moreover, the various characteristics were evaluated by the method shown below about the epoxy resin composition obtained by each said Example and each comparative example, a resin sheet, and a semiconductor device (product). The results are shown in Table 1 together.
<樹脂組成物>
(1)ゲルタイム
<Resin composition>
(1) Gel time
 JIS C 2161の7.5.1に規定されるゲル化時間A法に準じて、約1gのエポキシ樹脂組成物を175℃の熱盤上に塗布し、かき混ぜ棒にてかき混ぜ、ゲル状になりかき混ぜられなくなるまでの時間を測定した。 About 1 g of the epoxy resin composition is applied on a hot plate at 175 ° C. according to the gelation time A method defined in 7.5.1 of JIS C 2161 and mixed with a stirring rod to form a gel. The time until it became impossible to stir was measured.
<樹脂シート>
(2)フレキシブル性
 幅10mm、長さ50mm、厚さ0.5mmの樹脂シートを切り出し、一端から15mmの部分をクランプして、架台上、高さ18mmにセットし、自重でシートの一端が架台上面に接触するまでの時間を測定した(初期)。フレキシブル性は作業性の点から、600秒未満が好ましく、300秒未満がより好ましい。
<Resin sheet>
(2) Flexibility A resin sheet of 10 mm in width, 50 mm in length and 0.5 mm in thickness is cut out, and a portion of 15 mm is clamped from one end and set at 18 mm in height on a gantry, one end of the sheet being a gantry by its own weight The time to contact the upper surface was measured (initial). From the viewpoint of workability, the flexibility is preferably less than 600 seconds, more preferably less than 300 seconds.
 また、これとは別に幅10mm、長さ50mm、厚さ0.5mmの樹脂シートを切り出し、25℃で168時間放置した後、同様に、一端から15mmの部分をクランプして、架台上、高さ18mmにセットし、自重でシートの一端が架台上面に接触するまでの時間を測定した。 Separately from this, a resin sheet of 10 mm in width, 50 mm in length and 0.5 mm in thickness is cut out and left at 25 ° C. for 168 hours, and similarly, a portion of 15 mm from one end is clamped, and the frame is high. The sheet was set to 18 mm, and the time taken for one end of the sheet to come in contact with the upper surface of the mount by its own weight was measured.
<硬化物>
(3)ガラス転移点(Tg)
 175℃で3分間加熱し硬化させて得た硬化物からスティック状のサンプルを作製し、熱分析装置(TMA)(セイコーインスツル(株)製、製品名:TMA SS-150)により、昇温速度10℃/分の条件で昇温してTMAチャートを測定し、2接線の交点から求めた。
<Cured product>
(3) Glass transition point (Tg)
A stick-like sample is prepared from a cured product obtained by curing by heating at 175 ° C. for 3 minutes, and the temperature is raised by a thermal analyzer (TMA) (product name: TMA SS-150, manufactured by Seiko Instruments Inc.) The temperature was raised under the conditions of a speed of 10 ° C./min to measure the TMA chart, and it was obtained from the intersection of two tangents.
(4)弾性率
 (3)と同様にして作製したサンプルについて、動的粘弾性測定装置により温度25℃、周波数10Hzにて測定した。
(4) Elastic modulus About the sample produced like (3), it measured by the temperature of 25 degreeC, and frequency 10 Hz with the dynamic-viscoelasticity measuring apparatus.
(5)吸水率
 12MPaの加圧下、175℃で2分間の条件でコンプレッション成形し、次いで、175℃、8時間の後硬化を行って直径50mm、厚さ3mmの円板状の硬化物を得た。この硬化物を、127℃、0.25MPaの飽和水蒸気中に24時間放置し、処理前後における増加した質量を求め、次式より算出した。
 吸水率=増加した質量/硬化物の初期質量
(5) Water absorption: compression molded at 175 ° C. for 2 minutes under pressure of 12 MPa, followed by post curing at 175 ° C. for 8 hours to obtain a disc-shaped cured product having a diameter of 50 mm and a thickness of 3 mm. The The cured product was allowed to stand in saturated steam at 127 ° C. and 0.25 MPa for 24 hours, and the increased mass before and after the treatment was determined and calculated from the following equation.
Water absorption = increased mass / initial mass of cured product
(6)充填性
 8インチウェハ(725μm厚)上に、成形温度150℃、成形圧力100kg/cmで10分間、樹脂組成物を300μm厚の硬化物となるように圧縮成形して成形品とし、この成形品の未充填の有無を確認した。
 未充填部分が無いものを「良好」、未充填部分があるものを「未充填」と評価した。
(6) Fillability The resin composition is compression molded into a 300 μm thick cured product on an 8-inch wafer (725 μm thick) for 10 minutes at a molding temperature of 150 ° C. and a molding pressure of 100 kg / cm 2 to obtain a molded article. , The presence or absence of the unfilled of this molded article was confirmed.
The thing with no unfilled part was evaluated as "good", and the thing with an unfilled part was evaluated as "unfilled".
(7)柔軟性
 樹脂組成物について、12MPaの加圧下、175℃で2分間の条件でコンプレッション成形し、次いで、175℃、8時間の後硬化を行って幅10mm、長さ200mm、厚さ0.5mmの硬化物を得た。この硬化物を、直径60mmの円筒への巻きつけ可否を確認した。
 円筒に沿って、巻き付けできたものを「可」、巻き付けできなかったものを「否」と評価した。
(7) Flexibility The resin composition was compression molded at 175 ° C. for 2 minutes under pressure of 12 MPa and then post-cured at 175 ° C. for 8 hours to obtain a width of 10 mm, a length of 200 mm, and a thickness of 0. A cured product of .5 mm was obtained. Whether or not the cured product was wound on a cylinder having a diameter of 60 mm was confirmed.
Along the cylinder, those which could be wound were evaluated as "OK", and those which could not be wound were evaluated as "NO".
<製品(半導体装置)>
(8)耐リフロー性(MSL試験)
 半導体装置に対し、85℃、85%RHにて72時間吸湿処理した後、240℃の赤外線リフロー炉中で90秒間加熱する試験(MSL試験:Level 3)を行い、不良(剥離及びクラック)の発生率を調べた(試料数=20)。
<Product (semiconductor device)>
(8) Reflow resistance (MSL test)
A test (MSL test: Level 3) of heating the semiconductor device at 85 ° C. and 85% RH for 72 hours and then heating it in an infrared reflow furnace at 240 ° C. for 90 seconds is performed. The incidence was examined (number of samples = 20).
(9)耐湿信頼性(プレッシャクッカー試験:PCT)
 半導体装置を、プレッシャクッカー内で、127℃、0.25MPaの条件下、72時間吸水させた後、240℃、90秒間のベーパーリフローを行い、不良(オープン不良)の発生率を調べた(試料数=20)。
(9) Moisture resistant reliability (Pressure cooker test: PCT)
After the semiconductor device was allowed to absorb water for 72 hours at 127 ° C. and 0.25 MPa in a pressure cooker, vapor reflow was performed at 240 ° C. for 90 seconds, and the incidence of defects (open defects) was examined (sample Number = 20).
(10)高温放置信頼性(高度加速寿命試験:HAST)
 半導体装置を、180℃の恒温槽中に1000時間放置し、不良(オープン不良)の発生率を調べた(試料数=20)。
(10) High temperature storage reliability (Highly accelerated life test: HAST)
The semiconductor device was left in a thermostat at 180 ° C. for 1000 hours, and the incidence of defects (open defects) was examined (the number of samples = 20).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1~3から明らかなように、本実施例の樹脂シートは、常温で長時間放置しても柔軟性を有しており、良好な取り扱い性を有していた。また、硬化後も柔軟性があった。 As is apparent from Tables 1 to 3, the resin sheet of this example had flexibility even when it was left at normal temperature for a long time, and had good handling properties. Also, there was flexibility after curing.
 また、その樹脂シートを用いて製造された半導体装置は、MSL試験、プレッシャクッカー試験、高度加速寿命試験のいずれの試験においても良好な結果が得られており、樹脂封止型半導体装置として高い信頼性を有するものであることが確認できた。 Moreover, the semiconductor device manufactured using the resin sheet has obtained good results in any of the MSL test, the pressure cooker test, and the highly accelerated life test, and is highly reliable as a resin-sealed semiconductor device. It could be confirmed that it had a sex.
 本発明の樹脂シートは、厚さが薄くなっても取り扱い性や成形性に優れている。また、硬化後も柔軟性を有している。したがって、薄型化された半導体素子のコンプレッション成形用封止材料、特にウエアラブルデバイス用半導体封止用途として有用であり、高品質で信頼性の高い樹脂封止型半導体装置を製造することができる。 The resin sheet of the present invention is excellent in handleability and moldability even when the thickness is reduced. It also has flexibility after curing. Therefore, it is useful as a sealing material for compression molding of a thinned semiconductor element, particularly as a semiconductor sealing application for wearable devices, and a high-quality, highly reliable resin-sealed semiconductor device can be manufactured.
 また、半導体素子以外にも、外部環境に曝されないように部品等を封止する樹脂シートとして用いることができる。 Moreover, it can use as a resin sheet which seals components etc. so that it may not expose to external environment besides a semiconductor element.

Claims (6)

  1.  (A)下記一般式(1)で表されるエポキシ樹脂
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは1~10の整数、Aは(CHで表されるアルキレン基(rは1~20の整数を表す)、BはCHまたはC(CHの有機基、を表す。)と、(B)フェノール樹脂硬化剤と、(C)硬化促進剤と、(D)無機充填材と、を必須成分として含有するエポキシ樹脂組成物を材料とした、シート状成形体からなることを特徴とする樹脂シート。
    (A) Epoxy resin represented by the following general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein n is an integer of 1 to 10, A is an alkylene group represented by (CH 2 ) r (r is an integer of 1 to 20), B is an organic group of CH 2 or C (CH 3 ) 2 Group), sheet-like epoxy resin composition containing (B) phenolic resin curing agent, (C) curing accelerator and (D) inorganic filler as essential components A resin sheet characterized by comprising a molded body.
  2.  前記(A)エポキシ樹脂は、エポキシ当量が450~2000である請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein the epoxy resin (A) has an epoxy equivalent of 450 to 2000.
  3.  前記(D)無機充填材がシリカ粉末であり、かつ、前記(D)無機充填材の含有量が前記エポキシ樹脂組成物全体に対して70~95質量%であることを特徴とする請求項1又は2に記載の樹脂シート。 The (D) inorganic filler is a silica powder, and the content of the (D) inorganic filler is 70 to 95% by mass with respect to the entire epoxy resin composition. Or the resin sheet as described in 2.
  4.  前記樹脂シートは、ガラス転移点が0~30℃であって、厚さが0.05~2mmであることを特徴とする請求項1乃至3のいずれか1項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 3, wherein the resin sheet has a glass transition point of 0 to 30 属 C and a thickness of 0.05 to 2 mm.
  5.  基板上に固定された半導体素子と、前記半導体素子を封止する封止樹脂と、を有する半導体装置であって、
     前記封止樹脂が、請求項1乃至4のいずれか1項記載の樹脂シートの硬化物であることを特徴とする半導体装置。
    A semiconductor device comprising: a semiconductor element fixed on a substrate; and a sealing resin sealing the semiconductor element,
    The said sealing resin is a hardened | cured material of the resin sheet of any one of Claims 1-4, The semiconductor device characterized by the above-mentioned.
  6.  基板上に固定された半導体素子上に、請求項1乃至4のいずれか1項に記載の樹脂シートを被せ、前記樹脂シートを加熱により前記半導体素子に密着させながら硬化させることで封止する、ことを特徴とする半導体装置の製造方法。 The resin sheet according to any one of claims 1 to 4 is covered on a semiconductor element fixed on a substrate, and the resin sheet is sealed by heating and adhering to the semiconductor element while sealing. And manufacturing a semiconductor device.
PCT/JP2018/037093 2017-11-30 2018-10-03 Resin sheet, semiconductor device and method for producing semiconductor device WO2019106953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-230213 2017-11-30
JP2017230213 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019106953A1 true WO2019106953A1 (en) 2019-06-06

Family

ID=66664944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037093 WO2019106953A1 (en) 2017-11-30 2018-10-03 Resin sheet, semiconductor device and method for producing semiconductor device

Country Status (2)

Country Link
TW (1) TWI692489B (en)
WO (1) WO2019106953A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029958A (en) * 2012-07-31 2014-02-13 Ajinomoto Co Inc Semiconductor device manufacturing method
JP2015061720A (en) * 2013-08-23 2015-04-02 味の素株式会社 Method of manufacturing component sealing film
JP2016053108A (en) * 2014-09-03 2016-04-14 株式会社ダイセル Curable epoxy resin composition
JP5966113B1 (en) * 2015-02-13 2016-08-10 積水化学工業株式会社 Sealant for organic electroluminescence display element
WO2016125664A1 (en) * 2015-02-05 2016-08-11 味の素株式会社 Resin composition
JP2016180088A (en) * 2014-07-24 2016-10-13 三菱化学株式会社 Thermosetting resin composition and molding thereof
JP2017179055A (en) * 2016-03-29 2017-10-05 味の素株式会社 Thermosetting resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012157529A1 (en) * 2011-05-13 2014-07-31 日立化成株式会社 Epoxy resin molding material for sealing and electronic component device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029958A (en) * 2012-07-31 2014-02-13 Ajinomoto Co Inc Semiconductor device manufacturing method
JP2015061720A (en) * 2013-08-23 2015-04-02 味の素株式会社 Method of manufacturing component sealing film
JP2016180088A (en) * 2014-07-24 2016-10-13 三菱化学株式会社 Thermosetting resin composition and molding thereof
JP2016053108A (en) * 2014-09-03 2016-04-14 株式会社ダイセル Curable epoxy resin composition
WO2016125664A1 (en) * 2015-02-05 2016-08-11 味の素株式会社 Resin composition
JP5966113B1 (en) * 2015-02-13 2016-08-10 積水化学工業株式会社 Sealant for organic electroluminescence display element
JP2017179055A (en) * 2016-03-29 2017-10-05 味の素株式会社 Thermosetting resin composition

Also Published As

Publication number Publication date
TWI692489B (en) 2020-05-01
TW201925259A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
JP6558671B2 (en) Epoxy resin composition for sealing and semiconductor device
JP6389382B2 (en) Semiconductor encapsulating resin sheet and resin encapsulating semiconductor device
JP2011148959A (en) Resin sheet for sealing semiconductor, and resin-sealed semiconductor device
KR20010100875A (en) Epoxy resin composition for encapsulating semiconductor and semiconductor device using the same
JP2016040383A (en) Epoxy resin composition for encapsulating electronic component and electronic component device using the same
KR100769792B1 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP2011258603A (en) Apparatus for sealing semiconductor and resin composition for sealing
TW201920450A (en) Epoxy resin composition and electric component device
TWI657513B (en) Resin composition for sealing sheet, sealing sheet and semiconductor device
TWI663203B (en) Resin sheet, semiconductor device, and method for manufacturing semiconductor device
JP7142233B2 (en) EPOXY RESIN COMPOSITION FOR ENCAPSULATION, CURED PRODUCT AND SEMICONDUCTOR DEVICE
JP2013119588A (en) Epoxy resin composition for sealing electronic component and electronic component device using the same
JP2013001861A (en) Resin composition for semiconductor sealing, production method thereof, and semiconductor apparatus
JP4710200B2 (en) Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
WO2019106953A1 (en) Resin sheet, semiconductor device and method for producing semiconductor device
JP2021187868A (en) Thermosetting resin composition and electronic device
JP4759994B2 (en) Epoxy resin composition and semiconductor device
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
CN111492009A (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
CN112424284B (en) Resin composition for sheet-like encapsulation and semiconductor device
WO2023286728A1 (en) Resin composition for semiconductor sealing, and semiconductor device
JP7390995B2 (en) Power module manufacturing method
WO2023182370A1 (en) Epoxy resin composition for sealing and electronic device
KR102507422B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP