WO2016125664A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2016125664A1
WO2016125664A1 PCT/JP2016/052394 JP2016052394W WO2016125664A1 WO 2016125664 A1 WO2016125664 A1 WO 2016125664A1 JP 2016052394 W JP2016052394 W JP 2016052394W WO 2016125664 A1 WO2016125664 A1 WO 2016125664A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
component
insulating layer
mass
layer
Prior art date
Application number
PCT/JP2016/052394
Other languages
French (fr)
Japanese (ja)
Inventor
達也 本間
英恵 奥山
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2016573308A priority Critical patent/JP6772841B2/en
Publication of WO2016125664A1 publication Critical patent/WO2016125664A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Definitions

  • the present invention relates to a resin composition. Furthermore, it is related with an adhesive film, a printed wiring board, a power semiconductor device, and a laminated body.
  • Patent Document 1 discloses a technique for forming an insulating layer of a printed wiring board by curing a high thermal conductive resin composition containing a resin and an inorganic filler having a specific average particle diameter.
  • Patent Document 2 in order to improve the heat dissipation of a semiconductor module using a power semiconductor element that generates a particularly large amount of heat (also referred to as “power semiconductor element”), the semiconductor module is bonded to a metal heat sink with an adhesive. A power semiconductor device obtained by bonding is disclosed.
  • the present inventors examined the thermal diffusivity of the insulating layer in order to more efficiently diffuse the heat generated by the semiconductor element.
  • an insulating layer is formed by curing a resin composition containing an inorganic filler
  • the thermal diffusibility of the resulting insulating layer is in a trade-off relationship with the adhesion strength to the metal layer (conductor layer).
  • the inventors have found. Specifically, by increasing the content of the inorganic filler in the resin composition, the thermal diffusibility of the resulting insulating layer can be improved, but the inorganic filler is sufficiently developed to exhibit sufficient thermal diffusivity. It was found that when the content is increased, the obtained insulating layer is inferior in adhesion strength to the metal layer (conductor layer).
  • An object of the present invention is to provide a resin composition that provides a cured product that exhibits sufficient thermal diffusivity and exhibits good adhesion strength to a metal layer.
  • a resin composition comprising (A) an epoxy resin, (B) a curing agent and (C) an inorganic filler, (B) a component contains a liquid phenol type hardening
  • a resin composition containing a filler is (C1) an inorganic filler having an average particle size of 0.1 ⁇ m or more and less than 3 ⁇ m, (C2) an inorganic filler having an average particle size of 3 ⁇ m or more and less than 10 ⁇ m, and (C3) an inorganic material having an average particle size of 10 ⁇ m or more and 35 ⁇ m or less.
  • the thickness of the resin composition layer is (d c3 +45) ⁇ m to 200 ⁇ m, when the average particle diameter of the component (C3) is d c3 ( ⁇ m).
  • Adhesive film [15] The adhesive film according to any one of [12] to [14], which is for high heat conduction. [16] The adhesive film according to any one of [12] to [15], which is used for bonding a metal radiator and a semiconductor module. [17] A printed wiring board including an insulating layer formed of a cured product of the resin composition according to any one of [1] to [11].
  • the thermal conductivity of the insulating layer is 8 W / m ⁇ K or more
  • apparatus. [21] A laminate of an insulating layer and a metal layer, A laminate in which the thermal conductivity of the insulating layer is 8 W / m ⁇ K or more and the adhesion strength between the insulating layer and the metal layer is 0.5 kgf / cm or more.
  • the heat generated by the semiconductor element can be efficiently diffused.
  • the resin composition of the present invention provides a cured product excellent in both thermal diffusibility and adhesion strength to the metal layer, it is extremely useful as an adhesive for bonding a semiconductor module and a metal radiator in a power semiconductor device. .
  • the resin composition of the present invention includes (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler, (B) a component includes a liquid phenolic curing agent, and (C) a component is (C1 And (C2) an inorganic filler having an average particle size of 3 ⁇ m or more and less than 10 ⁇ m, and (C3) an inorganic filler having an average particle size of 10 ⁇ m or more and 35 ⁇ m or less. To do.
  • the thermal diffusibility of the resulting insulating layer has a trade-off relationship with the adhesion strength to the metal layer (conductor layer).
  • the resin composition of the present invention containing the specific components (A) to (C) in combination realizes a cured product (insulating layer) excellent in both thermal diffusibility and adhesion strength to the metal layer. Can do.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol novolak type epoxy resin, Phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, glycidyl amine type epoxy resin, glycidyl ester type epoxy resin, cresol novolac type epoxy resin, biphenyl type Epoxy resin, linear aliphatic epoxy resin, epoxy resin having butadiene structure, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring Epoxy resins, cyclohexanedimethanol type epoxy resins, naphthylene ether type epoxy resin, trimethylol type epoxy resin, tetraphenyl ethane epoxy resin
  • the epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule.
  • the nonvolatile component of the epoxy resin is 100% by mass, at least 50% by mass is preferably an epoxy resin having two or more epoxy groups in one molecule.
  • the epoxy resin is at a temperature of 20 ° C. It preferably contains a liquid epoxy resin (hereinafter referred to as “liquid epoxy resin”).
  • the liquid epoxy resin is preferably a liquid epoxy resin having two or more epoxy groups in one molecule, and more preferably an aromatic liquid epoxy resin having two or more epoxy groups in one molecule.
  • the aromatic epoxy resin means an epoxy resin having an aromatic ring in the molecule.
  • the epoxy resin may include a solid epoxy resin (also referred to as “solid epoxy resin”) at a temperature of 20 ° C.
  • the solid epoxy resin is preferably a solid epoxy resin having 3 or more epoxy groups in one molecule, and more preferably an aromatic solid epoxy resin having 3 or more epoxy groups in one molecule.
  • the determination of whether the target component is liquid or solid at a temperature of 20 ° C. is performed when the target component is in a single state (that is, a state that does not substantially include other components such as a solvent).
  • Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, phenol novolac type epoxy resin, bifunctional aliphatic epoxy resin, cyclohexane di A methanol type epoxy resin and an epoxy resin having a butadiene structure are preferable, and a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bifunctional aliphatic epoxy resin, and a naphthalene type epoxy resin are more preferable.
  • liquid epoxy resin examples include “HP4032”, “HP4032H”, “HP4032D”, “HP4032SS” (naphthalene type epoxy resin) manufactured by DIC Corporation, “jER828EL”, “828US” manufactured by Mitsubishi Chemical Corporation. "(Bisphenol A type epoxy resin)”, “jER807” (bisphenol F type epoxy resin), “jER152” (phenol novolac type epoxy resin), “YL7410” (bifunctional aliphatic epoxy resin), manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • Solid epoxy resins include naphthalene type tetrafunctional epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy resin, Anthracene type epoxy resin, bisphenol A type epoxy resin, bisphenol AF type epoxy resin, tetraphenylethane type epoxy resin are preferable, naphthalene type tetrafunctional epoxy resin, naphthol type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, And bisphenol AF type epoxy resin is more preferable.
  • solid epoxy resin examples include “HP-4700”, “HP-4710” (naphthalene type tetrafunctional epoxy resin), “N-690”, “N-695” (cresol novolak) manufactured by DIC Corporation.
  • Type epoxy resin “HP7200”, “HP7200H”, “HP7200HH” (dicyclopentadiene type epoxy resin), “EXA7311”, “EXA7311-G3”, “EXA7311-G4”, “EXA7311-G4S”, “HP6000” (Naphthylene ether type epoxy resin), “EPPN-502H” (trisphenol type epoxy resin) manufactured by Nippon Kayaku Co., Ltd., “NC7000L” (naphthol novolac type epoxy resin), “NC3000H”, “NC3000”, “ NC3000L ”,“ NC3100 ”(Bifeni Type epoxy resin), “ESN475V” (naphthol type epoxy resin) manufactured by Nippon Steel & Sumi
  • the content of the epoxy resin in the resin composition is preferably 2% by mass or more, more preferably 3% by mass or more, and further preferably 4% by mass or more or 5% by mass or more.
  • the upper limit of the content of the epoxy resin is not particularly limited, but is preferably 60% by mass or less, more preferably 55% by mass or less, further preferably 50% by mass or less, 45% by mass or less, 40% by mass or less, 35% by mass. Or 30% by mass or less.
  • content of each component which comprises a resin composition is a value when the non-volatile component in a resin composition is 100 mass% unless there is separate description.
  • the epoxy equivalent of the epoxy resin is preferably 50 to 5000, more preferably 50 to 3000, still more preferably 80 to 2000, and even more preferably 110 to 1000. By becoming this range, the crosslinked density of hardened
  • the epoxy equivalent can be measured according to JIS K7236, and is the mass of a resin containing 1 equivalent of an epoxy group.
  • the weight average molecular weight of the epoxy resin is preferably 100 to 5000, more preferably 250 to 3000, and still more preferably 400 to 1500.
  • the weight average molecular weight of the epoxy resin is a weight average molecular weight in terms of polystyrene measured by a gel permeation chromatography (GPC) method.
  • the curing agent includes a liquid phenolic curing agent.
  • curing agent means a liquid phenol type hardening
  • the phenolic hydroxyl group equivalent of the liquid phenolic curing agent is preferably 50 to 1000, more preferably 70 to 800, and still more preferably 90 to 600 from the viewpoint of obtaining an insulating layer exhibiting good adhesion strength to the metal layer.
  • the phenolic hydroxyl group equivalent is the mass of a resin containing 1 equivalent of a phenolic hydroxyl group.
  • the weight average molecular weight of the liquid phenolic curing agent is preferably 100 to 4500, more preferably 200 to 4000, and still more preferably 300 to 3000.
  • curing agent is a weight average molecular weight of polystyrene conversion measured by GPC method.
  • liquid phenolic curing agent examples include liquid phenol represented by the formula (1).
  • R 1 independently represents a hydrogen atom, an alkyl group, or an alkenyl group
  • R 2 and R 3 each independently represent a hydrogen atom or an alkyl group
  • j represents an integer of 0 to 5
  • the plurality of R 1 to R 3 may be the same or different.
  • the number of carbon atoms of the alkenyl group is preferably 2 to 10, more preferably 2 to 6, still more preferably 2 to 4, and particularly preferably 3.
  • the alkenyl group is preferably a 2-propenyl group (allyl group).
  • the number of carbon atoms of the alkyl group is preferably 1 to 20, more preferably 1 to 10, more preferably 1 to 6, and still more preferably 1 to 4, 1 to 3, or 1.
  • R 1 is an alkyl group or an alkenyl group.
  • the number of alkyl groups or alkenyl groups in formula (1) is preferably 1 or more. More preferably, it contains one or two alkyl groups and / or alkenyl groups for one benzene ring in formula (1), and more preferably for one benzene ring in formula (1).
  • R 1 preferably represents a hydrogen atom or an alkenyl group, and more preferably represents a hydrogen atom or an allyl group.
  • R 2 and R 3 preferably represent a hydrogen atom.
  • a plurality of R 1 may be the same or different from each other. The same applies to R 2 to R 3 .
  • liquid phenolic curing agent examples include “ACG-1”, “APG-1”, “ELP-30”, “ELC” manufactured by Gunei Chemical Industry Co., Ltd., and “MEH” manufactured by Meiwa Kasei Co., Ltd. -8000 "can be used.
  • the (B) curing agent may contain another curing agent in addition to the liquid phenolic curing agent.
  • Such other curing agents are not particularly limited as long as they have a function of curing the epoxy resin, and include, for example, solid phenolic curing agents, naphthol curing agents, active ester curing agents, benzoxazine curing agents, and Examples include cyanate ester-based curing agents.
  • Another hardening agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the solid phenol-based curing agent refers to a solid phenol-based curing agent at a temperature of 20 ° C.
  • a phenol-based curing agent or a naphthol-based curing agent containing both a triazine structure and a novolak structure is preferable. These may be used alone or in combination of two or more.
  • Examples of commercially available solid phenol-based curing agents and naphthol-based curing agents include “MEH-7700”, “MEH-7810”, “MEH-7851” manufactured by Meiwa Kasei Co., Ltd., Nippon Kayaku Co., Ltd. “NHN”, “CBN”, “GPH” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • the active ester curing agent is not particularly limited, but generally an ester group having high reaction activity such as phenol ester, thiophenol ester, N-hydroxyamine ester, heterocyclic hydroxy compound ester in one molecule.
  • a compound having two or more in the above is preferably used.
  • the active ester curing agent is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- Cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, Benzenetriol, dicyclopentadiene type diphenol compound, phenol novolac and the like can be mentioned.
  • cyanate ester type hardening agent for example, novolak type (phenol novolak type, alkylphenol novolak type, etc.) cyanate ester type hardening agent, dicyclopentadiene type cyanate ester type hardening agent, bisphenol type (bisphenol A type, And bisphenol F type, bisphenol S type, and the like) and cyanate ester-based curing agents, and prepolymers in which these are partially triazines.
  • novolak type phenol novolak type, alkylphenol novolak type, etc.
  • cyanate ester type hardening agent dicyclopentadiene type cyanate ester type hardening agent
  • bisphenol type bisphenol A type, And bisphenol F type, bisphenol S type, and the like
  • cyanate ester-based curing agents and prepolymers in which these are partially triazines.
  • Specific examples include bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate)), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4′-ethylidene diphenyl.
  • cyanate ester curing agents examples include “PT30” and “PT60” (both phenol novolac polyfunctional cyanate ester resins) and “BA230” (part of bisphenol A dicyanate) manufactured by Lonza Japan Co., Ltd. Or a prepolymer which is all triazine-modified into a trimer).
  • the amount ratio of (A) epoxy resin to (B) curing agent is [total number of epoxy groups of epoxy resin]: [reactive group of curing agent] from the viewpoint of improving the mechanical strength and water resistance of the obtained insulating layer.
  • the ratio of the total number] is preferably in the range of 1: 0.2 to 1: 2, more preferably in the range of 1: 0.3 to 1: 1.5, and in the range of 1: 0.4 to 1: 1. Is more preferable.
  • the reactive group of the curing agent is an active hydroxyl group, an active ester group or the like, and varies depending on the type of the curing agent.
  • the total number of epoxy groups of the epoxy resin is a value obtained by dividing the value obtained by dividing the solid mass of each epoxy resin by the epoxy equivalent for all epoxy resins
  • the total number of reactive groups of the curing agent is: The value obtained by dividing the solid mass of each curing agent by the reactive group equivalent is the total value for all curing agents.
  • the average particle diameter of the component (C1) is dc1 ( ⁇ m)
  • the average particle diameter of the component (C2) is dc2 ( ⁇ m).
  • D c1 and d c2 preferably satisfy the relationship d c2 ⁇ d c1 ⁇ 0.5, more preferably satisfy the relationship d c2 ⁇ d c1 ⁇ 1.0, and d c2 ⁇ d More preferably, the relationship of c1 ⁇ 1.5, d c2 ⁇ d c1 ⁇ 2.0, d c2 ⁇ d c1 ⁇ 2.5, or d c2 ⁇ d c1 ⁇ 3.0 is satisfied.
  • the upper limit of the difference d c2 -d c1 is preferably 9.0 or less, more preferably 8.0 or less, still more preferably 7.0 or less, 6.0 or less, or 5.0 or less.
  • d c2 and d c3 are d c3 -d
  • d c2 ⁇ 5.0 more preferably satisfy the relationship of d c3 ⁇ d c2 ⁇ 7.0, d c3 ⁇ d c2 ⁇ 9.0, d c3 ⁇ d c2 ⁇ 10.0
  • the relationship d c3 -d c2 ⁇ 12.0, d c3 -d c2 ⁇ 14.0, or d c3 -d c2 ⁇ 15.0 is satisfied.
  • the upper limit of the difference d c3 -d c2 is preferably 30.0 or less, more preferably 28.0 or less, still more preferably 26.0 or less, 24.0 or less, 22.0 or less, or 20.0 or
  • the average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on the Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be prepared on a volume basis by a laser diffraction / scattering particle size distribution measuring apparatus, and the median diameter can be measured as the average particle diameter.
  • an inorganic filler dispersed in water by ultrasonic waves can be preferably used.
  • As a laser diffraction scattering type particle size distribution measuring device “LA-500”, “LA-950” manufactured by Horiba, Ltd., etc. can be used.
  • the (C1) component contributes to the improvement of the thermal diffusibility of the resin composition (and thus the insulating layer) by filling the gap between the (C2) component and the (C3) component.
  • the component (C1) also exhibits an effect of suppressing an increase in melt viscosity when the total content of the component (C) is high in combination with the component (C2) and the component (C3).
  • the content of the component (C1) is a viewpoint that can suppress an excessive increase in melt viscosity even when the content of the component (C) is high, thermal diffusion From the viewpoint of obtaining an insulating layer having excellent properties, preferably 5% by mass or more, more preferably 6% by mass or more, still more preferably 8% by mass or more, 10% by mass or more, 12% by mass or more, 14% by mass or more, or 15 It is at least mass%.
  • the upper limit of the content of the component (C1) reduces the diffusion resistance at the interface (between the inorganic filler and the inorganic filler and between the inorganic filler and the metal layer) when the heat generated by the semiconductor element diffuses through the printed wiring board. From the viewpoint, it is preferably 40% by mass or less, more preferably 35% by mass or less, and further preferably 30% by mass or less.
  • the (C2) component contributes to the improvement of the thermal diffusibility of the resin composition (and thus the insulating layer) by filling the gap between the (C3) component.
  • the component (C2) also has an average particle size larger than that of the component (C1) and contributes to a decrease in diffusion resistance at the interface during thermal diffusion.
  • the content of the component (C) is 100% by mass
  • the content of the component (C2) is preferably 5% by mass or more, more preferably 6% by mass or more from the viewpoint of obtaining an insulating layer having excellent thermal diffusibility. More preferably, they are 8 mass% or more, 10 mass% or more, 12 mass% or more, 14 mass% or more, or 15 mass% or more.
  • the upper limit of the content of the component (C2) is preferably 40% by mass or less, more preferably 35% by mass or less, and further preferably 30% by mass or less, from the viewpoint of suppressing an excessive increase in melt viscosity.
  • the component (C3) has a larger average particle size than the components (C1) and (C2), reduces the diffusion resistance at the interface during thermal diffusion, and improves the thermal diffusivity of the resin composition (and thus the insulating layer). A big contribution.
  • the content of the component (C) is 100% by mass
  • the content of the component (C3) is preferably 20% by mass or more, more preferably 30% by mass or more from the viewpoint of obtaining an insulating layer having excellent thermal diffusibility. More preferably, they are 40 mass% or more, 45 mass% or more, 50 mass% or more, 55 mass% or more, or 60 mass% or more.
  • the upper limit of the content of the component (C3) is preferably 90% by mass or less, more preferably 85%, from the viewpoint of obtaining a resin composition that maintains a good filling state of the component (C) and is excellent in lamination properties and thermal diffusibility. It is 80 mass% or less, More preferably, it is 75 mass% or less, or 70 mass% or less.
  • contents of the components (C1), (C2), and (C3) in the component (C) are as described above. From the viewpoint of obtaining an insulating layer that is further excellent in both thermal diffusibility and adhesion strength to the metal layer, It is preferable that content of (C3) component is the highest.
  • inorganic fillers include silica, alumina, glass, cordierite, silicon oxide, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, and nitride.
  • zirconium acid and zirconium tungstate phosphate examples include zirconium acid and zirconium tungstate phosphate.
  • the inorganic filler preferably has a thermal conductivity of 25 W / m ⁇ K or more, more preferably 50 W / m ⁇ K or more, and even more preferably 75 W / m ⁇ K or more. Even more preferably 100 W / m ⁇ K or more, particularly preferably 125 W / m ⁇ K or more, 150 W / m ⁇ K or more, 175 W / m ⁇ K or more, 200 W / m ⁇ K or more, or 225 W / m ⁇ K or more. It is preferable to include an inorganic filler.
  • the upper limit of the thermal conductivity is not particularly limited, but is usually 400 W / m ⁇ K or less.
  • the thermal conductivity of the inorganic filler can be measured by known methods such as a heat flow meter method and a temperature wave analysis method.
  • the inorganic filler preferably includes an inorganic filler with high thermal conductivity selected from the group consisting of aluminum nitride, alumina, boron nitride, silicon nitride, and silicon carbide, among which aluminum nitride, Alternatively, it is preferable to contain alumina.
  • aluminum nitride examples include “Shape H” manufactured by Tokuyama Corporation
  • silicon nitride examples include “SN-9S” manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Examples of commercially available alumina products include “AHP300” manufactured by Nippon Light Metal Co., Ltd. and “Arnabeads (registered trademark) CB” manufactured by Showa Denko Co., Ltd. (for example, “CB-P05”, “CB-A30S”). It is done.
  • (C1) component, (C2) component and (C3) component may be formed from the same material, and may be formed from mutually different materials.
  • each of the (C1) component, the (C2) component, and the (C3) component may be formed of one type of material or may be formed of a combination of two or more types of materials.
  • (C3) component contains an inorganic filler with high thermal conductivity
  • (C3) component and (C2) component contain an inorganic filler with high thermal conductivity
  • (C3 It is more preferable that all of the component (C), the component (C2) and the component (C1) contain an inorganic filler having a high thermal conductivity.
  • Inorganic fillers are aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, organosilazane compounds, titanate coupling agents from the viewpoint of improving moisture resistance and dispersibility. And may be treated with one or more surface treatment agents.
  • surface treatment agents include “KBM403” (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. and “KBM803” (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
  • the degree of surface treatment with the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler.
  • Carbon content per unit surface area of the inorganic filler is preferably 0.02 mg / m 2 or more, 0.1 mg / m 2 or more preferably, 0.2 mg / m 2 The above is more preferable.
  • 1 mg / m 2 or less is preferable, 0.8 mg / m 2 or less is more preferable, and 0.5 mg / m 2 or less is more preferable from the viewpoint of preventing an increase in the melt viscosity of the resin varnish or the sheet form. preferable.
  • the amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (for example, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler surface-treated with the surface treatment agent and ultrasonically cleaned at 25 ° C. for 5 minutes. After removing the supernatant and drying the solid, the carbon amount per unit surface area of the inorganic filler can be measured using a carbon analyzer. As the carbon analyzer, “EMIA-320V” manufactured by Horiba, Ltd. can be used.
  • EMIA-320V manufactured by Horiba, Ltd.
  • the content of the inorganic filler in the resin composition is preferably 60% by volume or more, more preferably, when the nonvolatile component in the resin composition is 100% by volume. 65% by volume or more.
  • the content of the inorganic filler can be further increased without lowering the adhesion strength to the metal layer.
  • the content of the inorganic filler in the resin composition may be increased to 66 volume% or more, 68 volume% or more, 70 volume% or more, 72 volume% or more, 74 volume% or more, or 75 volume% or more.
  • the upper limit of the content of the inorganic filler in the resin composition is preferably 90% by volume or less, more preferably 85% by volume or less, from the viewpoint of the mechanical strength of the obtained insulating layer.
  • the resin composition of the present invention may further contain a curing accelerator.
  • a curing accelerator By using a curing accelerator, the adhesion strength to the metal layer can be increased.
  • the curing accelerator examples include a phosphorus-based curing accelerator, an amine-based curing accelerator, an imidazole-based curing accelerator, a guanidine-based curing accelerator, a metal-based curing accelerator, and the like.
  • a curing accelerator and an imidazole curing accelerator are preferred, and a phosphorus curing accelerator is more preferred.
  • a hardening accelerator may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of the phosphorus curing accelerator include tetra-substituted phosphonium salts and phosphines (eg, triphenylphosphine, tripalatolylphosphine, diphenylcyclohexylphosphine, tricyclohexylphosphine, 1,4-bisdiphenylphosphinobutane). Triphenylphosphine and tetra-substituted phosphonium salts are preferred, and tetra-substituted phosphonium salts are more preferred.
  • phosphines eg, triphenylphosphine, tripalatolylphosphine, diphenylcyclohexylphosphine, tricyclohexylphosphine, 1,4-bisdiphenylphosphinobutane.
  • Triphenylphosphine and tetra-substituted phosphonium salts are preferred,
  • the tetra-substituted phosphonium salt is preferably one or more cations selected from tetraalkylphosphonium cations (for example, tetrabutylphosphonium, tributylhexylphosphonium, butyltriphenylphosphonium, etc.) and tetraarylphosphonium cations (for example, tetraphenylphosphonium, etc.). It is formed.
  • tetraalkylphosphonium cations for example, tetrabutylphosphonium, tributylhexylphosphonium, butyltriphenylphosphonium, etc.
  • tetraarylphosphonium cations for example, tetraphenylphosphonium, etc.
  • the tetra-substituted phosphonium salt is preferably a tetra-substituted borate anion (eg, tetraphenylborate anion), thiocyanate anion, dicyanamide anion, 4,4′-dihydroxydiphenylsulfone anion, amino acid ion (eg, aspartate ion, glutamate ion, Glycine ion, alanine ion, phenylalanine ion), N-acylamino acid ion (eg, N-benzoylalanine ion, N-acetylphenylalanine ion, N-acetylglycine ion), carboxylate anion (eg, formate ion, acetate ion, decane) Acid ion, 2-pyrrolidone-5-carboxylate ion, ⁇ -lipoic acid ion, lactate ion, tartrate ion
  • amine curing accelerators examples include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo. (5,4,0) -undecene and the like, and 4-dimethylaminopyridine and 1,8-diazabicyclo (5,4,0) -undecene are preferable.
  • imidazole curing accelerator examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- -Phenylimidazolium trimellitate, 2,4
  • imidazole curing accelerator Commercially available products may be used as the imidazole curing accelerator, and examples thereof include “P200-H50” manufactured by Mitsubishi Chemical Corporation.
  • guanidine curing accelerator examples include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1-diethyl biguanide, 1-cyclohexyl biguanide, 1 -Allyl biguanide, 1-phenyl biguanide, 1- o- tolyl) biguanide
  • the metal-based curing accelerator examples include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complex examples include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
  • the content of the curing accelerator in the resin composition is in the range of 0.05% by mass to 3% by mass when the total of the non-volatile components of (A) the epoxy resin and (B) the curing agent is 100% by mass. It is preferable to do.
  • the resin composition of the present invention may further contain a carbodiimide compound.
  • the present inventors have found that by using a carbodiimide compound in combination with the above components (A) to (C), a resin composition (and consequently an insulating layer) exhibiting better adhesion strength to the metal layer can be realized. It was.
  • a carbodiimide compound is a compound having one or more carbodiimide groups (—N ⁇ C ⁇ N—) in one molecule. From the viewpoint of increasing the adhesion strength to the metal layer, the carbodiimide compound is preferably a compound having two or more carbodiimide groups in one molecule.
  • a carbodiimide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the carbodiimide compound contained in the resin composition of the present invention contains a structural unit represented by the following formula (2).
  • X represents an alkylene group, a cycloalkylene group or an arylene group, which may have a substituent.
  • P represents an integer of 1 to 5.
  • X is an alkylene group or a cycloalkylene group from the viewpoint of realizing a resin composition (and consequently an insulating layer) that exhibits better adhesion strength to the metal layer in combination with the components (A) to (C).
  • a resin composition and consequently an insulating layer
  • X may have a substituent.
  • a halogen atom, an alkyl group, an alkoxy group, a cycloalkyl group, a cycloalkyloxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group are mentioned.
  • the number of carbon atoms of the alkyl group or alkoxy group used as a substituent is preferably 1-20, more preferably 1-10, still more preferably 1-6, 1-4, or 1-3.
  • the number of carbon atoms of the cycloalkyl group or cycloalkyloxy group used as a substituent is preferably 3 to 20, more preferably 3 to 12, and still more preferably 3 to 6.
  • the number of carbon atoms of the aryl group used as a substituent is preferably 6 to 24, more preferably 6 to 18, still more preferably 6 to 14, and even more preferably 6 to 10.
  • the number of carbon atoms of the aryloxy group used as a substituent is preferably 6 to 24, more preferably 6 to 18, still more preferably 6 to 14, and still more preferably 6 to 10.
  • Acyl group used as a substituent of the formula: -C ( O) group (wherein, R 1 represents an alkyl group or an aryl group.) Represented by -R 1 refers.
  • the number of carbon atoms of the alkyl group represented by R 1 is preferably 1-20, more preferably 1-10, still more preferably 1-6, 1-4, or 1-3.
  • the number of carbon atoms of the aryl group represented by R 1 is preferably 6 to 24, more preferably 6 to 18, still more preferably 6 to 14, and still more preferably 6 to 10.
  • the acyloxy group used as a substituent refers to a group represented by the formula: —O—C ( ⁇ O) —R 1 (wherein R 1 has the same meaning as described above). Especially, as a substituent, an alkyl group, an alkoxy group, and an acyloxy group are preferable, and an alkyl group is more preferable.
  • p is preferably 1 to 4, more preferably 2 to 4, and still more preferably 2 or 3.
  • X when there are a plurality of X, they may be the same or different.
  • at least one X is an alkylene group or a cycloalkylene group, and these may have a substituent.
  • the carbodiimide compound is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, when the mass of the entire carbodiimide compound is 100% by mass. More preferably, the structural unit represented by the formula (2) is contained at 80% by mass or more or 90% by mass or more.
  • the carbodiimide compound may consist essentially of the structural unit represented by the formula (2) except for the terminal structure. Although it does not specifically limit as a terminal structure of a carbodiimide compound, For example, an alkyl group, a cycloalkyl group, and an aryl group are mentioned, These may have a substituent.
  • the alkyl group, cycloalkyl group, and aryl group used as the terminal structure may be the same as the alkyl group, cycloalkyl group, and aryl group described for the substituent that the group represented by X may have.
  • the substituent that the group used as the terminal structure may have may be the same as the substituent that the group represented by X may have.
  • carbodiimide compound a commercially available product may be used.
  • Commercially available carbodiimide compounds include, for example, Carbodilite (registered trademark) V-02B, V-03, V-04K, V-07 and V-09 manufactured by Nisshinbo Chemical Co., Ltd., Starbuxol (registered trademark) manufactured by Rhein Chemie P, P400, and Hikazil 510.
  • the content of the carbodiimide compound in the resin composition is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, 0.3% by mass or more, 0.4% by mass or more, or 0.5% by mass. That's it.
  • the upper limit of the content of the carbodiimide compound is not particularly limited, it can usually be 5% by mass or less, 3% by mass or less, 1% by mass or less.
  • the resin composition of the present invention may further contain a thermoplastic resin.
  • a thermoplastic resin By using a thermoplastic resin, an adhesive film having sufficient flexibility and excellent handleability can be obtained, and a resin composition layer (and thus an insulating layer) exhibiting good adhesion strength to a metal layer can be obtained. Obtainable.
  • thermoplastic resin examples include phenoxy resin, polyvinyl acetal resin, polyolefin resin, polybutadiene resin, polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyphenylene ether resin, polycarbonate resin, and polyether.
  • a thermoplastic resin may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the weight average molecular weight in terms of polystyrene of the thermoplastic resin is preferably in the range of 8,000 to 70,000, more preferably in the range of 10,000 to 60,000, and still more preferably in the range of 20,000 to 60,000.
  • the weight average molecular weight in terms of polystyrene of the thermoplastic resin is measured by a gel permeation chromatography (GPC) method.
  • GPC gel permeation chromatography
  • the polystyrene-converted weight average molecular weight of the thermoplastic resin is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K- manufactured by Showa Denko KK as a column. 804L / K-804L can be calculated using a standard polystyrene calibration curve by measuring the column temperature at 40 ° C. using chloroform or the like as the mobile phase.
  • phenoxy resin examples include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, terpene
  • the terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group.
  • a phenoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Specific examples of the phenoxy resin include “1256” and “4250” (both bisphenol A skeleton-containing phenoxy resin), “YX8100” (bisphenol S skeleton-containing phenoxy resin), and “YX6954” (manufactured by Mitsubishi Chemical Corporation).
  • “FX280” and “FX293” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., “YL7553”, “YL6794”, “YL7213” manufactured by Mitsubishi Chemical Corporation, “YL7290”, “YL7482” and the like can be mentioned.
  • polyvinyl acetal resin examples include polyvinyl formal resin and polyvinyl butyral resin, and polyvinyl butyral resin is preferable.
  • Specific examples of the polyvinyl acetal resin include, for example, “Electrical butyral 4000-2”, “Electrical butyral 5000-A”, “Electrical butyral 6000-C”, and “Electrical butyral 6000-EP” manufactured by Denki Kagaku Kogyo Co., Ltd. Sekisui Chemical Co., Ltd.'s S-REC BH series, BX series, KS series, BL series, BM series and the like.
  • polyimide resins include “Rika Coat SN20” and “Rika Coat PN20” manufactured by Shin Nippon Rika Co., Ltd.
  • Specific examples of the polyimide resin also include a linear polyimide obtained by reacting a bifunctional hydroxyl group-terminated polybutadiene, a diisocyanate compound and a tetrabasic acid anhydride (polyimide described in JP-A-2006-37083), a polysiloxane skeleton.
  • modified polyimides such as containing polyimide (polyimides described in JP-A Nos. 2002-12667 and 2000-319386).
  • polyamide-imide resin examples include “Bilomax HR11NN” and “Bilomax HR16NN” manufactured by Toyobo Co., Ltd.
  • polyamideimide resin also include modified polyamideimides such as “KS9100” and “KS9300” (polysiloxane skeleton-containing polyamideimide) manufactured by Hitachi Chemical Co., Ltd.
  • polyethersulfone resin examples include “PES5003P” manufactured by Sumitomo Chemical Co., Ltd.
  • polysulfone resin examples include polysulfone “P1700” and “P3500” manufactured by Solvay Advanced Polymers Co., Ltd.
  • the thermoplastic resin is preferably a phenoxy resin or a polyvinyl acetal resin. Accordingly, in a preferred embodiment, the thermoplastic resin includes one or more selected from the group consisting of a phenoxy resin and a polyvinyl acetal resin.
  • the content of the thermoplastic resin in the resin composition is preferably 0.1% by mass to 20% by mass, more preferably 0.5% by mass to 10% by mass.
  • the flame retardant examples include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide.
  • a flame retardant may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the flame retardant in the resin composition is not particularly limited, but is preferably 0.5% by mass to 10% by mass, more preferably 0.8% by mass to 9% by mass.
  • any organic filler that can be used for forming an insulating layer of a printed wiring board may be used. Examples thereof include rubber particles, polyamide fine particles, and silicone particles, and rubber particles are preferable.
  • the content of the organic filler in the resin composition is preferably 1% by mass to 10% by mass, more preferably 2% by mass to 5% by mass.
  • the resin composition of the present invention may contain other components as necessary.
  • other components include organometallic compounds such as organocopper compounds, organozinc compounds, and organocobalt compounds, and resin additives such as dispersants, thickeners, antifoaming agents, leveling agents, and colorants. Etc.
  • the method for preparing the resin composition of the present invention is not particularly limited, and examples thereof include a method in which a compounded component is added with a solvent if necessary, and mixed and dispersed using a rotary mixer or the like.
  • the resin composition of the present invention provides a cured product (insulating layer) excellent in both thermal diffusibility and adhesion strength to the metal layer. Therefore, the resin composition of the present invention can be suitably used as a resin composition for forming an insulating layer of a printed wiring board (resin composition for an insulating layer of a printed wiring board), and interlayer insulation of the printed wiring board. It can be more suitably used as a resin composition for forming a layer (a resin composition for an interlayer insulating layer of a printed wiring board). In addition, since the resin composition of the present invention exhibits an appropriate melt viscosity and is excellent in component embedding properties, it can be suitably used even when the printed wiring board is a component built-in circuit board.
  • the resin composition of the present invention can be suitably used as a resin composition for embedding components on a component-embedded circuit board (resin composition for embedding components).
  • the resin composition of the present invention also includes a sheet-like laminated material selected from the group consisting of an adhesive film and a prepreg, a solder resist, an underfill material, a die bonding material, a semiconductor sealing material, a hole-filling resin, a component-filling resin, and the like. It can be used in a wide range of applications where the composition is required.
  • the resin composition of the present invention provides a cured product excellent in both thermal diffusibility and adhesion strength to the metal layer, it can be suitably used for adhesion between a semiconductor module and a metal radiator in a power semiconductor device. . Thereby, it is possible to efficiently diffuse the heat generated by the power semiconductor element to the metal radiator.
  • the resin composition of the present invention can be further used for various applications that require high thermal conductivity.
  • the resin composition of the present invention can be applied and used in a varnish state, but industrially, it is generally preferable to use it in the form of an adhesive film.
  • the adhesive film includes a support and a resin composition layer (adhesive layer) bonded to the support, and the resin composition layer (adhesive layer) is the resin composition of the present invention. Consists of.
  • Examples of the support include a film made of a plastic material, a metal foil, and release paper, and a film made of a plastic material and a metal foil are preferable.
  • plastic material examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylics such as polycarbonate (PC) and polymethyl methacrylate (PMMA). , Cyclic polyolefin, triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, polyimide and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • acrylics such as polycarbonate (PC) and polymethyl methacrylate (PMMA).
  • Cyclic polyolefin triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, polyimide and the like.
  • TAC triacetyl cellulose
  • PES polyether sulfide
  • polyether ketone polyimide and the like.
  • polyethylene terephthalate and polyethylene naphthalate are preferable, and inexpensive polyethylene terephthalate is particularly
  • examples of the metal foil include a copper foil and an aluminum foil, and a copper foil is preferable.
  • a foil made of a single metal of copper may be used, and a foil made of an alloy of copper and another metal (for example, tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.). It may be used.
  • the support may be subjected to mat treatment or corona treatment on the surface to be bonded to the resin composition layer.
  • a support with a release layer having a release layer on the surface to be bonded to the resin composition layer may be used.
  • the release agent used for the release layer of the support with the release layer include one or more release agents selected from the group consisting of alkyd resins, olefin resins, urethane resins, and silicone resins.
  • Examples of commercially available release agents include “SK-1”, “AL-5”, “AL-7” manufactured by Lintec Corporation, which are alkyd resin release agents.
  • the thickness of the support is not particularly limited, but is preferably in the range of 5 ⁇ m to 75 ⁇ m, and more preferably in the range of 10 ⁇ m to 60 ⁇ m.
  • a support body is a support body with a release layer, it is preferable that the thickness of the whole support body with a release layer is the said range.
  • the thickness of the resin composition layer is preferably 200 ⁇ m from the viewpoint of efficiently diffusing heat between the layers (conductor layer-insulating layer-conductor layer, semiconductor module-cured material-metal radiator, etc.), although it depends on the application. Below, more preferably 180 ⁇ m or less, still more preferably 160 ⁇ m or less, 140 ⁇ m or less, or 120 ⁇ m or less.
  • the lower limit of the thickness of the resin composition layer is preferably sufficiently larger than the average particle diameter d c3 ( ⁇ m) of the component (C3). For example, d c3 +45 ( ⁇ m) or more, d c3 +55 ( ⁇ m) ) Or more, d c3 +65 ( ⁇ m) or more.
  • a resin varnish in which a resin composition is dissolved in an organic solvent is prepared, and this resin varnish is applied on a support using a die coater or the like and further dried to form a resin composition layer.
  • a resin varnish in which a resin composition is dissolved in an organic solvent is prepared, and this resin varnish is applied on a support using a die coater or the like and further dried to form a resin composition layer.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, cellosolve and butyl carbitol, etc.
  • Carbitols aromatic hydrocarbons such as toluene and xylene, amide solvents such as dimethylformamide, dimethylacetamide (DMAc) and N-methylpyrrolidone.
  • An organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Drying may be performed by a known method such as heating or hot air blowing.
  • the drying conditions are not particularly limited, but the drying is performed so that the content of the organic solvent in the resin composition layer is 10% by mass or less, preferably 5% by mass or less.
  • the resin composition is dried by drying at 50 ° C. to 150 ° C. for 3 minutes to 10 minutes.
  • a physical layer can be formed.
  • the present inventors have found that when the minimum melt viscosity of the resin composition layer is in a specific range, a cured product (insulating layer) that is further excellent in thermal diffusibility and adhesion strength to the metal layer can be obtained.
  • the minimum melt viscosity of the resin composition layer is preferably in the range of 500 poise to 20000 poise.
  • the lower limit of the minimum melt viscosity of the resin composition layer is more preferably 5500 poise or more, further preferably 6000 poise or more, 6500. More than poise or more than 7000 poise.
  • the upper limit of the minimum melt viscosity of the resin composition layer is more preferably 19000 poise or less, still more preferably 18000 poise or less, 17000 poise or less, 16000 poise or less, or 15000 poise or less.
  • the minimum melt viscosity of the resin composition layer is, for example, the content of the component (B), the content of the component (C), the blending ratio of the components (C1) to (C3) in the component (C), and the drying of the resin varnish. It can be adjusted by changing conditions and the like. If the inorganic filler content is increased, the minimum melt viscosity of the resin composition layer may increase excessively. However, in the resin composition of the present invention containing a combination of the above specific (A) to (C) components, ( Even when the content of the component C) is high, a resin composition layer exhibiting a suitable minimum melt viscosity as described above can be obtained.
  • a protective film according to the support can be further laminated on the surface of the resin composition layer that is not joined to the support (that is, the surface opposite to the support).
  • the thickness of the protective film is not particularly limited, but is, for example, 1 ⁇ m to 40 ⁇ m.
  • the adhesive film of the present invention can be suitably used for applications that require high thermal conductivity. That is, the adhesive film of the present invention can be suitably used as an adhesive film for high heat conduction.
  • the adhesive film of the present invention can provide a cured product having excellent adhesion strength to the metal layer in addition to excellent thermal diffusibility. Therefore, the adhesive film of the present invention can be suitably used for bonding a semiconductor module and a metal radiator in a power semiconductor device.
  • the adhesive film of the present invention provides a cured product (insulating layer) that is excellent in both thermal diffusibility and adhesion strength to the metal layer, so that an insulating layer of a printed wiring board is formed (for an insulating layer of a printed wiring board).
  • an insulating layer of a printed wiring board is formed (for an insulating layer of a printed wiring board).
  • an interlayer insulating layer of a printed wiring board for an interlayer insulating layer of a printed wiring board
  • the adhesive film of the present invention can also be suitably used for embedding components of a component built-in circuit board (for embedding components).
  • the printed wiring board of the present invention includes an insulating layer formed of a cured product of the resin composition of the present invention.
  • the printed wiring board of this invention can be manufactured by the method including the process of following (I) and (II) using the above-mentioned adhesive film.
  • (I) A step of laminating an adhesive film on an inner layer substrate so that the resin composition layer of the adhesive film is bonded to the inner layer substrate
  • (II) A step of thermosetting the resin composition layer to form an insulating layer
  • the lamination of the inner layer substrate and the adhesive film can be performed, for example, by thermocompression bonding the adhesive film to the inner layer substrate from the support side.
  • the member that heat-presses the adhesive film to the inner layer substrate include a heated metal plate (SUS end plate, etc.) or a metal roll (SUS roll).
  • heat-pressing member examples include a heated metal plate (SUS end plate, etc.) or a metal roll (SUS roll).
  • the lamination of the inner layer substrate and the adhesive film may be performed by a vacuum laminating method.
  • the thermocompression bonding temperature is preferably 60 ° C. to 160 ° C., more preferably 80 ° C. to 140 ° C.
  • the thermocompression bonding pressure is preferably 0.098 MPa to 1.77 MPa, more preferably 0.
  • the thermocompression bonding time is preferably in the range of 20 seconds to 400 seconds, more preferably in the range of 30 seconds to 300 seconds.
  • Lamination is preferably performed under reduced pressure conditions with a pressure of 26.7 hPa or less.
  • Lamination can be performed with a commercially available vacuum laminator.
  • the commercially available vacuum laminator include a vacuum pressure laminator manufactured by Meiki Seisakusho, a vacuum applicator manufactured by Nichigo Morton, and the like.
  • the laminated adhesive film may be smoothed under normal pressure (atmospheric pressure), for example, by pressing a thermocompression bonding member from the support side.
  • the pressing conditions for the smoothing treatment can be the same conditions as the thermocompression bonding conditions for the laminate.
  • the smoothing treatment can be performed with a commercially available laminator. In addition, you may perform lamination
  • step (II) the resin composition layer is thermoset to form an insulating layer.
  • thermosetting conditions for the resin composition layer are not particularly limited, and the conditions normally employed when forming the insulating layer of the printed wiring board may be used.
  • thermosetting conditions of the resin composition layer vary depending on the type of the resin composition, but the curing temperature is in the range of 120 ° C. to 240 ° C. (preferably in the range of 150 ° C. to 220 ° C., more preferably in the range of 170 ° C. to And the curing time can be in the range of 5 minutes to 120 minutes (preferably 10 minutes to 100 minutes, more preferably 15 minutes to 90 minutes).
  • the resin composition layer may be preheated at a temperature lower than the curing temperature before the resin composition layer is thermally cured.
  • the resin composition layer is formed at a temperature of 50 ° C. or higher and lower than 120 ° C. (preferably 60 ° C. or higher and 110 ° C. or lower, more preferably 70 ° C. or higher and 100 ° C. or lower).
  • Preheating may be performed for 5 minutes or more (preferably 5 minutes to 150 minutes, more preferably 15 minutes to 120 minutes).
  • the insulating layer formed from the cured product of the resin composition of the present invention can exhibit sufficient thermal diffusivity.
  • the insulating layer varies depending on the content and type of the inorganic filler in the resin composition to be used, but is preferably 8 W / m ⁇ K or more, more preferably 8.2 W / m ⁇ K or more, and still more preferably.
  • the thermal conductivity of K or more, or 9.0 W / m ⁇ K or more can be exhibited.
  • the upper limit of the thermal conductivity of the insulating layer of the present invention is not particularly limited, but is usually 30 W / m ⁇ K or less.
  • the thermal conductivity of the insulating layer can be measured by known methods such as a heat flow meter method and a temperature wave analysis method. In the present invention, the thermal conductivity of the insulating layer can be measured according to the description of [Measurement of thermal conductivity of cured product] described later.
  • Step (III) is a step of making a hole in the insulating layer, whereby holes such as via holes and through holes can be formed in the insulating layer.
  • Step (III) may be performed using, for example, a drill, laser, plasma, or the like, depending on the composition of the resin composition used for forming the insulating layer.
  • the dimensions and shape of the holes may be appropriately determined according to the design of the printed wiring board.
  • Step (IV) is a step of roughening the insulating layer.
  • the procedure and conditions for the roughening treatment are not particularly limited, and known procedures and conditions that are usually used when forming an insulating layer of a printed wiring board can be employed.
  • the insulating layer can be roughened by performing a swelling treatment with a swelling liquid, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing liquid in this order.
  • a swelling liquid An alkaline solution, surfactant solution, etc. are mentioned, Preferably it is an alkaline solution.
  • an alkaline solution a sodium hydroxide solution and a potassium hydroxide solution are more preferable.
  • commercially available swelling liquids include “Swelling Dip Securigans P” and “Swelling Dip Securigans SBU” manufactured by Atotech Japan Co., Ltd.
  • the swelling treatment with the swelling liquid is not particularly limited, and can be performed, for example, by immersing the insulating layer in a swelling liquid at 30 ° C. to 90 ° C. for 1 minute to 20 minutes.
  • a swelling liquid at 40 ° C. to 80 ° C. for 5 minutes to 15 minutes.
  • an oxidizing agent for example, the alkaline permanganate solution which melt
  • the roughening treatment with an oxidizing agent such as an alkaline permanganic acid solution is preferably performed by immersing the insulating layer in an oxidizing agent solution heated to 60 to 80 ° C. for 10 to 30 minutes.
  • the concentration of permanganate in the alkaline permanganate solution is preferably 5% by mass to 10% by mass.
  • oxidizing agents include alkaline permanganic acid solutions such as “Concentrate Compact CP” and “Dosing Solution Securigans P” manufactured by Atotech Japan Co., Ltd.
  • the neutralizing solution is preferably an acidic aqueous solution.
  • examples of commercially available products include “Reduction Solution Securigant P” manufactured by Atotech Japan Co., Ltd.
  • the treatment with the neutralizing solution can be performed by immersing the treated surface subjected to the roughening treatment with the oxidizing agent in the neutralizing solution at 30 to 80 ° C. for 5 to 30 minutes.
  • the arithmetic average roughness Ra of the surface of the insulating layer after the roughening treatment is preferably 500 nm or less, more preferably 400 nm or less, further preferably 350 nm or less, still more preferably 300 nm or less, 250 nm or less, 200 nm or less. , 150 nm or less, or 100 nm or less.
  • the arithmetic average roughness (Ra) of the insulating layer surface can be measured using a non-contact type surface roughness meter.
  • a non-contact type surface roughness meter “WYKO NT3300” manufactured by Becoins Instruments is cited.
  • Step (V) is a step of forming a conductor layer.
  • the conductor material used for the conductor layer is not particularly limited.
  • the conductor layer is one or more selected from the group consisting of gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin and indium. Contains metal.
  • the conductor layer may be a single metal layer or an alloy layer.
  • the alloy layer for example, an alloy of two or more metals selected from the above group (for example, nickel-chromium alloy, copper- A layer formed from a nickel alloy and a copper / titanium alloy).
  • single metal layer of chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or nickel / chromium alloy, copper / Nickel alloy, copper / titanium alloy layer is preferred, chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper single metal layer, or nickel / chromium alloy layer is more preferred, aluminum or copper
  • the single metal layer is more preferable.
  • the conductor layer may have a single layer structure or a multilayer structure in which two or more single metal layers or alloy layers made of different types of metals or alloys are laminated. When the conductor layer has a multilayer structure, the layer in contact with the insulating layer is preferably a single metal layer of chromium, zinc or titanium, or an alloy layer of nickel / chromium alloy.
  • the thickness of the conductor layer is generally 3 ⁇ m to 35 ⁇ m, preferably 5 ⁇ m to 30 ⁇ m, although it depends on the desired printed wiring board design.
  • the insulating layer exhibits good adhesion strength to the conductor layer (metal layer).
  • the adhesion strength between the insulating layer and the conductor layer is preferably 0.5 kgf / cm or more, more preferably 0.55 kgf / cm or more, and further preferably 0.6 kgf / cm. As mentioned above, it is 0.62 kgf / cm or more, 0.64 kgf / cm or more, 0.66 kgf / cm or more, 0.68 kgf / cm or more, or 0.7 kgf / cm or more.
  • the upper limit of the adhesion strength is not particularly limited, but is usually 1.0 kgf / cm or less, 0.9 kgf / cm or less, and the like.
  • the insulating layer exhibits excellent thermal diffusivity, and thus exhibits high adhesion strength to the conductor layer. Therefore, in a semiconductor device in which a semiconductor element is mounted on the printed wiring board, heat generated by the semiconductor element can be efficiently diffused over the entire printed wiring board.
  • the peel strength between the insulating layer and the conductor layer refers to the peel strength (90 degree peel strength) when the conductor layer is peeled in the direction perpendicular to the insulating layer (90 degree direction).
  • the peel strength when peeled in the direction perpendicular to the layer (90-degree direction) can be determined by measuring with a tensile tester. Examples of the tensile tester include “AC-50C-SL” manufactured by TSE Corporation.
  • a semiconductor device can be manufactured using the printed wiring board of the present invention.
  • Examples of the semiconductor device include various semiconductor devices used for electrical products (for example, computers, mobile phones, digital cameras, and televisions) and vehicles (for example, motorcycles, automobiles, trains, ships, airplanes, and the like).
  • the semiconductor device of the present invention can be manufactured by mounting a semiconductor element on a conductive portion of a printed wiring board.
  • the “conduction location” is a “location where an electrical signal is transmitted on a printed wiring board”, and the location may be a surface or an embedded location.
  • the semiconductor element is not particularly limited as long as it is an electric circuit element made of a semiconductor.
  • the semiconductor element mounting method for manufacturing the semiconductor device of the present invention is not particularly limited as long as the semiconductor element functions effectively.
  • the wire bonding mounting method, the flip chip mounting method, and the bumpless method are used.
  • Examples include a mounting method using a build-up layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
  • BBUL build-up layer
  • ACF anisotropic conductive film
  • NCF non-conductive film
  • a mounting method using a build-up layer without a bump means “a mounting method in which a semiconductor element is directly embedded in a recess of a printed wiring board and the semiconductor element is connected to a circuit wiring on the printed wiring board”. That is.
  • the resin composition of the present invention provides a cured product excellent in both thermal diffusibility and adhesion strength to the metal layer. Therefore, the resin composition of the present invention can be advantageously used for forming a thermal diffusion layer in a semiconductor device (power semiconductor device) mounted with a power semiconductor element.
  • FIG. 1 shows a schematic diagram of the power semiconductor device of the present invention according to the above embodiment (wiring with an external circuit is omitted).
  • a power semiconductor device 10 includes a metal radiator 1, a semiconductor module 3, and an insulating layer formed by a cured product of the resin composition of the present invention provided between the metal radiator 1 and the semiconductor module 3. 2 is included.
  • the metal radiator 1 has a first main surface 1a and a second main surface 1b.
  • the metal radiator is not particularly limited as long as it is a radiator made of a metal material, and a known metal radiator that can be used in a power semiconductor device may be used. Aluminum and copper are suitable as the metal material for the metal radiator.
  • the first main surface 1a of the metal radiator 1 may be flat or uneven. Even if the 1st main surface 1a of a metal heat sink is flat, the resin composition of this invention can implement
  • the arithmetic mean roughness (Ra) of the first main surface of the metal radiator may be 500 nm or less, 400 nm or less, 300 nm or less, 200 nm or less, 100 nm or less, or 50 nm or less.
  • the lower limit of Ra on the first main surface of the metal radiator is not particularly limited, but may be preferably 1 nm or more, 5 nm or more, 10 nm or more, etc. from the viewpoint of stabilizing the adhesion strength between the insulating layer and the metal radiator. .
  • the second main surface 1b of the metal radiator 1 may be flat or uneven. From the viewpoint of efficiently dissipating heat to the external environment, it is preferable that the second main surface of the metal radiator has an uneven shape (not shown) so as to increase the heat dissipation surface area.
  • the metal heat dissipating body 1 may have a heat exchange medium (for example, a coolant such as water) formed therein (not shown) so that heat from the semiconductor module 3 can be efficiently diffused.
  • a heat exchange medium for example, a coolant such as water
  • the semiconductor module 3 includes a semiconductor element substrate 4, a power semiconductor element 8, and lead wires 9 for conducting the semiconductor element substrate and the power semiconductor element.
  • the semiconductor element substrate 4 includes a substrate 6, a metal layer 7 provided on the surface of the substrate on the insulating layer 2 side, and a metal layer (circuit) 5 provided on the surface of the substrate opposite to the insulating layer 2.
  • the substrate 6 may be the same as the “inner layer substrate” in the above [printed wiring board], and may be formed from a cured product of the resin composition of the present invention.
  • the metal layer (circuit) 5 and the metal layer 6 may be the same as the “conductor layer” in the [printed wiring board].
  • the semiconductor element substrate 4 may also be a printed wiring board including an insulating layer formed of a cured product of the resin composition of the present invention.
  • the semiconductor module is not limited to the embodiment shown in FIG. 1, and any semiconductor module including a power semiconductor element may be used without any particular limitation.
  • a semiconductor module including a lead frame and a power semiconductor element mounted on the lead frame may be used as in a power semiconductor device described in Japanese Patent Application Laid-Open No. 2002-246542.
  • the second main surface 3b of the semiconductor module (that is, the surface of the metal layer 7). ) Is flat, good adhesion strength to the semiconductor module can be realized.
  • Ra of the second main surface of the semiconductor module may be the same as Ra of the first main surface of the metal radiator.
  • Ra of at least one of the first main surface of the metal radiator and the second main surface of the semiconductor module may be 500 nm or less.
  • the insulating layer formed from the cured product of the resin composition of the present invention is excellent in both thermal diffusibility and adhesion strength to the metal layer.
  • the thermal conductivity of the insulating layer is 8 W / m ⁇ K or more
  • the adhesion strength between the insulating layer and at least one of the first main surface of the metal radiator and the second main surface of the semiconductor module is 0.5 kgf / cm or more.
  • the preferable range of the thermal conductivity of the insulating layer is as described for the insulating layer of the [printed wiring board], and the insulating layer, the first main surface of the metal radiator, and the second of the semiconductor module.
  • the adhesion strength with at least one of the main surfaces of the printed wiring board can be the same as the adhesion strength between the insulating layer and the conductor layer of the [printed wiring board].
  • a sealing resin (not shown) for sealing the semiconductor module may be provided in order to protect the power semiconductor element from deterioration due to the environment such as light, heat, and humidity.
  • the sealing resin a known resin that can be used in the manufacture of a semiconductor device may be used, or the resin composition of the present invention may be used. Therefore, in one embodiment, the power semiconductor device of the present invention includes a sealing layer formed of a cured product of the resin composition of the present invention provided to seal the semiconductor module.
  • the present invention also provides a laminate of an insulating layer and a metal layer.
  • the laminate of the present invention is a laminate of an insulating layer and a metal layer, the thermal conductivity of the insulating layer is 8 W / m ⁇ K or more, and the adhesion strength between the insulating layer and the metal layer is 0.5 kgf. / Cm or more.
  • the laminate of the present invention including an insulating layer excellent in both thermal diffusibility and adhesion strength to a metal layer is realized for the first time using the resin composition of the present invention. That is, the laminated body of this invention contains the insulating layer and metal layer which were formed with the hardened
  • the preferable range of the thermal conductivity of the insulating layer and the preferable range of the adhesion strength between the insulating layer and the metal layer are as described in the above [Printed wiring board].
  • the metal layer may be the same as the “conductor layer” in the above [printed wiring board].
  • the metal layer may be the same as the “metal radiator” in the above [power semiconductor device]. Therefore, in the laminate of the present invention, the metal layer is preferably made of copper or aluminum.
  • the thickness of the insulating layer may be the same as the preferred thickness of the resin composition layer in [Adhesive film].
  • an insulating layer having a desired thickness may be achieved by laminating resin composition layers using a plurality of adhesive films. .
  • the support is peeled off, and an electrolytic copper foil (manufactured by JX Nippon Mining & Metals Co., Ltd.) is attached so that the resin composition layer and the glossy surface of the electrolytic copper foil are bonded to the exposed surface of the resin composition layer.
  • JTCP-35u ”and Ra of glossy surface: 200 nm were laminated.
  • pressing was performed at 140 ° C. and a pressure of 5 kgf / cm 2 for 10 minutes, then at 200 ° C. and a pressure of 5 kgf / cm 2 for 90 minutes, The resin composition layer was cured to form an insulating layer.
  • melt viscosity was measured using a dynamic viscoelasticity measuring device (“Reosol-G3000” manufactured by UBM Co., Ltd.). About 1.8 g of the sample resin composition, using a parallel plate having a diameter of 18 mm, the temperature was increased from a measurement start temperature of 60 ° C. at a temperature increase rate of 5 ° C./min, a measurement temperature interval of 2.5 ° C., a frequency of 1 Hz The measurement was performed under a measurement condition of 1 deg strain. The lowest viscosity value ( ⁇ ) was taken as the lowest melt viscosity.
  • a phosphoric acid ester type anionic surfactant (“RS-610” manufactured by Toho Chemical Industry Co., Ltd.)
  • aluminum nitride having an average particle diameter of 1.1 ⁇ m (manufactured by Tokuyama Co., Ltd.) “Shape H”, specific surface area 2.5 m 2 / g, specific gravity 3.0 g / cm 3 , hereinafter referred to as “aluminum nitride 1”) 34 parts, average particle size 4.7 ⁇ m aluminum nitride (“Shapal” manufactured by Tokuyama Corporation) H ”, specific surface area 1.0 m 2 / g, specific gravity 3.1 g / cm 3 , hereinafter referred to as“ aluminum nitride 2 ”) 34 parts, average particle diameter 22.3 ⁇ m of aluminum nitride (“ Shapal H ”manufactured by Tokuyama Corporation) ”, Specific surface area of 0.2 m 2 / g, specific gravity
  • phenoxy resin (YL7553” manufactured by Mitsubishi Chemical Corporation, 1: 1 solution of methyl ethyl ketone (MEK) and cyclohexanone having a solid content of 30% by mass)
  • liquid phenolic curing agent at least allyl group and alkyl Liquid phenol having a group
  • ACG-1 manufactured by Gunei Chemical Industry Co., Ltd., 5.5 equivalents of a hydroxyl group, weight average molecular weight 1690
  • curing accelerator (4-dimethylaminopyridine (DMAP), solid content
  • a resin varnish was prepared by mixing 4.5 parts of a 5 mass% MEK solution).
  • PET film with a release layer (“PET501010” manufactured by Lintec Corporation, thickness 50 ⁇ m) was prepared as a support.
  • a resin varnish is uniformly applied on the release layer side of the support so that the thickness of the resin composition layer after drying is 100 ⁇ m, and dried at 75 ° C. to 120 ° C. for 10 minutes to produce an adhesive film. did.
  • Example 2 Example 1 except that 2 parts of carbodiimide compound (“V-03” manufactured by Nisshinbo Chemical Co., Ltd., solid content 51%, viscosity 38 mPa ⁇ s (20 ° C.)) was further added after kneading with 3 rolls. An adhesive film was prepared in the same manner.
  • V-03 manufactured by Nisshinbo Chemical Co., Ltd., solid content 51%, viscosity 38 mPa ⁇ s (20 ° C.)
  • Example 3 An adhesive film was produced in the same manner as in Example 1 except that the amount of aluminum nitride 1 was changed to 17 parts and the amount of aluminum nitride 2 was changed to 51 parts.
  • Example 6 Adhesive film in the same manner as in Example 1 except that the amount of aluminum nitride 1 was changed to 72.5 parts, the amount of aluminum nitride 2 was changed to 14.5 parts, and the amount of aluminum nitride 3 was changed to 116 parts.
  • the amount of aluminum nitride 1 was changed to 72.5 parts
  • the amount of aluminum nitride 2 was changed to 14.5 parts
  • the amount of aluminum nitride 3 was changed to 116 parts.
  • Example 7 Adhesive film in the same manner as in Example 1 except that the amount of aluminum nitride 1 was changed to 38.1 parts, the amount of aluminum nitride 2 was changed to 38.1 parts, and the amount of aluminum nitride 3 was changed to 127 parts. Was made.
  • Example 8 Bisphenol type epoxy resin (“ZX1059” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., 1: 1 mixture of bisphenol A type and bisphenol F type, epoxy equivalent of about 169), 5 parts, biphenyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.) 4.5 parts of “NC3000L”, epoxy equivalent of about 269), 3 parts of bixylenol type epoxy resin (“YX4000HK” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent of about 185) are dissolved in 10 parts of solvent naphtha with stirring while heating. It was.
  • a phosphate ester type anionic surfactant (“RS-710” manufactured by Toho Chemical Industry Co., Ltd.)
  • aluminum nitride having an average particle size of 1.5 ⁇ m (manufactured by Tokuyama Co., Ltd.) "Shape H (water-resistant treated product)", specific surface area 2.5 m 2 / g, specific gravity 3.3 g / cm 3 , hereinafter referred to as “aluminum nitride 4”) 34 parts, average particle size 5.2 ⁇ m aluminum nitride (stock ) "Shapal H (water-resistant treated product)" manufactured by Tokuyama, specific surface area 0.8 m 2 / g, specific gravity 3.3 g / cm 3 , hereinafter referred to as “aluminum nitride 5”) 34 parts, nitriding with an average particle diameter of 23.0 ⁇ m
  • aluminum nitride 5 nitriding with an average particle diameter of 23.0 ⁇
  • Example 9 An adhesive film was prepared in the same manner as in Example 8 except that the liquid phenolic curing agent was changed to 5.5 parts “MEH-8000H” (liquid phenol having an allyl group, hydroxyl equivalent weight of about 140) manufactured by Meiwa Kasei Co., Ltd. Produced.
  • MEH-8000H liquid phenol having an allyl group, hydroxyl equivalent weight of about 140
  • Example 10 The compounding amount of aluminum nitride 4 is 17.0 parts, the compounding amount of aluminum nitride 5 is 51.0 parts, and the curing accelerator is tetrabutylphosphonium decanoate (TBPDA) (MEK solution having a solid content of 10% by mass).
  • TPDA tetrabutylphosphonium decanoate
  • the adhesive film was produced like Example 8 except having changed into the part.
  • Example 11 The amount of aluminum nitride 4 was changed to 37.8 parts, and the amount of aluminum nitride 5 was changed to 37.8 parts. Instead of aluminum nitride 6, aluminum nitride having an average particle diameter of 30 ⁇ m (“Shapal H” manufactured by Tokuyama Corporation) was used.
  • Example 12 The amount of phosphate ester type anionic surfactant is 1.2 parts, the amount of aluminum nitride 4 is 44.4 parts, and alumina with an average particle diameter of 4 ⁇ m is used instead of aluminum nitride 5 (manufactured by Showa Denko KK) “CB-P05”, specific surface area 0.7 m 2 / g, specific gravity 2.2 g / cm 3 , hereinafter referred to as “alumina 2”) 44.4 parts, instead of aluminum nitride 6, alumina having an average particle diameter of 28 ⁇ m (Showa "CB-A30S” manufactured by Denko Co., Ltd., with a specific surface area of 0.2 m 2 / g, specific gravity of 2.3 g / cm 3 (hereinafter referred to as “alumina 3”) was added and 148 parts were added, and the phenoxy resin was changed to “YL7482.” An adhesive film was produced in the same manner as in Example 8 except that.
  • Example 13 The amount of the phosphate ester type anionic surfactant was changed to 1.1 parts.
  • alumina having an average particle diameter of 1 ⁇ m (“AHP300” manufactured by Nippon Light Metal Co., Ltd., specific surface area 2.6 m 2 / g, specific gravity 3.98 g / cm 3 , hereinafter referred to as “alumina 1”)
  • 40.8 parts was added, the amount of alumina 2 was changed to 40.8 parts, and aluminum nitride 7 was replaced with 136 instead of alumina 3.
  • An adhesive film was produced in the same manner as in Example 12 except that the curing accelerator was changed to 6 parts of tetrabutylphosphonium decanoate (TBPDA) (MEK solution having a solid content of 10% by mass).
  • TPDA tetrabutylphosphonium decanoate
  • Example 14 An adhesive film was produced in the same manner as in Example 13 except that the curing accelerator was changed to 4.5 parts of 4-dimethylaminopyridine (DMAP) and MEK solution having a solid content of 5% by mass.
  • DMAP 4-dimethylaminopyridine

Abstract

Provided is a resin composition which gives cured objects that exhibit sufficient heat-diffusing properties and have a satisfactory strength of adhesion to metal layers. The resin composition comprises (A) an epoxy resin, (B) a hardener, and (C) inorganic fillers, wherein the component (B) comprises a liquid phenolic hardener and the component (C) comprises an inorganic filler (C1) having an average particle diameter of 0.1 µm or larger but smaller than 3 µm, an inorganic filler (C2) having an average particle diameter of 3 µm or larger but smaller than 10 µm, and an inorganic filler (C3) having an average particle diameter of 10-35 µm.

Description

樹脂組成物Resin composition
 本発明は、樹脂組成物に関する。さらには、接着フィルム、プリント配線板、パワー半導体装置、及び積層体に関する。 The present invention relates to a resin composition. Furthermore, it is related with an adhesive film, a printed wiring board, a power semiconductor device, and a laminated body.
 近年、電子機器の小型化及び高機能化が進み、プリント配線板における半導体素子の実装密度は高くなる傾向にある。実装される半導体素子の高機能化も相俟って、半導体素子が発生する熱を効率的に拡散する技術が求められている。例えば、特許文献1には、樹脂と、特定の平均粒子径を有する無機充填材とを含む高熱伝導性樹脂組成物を硬化させてプリント配線板の絶縁層を形成する技術が開示されている。 In recent years, electronic devices have become smaller and more functional, and the mounting density of semiconductor elements on printed wiring boards tends to increase. A technology for efficiently diffusing heat generated by a semiconductor element is demanded in combination with enhancement of functions of a semiconductor element to be mounted. For example, Patent Document 1 discloses a technique for forming an insulating layer of a printed wiring board by curing a high thermal conductive resin composition containing a resin and an inorganic filler having a specific average particle diameter.
 また特許文献2には、発熱量が特に大きい電力用半導体素子(「パワー半導体素子」ともいう。)を使用した半導体モジュールの放熱性を改善すべく、該半導体モジュールを接着剤により金属放熱板と接着させて得られるパワー半導体装置が開示されている。 Further, in Patent Document 2, in order to improve the heat dissipation of a semiconductor module using a power semiconductor element that generates a particularly large amount of heat (also referred to as “power semiconductor element”), the semiconductor module is bonded to a metal heat sink with an adhesive. A power semiconductor device obtained by bonding is disclosed.
特開2013-189625号公報JP 2013-189625 A 特開2002-246542号公報JP 2002-246542 A
 本発明者らは、半導体素子が発生する熱を更に効率的に拡散させるべく、絶縁層の熱拡散性について検討した。その結果、無機充填材を含む樹脂組成物を硬化させて絶縁層を形成する場合、得られる絶縁層の熱拡散性は、金属層(導体層)に対する密着強度とトレードオフの関係にあることを本発明者らは見出した。詳細には、樹脂組成物中の無機充填材の含有量を高めることによって、得られる絶縁層の熱拡散性を向上させることができるものの、十分な熱拡散性を発現する程度に無機充填材の含有量を高めると、得られる絶縁層は金属層(導体層)に対する密着強度に劣ることを見出した。絶縁層自体の熱拡散性が高くとも、絶縁層-金属層間の密着不良に起因して絶縁層-金属層間の熱拡散が劣る場合には、プリント配線板全体として所期の熱拡散性を達成することは困難である。 The present inventors examined the thermal diffusivity of the insulating layer in order to more efficiently diffuse the heat generated by the semiconductor element. As a result, when an insulating layer is formed by curing a resin composition containing an inorganic filler, the thermal diffusibility of the resulting insulating layer is in a trade-off relationship with the adhesion strength to the metal layer (conductor layer). The inventors have found. Specifically, by increasing the content of the inorganic filler in the resin composition, the thermal diffusibility of the resulting insulating layer can be improved, but the inorganic filler is sufficiently developed to exhibit sufficient thermal diffusivity. It was found that when the content is increased, the obtained insulating layer is inferior in adhesion strength to the metal layer (conductor layer). Even if the insulation layer itself has high thermal diffusivity, if the thermal diffusion between the insulation layer and the metal layer is inferior due to poor adhesion between the insulation layer and the metal layer, the desired thermal diffusivity is achieved for the entire printed wiring board. It is difficult to do.
 本発明の課題は、十分な熱拡散性を発現すると共に、金属層に対して良好な密着強度を呈する硬化物をもたらす樹脂組成物を提供することにある。 An object of the present invention is to provide a resin composition that provides a cured product that exhibits sufficient thermal diffusivity and exhibits good adhesion strength to a metal layer.
 本発明者らは、上記の課題につき鋭意検討した結果、下記特定の構成を有する樹脂組成物を使用することにより上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies on the above problems, the present inventors have found that the above problems can be solved by using a resin composition having the following specific configuration, and have completed the present invention.
 すなわち、本発明は以下の内容を含む。
[1] (A)エポキシ樹脂、(B)硬化剤及び(C)無機充填材を含む樹脂組成物であって、
 (B)成分が液状フェノール系硬化剤を含み、
 (C)成分が、(C1)平均粒子径0.1μm以上3μm未満の無機充填材、(C2)平均粒子径3μm以上10μm未満の無機充填材及び(C3)平均粒子径10μm以上35μm以下の無機充填材を含む、樹脂組成物。
[2] (C)成分の含有量を100質量%とした場合、(C1)成分の含有量が5質量%~40質量%、(C2)成分の含有量が5質量%~40質量%、(C3)成分の含有量が20質量%~90質量%である、[1]に記載の樹脂組成物。
[3] (C1)成分の平均粒径をdc1(μm)、(C2)成分の平均粒径をdc2(μm)、(C3)成分の平均粒径をdc3(μm)としたとき、dc1、dc2及びdc3が、dc2-dc1≧0.5及びdc3-dc2≧5.0の関係を満たす、[1]又は[2]に記載の樹脂組成物。
[4] (C)成分の含有量が、樹脂組成物中の不揮発成分を100体積%とした場合、60体積%~90体積%である、[1]~[3]のいずれかに記載の樹脂組成物。
[5] (C)成分が、熱伝導率25W/m・K以上の無機充填材を含む、[1]~[4]のいずれかに記載の樹脂組成物。
[6] (C)成分が、窒化アルミニウム、アルミナ、窒化ホウ素、窒化ケイ素及び炭化ケイ素からなる群から選択される1又は2以上の無機充填材を含む、[1]~[5]のいずれかに記載の樹脂組成物。
[7] (C)成分が、窒化アルミニウムを含む、[1]~[6]のいずれかに記載の樹脂組成物。
[8] (A)成分が、液状エポキシ樹脂を含む、[1]~[7]のいずれかに記載の樹脂組成物。
[9] (D)硬化促進剤をさらに含む、[1]~[8]のいずれかに記載の樹脂組成物。
[10] (D)成分が、テトラ置換ホスホニウム塩を含む、[9]に記載の樹脂組成物。
[11] (E)カルボジイミド化合物をさらに含む、[1]~[10]のいずれかに記載の樹脂組成物。
[12] 支持体と、該支持体と接合している[1]~[11]のいずれかに記載の樹脂組成物からなる樹脂組成物層とを含む接着フィルム。
[13] 樹脂組成物層の最低溶融粘度が500ポイズ~20000ポイズである、[12]に記載の接着フィルム。
[14] 樹脂組成物層の厚さが、(C3)成分の平均粒径をdc3(μm)としたとき、(dc3+45)μm~200μmである、[12]又は[13]に記載の接着フィルム。
[15] 高熱伝導用である[12]~[14]のいずれかに記載の接着フィルム。
[16] 金属放熱体と半導体モジュールとの接着に使用される[12]~[15]のいずれかに記載の接着フィルム。
[17] [1]~[11]のいずれかに記載の樹脂組成物の硬化物により形成された絶縁層を含むプリント配線板。
[18] 第1及び第2の主面を有する金属放熱体、
 第1及び第2の主面を有する半導体モジュール、及び
 金属放熱体の第1の主面と半導体モジュールの第2の主面と接合するように、金属放熱体と半導体モジュールとの間に設けられた[1]~[11]のいずれかに記載の樹脂組成物の硬化物により形成された絶縁層を含むパワー半導体装置。
[19] 金属放熱体の第1の主面及び半導体モジュールの第2の主面の少なくとも一方の算術平均粗さ(Ra)が500nm以下である、[18]に記載のパワー半導体装置。
[20] 絶縁層の熱伝導率が8W/m・K以上であり、
 絶縁層と金属放熱体の第1の主面及び半導体モジュールの第2の主面の少なくとも一方との密着強度が0.5kgf/cm以上である、[18]又は[19]に記載のパワー半導体装置。
[21] 絶縁層と金属層の積層体であって、
 絶縁層の熱伝導率が8W/m・K以上であり、かつ、絶縁層と金属層との密着強度が0.5kgf/cm以上である積層体。
[22] 金属層の絶縁層と接合している表面の算術平均粗さ(Ra)が500nm以下である、[21]に記載の積層体。
[23] 金属層が銅又はアルミニウムからなる、[21]又は[22]に記載の積層体。
[24] 絶縁層が[1]~[11]のいずれかに記載の樹脂組成物の硬化物により形成されてなる、[21]~[23]のいずれかに記載の積層体。
That is, the present invention includes the following contents.
[1] A resin composition comprising (A) an epoxy resin, (B) a curing agent and (C) an inorganic filler,
(B) a component contains a liquid phenol type hardening | curing agent,
Component (C) is (C1) an inorganic filler having an average particle size of 0.1 μm or more and less than 3 μm, (C2) an inorganic filler having an average particle size of 3 μm or more and less than 10 μm, and (C3) an inorganic material having an average particle size of 10 μm or more and 35 μm or less. A resin composition containing a filler.
[2] When the content of the component (C) is 100% by mass, the content of the component (C1) is 5% by mass to 40% by mass, the content of the component (C2) is 5% by mass to 40% by mass, The resin composition according to [1], wherein the content of the component (C3) is 20% by mass to 90% by mass.
[3] When the average particle size of component (C1) is dc1 (μm), the average particle size of component (C2) is dc2 (μm), and the average particle size of component (C3) is dc3 (μm) , D c1 , d c2, and d c3 satisfy the relationship of d c2 -d c1 ≧ 0.5 and d c3 -d c2 ≧ 5.0, [1] or [2].
[4] The content of the component (C) is 60% to 90% by volume when the nonvolatile component in the resin composition is 100% by volume, according to any one of [1] to [3] Resin composition.
[5] The resin composition according to any one of [1] to [4], wherein the component (C) includes an inorganic filler having a thermal conductivity of 25 W / m · K or more.
[6] Any of [1] to [5], wherein the component (C) includes one or more inorganic fillers selected from the group consisting of aluminum nitride, alumina, boron nitride, silicon nitride, and silicon carbide. The resin composition described in 1.
[7] The resin composition according to any one of [1] to [6], wherein the component (C) includes aluminum nitride.
[8] The resin composition according to any one of [1] to [7], wherein the component (A) includes a liquid epoxy resin.
[9] The resin composition according to any one of [1] to [8], further comprising (D) a curing accelerator.
[10] The resin composition according to [9], wherein the component (D) includes a tetra-substituted phosphonium salt.
[11] The resin composition according to any one of [1] to [10], further comprising (E) a carbodiimide compound.
[12] An adhesive film comprising a support and a resin composition layer comprising the resin composition according to any one of [1] to [11] bonded to the support.
[13] The adhesive film according to [12], wherein the resin composition layer has a minimum melt viscosity of 500 poise to 20000 poise.
[14] The thickness of the resin composition layer is (d c3 +45) μm to 200 μm, when the average particle diameter of the component (C3) is d c3 (μm). Adhesive film.
[15] The adhesive film according to any one of [12] to [14], which is for high heat conduction.
[16] The adhesive film according to any one of [12] to [15], which is used for bonding a metal radiator and a semiconductor module.
[17] A printed wiring board including an insulating layer formed of a cured product of the resin composition according to any one of [1] to [11].
[18] A metal radiator having first and second main surfaces,
Semiconductor module having first and second main surfaces, and provided between the metal heat sink and the semiconductor module so as to be joined to the first main surface of the metal heat sink and the second main surface of the semiconductor module. A power semiconductor device comprising an insulating layer formed of a cured product of the resin composition according to any one of [1] to [11].
[19] The power semiconductor device according to [18], wherein the arithmetic average roughness (Ra) of at least one of the first main surface of the metal heat sink and the second main surface of the semiconductor module is 500 nm or less.
[20] The thermal conductivity of the insulating layer is 8 W / m · K or more,
The power semiconductor according to [18] or [19], wherein adhesion strength between the insulating layer and at least one of the first main surface of the metal radiator and the second main surface of the semiconductor module is 0.5 kgf / cm or more. apparatus.
[21] A laminate of an insulating layer and a metal layer,
A laminate in which the thermal conductivity of the insulating layer is 8 W / m · K or more and the adhesion strength between the insulating layer and the metal layer is 0.5 kgf / cm or more.
[22] The laminate according to [21], wherein the arithmetic average roughness (Ra) of the surface bonded to the insulating layer of the metal layer is 500 nm or less.
[23] The laminate according to [21] or [22], wherein the metal layer is made of copper or aluminum.
[24] The laminate according to any one of [21] to [23], wherein the insulating layer is formed of a cured product of the resin composition according to any one of [1] to [11].
 本発明によれば、十分な熱拡散性を発現すると共に、金属層に対して良好な密着強度を呈する硬化物をもたらす樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a resin composition that provides a cured product exhibiting sufficient thermal diffusibility and exhibiting good adhesion strength to a metal layer.
 本発明の樹脂組成物を用いてプリント配線板の絶縁層を形成することにより、半導体素子が発生する熱を効率的に拡散させることができる。 By forming the insulating layer of the printed wiring board using the resin composition of the present invention, the heat generated by the semiconductor element can be efficiently diffused.
 本発明の樹脂組成物は熱拡散性及び金属層に対する密着強度の双方に優れる硬化物をもたらすことから、パワー半導体装置において半導体モジュールと金属放熱体とを接着させるための接着剤として極めて有用である。 Since the resin composition of the present invention provides a cured product excellent in both thermal diffusibility and adhesion strength to the metal layer, it is extremely useful as an adhesive for bonding a semiconductor module and a metal radiator in a power semiconductor device. .
図1は、本発明のパワー半導体装置を示す模式図である。FIG. 1 is a schematic diagram showing a power semiconductor device of the present invention.
 以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail on the basis of preferred embodiments thereof.
 [樹脂組成物]
 本発明の樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤及び(C)無機充填材を含み、(B)成分が液状フェノール系硬化剤を含み、(C)成分が、(C1)平均粒子径0.1μm以上3μm未満の無機充填材、(C2)平均粒子径3μm以上10μm未満の無機充填材及び(C3)平均粒子径10μm以上35μm以下の無機充填材を含むことを特徴とする。
[Resin composition]
The resin composition of the present invention includes (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler, (B) a component includes a liquid phenolic curing agent, and (C) a component is (C1 And (C2) an inorganic filler having an average particle size of 3 μm or more and less than 10 μm, and (C3) an inorganic filler having an average particle size of 10 μm or more and 35 μm or less. To do.
 先述のとおり、無機充填材を含む樹脂組成物を硬化させて絶縁層を形成する場合、得られる絶縁層の熱拡散性は、金属層(導体層)に対する密着強度とトレードオフの関係にあった。これに対し、上記特定の(A)乃至(C)成分を組み合わせて含む本発明の樹脂組成物は、熱拡散性と金属層に対する密着強度の双方に優れる硬化物(絶縁層)を実現することができる。 As described above, when an insulating layer is formed by curing a resin composition containing an inorganic filler, the thermal diffusibility of the resulting insulating layer has a trade-off relationship with the adhesion strength to the metal layer (conductor layer). . On the other hand, the resin composition of the present invention containing the specific components (A) to (C) in combination realizes a cured product (insulating layer) excellent in both thermal diffusibility and adhesion strength to the metal layer. Can do.
 <(A)エポキシ樹脂>
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、トリメチロール型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂等が挙げられる。エポキシ樹脂は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<(A) Epoxy resin>
Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol novolak type epoxy resin, Phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, glycidyl amine type epoxy resin, glycidyl ester type epoxy resin, cresol novolac type epoxy resin, biphenyl type Epoxy resin, linear aliphatic epoxy resin, epoxy resin having butadiene structure, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring Epoxy resins, cyclohexanedimethanol type epoxy resins, naphthylene ether type epoxy resin, trimethylol type epoxy resin, tetraphenyl ethane epoxy resin and the like. An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type.
 エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。エポキシ樹脂の不揮発成分を100質量%としたとき、少なくとも50質量%以上は1分子中に2個以上のエポキシ基を有するエポキシ樹脂であることが好ましい。 The epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule. When the nonvolatile component of the epoxy resin is 100% by mass, at least 50% by mass is preferably an epoxy resin having two or more epoxy groups in one molecule.
 十分な可撓性を有し取り扱い性に優れる接着フィルムを得る観点、金属層に対し良好な密着強度を呈する樹脂組成物層(ひいては絶縁層)を得る観点から、エポキシ樹脂は、温度20℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」という。)を含むことが好ましい。液状エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する液状エポキシ樹脂が好ましく、1分子中に2個以上のエポキシ基を有する芳香族系液状エポキシ樹脂がより好ましい。本発明において、芳香族系のエポキシ樹脂とは、その分子内に芳香環を有するエポキシ樹脂を意味する。 From the viewpoint of obtaining an adhesive film having sufficient flexibility and excellent handleability, and from the viewpoint of obtaining a resin composition layer (and thus an insulating layer) exhibiting good adhesion strength to the metal layer, the epoxy resin is at a temperature of 20 ° C. It preferably contains a liquid epoxy resin (hereinafter referred to as “liquid epoxy resin”). The liquid epoxy resin is preferably a liquid epoxy resin having two or more epoxy groups in one molecule, and more preferably an aromatic liquid epoxy resin having two or more epoxy groups in one molecule. In the present invention, the aromatic epoxy resin means an epoxy resin having an aromatic ring in the molecule.
 エポキシ樹脂は、温度20℃で固体状のエポキシ樹脂(「固体状エポキシ樹脂」ともいう。)を含んでもよい。固体状エポキシ樹脂としては、1分子中に3個以上のエポキシ基を有する固体状エポキシ樹脂が好ましく、1分子中に3個以上のエポキシ基を有する芳香族系固体状エポキシ樹脂がより好ましい。 The epoxy resin may include a solid epoxy resin (also referred to as “solid epoxy resin”) at a temperature of 20 ° C. The solid epoxy resin is preferably a solid epoxy resin having 3 or more epoxy groups in one molecule, and more preferably an aromatic solid epoxy resin having 3 or more epoxy groups in one molecule.
 なお、本発明において、温度20℃で液状か固体状かの判別は、対象成分が単独状態(すなわち、溶剤等の他の成分を実質的に含まない状態)にある際に行う。 In the present invention, the determination of whether the target component is liquid or solid at a temperature of 20 ° C. is performed when the target component is in a single state (that is, a state that does not substantially include other components such as a solvent).
 エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂とを併用する場合、それらの量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、質量比で、1:0.1~1:4の範囲が好ましく、1:0.3~1:3の範囲がより好ましく、1:0.5~1:2.5の範囲がさらに好ましく、1:0.7~1:2の範囲が特に好ましい。液状エポキシ樹脂と固体状エポキシ樹脂との量比を斯かる範囲とすることにより、無機充填材含有量が高い場合にも良好な機械強度を呈すると共に金属層に対し十分な密着強度を呈する絶縁層を得ることができる。 In the case where a liquid epoxy resin and a solid epoxy resin are used in combination as the epoxy resin, the amount ratio thereof (liquid epoxy resin: solid epoxy resin) is in a range of 1: 0.1 to 1: 4 by mass ratio. The range of 1: 0.3 to 1: 3 is more preferable, the range of 1: 0.5 to 1: 2.5 is more preferable, and the range of 1: 0.7 to 1: 2 is particularly preferable. An insulating layer that exhibits good mechanical strength and sufficient adhesion strength to the metal layer even when the content of the inorganic filler is high, by adjusting the amount ratio of the liquid epoxy resin to the solid epoxy resin within such a range. Can be obtained.
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、2官能脂肪族エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂及びブタジエン構造を有するエポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、2官能脂肪族エポキシ樹脂及びナフタレン型エポキシ樹脂がより好ましい。液状エポキシ樹脂の具体例としては、DIC(株)製の「HP4032」、「HP4032H」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂)、三菱化学(株)製の「jER828EL」、「828US」(ビスフェノールA型エポキシ樹脂)、「jER807」(ビスフェノールF型エポキシ樹脂)、「jER152」(フェノールノボラック型エポキシ樹脂)、「YL7410」(2官能脂肪族エポキシ樹脂)、新日鉄住金化学(株)製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品)、ナガセケムテックス(株)製の「EX-721」(グリシジルエステル型エポキシ樹脂)、(株)ダイセル製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂)、「PB-3600」(ブタジエン構造を有するエポキシ樹脂)が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, phenol novolac type epoxy resin, bifunctional aliphatic epoxy resin, cyclohexane di A methanol type epoxy resin and an epoxy resin having a butadiene structure are preferable, and a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bifunctional aliphatic epoxy resin, and a naphthalene type epoxy resin are more preferable. Specific examples of the liquid epoxy resin include “HP4032”, “HP4032H”, “HP4032D”, “HP4032SS” (naphthalene type epoxy resin) manufactured by DIC Corporation, “jER828EL”, “828US” manufactured by Mitsubishi Chemical Corporation. "(Bisphenol A type epoxy resin)", "jER807" (bisphenol F type epoxy resin), "jER152" (phenol novolac type epoxy resin), "YL7410" (bifunctional aliphatic epoxy resin), manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. "ZX1059" (mixed product of bisphenol A type epoxy resin and bisphenol F type epoxy resin), "EX-721" (glycidyl ester type epoxy resin) manufactured by Nagase ChemteX Corporation, "Celoxide" manufactured by Daicel Corporation 2021P "(having an ester skeleton Cyclic epoxy resins), "PB-3600" (epoxy resin having a butadiene structure) and the like. These may be used alone or in combination of two or more.
 固体状エポキシ樹脂としては、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましく、ナフタレン型4官能エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、及びビスフェノールAF型エポキシ樹脂がより好ましい。固体状エポキシ樹脂の具体例としては、DIC(株)製の「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂)、「N-690」、「N-695」(クレゾールノボラック型エポキシ樹脂)、「HP7200」、「HP7200H」、「HP7200HH」(ジシクロペンタジエン型エポキシ樹脂)、「EXA7311」、「EXA7311-G3」、「EXA7311-G4」、「EXA7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂)、日本化薬(株)製の「EPPN-502H」(トリスフェノール型エポキシ樹脂)、「NC7000L」(ナフトールノボラック型エポキシ樹脂)、「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂)、新日鉄住金化学(株)製の「ESN475V」(ナフトール型エポキシ樹脂)、「ESN485」(ナフトールノボラック型エポキシ樹脂)、三菱化学(株)製の「YX4000H」、「YL6121」(ビフェニル型エポキシ樹脂)、「YX4000HK」(ビキシレノール型エポキシ樹脂)、「YX8800」(アントラセン型エポキシ樹脂)、大阪ガスケミカル(株)製の「PG-100」、「CG-500」、三菱化学(株)製の「YL7800」(フルオレン型エポキシ樹脂)、三菱化学(株)製の「jER1010」(固体状ビスフェノールA型エポキシ樹脂)、「YL7723」、「YL7760」(ビスフェノールAF型エポキシ樹脂)、「jER1031S」(テトラフェニルエタン型エポキシ樹脂)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Solid epoxy resins include naphthalene type tetrafunctional epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy resin, Anthracene type epoxy resin, bisphenol A type epoxy resin, bisphenol AF type epoxy resin, tetraphenylethane type epoxy resin are preferable, naphthalene type tetrafunctional epoxy resin, naphthol type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, And bisphenol AF type epoxy resin is more preferable. Specific examples of the solid epoxy resin include “HP-4700”, “HP-4710” (naphthalene type tetrafunctional epoxy resin), “N-690”, “N-695” (cresol novolak) manufactured by DIC Corporation. Type epoxy resin), “HP7200”, “HP7200H”, “HP7200HH” (dicyclopentadiene type epoxy resin), “EXA7311”, “EXA7311-G3”, “EXA7311-G4”, “EXA7311-G4S”, “HP6000” (Naphthylene ether type epoxy resin), “EPPN-502H” (trisphenol type epoxy resin) manufactured by Nippon Kayaku Co., Ltd., “NC7000L” (naphthol novolac type epoxy resin), “NC3000H”, “NC3000”, “ NC3000L ”,“ NC3100 ”(Bifeni Type epoxy resin), “ESN475V” (naphthol type epoxy resin) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., “ESN485” (naphthol novolac type epoxy resin), “YX4000H”, “YL6121” (biphenyl) manufactured by Mitsubishi Chemical Corporation Type epoxy resin), "YX4000HK" (bixylenol type epoxy resin), "YX8800" (anthracene type epoxy resin), "PG-100", "CG-500" manufactured by Osaka Gas Chemical Co., Ltd., Mitsubishi Chemical Corporation ) "YL7800" (fluorene type epoxy resin), Mitsubishi Chemical Corporation "jER1010" (solid bisphenol A type epoxy resin), "YL7723", "YL7760" (bisphenol AF type epoxy resin), "jER1031S (Tetraphenylethane type epoxy resin Etc. The. These may be used alone or in combination of two or more.
 樹脂組成物中のエポキシ樹脂の含有量は、好ましくは2質量%以上、より好ましくは3質量%以上、さらに好ましくは4質量%以上又は5質量%以上である。エポキシ樹脂の含有量の上限は、特に限定されないが、好ましくは60質量%以下、より好ましくは55質量%以下、さらに好ましくは50質量%以下、45質量%以下、40質量%以下、35質量%以下、又は30質量%以下である。 The content of the epoxy resin in the resin composition is preferably 2% by mass or more, more preferably 3% by mass or more, and further preferably 4% by mass or more or 5% by mass or more. The upper limit of the content of the epoxy resin is not particularly limited, but is preferably 60% by mass or less, more preferably 55% by mass or less, further preferably 50% by mass or less, 45% by mass or less, 40% by mass or less, 35% by mass. Or 30% by mass or less.
 なお、本発明において、樹脂組成物を構成する各成分の含有量は、別途明示のない限り、樹脂組成物中の不揮発成分を100質量%としたときの値である。 In addition, in this invention, content of each component which comprises a resin composition is a value when the non-volatile component in a resin composition is 100 mass% unless there is separate description.
 エポキシ樹脂のエポキシ当量は、好ましくは50~5000、より好ましくは50~3000、さらに好ましくは80~2000、さらにより好ましくは110~1000である。この範囲となることで、硬化物の架橋密度が十分となり表面粗さの小さい絶縁層をもたらすことができる。なお、エポキシ当量は、JIS K7236に従って測定することができ、1当量のエポキシ基を含む樹脂の質量である。 The epoxy equivalent of the epoxy resin is preferably 50 to 5000, more preferably 50 to 3000, still more preferably 80 to 2000, and even more preferably 110 to 1000. By becoming this range, the crosslinked density of hardened | cured material becomes sufficient and it can bring about an insulating layer with small surface roughness. The epoxy equivalent can be measured according to JIS K7236, and is the mass of a resin containing 1 equivalent of an epoxy group.
 エポキシ樹脂の重量平均分子量は、好ましくは100~5000、より好ましくは250~3000、さらに好ましくは400~1500である。ここで、エポキシ樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定されるポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the epoxy resin is preferably 100 to 5000, more preferably 250 to 3000, and still more preferably 400 to 1500. Here, the weight average molecular weight of the epoxy resin is a weight average molecular weight in terms of polystyrene measured by a gel permeation chromatography (GPC) method.
 <(B)硬化剤>
 本発明の樹脂組成物において、硬化剤は、液状フェノール系硬化剤を含むことを特徴とする。液状フェノール系硬化剤を含むことにより、無機充填材含有量が高い場合にも金属層に対し十分な密着強度を呈する絶縁層を実現することができる。なお、本発明において、液状フェノール系硬化剤とは、温度20℃で液状のフェノール系硬化剤をいう。
<(B) Curing agent>
In the resin composition of the present invention, the curing agent includes a liquid phenolic curing agent. By including the liquid phenolic curing agent, an insulating layer exhibiting sufficient adhesion strength to the metal layer can be realized even when the inorganic filler content is high. In addition, in this invention, a liquid phenol type hardening | curing agent means a liquid phenol type hardening | curing agent at the temperature of 20 degreeC.
 本発明の樹脂組成物に好適に使用し得る液状フェノール系硬化剤としては、例えば、液状アルキルフェノール樹脂、液状アリルフェノール樹脂が挙げられる。中でも、(A)成分及び(C)成分との組み合わせにおいて、熱拡散性及び金属層に対する密着強度の双方に一層優れる絶縁層を得る観点から、液状フェノール系硬化剤としては、液状アルキルフェノール樹脂が好ましい。 Examples of liquid phenolic curing agents that can be suitably used in the resin composition of the present invention include liquid alkylphenol resins and liquid allylphenol resins. Among them, in the combination with the component (A) and the component (C), a liquid alkylphenol resin is preferable as the liquid phenolic curing agent from the viewpoint of obtaining an insulating layer that is further excellent in both thermal diffusibility and adhesion strength to the metal layer. .
 液状フェノール系硬化剤のフェノール性水酸基当量は、金属層に対し良好な密着強度を呈する絶縁層を得る観点から、好ましくは50~1000、より好ましくは70~800、さらに好ましくは90~600である。該フェノール性水酸基当量は、1当量のフェノール性水酸基を含む樹脂の質量である。 The phenolic hydroxyl group equivalent of the liquid phenolic curing agent is preferably 50 to 1000, more preferably 70 to 800, and still more preferably 90 to 600 from the viewpoint of obtaining an insulating layer exhibiting good adhesion strength to the metal layer. . The phenolic hydroxyl group equivalent is the mass of a resin containing 1 equivalent of a phenolic hydroxyl group.
 液状フェノール系硬化剤の重量平均分子量は、好ましくは100~4500、より好ましくは200~4000、さらに好ましくは300~3000である。液状フェノール系硬化剤の重量平均分子量は、GPC法により測定されるポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the liquid phenolic curing agent is preferably 100 to 4500, more preferably 200 to 4000, and still more preferably 300 to 3000. The weight average molecular weight of a liquid phenol type hardening | curing agent is a weight average molecular weight of polystyrene conversion measured by GPC method.
 液状フェノール系硬化剤の具体例としては、式(1)で表される液状フェノールが挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、それぞれ独立に水素原子、アルキル基、又はアルケニル基を表し、R及びRは、それぞれ独立に水素原子又はアルキル基を表し、jは0~5の整数を表す。複数のR~Rは同一であってもよく、異なっていてもよい。)
Specific examples of the liquid phenolic curing agent include liquid phenol represented by the formula (1).
Figure JPOXMLDOC01-appb-C000001
(Wherein, R 1 independently represents a hydrogen atom, an alkyl group, or an alkenyl group, R 2 and R 3 each independently represent a hydrogen atom or an alkyl group, and j represents an integer of 0 to 5) The plurality of R 1 to R 3 may be the same or different.)
 アルケニル基の炭素原子数は、好ましくは2~10、より好ましくは2~6、さらに好ましくは2~4、特に好ましくは3である。中でも、アルケニル基としては、2-プロペニル基(アリル基)が好ましい。 The number of carbon atoms of the alkenyl group is preferably 2 to 10, more preferably 2 to 6, still more preferably 2 to 4, and particularly preferably 3. Among them, the alkenyl group is preferably a 2-propenyl group (allyl group).
 アルキル基の炭素原子数は、好ましくは1~20、より好ましくは1~10、より好ましくは1~6、さらに好ましくは1~4、1~3、又は1である。 The number of carbon atoms of the alkyl group is preferably 1 to 20, more preferably 1 to 10, more preferably 1 to 6, and still more preferably 1 to 4, 1 to 3, or 1.
 式(1)中、Rの少なくとも1つが、アルキル基、又はアルケニル基であることが好ましい。式(1)中のアルキル基又はアルケニル基の個数は、1以上であることが好ましい。より好ましくは、式(1)中の1個のベンゼン環に対して1個又は2個のアルキル基及び/又はアルケニル基を含み、さらに好ましくは式(1)中の1個のベンゼン環に対して1個のアルキル基及び/又はアルケニル基を含む。 In formula (1), it is preferable that at least one of R 1 is an alkyl group or an alkenyl group. The number of alkyl groups or alkenyl groups in formula (1) is preferably 1 or more. More preferably, it contains one or two alkyl groups and / or alkenyl groups for one benzene ring in formula (1), and more preferably for one benzene ring in formula (1). One alkyl group and / or alkenyl group.
 これらの中でも、Rは、水素原子、又はアルケニル基を表すことが好ましく、水素原子、又はアリル基を表すことがより好ましい。また、R及びRは、水素原子を表すことが好ましい。 Among these, R 1 preferably represents a hydrogen atom or an alkenyl group, and more preferably represents a hydrogen atom or an allyl group. R 2 and R 3 preferably represent a hydrogen atom.
 式(1)中、複数あるRは、互いに同一でも相異なっていてもよい。R~Rについても同様である。 In formula (1), a plurality of R 1 may be the same or different from each other. The same applies to R 2 to R 3 .
 式(1)中、jは0~5の整数を表し、好ましくは0~3の整数を表し、より好ましくは0又は1を表し、さらに好ましくは0である。 In the formula (1), j represents an integer of 0 to 5, preferably an integer of 0 to 3, more preferably 0 or 1, and still more preferably 0.
 液状フェノール系硬化剤としては、例えば、群栄化学工業(株)製の「ACG-1」、「APG-1」、「ELP-30」、「ELC」、明和化成(株)製の「MEH-8000」を使用することができる。 Examples of the liquid phenolic curing agent include “ACG-1”, “APG-1”, “ELP-30”, “ELC” manufactured by Gunei Chemical Industry Co., Ltd., and “MEH” manufactured by Meiwa Kasei Co., Ltd. -8000 "can be used.
 本発明の樹脂組成物において、(B)硬化剤は、液状フェノール系硬化剤に加えて他の硬化剤を含んでもよい。斯かる他の硬化剤としては、エポキシ樹脂を硬化する機能を有する限り特に限定されず、例えば、固体状フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、及びシアネートエステル系硬化剤が挙げられる。他の硬化剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、本発明において、固体状フェノール系硬化剤とは、温度20℃で固体状のフェノール系硬化剤をいう。 In the resin composition of the present invention, the (B) curing agent may contain another curing agent in addition to the liquid phenolic curing agent. Such other curing agents are not particularly limited as long as they have a function of curing the epoxy resin, and include, for example, solid phenolic curing agents, naphthol curing agents, active ester curing agents, benzoxazine curing agents, and Examples include cyanate ester-based curing agents. Another hardening agent may be used individually by 1 type, and may be used in combination of 2 or more type. In the present invention, the solid phenol-based curing agent refers to a solid phenol-based curing agent at a temperature of 20 ° C.
 固体状フェノール系硬化剤及びナフトール系硬化剤としては、耐熱性及び耐水性の観点から、ノボラック構造を有するフェノール系硬化剤、又はノボラック構造を有するナフトール系硬化剤が好ましい。また、金属層との密着強度の観点から、含窒素フェノール系硬化剤又は含窒素ナフトール系硬化剤が好ましく、トリアジン構造含有フェノール系硬化剤又はトリアジン構造含有ナフトール系硬化剤がより好ましい。中でも、耐熱性、耐水性、及び導体層との密着強度を高度に満足させる観点から、トリアジン構造とノボラック構造の両方を含有するフェノール系硬化剤又はナフトール系硬化剤が好ましい。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。固体状フェノール系硬化剤及びナフトール系硬化剤の市販品としては、例えば、明和化成(株)製の「MEH-7700」、「MEH-7810」、「MEH-7851」、日本化薬(株)製の「NHN」、「CBN」、「GPH」、新日鉄住金化学(株)製の「SN-170」、「SN-180」、「SN-190」、「SN-475」、「SN-485」、「SN-495」、「SN-375」、「SN-395」、DIC(株)製の「LA-7052」、「LA-7054」、「LA-3018」、「LA-1356」、「TD2090」等が挙げられる。 As the solid phenol-based curing agent and naphthol-based curing agent, a phenol-based curing agent having a novolak structure or a naphthol-based curing agent having a novolak structure is preferable from the viewpoint of heat resistance and water resistance. Further, from the viewpoint of adhesion strength with the metal layer, a nitrogen-containing phenol-based curing agent or a nitrogen-containing naphthol-based curing agent is preferable, and a triazine structure-containing phenol-based curing agent or a triazine structure-containing naphthol-based curing agent is more preferable. Among these, from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion strength with the conductor layer, a phenol-based curing agent or a naphthol-based curing agent containing both a triazine structure and a novolak structure is preferable. These may be used alone or in combination of two or more. Examples of commercially available solid phenol-based curing agents and naphthol-based curing agents include “MEH-7700”, “MEH-7810”, “MEH-7851” manufactured by Meiwa Kasei Co., Ltd., Nippon Kayaku Co., Ltd. “NHN”, “CBN”, “GPH” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. “SN-170”, “SN-180”, “SN-190”, “SN-475”, “SN-485” ”,“ SN-495 ”,“ SN-375 ”,“ SN-395 ”,“ LA-7052, ”“ LA-7054, ”“ LA-3018, ”“ LA-1356, ”manufactured by DIC Corporation, "TD2090" etc. are mentioned.
 活性エステル系硬化剤としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。具体的には、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が好ましく、中でもナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造単位を表す。活性エステル系硬化剤の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC8000-65T」(DIC(株)製)、ナフタレン構造を含む活性エステル化合物として「EXB9416-70BK」(DIC(株)製)、フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱化学(株)製)、フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱化学(株)製)などが挙げられる。 The active ester curing agent is not particularly limited, but generally an ester group having high reaction activity such as phenol ester, thiophenol ester, N-hydroxyamine ester, heterocyclic hydroxy compound ester in one molecule. A compound having two or more in the above is preferably used. The active ester curing agent is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester curing agent obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable. Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- Cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, Benzenetriol, dicyclopentadiene type diphenol compound, phenol novolac and the like can be mentioned. Here, the “dicyclopentadiene type diphenol compound” refers to a diphenol compound obtained by condensing two molecules of phenol with one molecule of dicyclopentadiene. Specifically, an active ester compound containing a dicyclopentadiene-type diphenol structure, an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated product of a phenol novolac, and an active ester compound containing a benzoylated product of a phenol novolac are preferred, Of these, active ester compounds having a naphthalene structure and active ester compounds having a dicyclopentadiene type diphenol structure are more preferred. These may be used alone or in combination of two or more. The “dicyclopentadiene type diphenol structure” represents a divalent structural unit composed of phenylene-dicyclopentylene-phenylene. Commercially available active ester curing agents include, as active ester compounds containing a dicyclopentadiene type diphenol structure, “EXB9451”, “EXB9460”, “EXB9460S”, “HPC8000-65T” (manufactured by DIC Corporation), “EXB9416-70BK” (manufactured by DIC Corporation) as an active ester compound containing a naphthalene structure, “DC808” (manufactured by Mitsubishi Chemical Corporation) as an active ester compound containing an acetylated product of phenol novolac, and a benzoylated product of phenol novolac Examples of the active ester compound to be included include “YLH1026” (manufactured by Mitsubishi Chemical Corporation).
 ベンゾオキサジン系硬化剤の市販品としては、例えば、昭和高分子(株)製の「HFB2006M」、四国化成工業(株)製の「P-d」、「F-a」が挙げられる。 Examples of commercially available benzoxazine-based curing agents include “HFB2006M” manufactured by Showa Polymer Co., Ltd. and “Pd” and “Fa” manufactured by Shikoku Kasei Kogyo Co., Ltd.
 シアネートエステル系硬化剤としては、特に限定されないが、例えば、ノボラック型(フェノールノボラック型、アルキルフェノールノボラック型など)シアネートエステル系硬化剤、ジシクロペンタジエン型シアネートエステル系硬化剤、ビスフェノール型(ビスフェノールA型、ビスフェノールF型、ビスフェノールS型など)シアネートエステル系硬化剤、及びこれらが一部トリアジン化したプレポリマーなどが挙げられる。具体例としては、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート))、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の市販品としては、例えば、ロンザジャパン(株)製の「PT30」及び「PT60」(いずれもフェノールノボラック型多官能シアネートエステル樹脂)、「BA230」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。 Although it does not specifically limit as a cyanate ester type hardening | curing agent, For example, novolak type (phenol novolak type, alkylphenol novolak type, etc.) cyanate ester type hardening agent, dicyclopentadiene type cyanate ester type hardening agent, bisphenol type (bisphenol A type, And bisphenol F type, bisphenol S type, and the like) and cyanate ester-based curing agents, and prepolymers in which these are partially triazines. Specific examples include bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate)), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4′-ethylidene diphenyl. Dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3,5-dimethylphenyl) methane, Bifunctional cyanate resins such as 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, and bis (4-cyanatephenyl) ether, phenol novolac and cresol novolac Invite from etc. Polyfunctional cyanate resin is, these cyanate resins and partially triazine of prepolymer. Examples of commercially available cyanate ester curing agents include “PT30” and “PT60” (both phenol novolac polyfunctional cyanate ester resins) and “BA230” (part of bisphenol A dicyanate) manufactured by Lonza Japan Co., Ltd. Or a prepolymer which is all triazine-modified into a trimer).
 (B)硬化剤の不揮発成分を100質量%とした場合、液状フェノール系硬化剤の含有量は、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、80質量%以上、又は90質量%以上である。該液状フェノール系硬化剤の含有量の上限は、特に限定されず、100質量%であってもよい。 (B) When the non-volatile component of a hardening | curing agent shall be 100 mass%, content of a liquid phenol type hardening | curing agent becomes like this. Preferably it is 50 mass% or more, More preferably, it is 60 mass% or more, More preferably, it is 70 mass% or more, 80 It is at least 90% by mass or 90% by mass. The upper limit of content of this liquid phenol type hardening | curing agent is not specifically limited, 100 mass% may be sufficient.
 (A)エポキシ樹脂と(B)硬化剤との量比は、得られる絶縁層の機械強度や耐水性を向上させる観点から、[エポキシ樹脂のエポキシ基の合計数]:[硬化剤の反応基の合計数]の比率で、1:0.2~1:2の範囲が好ましく、1:0.3~1:1.5の範囲がより好ましく、1:0.4~1:1の範囲がさらに好ましい。ここで、硬化剤の反応基とは、活性水酸基、活性エステル基等であり、硬化剤の種類によって異なる。また、エポキシ樹脂のエポキシ基の合計数とは、各エポキシ樹脂の固形分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、硬化剤の反応基の合計数とは、各硬化剤の固形分質量を反応基当量で除した値をすべての硬化剤について合計した値である。 The amount ratio of (A) epoxy resin to (B) curing agent is [total number of epoxy groups of epoxy resin]: [reactive group of curing agent] from the viewpoint of improving the mechanical strength and water resistance of the obtained insulating layer. The ratio of the total number] is preferably in the range of 1: 0.2 to 1: 2, more preferably in the range of 1: 0.3 to 1: 1.5, and in the range of 1: 0.4 to 1: 1. Is more preferable. Here, the reactive group of the curing agent is an active hydroxyl group, an active ester group or the like, and varies depending on the type of the curing agent. Moreover, the total number of epoxy groups of the epoxy resin is a value obtained by dividing the value obtained by dividing the solid mass of each epoxy resin by the epoxy equivalent for all epoxy resins, and the total number of reactive groups of the curing agent is: The value obtained by dividing the solid mass of each curing agent by the reactive group equivalent is the total value for all curing agents.
 <(C)無機充填材>
 本発明の樹脂組成物において、無機充填材は、(C1)平均粒子径0.1μm以上3μm未満の無機充填材、(C2)平均粒子径3μm以上10μm未満の無機充填材及び(C3)平均粒子径10μm以上35μm以下の無機充填材を含むことを特徴とする。これにより、熱拡散性及び金属層に対する密着強度の双方に優れる絶縁層を実現することができる。
<(C) Inorganic filler>
In the resin composition of the present invention, the inorganic filler includes (C1) an inorganic filler having an average particle diameter of 0.1 μm or more and less than 3 μm, (C2) an inorganic filler having an average particle diameter of 3 μm or more and less than 10 μm, and (C3) an average particle. An inorganic filler having a diameter of 10 μm to 35 μm is included. Thereby, an insulating layer excellent in both thermal diffusibility and adhesion strength to the metal layer can be realized.
 熱拡散性及び金属層に対する密着強度の双方に優れる絶縁層を実現する観点から、(C1)成分の平均粒径をdc1(μm)、(C2)成分の平均粒径をdc2(μm)としたとき、dc1及びdc2は、dc2-dc1≧0.5の関係を満たすことが好ましく、dc2-dc1≧1.0の関係を満たすことがより好ましく、dc2-dc1≧1.5、dc2-dc1≧2.0、dc2-dc1≧2.5、又はdc2-dc1≧3.0の関係を満たすことがさらに好ましい。差dc2-dc1の上限は、好ましくは9.0以下、より好ましくは8.0以下、さらに好ましくは7.0以下、6.0以下、又は5.0以下である。 From the viewpoint of realizing an insulating layer excellent in both thermal diffusibility and adhesion strength to the metal layer, the average particle diameter of the component (C1) is dc1 (μm), and the average particle diameter of the component (C2) is dc2 (μm). , D c1 and d c2 preferably satisfy the relationship d c2 −d c1 ≧ 0.5, more preferably satisfy the relationship d c2 −d c1 ≧ 1.0, and d c2 −d More preferably, the relationship of c1 ≧ 1.5, d c2 −d c1 ≧ 2.0, d c2 −d c1 ≧ 2.5, or d c2 −d c1 ≧ 3.0 is satisfied. The upper limit of the difference d c2 -d c1 is preferably 9.0 or less, more preferably 8.0 or less, still more preferably 7.0 or less, 6.0 or less, or 5.0 or less.
 熱拡散性及び金属層に対する密着強度の双方に優れる絶縁層を実現する観点から、(C3)成分の平均粒径をdc3(μm)としたとき、dc2及びdc3は、dc3-dc2≧5.0の関係を満たすことが好ましく、dc3-dc2≧7.0の関係を満たすことがより好ましく、dc3-dc2≧9.0、dc3-dc2≧10.0、dc3-dc2≧12.0、dc3-dc2≧14.0、又はdc3-dc2≧15.0の関係を満たすことがさらに好ましい。差dc3-dc2の上限は、好ましくは30.0以下、より好ましくは28.0以下、さらに好ましくは26.0以下、24.0以下、22.0以下、又は20.0以下である。 From the viewpoint of realizing an insulating layer excellent in both thermal diffusibility and adhesion strength to the metal layer, when the average particle diameter of the component (C3) is d c3 (μm), d c2 and d c3 are d c3 -d It is preferable to satisfy the relationship of c2 ≧ 5.0, more preferably satisfy the relationship of d c3 −d c2 ≧ 7.0, d c3 −d c2 ≧ 9.0, d c3 −d c2 ≧ 10.0 It is more preferable that the relationship d c3 -d c2 ≧ 12.0, d c3 -d c2 ≧ 14.0, or d c3 -d c2 ≧ 15.0 is satisfied. The upper limit of the difference d c3 -d c2 is preferably 30.0 or less, more preferably 28.0 or less, still more preferably 26.0 or less, 24.0 or less, 22.0 or less, or 20.0 or less. .
 一実施形態において、dc1、dc2及びdc3は、dc2-dc1≧0.5及びdc3-dc2≧5.0の関係を満たす。 In one embodiment, d c1 , d c2 and d c3 satisfy the relationship d c2 −d c1 ≧ 0.5 and d c3 −d c2 ≧ 5.0.
 無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折散乱式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒度分布測定装置としては、(株)堀場製作所製「LA-500」、「LA-950」等を使用することができる。 The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on the Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be prepared on a volume basis by a laser diffraction / scattering particle size distribution measuring apparatus, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction scattering type particle size distribution measuring device, “LA-500”, “LA-950” manufactured by Horiba, Ltd., etc. can be used.
 (C1)成分は、(C2)成分、(C3)成分の隙間を埋めることで、樹脂組成物(ひいては絶縁層)の熱拡散性の向上に寄与する。(C1)成分はまた、(C2)成分及び(C3)成分との組み合わせにおいて、(C)成分全体の含有量が高い場合に溶融粘度の上昇を抑える効果を発現する。(C)成分の含有量を100質量%とした場合、(C1)成分の含有量は、(C)成分の含有量が高い場合にも溶融粘度の過度の上昇を抑制し得る観点、熱拡散性に優れる絶縁層を得る観点から、好ましくは5質量%以上、より好ましくは6質量%以上、さらに好ましくは8質量%以上、10質量%以上、12質量%以上、14質量%以上、又は15質量%以上である。該(C1)成分の含有量の上限は、半導体素子により発生した熱がプリント配線板を拡散するに際して、界面(無機充填材-無機充填材間や無機充填材-金属層間)における拡散抵抗を減じる観点から、好ましくは40質量%以下、より好ましくは35質量%以下、さらに好ましくは30質量%以下である。 The (C1) component contributes to the improvement of the thermal diffusibility of the resin composition (and thus the insulating layer) by filling the gap between the (C2) component and the (C3) component. The component (C1) also exhibits an effect of suppressing an increase in melt viscosity when the total content of the component (C) is high in combination with the component (C2) and the component (C3). When the content of the component (C) is 100% by mass, the content of the component (C1) is a viewpoint that can suppress an excessive increase in melt viscosity even when the content of the component (C) is high, thermal diffusion From the viewpoint of obtaining an insulating layer having excellent properties, preferably 5% by mass or more, more preferably 6% by mass or more, still more preferably 8% by mass or more, 10% by mass or more, 12% by mass or more, 14% by mass or more, or 15 It is at least mass%. The upper limit of the content of the component (C1) reduces the diffusion resistance at the interface (between the inorganic filler and the inorganic filler and between the inorganic filler and the metal layer) when the heat generated by the semiconductor element diffuses through the printed wiring board. From the viewpoint, it is preferably 40% by mass or less, more preferably 35% by mass or less, and further preferably 30% by mass or less.
 (C2)成分は、(C3)成分の隙間を埋めることで、樹脂組成物(ひいては絶縁層)の熱拡散性の向上に寄与する。(C2)成分はまた、(C1)成分よりも平均粒径が大きく、熱拡散時の界面における拡散抵抗の低下にも寄与する。(C)成分の含有量を100質量%とした場合、(C2)成分の含有量は、熱拡散性に優れる絶縁層を得る観点から、好ましくは5質量%以上、より好ましくは6質量%以上、さらに好ましくは8質量%以上、10質量%以上、12質量%以上、14質量%以上、又は15質量%以上である。該(C2)成分の含有量の上限は、溶融粘度の過度の上昇を抑制する観点から、好ましくは40質量%以下、より好ましくは35質量%以下、さらに好ましくは30質量%以下である。 The (C2) component contributes to the improvement of the thermal diffusibility of the resin composition (and thus the insulating layer) by filling the gap between the (C3) component. The component (C2) also has an average particle size larger than that of the component (C1) and contributes to a decrease in diffusion resistance at the interface during thermal diffusion. When the content of the component (C) is 100% by mass, the content of the component (C2) is preferably 5% by mass or more, more preferably 6% by mass or more from the viewpoint of obtaining an insulating layer having excellent thermal diffusibility. More preferably, they are 8 mass% or more, 10 mass% or more, 12 mass% or more, 14 mass% or more, or 15 mass% or more. The upper limit of the content of the component (C2) is preferably 40% by mass or less, more preferably 35% by mass or less, and further preferably 30% by mass or less, from the viewpoint of suppressing an excessive increase in melt viscosity.
 (C3)成分は、(C1)成分、(C2)成分よりも平均粒径が大きく、熱拡散時の界面における拡散抵抗を低下させ、樹脂組成物(ひいては絶縁層)の熱拡散性の向上に大きく寄与する。(C)成分の含有量を100質量%とした場合、(C3)成分の含有量は、熱拡散性に優れる絶縁層を得る観点から、好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上、45質量%以上、50質量%以上、55質量%以上、又は60質量%以上である。該(C3)成分の含有量の上限は、(C)成分の充填状態を良好に保ち積層性及び熱拡散性に優れる樹脂組成物を得る観点から、好ましくは90質量%以下、より好ましくは85質量%以下、さらに好ましくは80質量%以下、75質量%以下、又は70質量%以下である。 The component (C3) has a larger average particle size than the components (C1) and (C2), reduces the diffusion resistance at the interface during thermal diffusion, and improves the thermal diffusivity of the resin composition (and thus the insulating layer). A big contribution. When the content of the component (C) is 100% by mass, the content of the component (C3) is preferably 20% by mass or more, more preferably 30% by mass or more from the viewpoint of obtaining an insulating layer having excellent thermal diffusibility. More preferably, they are 40 mass% or more, 45 mass% or more, 50 mass% or more, 55 mass% or more, or 60 mass% or more. The upper limit of the content of the component (C3) is preferably 90% by mass or less, more preferably 85%, from the viewpoint of obtaining a resin composition that maintains a good filling state of the component (C) and is excellent in lamination properties and thermal diffusibility. It is 80 mass% or less, More preferably, it is 75 mass% or less, or 70 mass% or less.
 したがって好適な一実施形態において、(C)成分の含有量を100質量%とした場合、(C1)成分の含有量は5質量%~40質量%、(C2)成分の含有量は5質量%~40質量%、(C3)成分の含有量は20質量%~90質量%である。 Accordingly, in a preferred embodiment, when the content of the component (C) is 100% by mass, the content of the (C1) component is 5% by mass to 40% by mass, and the content of the (C2) component is 5% by mass. The content of the component (C3) is 20% by mass to 90% by mass.
 (C)成分中の(C1)、(C2)及び(C3)成分の含有量は上記のとおりであるが、熱拡散性及び金属層に対する密着強度の双方に一層優れる絶縁層を得る観点から、(C3)成分の含有量が最も高いことが好ましい。 The contents of the components (C1), (C2), and (C3) in the component (C) are as described above. From the viewpoint of obtaining an insulating layer that is further excellent in both thermal diffusibility and adhesion strength to the metal layer, It is preferable that content of (C3) component is the highest.
 無機充填材としては、例えば、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化ケイ素、炭化ケイ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられる。 Examples of inorganic fillers include silica, alumina, glass, cordierite, silicon oxide, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, and nitride. Boron, silicon nitride, silicon carbide, aluminum nitride, manganese nitride, aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate, phosphorus Examples thereof include zirconium acid and zirconium tungstate phosphate.
 熱拡散性に優れる絶縁層を得る観点から、無機充填材は、熱伝導率が好ましくは25W/m・K以上、より好ましくは50W/m・K以上、さらに好ましくは75W/m・K以上、さらにより好ましくは100W/m・K以上、特に好ましくは125W/m・K以上、150W/m・K以上、175W/m・K以上、200W/m・K以上、又は225W/m・K以上の無機充填材を含むことが好適である。該熱伝導率の上限は特に限定されないが、通常、400W/m・K以下である。無機充填材の熱伝導率は、例えば、熱流計法及び温度波分析法等の公知の方法により測定することができる。 From the viewpoint of obtaining an insulating layer having excellent thermal diffusivity, the inorganic filler preferably has a thermal conductivity of 25 W / m · K or more, more preferably 50 W / m · K or more, and even more preferably 75 W / m · K or more. Even more preferably 100 W / m · K or more, particularly preferably 125 W / m · K or more, 150 W / m · K or more, 175 W / m · K or more, 200 W / m · K or more, or 225 W / m · K or more. It is preferable to include an inorganic filler. The upper limit of the thermal conductivity is not particularly limited, but is usually 400 W / m · K or less. The thermal conductivity of the inorganic filler can be measured by known methods such as a heat flow meter method and a temperature wave analysis method.
 一実施形態において、無機充填材は、窒化アルミニウム、アルミナ、窒化ホウ素、窒化ケイ素及び炭化ケイ素からなる群から選択される熱伝導率の高い無機充填材を含むことが好適であり、中でも窒化アルミニウム、またはアルミナを含むことが好適である。窒化アルミニウムの市販品としては、例えば、(株)トクヤマ製「シェイパルH」が挙げられ、窒化ケイ素の市販品としては、例えば、電気化学工業(株)製「SN-9S」が挙げられる。アルミナの市販品としては、例えば、日本軽金属(株)製「AHP300」、昭和電工(株)製「アルナビーズ(登録商標)CB」(例えば、「CB-P05」、「CB-A30S」)が挙げられる。 In one embodiment, the inorganic filler preferably includes an inorganic filler with high thermal conductivity selected from the group consisting of aluminum nitride, alumina, boron nitride, silicon nitride, and silicon carbide, among which aluminum nitride, Alternatively, it is preferable to contain alumina. Examples of commercially available aluminum nitride include “Shape H” manufactured by Tokuyama Corporation, and examples of commercially available silicon nitride include “SN-9S” manufactured by Denki Kagaku Kogyo Co., Ltd. Examples of commercially available alumina products include “AHP300” manufactured by Nippon Light Metal Co., Ltd. and “Arnabeads (registered trademark) CB” manufactured by Showa Denko Co., Ltd. (for example, “CB-P05”, “CB-A30S”). It is done.
 (C1)成分、(C2)成分及び(C3)成分は、同一の材料から形成されていてもよく、互いに異なる材料から形成されていてもよい。また、(C1)成分、(C2)成分及び(C3)成分の各々は、1種の材料から形成されていてもよく、2種以上の材料の組み合わせから形成されていてもよい。中でも、(C3)成分が、熱伝導率の高い無機充填材を含むことが好ましく、(C3)成分及び(C2)成分が、熱伝導率の高い無機充填材を含むことがより好ましく、(C3)成分、(C2)成分及び(C1)成分の全てが、熱伝導率の高い無機充填材を含むことがさらに好ましい。 (C1) component, (C2) component and (C3) component may be formed from the same material, and may be formed from mutually different materials. In addition, each of the (C1) component, the (C2) component, and the (C3) component may be formed of one type of material or may be formed of a combination of two or more types of materials. Especially, it is preferable that (C3) component contains an inorganic filler with high thermal conductivity, and it is more preferable that (C3) component and (C2) component contain an inorganic filler with high thermal conductivity, (C3 It is more preferable that all of the component (C), the component (C2) and the component (C1) contain an inorganic filler having a high thermal conductivity.
 無機充填材は、耐湿性及び分散性を高める観点から、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物、チタネート系カップリング剤などの1種以上の表面処理剤で処理されていてもよい。表面処理剤の市販品としては、例えば、信越化学工業(株)製「KBM403」(3-グリシドキシプロピルトリメトキシシラン)、信越化学工業(株)製「KBM803」(3-メルカプトプロピルトリメトキシシラン)、信越化学工業(株)製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業(株)製「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)、信越化学工業(株)製「SZ-31」(ヘキサメチルジシラザン)等が挙げられる。
 表面処理剤による表面処理の程度は、無機充填材の単位表面積当たりのカーボン量によって評価することができる。無機充填材の単位表面積当たりのカーボン量は、無機充填材の分散性向上の観点から、0.02mg/m以上が好ましく、0.1mg/m以上がより好ましく、0.2mg/m以上が更に好ましい。一方、樹脂ワニスの溶融粘度やシート形態での溶融粘度の上昇を防止する観点から、1mg/m以下が好ましく、0.8mg/m以下がより好ましく、0.5mg/m以下が更に好ましい。
 無機充填材の単位表面積当たりのカーボン量は、表面処理後の無機充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後に測定することができる。具体的には、溶剤として十分な量のMEKを表面処理剤で表面処理された無機充填材に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて無機充填材の単位表面積当たりのカーボン量を測定することができる。カーボン分析計としては、(株)堀場製作所製「EMIA-320V」等を使用することができる。
Inorganic fillers are aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, organosilazane compounds, titanate coupling agents from the viewpoint of improving moisture resistance and dispersibility. And may be treated with one or more surface treatment agents. Examples of commercially available surface treatment agents include “KBM403” (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. and “KBM803” (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. Silane), Shin-Etsu Chemical "KBE903" (3-aminopropyltriethoxysilane), Shin-Etsu Chemical "KBM573" (N-phenyl-3-aminopropyltrimethoxysilane), Shin-Etsu Chemical "SZ-31" (Hexamethyldisilazane) manufactured by Co., Ltd.
The degree of surface treatment with the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler. Carbon content per unit surface area of the inorganic filler, from the viewpoint of improving dispersibility of the inorganic filler is preferably 0.02 mg / m 2 or more, 0.1 mg / m 2 or more preferably, 0.2 mg / m 2 The above is more preferable. On the other hand, 1 mg / m 2 or less is preferable, 0.8 mg / m 2 or less is more preferable, and 0.5 mg / m 2 or less is more preferable from the viewpoint of preventing an increase in the melt viscosity of the resin varnish or the sheet form. preferable.
The amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (for example, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler surface-treated with the surface treatment agent and ultrasonically cleaned at 25 ° C. for 5 minutes. After removing the supernatant and drying the solid, the carbon amount per unit surface area of the inorganic filler can be measured using a carbon analyzer. As the carbon analyzer, “EMIA-320V” manufactured by Horiba, Ltd. can be used.
 熱拡散性に優れる絶縁層を得る観点から、樹脂組成物中の無機充填材の含有量は、樹脂組成物中の不揮発成分を100体積%とした場合、好ましくは60体積%以上、より好ましくは65体積%以上である。特定の(A)乃至(C)成分を組み合わせて含む本発明の樹脂組成物では、金属層に対する密着強度を低下させることなく、無機充填材の含有量をさらに高めることができる。例えば、樹脂組成物中の無機充填材の含有量は、66体積%以上、68体積%以上、70体積%以上、72体積%以上、74体積%以上又は75体積%以上にまで高めてよい。 From the viewpoint of obtaining an insulating layer having excellent thermal diffusivity, the content of the inorganic filler in the resin composition is preferably 60% by volume or more, more preferably, when the nonvolatile component in the resin composition is 100% by volume. 65% by volume or more. In the resin composition of the present invention containing a combination of specific components (A) to (C), the content of the inorganic filler can be further increased without lowering the adhesion strength to the metal layer. For example, the content of the inorganic filler in the resin composition may be increased to 66 volume% or more, 68 volume% or more, 70 volume% or more, 72 volume% or more, 74 volume% or more, or 75 volume% or more.
 樹脂組成物中の無機充填材の含有量の上限は、得られる絶縁層の機械強度の観点から、好ましくは90体積%以下、より好ましくは85体積%以下である。 The upper limit of the content of the inorganic filler in the resin composition is preferably 90% by volume or less, more preferably 85% by volume or less, from the viewpoint of the mechanical strength of the obtained insulating layer.
 <(D)硬化促進剤>
 本発明の樹脂組成物は、硬化促進剤をさらに含んでもよい。硬化促進剤を使用することにより、金属層に対する密着強度を高めることができる。
<(D) Curing accelerator>
The resin composition of the present invention may further contain a curing accelerator. By using a curing accelerator, the adhesion strength to the metal layer can be increased.
 硬化促進剤としては、例えば、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられ、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤が好ましく、リン系硬化促進剤がさらに好ましい。硬化促進剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the curing accelerator include a phosphorus-based curing accelerator, an amine-based curing accelerator, an imidazole-based curing accelerator, a guanidine-based curing accelerator, a metal-based curing accelerator, and the like. A curing accelerator and an imidazole curing accelerator are preferred, and a phosphorus curing accelerator is more preferred. A hardening accelerator may be used individually by 1 type, and may be used in combination of 2 or more type.
 リン系硬化促進剤としては、例えば、テトラ置換ホスホニウム塩、ホスフィン(例えば、トリフェニルホスフィン、トリパラトリルホスフィン、ジフェニルシクロヘキシルホスフィン、トリシクロヘキシルホスフィン、1,4-ビスジフェニルホスフィノブタン等)が挙げられ、トリフェニルホスフィン、テトラ置換ホスホニウム塩が好ましく、テトラ置換ホスホニウム塩がより好ましい。 Examples of the phosphorus curing accelerator include tetra-substituted phosphonium salts and phosphines (eg, triphenylphosphine, tripalatolylphosphine, diphenylcyclohexylphosphine, tricyclohexylphosphine, 1,4-bisdiphenylphosphinobutane). Triphenylphosphine and tetra-substituted phosphonium salts are preferred, and tetra-substituted phosphonium salts are more preferred.
 テトラ置換ホスホニウム塩は好ましくは、テトラアルキルホスホニウムカチオン(例えば、テトラブチルホスホニウム、トリブチルヘキシルホスホニウム、ブチルトリフェニルホスホニウム等)、テトラアリールホスホニウムカチオン(例えばテトラフェニルホスホニウム等)から選ばれる1種以上のカチオンから形成される。 The tetra-substituted phosphonium salt is preferably one or more cations selected from tetraalkylphosphonium cations (for example, tetrabutylphosphonium, tributylhexylphosphonium, butyltriphenylphosphonium, etc.) and tetraarylphosphonium cations (for example, tetraphenylphosphonium, etc.). It is formed.
 テトラ置換ホスホニウム塩は好ましくは、テトラ置換ボレートアニオン(例えば、テトラフェニルボレートアニオン)、チオシアネートアニオン、ジシアナミドアニオン、4,4’-ジヒドロキシジフェニルスルホンアニオン、アミノ酸イオン(例えば、アスパラギン酸イオン、グルタミン酸イオン、グリシンイオン、アラニンイオン、フェニルアラニンイオン)、N-アシルアミノ酸イオン(例えば、N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、N-アセチルグリシンイオン)、カルボン酸アニオン(例えば、ギ酸イオン、酢酸イオン、デカン酸イオン、2-ピロリドン-5-カルボン酸イオン、α-リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオン、安息香酸イオン)、ハロゲンイオンから選ばれる1種以上のカチオンから形成される。4,4’-ジヒドロキシジフェニルスルホンアニオン、アミノ酸イオン、及びカルボン酸アニオンから選ばれる1種以上であることがさらに好ましい。 The tetra-substituted phosphonium salt is preferably a tetra-substituted borate anion (eg, tetraphenylborate anion), thiocyanate anion, dicyanamide anion, 4,4′-dihydroxydiphenylsulfone anion, amino acid ion (eg, aspartate ion, glutamate ion, Glycine ion, alanine ion, phenylalanine ion), N-acylamino acid ion (eg, N-benzoylalanine ion, N-acetylphenylalanine ion, N-acetylglycine ion), carboxylate anion (eg, formate ion, acetate ion, decane) Acid ion, 2-pyrrolidone-5-carboxylate ion, α-lipoic acid ion, lactate ion, tartrate ion, hippurate ion, N-methylhippurate ion, benzoate ion), It formed from one or more cations selected from Rogen'ion. More preferably, it is at least one selected from 4,4'-dihydroxydiphenylsulfone anion, amino acid ion, and carboxylate anion.
 アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)-ウンデセンが好ましい。 Examples of amine curing accelerators include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo. (5,4,0) -undecene and the like, and 4-dimethylaminopyridine and 1,8-diazabicyclo (5,4,0) -undecene are preferable.
 イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられ、2-エチル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾールが好ましい。 Examples of the imidazole curing accelerator include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- -Phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl] -(1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino -6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl -4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl-2-me Examples include imidazole compounds such as ru-3-benzylimidazolium chloride, 2-methylimidazoline, 2-phenylimidazoline, and adducts of imidazole compounds and epoxy resins, such as 2-ethyl-4-methylimidazole, 1-benzyl-2 -Phenylimidazole is preferred.
 イミダゾール系硬化促進剤としては、市販品を用いてもよく、例えば、三菱化学(株)製の「P200-H50」等が挙げられる。 Commercially available products may be used as the imidazole curing accelerator, and examples thereof include “P200-H50” manufactured by Mitsubishi Chemical Corporation.
 グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられ、ジシアンジアミド、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンが好ましい。 Examples of the guanidine curing accelerator include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1-diethyl biguanide, 1-cyclohexyl biguanide, 1 -Allyl biguanide, 1-phenyl biguanide, 1- o- tolyl) biguanide, and the like, dicyandiamide, 1,5,7-triazabicyclo [4.4.0] dec-5-ene are preferred.
 金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。 Examples of the metal-based curing accelerator include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of the organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate. Examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
 樹脂組成物中の硬化促進剤の含有量は、(A)エポキシ樹脂及び(B)硬化剤の不揮発成分の合計を100質量%としたとき、0.05質量%~3質量%の範囲で使用することが好ましい。 The content of the curing accelerator in the resin composition is in the range of 0.05% by mass to 3% by mass when the total of the non-volatile components of (A) the epoxy resin and (B) the curing agent is 100% by mass. It is preferable to do.
 <(E)カルボジイミド化合物>
 本発明の樹脂組成物は、カルボジイミド化合物をさらに含んでもよい。上記の(A)乃至(C)成分と組み合わせてカルボジイミド化合物を使用することにより、金属層に対し一層良好な密着強度を呈する樹脂組成物(ひいては絶縁層)を実現できることを本発明者らは見出した。
<(E) Carbodiimide compound>
The resin composition of the present invention may further contain a carbodiimide compound. The present inventors have found that by using a carbodiimide compound in combination with the above components (A) to (C), a resin composition (and consequently an insulating layer) exhibiting better adhesion strength to the metal layer can be realized. It was.
 カルボジイミド化合物は、1分子中にカルボジイミド基(-N=C=N-)を1個以上有する化合物である。金属層に対する密着強度を高める観点から、カルボジイミド化合物としては、1分子中にカルボジイミド基を2個以上有する化合物が好ましい。カルボジイミド化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 A carbodiimide compound is a compound having one or more carbodiimide groups (—N═C═N—) in one molecule. From the viewpoint of increasing the adhesion strength to the metal layer, the carbodiimide compound is preferably a compound having two or more carbodiimide groups in one molecule. A carbodiimide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 一実施形態において、本発明の樹脂組成物に含まれるカルボジイミド化合物は、下記式(2)で表される構造単位を含有する。 In one embodiment, the carbodiimide compound contained in the resin composition of the present invention contains a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
(式中、Xは、アルキレン基、シクロアルキレン基又はアリーレン基を表し、これらは置換基を有していてもよい。pは1~5の整数を表す。Xが複数存在する場合、それらは同一でも相異なってもよい。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, X represents an alkylene group, a cycloalkylene group or an arylene group, which may have a substituent. P represents an integer of 1 to 5. When a plurality of X are present, (It may be the same or different. * Represents a bond.)
 Xで表されるアルキレン基の炭素原子数は、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6、1~4、又は1~3である。Xで表されるシクロアルキレン基の炭素原子数は、好ましくは3~20、より好ましくは3~12、さらに好ましくは3~6である。Xで表されるアリーレン基は、芳香族炭化水素から芳香環上の水素原子を2個除いた基である。該アリーレン基の炭素原子数は、好ましくは6~24、より好ましくは6~18、さらに好ましくは6~14、さらにより好ましくは6~10である。該炭素原子数に置換基の炭素原子数は含まれない。 The number of carbon atoms of the alkylene group represented by X is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 6, 1 to 4, or 1 to 3. The number of carbon atoms of the cycloalkylene group represented by X is preferably 3 to 20, more preferably 3 to 12, and still more preferably 3 to 6. The arylene group represented by X is a group obtained by removing two hydrogen atoms on an aromatic ring from an aromatic hydrocarbon. The number of carbon atoms of the arylene group is preferably 6 to 24, more preferably 6 to 18, still more preferably 6 to 14, and still more preferably 6 to 10. The number of carbon atoms of the substituent is not included in the number of carbon atoms.
 (A)乃至(C)成分との組み合わせにおいて、金属層に対し一層良好な密着強度を呈する樹脂組成物(ひいては絶縁層)を実現する観点から、Xは、アルキレン基又はシクロアルキレン基であることが好ましく、これらは置換基を有していてもよい。 X is an alkylene group or a cycloalkylene group from the viewpoint of realizing a resin composition (and consequently an insulating layer) that exhibits better adhesion strength to the metal layer in combination with the components (A) to (C). Are preferable, and these may have a substituent.
 置換基としては、特に限定されないが、例えば、ハロゲン原子、アルキル基、アルコキシ基、シクロアルキル基、シクロアルキルオキシ基、アリール基、アリールオキシ基、アシル基及びアシルオキシ基が挙げられる。置換基として用いられるアルキル基、アルコキシ基の炭素原子数は、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6、1~4、又は1~3である。置換基として用いられるシクロアルキル基、シクロアルキルオキシ基の炭素原子数は、好ましくは3~20、より好ましくは3~12、さらに好ましくは3~6である。置換基として用いられるアリール基の炭素原子数は、好ましくは6~24、より好ましくは6~18、さらに好ましくは6~14、さらにより好ましくは6~10である。置換基として用いられるアリールオキシ基の炭素原子数は、好ましくは6~24、より好ましくは6~18、さらに好ましくは6~14、さらにより好ましくは6~10である。置換基として用いられるアシル基は、式:-C(=O)-Rで表される基(式中、Rはアルキル基又はアリール基を表す。)をいう。Rで表されるアルキル基の炭素原子数は、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6、1~4、又は1~3である。Rで表されるアリール基の炭素原子数は、好ましくは6~24、より好ましくは6~18、さらに好ましくは6~14、さらにより好ましくは6~10である。置換基として用いられるアシルオキシ基は、式:-O-C(=O)-Rで表される基(式中、Rは上記と同じ意味を表す。)をいう。中でも、置換基としては、アルキル基、アルコキシ基、及びアシルオキシ基が好ましく、アルキル基がより好ましい。 Although it does not specifically limit as a substituent, For example, a halogen atom, an alkyl group, an alkoxy group, a cycloalkyl group, a cycloalkyloxy group, an aryl group, an aryloxy group, an acyl group, and an acyloxy group are mentioned. The number of carbon atoms of the alkyl group or alkoxy group used as a substituent is preferably 1-20, more preferably 1-10, still more preferably 1-6, 1-4, or 1-3. The number of carbon atoms of the cycloalkyl group or cycloalkyloxy group used as a substituent is preferably 3 to 20, more preferably 3 to 12, and still more preferably 3 to 6. The number of carbon atoms of the aryl group used as a substituent is preferably 6 to 24, more preferably 6 to 18, still more preferably 6 to 14, and even more preferably 6 to 10. The number of carbon atoms of the aryloxy group used as a substituent is preferably 6 to 24, more preferably 6 to 18, still more preferably 6 to 14, and still more preferably 6 to 10. Acyl group used as a substituent of the formula: -C (= O) group (wherein, R 1 represents an alkyl group or an aryl group.) Represented by -R 1 refers. The number of carbon atoms of the alkyl group represented by R 1 is preferably 1-20, more preferably 1-10, still more preferably 1-6, 1-4, or 1-3. The number of carbon atoms of the aryl group represented by R 1 is preferably 6 to 24, more preferably 6 to 18, still more preferably 6 to 14, and still more preferably 6 to 10. The acyloxy group used as a substituent refers to a group represented by the formula: —O—C (═O) —R 1 (wherein R 1 has the same meaning as described above). Especially, as a substituent, an alkyl group, an alkoxy group, and an acyloxy group are preferable, and an alkyl group is more preferable.
 式(2)中、pは、好ましくは1~4、より好ましくは2~4、さらに好ましくは2又は3である。 In the formula (2), p is preferably 1 to 4, more preferably 2 to 4, and still more preferably 2 or 3.
 式(2)中、Xが複数存在する場合、それらは同一でも相異なっていてもよい。好適な一実施形態において、少なくとも1つのXは、アルキレン基又はシクロアルキレン基であり、これらは置換基を有していてもよい。 In Formula (2), when there are a plurality of X, they may be the same or different. In one preferred embodiment, at least one X is an alkylene group or a cycloalkylene group, and these may have a substituent.
 好適な一実施形態において、カルボジイミド化合物は、カルボジイミド化合物の分子全体の質量を100質量%としたとき、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、さらにより好ましくは80質量%以上又は90質量%以上にて、式(2)で表される構造単位を含有する。カルボジイミド化合物は、末端構造を除いて、式(2)で表される構造単位から実質的になってもよい。カルボジイミド化合物の末端構造としては、特に限定されないが、例えば、アルキル基、シクロアルキル基及びアリール基が挙げられ、これらは置換基を有していてもよい。末端構造として用いられるアルキル基、シクロアルキル基、アリール基は、Xで表される基が有していてもよい置換基について説明したアルキル基、シクロアルキル基、アリール基と同じであってよい。また、末端構造として用いられる基が有していてもよい置換基は、Xで表される基が有していてもよい置換基と同じであってよい。 In a preferred embodiment, the carbodiimide compound is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, when the mass of the entire carbodiimide compound is 100% by mass. More preferably, the structural unit represented by the formula (2) is contained at 80% by mass or more or 90% by mass or more. The carbodiimide compound may consist essentially of the structural unit represented by the formula (2) except for the terminal structure. Although it does not specifically limit as a terminal structure of a carbodiimide compound, For example, an alkyl group, a cycloalkyl group, and an aryl group are mentioned, These may have a substituent. The alkyl group, cycloalkyl group, and aryl group used as the terminal structure may be the same as the alkyl group, cycloalkyl group, and aryl group described for the substituent that the group represented by X may have. In addition, the substituent that the group used as the terminal structure may have may be the same as the substituent that the group represented by X may have.
 カルボジイミド化合物は、市販品を使用してもよい。市販のカルボジイミド化合物としては、例えば、日清紡ケミカル(株)製のカルボジライト(登録商標)V-02B、V-03、V-04K、V-07及びV-09、ラインケミー社製のスタバクゾール(登録商標)P、P400、及びハイカジル510が挙げられる。 As the carbodiimide compound, a commercially available product may be used. Commercially available carbodiimide compounds include, for example, Carbodilite (registered trademark) V-02B, V-03, V-04K, V-07 and V-09 manufactured by Nisshinbo Chemical Co., Ltd., Starbuxol (registered trademark) manufactured by Rhein Chemie P, P400, and Hikazil 510.
 樹脂組成物中のカルボジイミド化合物の含有量は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、0.3質量%以上、0.4質量%以上又は0.5質量%以上である。カルボジイミド化合物の含有量の上限は特に限定されないが、通常、5質量%以下、3質量%以下、1質量%以下などとし得る。 The content of the carbodiimide compound in the resin composition is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, 0.3% by mass or more, 0.4% by mass or more, or 0.5% by mass. That's it. Although the upper limit of the content of the carbodiimide compound is not particularly limited, it can usually be 5% by mass or less, 3% by mass or less, 1% by mass or less.
 <(F)熱可塑性樹脂>
 本発明の樹脂組成物は、熱可塑性樹脂をさらに含んでもよい。熱可塑性樹脂を使用することにより、十分な可撓性を有し取り扱い性に優れる接着フィルムを得ることができると共に、金属層に対し良好な密着強度を呈する樹脂組成物層(ひいては絶縁層)を得ることができる。
<(F) Thermoplastic resin>
The resin composition of the present invention may further contain a thermoplastic resin. By using a thermoplastic resin, an adhesive film having sufficient flexibility and excellent handleability can be obtained, and a resin composition layer (and thus an insulating layer) exhibiting good adhesion strength to a metal layer can be obtained. Obtainable.
 熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリオレフィン樹脂、ポリブタジエン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂が挙げられる。熱可塑性樹脂は、1種単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。 Examples of the thermoplastic resin include phenoxy resin, polyvinyl acetal resin, polyolefin resin, polybutadiene resin, polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyphenylene ether resin, polycarbonate resin, and polyether. Examples include ether ketone resins and polyester resins. A thermoplastic resin may be used individually by 1 type, or may be used in combination of 2 or more type.
 熱可塑性樹脂のポリスチレン換算の重量平均分子量は8,000~70,000の範囲が好ましく、10,000~60,000の範囲がより好ましく、20,000~60,000の範囲がさらに好ましい。熱可塑性樹脂のポリスチレン換算の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される。具体的には、熱可塑性樹脂のポリスチレン換算の重量平均分子量は、測定装置として(株)島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工(株)製Shodex K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度を40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。 The weight average molecular weight in terms of polystyrene of the thermoplastic resin is preferably in the range of 8,000 to 70,000, more preferably in the range of 10,000 to 60,000, and still more preferably in the range of 20,000 to 60,000. The weight average molecular weight in terms of polystyrene of the thermoplastic resin is measured by a gel permeation chromatography (GPC) method. Specifically, the polystyrene-converted weight average molecular weight of the thermoplastic resin is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K- manufactured by Showa Denko KK as a column. 804L / K-804L can be calculated using a standard polystyrene calibration curve by measuring the column temperature at 40 ° C. using chloroform or the like as the mobile phase.
 フェノキシ樹脂としては、例えば、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、及びトリメチルシクロヘキサン骨格からなる群から選択される1種以上の骨格を有するフェノキシ樹脂が挙げられる。フェノキシ樹脂の末端は、フェノール性水酸基、エポキシ基等のいずれの官能基でもよい。フェノキシ樹脂は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。フェノキシ樹脂の具体例としては、三菱化学(株)製の「1256」及び「4250」(いずれもビスフェノールA骨格含有フェノキシ樹脂)、「YX8100」(ビスフェノールS骨格含有フェノキシ樹脂)、及び「YX6954」(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂)が挙げられ、その他にも、新日鉄住金化学(株)製の「FX280」及び「FX293」、三菱化学(株)製の「YL7553」、「YL6794」、「YL7213」、「YL7290」及び「YL7482」等が挙げられる。 Examples of the phenoxy resin include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, terpene Examples thereof include phenoxy resins having a skeleton and one or more skeletons selected from the group consisting of a trimethylcyclohexane skeleton. The terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group. A phenoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type. Specific examples of the phenoxy resin include “1256” and “4250” (both bisphenol A skeleton-containing phenoxy resin), “YX8100” (bisphenol S skeleton-containing phenoxy resin), and “YX6954” (manufactured by Mitsubishi Chemical Corporation). In addition, “FX280” and “FX293” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., “YL7553”, “YL6794”, “YL7213” manufactured by Mitsubishi Chemical Corporation, “YL7290”, “YL7482” and the like can be mentioned.
 ポリビニルアセタール樹脂としては、例えば、ポリビニルホルマール樹脂、ポリビニルブチラール樹脂が挙げられ、ポリビニルブチラール樹脂が好ましい。ポリビニルアセタール樹脂の具体例としては、例えば、電気化学工業(株)製の「電化ブチラール4000-2」、「電化ブチラール5000-A」、「電化ブチラール6000-C」、「電化ブチラール6000-EP」、積水化学工業(株)製のエスレックBHシリーズ、BXシリーズ、KSシリーズ、BLシリーズ、BMシリーズ等が挙げられる。 Examples of the polyvinyl acetal resin include polyvinyl formal resin and polyvinyl butyral resin, and polyvinyl butyral resin is preferable. Specific examples of the polyvinyl acetal resin include, for example, “Electrical butyral 4000-2”, “Electrical butyral 5000-A”, “Electrical butyral 6000-C”, and “Electrical butyral 6000-EP” manufactured by Denki Kagaku Kogyo Co., Ltd. Sekisui Chemical Co., Ltd.'s S-REC BH series, BX series, KS series, BL series, BM series and the like.
 ポリイミド樹脂の具体例としては、新日本理化(株)製の「リカコートSN20」及び「リカコートPN20」が挙げられる。ポリイミド樹脂の具体例としてはまた、2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状ポリイミド(特開2006-37083号公報記載のポリイミド)、ポリシロキサン骨格含有ポリイミド(特開2002-12667号公報及び特開2000-319386号公報等に記載のポリイミド)等の変性ポリイミドが挙げられる。 Specific examples of polyimide resins include “Rika Coat SN20” and “Rika Coat PN20” manufactured by Shin Nippon Rika Co., Ltd. Specific examples of the polyimide resin also include a linear polyimide obtained by reacting a bifunctional hydroxyl group-terminated polybutadiene, a diisocyanate compound and a tetrabasic acid anhydride (polyimide described in JP-A-2006-37083), a polysiloxane skeleton. Examples thereof include modified polyimides such as containing polyimide (polyimides described in JP-A Nos. 2002-12667 and 2000-319386).
 ポリアミドイミド樹脂の具体例としては、東洋紡績(株)製の「バイロマックスHR11NN」及び「バイロマックスHR16NN」が挙げられる。ポリアミドイミド樹脂の具体例としてはまた、日立化成工業(株)製の「KS9100」、「KS9300」(ポリシロキサン骨格含有ポリアミドイミド)等の変性ポリアミドイミドが挙げられる。 Specific examples of the polyamide-imide resin include “Bilomax HR11NN” and “Bilomax HR16NN” manufactured by Toyobo Co., Ltd. Specific examples of the polyamideimide resin also include modified polyamideimides such as “KS9100” and “KS9300” (polysiloxane skeleton-containing polyamideimide) manufactured by Hitachi Chemical Co., Ltd.
 ポリエーテルスルホン樹脂の具体例としては、住友化学(株)製の「PES5003P」等が挙げられる。 Specific examples of the polyethersulfone resin include “PES5003P” manufactured by Sumitomo Chemical Co., Ltd.
 ポリスルホン樹脂の具体例としては、ソルベイアドバンストポリマーズ(株)製のポリスルホン「P1700」、「P3500」等が挙げられる。 Specific examples of the polysulfone resin include polysulfone “P1700” and “P3500” manufactured by Solvay Advanced Polymers Co., Ltd.
 中でも、(A)乃至(C)成分との組み合わせにおいて、金属層に対する密着強度がより良好な絶縁層を得る観点から、熱可塑性樹脂としては、フェノキシ樹脂、ポリビニルアセタール樹脂が好ましい。したがって好適な一実施形態において、熱可塑性樹脂は、フェノキシ樹脂及びポリビニルアセタール樹脂からなる群から選択される1種以上を含む。 Among these, from the viewpoint of obtaining an insulating layer with better adhesion strength to the metal layer in combination with the components (A) to (C), the thermoplastic resin is preferably a phenoxy resin or a polyvinyl acetal resin. Accordingly, in a preferred embodiment, the thermoplastic resin includes one or more selected from the group consisting of a phenoxy resin and a polyvinyl acetal resin.
 樹脂組成物中の熱可塑性樹脂の含有量は、好ましくは0.1質量%~20質量%、より好ましくは0.5質量%~10質量%である。 The content of the thermoplastic resin in the resin composition is preferably 0.1% by mass to 20% by mass, more preferably 0.5% by mass to 10% by mass.
 <(G)他の添加成分>
 本発明の樹脂組成物は、必要に応じて、難燃剤及び有機充填材からなる群から選択される1種以上の添加剤をさらに含んでもよい。
<(G) Other additive components>
The resin composition of the present invention may further contain one or more additives selected from the group consisting of a flame retardant and an organic filler, if necessary.
 -難燃剤-
 難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。難燃剤は、1種単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。樹脂組成物中の難燃剤の含有量は特に限定されないが、好ましくは0.5質量%~10質量%、より好ましくは0.8質量%~9質量%である。
-Flame retardants-
Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide. A flame retardant may be used individually by 1 type, or may be used in combination of 2 or more type. The content of the flame retardant in the resin composition is not particularly limited, but is preferably 0.5% by mass to 10% by mass, more preferably 0.8% by mass to 9% by mass.
 -有機充填材-
 有機充填材としては、プリント配線板の絶縁層を形成するに際し使用し得る任意の有機充填材を使用してよく、例えば、ゴム粒子、ポリアミド微粒子、シリコーン粒子などが挙げられ、ゴム粒子が好ましい。樹脂組成物中の有機充填材の含有量は、好ましくは1質量%~10質量%、より好ましくは2質量%~5質量%である。
-Organic filler-
As the organic filler, any organic filler that can be used for forming an insulating layer of a printed wiring board may be used. Examples thereof include rubber particles, polyamide fine particles, and silicone particles, and rubber particles are preferable. The content of the organic filler in the resin composition is preferably 1% by mass to 10% by mass, more preferably 2% by mass to 5% by mass.
 -他の成分-
 本発明の樹脂組成物は、必要に応じて、他の成分を含んでいてもよい。斯かる他の成分としては、例えば、有機銅化合物、有機亜鉛化合物及び有機コバルト化合物等の有機金属化合物、並びに分散剤、増粘剤、消泡剤、レベリング剤、及び着色剤等の樹脂添加剤等が挙げられる。
-Other ingredients-
The resin composition of the present invention may contain other components as necessary. Examples of such other components include organometallic compounds such as organocopper compounds, organozinc compounds, and organocobalt compounds, and resin additives such as dispersants, thickeners, antifoaming agents, leveling agents, and colorants. Etc.
 本発明の樹脂組成物の調製方法は、特に限定されるものではなく、例えば、配合成分を、必要により溶媒等を添加し、回転ミキサーなどを用いて混合・分散する方法などが挙げられる。 The method for preparing the resin composition of the present invention is not particularly limited, and examples thereof include a method in which a compounded component is added with a solvent if necessary, and mixed and dispersed using a rotary mixer or the like.
 本発明の樹脂組成物は、熱拡散性及び金属層に対する密着強度の双方に優れる硬化物(絶縁層)をもたらす。したがって本発明の樹脂組成物は、プリント配線板の絶縁層を形成するための樹脂組成物(プリント配線板の絶縁層用樹脂組成物)として好適に使用することができ、プリント配線板の層間絶縁層を形成するための樹脂組成物(プリント配線板の層間絶縁層用樹脂組成物)としてより好適に使用することができる。また、本発明の樹脂組成物は、適度な溶融粘度を呈し部品埋め込み性に優れることから、プリント配線板が部品内蔵回路板である場合にも好適に使用することができる。すなわち、本発明の樹脂組成物は、部品内蔵回路板の部品を埋め込むための樹脂組成物(部品埋め込み用樹脂組成物)として好適に使用することができる。本発明の樹脂組成物はまた、接着フィルム及びプリプレグからなる群から選択されるシート状積層材料、ソルダーレジスト、アンダーフィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂等、樹脂組成物が必要とされる用途の広範囲に使用できる。 The resin composition of the present invention provides a cured product (insulating layer) excellent in both thermal diffusibility and adhesion strength to the metal layer. Therefore, the resin composition of the present invention can be suitably used as a resin composition for forming an insulating layer of a printed wiring board (resin composition for an insulating layer of a printed wiring board), and interlayer insulation of the printed wiring board. It can be more suitably used as a resin composition for forming a layer (a resin composition for an interlayer insulating layer of a printed wiring board). In addition, since the resin composition of the present invention exhibits an appropriate melt viscosity and is excellent in component embedding properties, it can be suitably used even when the printed wiring board is a component built-in circuit board. That is, the resin composition of the present invention can be suitably used as a resin composition for embedding components on a component-embedded circuit board (resin composition for embedding components). The resin composition of the present invention also includes a sheet-like laminated material selected from the group consisting of an adhesive film and a prepreg, a solder resist, an underfill material, a die bonding material, a semiconductor sealing material, a hole-filling resin, a component-filling resin, and the like. It can be used in a wide range of applications where the composition is required.
 本発明の樹脂組成物は、熱拡散性及び金属層に対する密着強度の双方に優れる硬化物をもたらすことから、パワー半導体装置において、半導体モジュールと金属放熱体との接着に好適に使用することができる。これによりパワー半導体素子が発生する熱を効率よく金属放熱体に拡散させることが可能である。 Since the resin composition of the present invention provides a cured product excellent in both thermal diffusibility and adhesion strength to the metal layer, it can be suitably used for adhesion between a semiconductor module and a metal radiator in a power semiconductor device. . Thereby, it is possible to efficiently diffuse the heat generated by the power semiconductor element to the metal radiator.
 本発明の樹脂組成物はさらに、高い熱伝導性が要求される種々の用途に用いることが可能である。 The resin composition of the present invention can be further used for various applications that require high thermal conductivity.
 [接着フィルム]
 本発明の樹脂組成物は、ワニス状態で塗布して使用することもできるが、工業的には一般に接着フィルムの形態で用いることが好適である。
[Adhesive film]
The resin composition of the present invention can be applied and used in a varnish state, but industrially, it is generally preferable to use it in the form of an adhesive film.
 一実施形態において、接着フィルムは、支持体と、該支持体と接合している樹脂組成物層(接着層)とを含んでなり、樹脂組成物層(接着層)が本発明の樹脂組成物からなる。 In one embodiment, the adhesive film includes a support and a resin composition layer (adhesive layer) bonded to the support, and the resin composition layer (adhesive layer) is the resin composition of the present invention. Consists of.
 支持体としては、例えば、プラスチック材料からなるフィルム、金属箔、離型紙が挙げられ、プラスチック材料からなるフィルム、金属箔が好ましい。 Examples of the support include a film made of a plastic material, a metal foil, and release paper, and a film made of a plastic material and a metal foil are preferable.
 支持体としてプラスチック材料からなるフィルムを使用する場合、プラスチック材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミドなどが挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、安価なポリエチレンテレフタレートが特に好ましい。 When a film made of a plastic material is used as the support, examples of the plastic material include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylics such as polycarbonate (PC) and polymethyl methacrylate (PMMA). , Cyclic polyolefin, triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, polyimide and the like. Among these, polyethylene terephthalate and polyethylene naphthalate are preferable, and inexpensive polyethylene terephthalate is particularly preferable.
 支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられ、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。 When a metal foil is used as the support, examples of the metal foil include a copper foil and an aluminum foil, and a copper foil is preferable. As the copper foil, a foil made of a single metal of copper may be used, and a foil made of an alloy of copper and another metal (for example, tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.). It may be used.
 支持体は、樹脂組成物層と接合する側の表面にマット処理、コロナ処理を施してあってもよい。また、支持体としては、樹脂組成物層と接合する側の表面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド樹脂、オレフィン樹脂、ウレタン樹脂、及びシリコーン樹脂からなる群から選択される1種以上の離型剤が挙げられる。離型剤の市販品としては、例えば、アルキド樹脂系離型剤である、リンテック(株)製の「SK-1」、「AL-5」、「AL-7」などが挙げられる。 The support may be subjected to mat treatment or corona treatment on the surface to be bonded to the resin composition layer. Further, as the support, a support with a release layer having a release layer on the surface to be bonded to the resin composition layer may be used. Examples of the release agent used for the release layer of the support with the release layer include one or more release agents selected from the group consisting of alkyd resins, olefin resins, urethane resins, and silicone resins. . Examples of commercially available release agents include “SK-1”, “AL-5”, “AL-7” manufactured by Lintec Corporation, which are alkyd resin release agents.
 支持体の厚さは、特に限定されないが、5μm~75μmの範囲が好ましく、10μm~60μmの範囲がより好ましい。なお、支持体が離型層付き支持体である場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。 The thickness of the support is not particularly limited, but is preferably in the range of 5 μm to 75 μm, and more preferably in the range of 10 μm to 60 μm. In addition, when a support body is a support body with a release layer, it is preferable that the thickness of the whole support body with a release layer is the said range.
 樹脂組成物層の厚さは、用途にもよるが、層間(導体層-絶縁層-導体層、半導体モジュール-硬化物-金属放熱体など)において熱を効率よく拡散させる観点から、好ましくは200μm以下、より好ましくは180μm以下、さらに好ましくは160μm以下、140μm以下、又は120μm以下である。樹脂組成物層の厚さの下限は、(C3)成分の平均粒径dc3(μm)よりも十分に大きいことが好適であり、例えば、dc3+45(μm)以上、dc3+55(μm)以上、dc3+65(μm)以上などとし得る。 The thickness of the resin composition layer is preferably 200 μm from the viewpoint of efficiently diffusing heat between the layers (conductor layer-insulating layer-conductor layer, semiconductor module-cured material-metal radiator, etc.), although it depends on the application. Below, more preferably 180 μm or less, still more preferably 160 μm or less, 140 μm or less, or 120 μm or less. The lower limit of the thickness of the resin composition layer is preferably sufficiently larger than the average particle diameter d c3 (μm) of the component (C3). For example, d c3 +45 (μm) or more, d c3 +55 (μm) ) Or more, d c3 +65 (μm) or more.
 接着フィルムは、例えば、有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、この樹脂ワニスを、ダイコーターなどを用いて支持体上に塗布し、更に乾燥させて樹脂組成物層を形成させることにより製造することができる。 For the adhesive film, for example, a resin varnish in which a resin composition is dissolved in an organic solvent is prepared, and this resin varnish is applied on a support using a die coater or the like and further dried to form a resin composition layer. Can be manufactured.
 有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)及びシクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート及びカルビトールアセテート等の酢酸エステル類、セロソルブ及びブチルカルビトール等のカルビトール類、トルエン及びキシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド(DMAc)及びN-メチルピロリドン等のアミド系溶媒等を挙げることができる。有機溶剤は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, cellosolve and butyl carbitol, etc. Carbitols, aromatic hydrocarbons such as toluene and xylene, amide solvents such as dimethylformamide, dimethylacetamide (DMAc) and N-methylpyrrolidone. An organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 乾燥は、加熱、熱風吹きつけ等の公知の方法により実施してよい。乾燥条件は特に限定されないが、樹脂組成物層中の有機溶剤の含有量が10質量%以下、好ましくは5質量%以下となるように乾燥させる。樹脂ワニス中の有機溶剤の沸点によっても異なるが、例えば30質量%~60質量%の有機溶剤を含む樹脂ワニスを用いる場合、50℃~150℃で3分間~10分間乾燥させることにより、樹脂組成物層を形成することができる。 Drying may be performed by a known method such as heating or hot air blowing. The drying conditions are not particularly limited, but the drying is performed so that the content of the organic solvent in the resin composition layer is 10% by mass or less, preferably 5% by mass or less. Depending on the boiling point of the organic solvent in the resin varnish, for example, when using a resin varnish containing 30% by mass to 60% by mass of the organic solvent, the resin composition is dried by drying at 50 ° C. to 150 ° C. for 3 minutes to 10 minutes. A physical layer can be formed.
 本発明者らは、樹脂組成物層の最低溶融粘度が特定の範囲にある場合に、熱拡散性及び金属層に対する密着強度に一層優れる硬化物(絶縁層)が得られることを見出した。詳細には、樹脂組成物層の最低溶融粘度は、500ポイズ~20000ポイズの範囲にあることが好適である。熱拡散性及び金属層に対する密着強度に一層優れる硬化物(絶縁層)を得る観点から、樹脂組成物層の最低溶融粘度の下限は、より好ましくは5500ポイズ以上、さらに好ましくは6000ポイズ以上、6500ポイズ以上又は7000ポイズ以上である。また、樹脂組成物層の最低溶融粘度の上限は、より好ましくは19000ポイズ以下、さらに好ましくは18000ポイズ以下、17000ポイズ以下、16000ポイズ以下、又は15000ポイズ以下である。 The present inventors have found that when the minimum melt viscosity of the resin composition layer is in a specific range, a cured product (insulating layer) that is further excellent in thermal diffusibility and adhesion strength to the metal layer can be obtained. Specifically, the minimum melt viscosity of the resin composition layer is preferably in the range of 500 poise to 20000 poise. From the viewpoint of obtaining a cured product (insulating layer) that is further excellent in thermal diffusibility and adhesion strength to the metal layer, the lower limit of the minimum melt viscosity of the resin composition layer is more preferably 5500 poise or more, further preferably 6000 poise or more, 6500. More than poise or more than 7000 poise. The upper limit of the minimum melt viscosity of the resin composition layer is more preferably 19000 poise or less, still more preferably 18000 poise or less, 17000 poise or less, 16000 poise or less, or 15000 poise or less.
 なお、樹脂組成物層の「最低溶融粘度」とは、樹脂組成物層の樹脂が溶融した際に樹脂組成物層が呈する最低の粘度をいう。詳細には、一定の昇温速度で樹脂層を加熱して樹脂を溶融させると、初期の段階は溶融粘度が温度上昇とともに低下し、その後、ある温度を超えると温度上昇とともに溶融粘度が上昇する。「最低溶融粘度」とは、斯かる極小点の溶融粘度をいう。樹脂組成物層の最低溶融粘度は、動的粘弾性法により測定することができ、例えば、後述する〔最低溶融粘度の測定〕に記載の方法に従って測定することができる。 The “minimum melt viscosity” of the resin composition layer refers to the lowest viscosity exhibited by the resin composition layer when the resin of the resin composition layer is melted. Specifically, when the resin layer is heated at a constant temperature increase rate to melt the resin, the initial stage of the melt viscosity decreases as the temperature rises, and thereafter, when the temperature exceeds a certain temperature, the melt viscosity increases as the temperature increases. . “Minimum melt viscosity” refers to the melt viscosity at such a minimum point. The minimum melt viscosity of the resin composition layer can be measured by a dynamic viscoelastic method, and can be measured, for example, according to the method described in [Measurement of minimum melt viscosity] described later.
 樹脂組成物層の最低溶融粘度は、例えば、(B)成分の含有量、(C)成分の含有量、(C)成分中の(C1)乃至(C3)成分の配合比、樹脂ワニスの乾燥条件等を変更することによって調整することができる。無機充填材含有量を高くすると樹脂組成物層の最低溶融粘度は過度に上昇する場合があるが、上記特定の(A)乃至(C)成分を組み合わせて含む本発明の樹脂組成物では、(C)成分の含有量が高い場合であっても上記のような好適な最低溶融粘度を呈する樹脂組成物層が得られる。 The minimum melt viscosity of the resin composition layer is, for example, the content of the component (B), the content of the component (C), the blending ratio of the components (C1) to (C3) in the component (C), and the drying of the resin varnish. It can be adjusted by changing conditions and the like. If the inorganic filler content is increased, the minimum melt viscosity of the resin composition layer may increase excessively. However, in the resin composition of the present invention containing a combination of the above specific (A) to (C) components, ( Even when the content of the component C) is high, a resin composition layer exhibiting a suitable minimum melt viscosity as described above can be obtained.
 本発明の接着フィルムにおいて、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)には、支持体に準じた保護フィルムをさらに積層することができる。保護フィルムの厚さは、特に限定されるものではないが、例えば、1μm~40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを防止することができる。接着フィルムは、ロール状に巻きとって保存することが可能である。接着フィルムが保護フィルムを有する場合、保護フィルムを剥がすことによって使用可能となる。 In the adhesive film of the present invention, a protective film according to the support can be further laminated on the surface of the resin composition layer that is not joined to the support (that is, the surface opposite to the support). The thickness of the protective film is not particularly limited, but is, for example, 1 μm to 40 μm. By laminating the protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches. The adhesive film can be stored in a roll. When an adhesive film has a protective film, it can be used by peeling off the protective film.
 本発明の接着フィルムは、高い熱伝導性が要求される用途に好適に使用し得る。すなわち、本発明の接着フィルムは、高熱伝導用接着フィルムとして好適に使用することができる。 The adhesive film of the present invention can be suitably used for applications that require high thermal conductivity. That is, the adhesive film of the present invention can be suitably used as an adhesive film for high heat conduction.
 本発明の接着フィルムは、優れた熱拡散性に加えて、金属層に対する密着強度に優れる硬化物をもたらすことができる。したがって本発明の接着フィルムは、パワー半導体装置において、半導体モジュールと金属放熱体との接着に好適に使用することができる。 The adhesive film of the present invention can provide a cured product having excellent adhesion strength to the metal layer in addition to excellent thermal diffusibility. Therefore, the adhesive film of the present invention can be suitably used for bonding a semiconductor module and a metal radiator in a power semiconductor device.
 本発明の接着フィルムは、熱拡散性及び金属層に対する密着強度の双方に優れる硬化物(絶縁層)をもたらすことから、プリント配線板の絶縁層を形成するため(プリント配線板の絶縁層用)に好適に使用することができ、プリント配線板の層間絶縁層を形成するため(プリント配線板の層間絶縁層用)により好適に使用することができる。本発明の接着フィルムはまた、部品内蔵回路板の部品を埋め込むため(部品埋め込み用)にも好適に使用することができる。 The adhesive film of the present invention provides a cured product (insulating layer) that is excellent in both thermal diffusibility and adhesion strength to the metal layer, so that an insulating layer of a printed wiring board is formed (for an insulating layer of a printed wiring board). In order to form an interlayer insulating layer of a printed wiring board (for an interlayer insulating layer of a printed wiring board), it can be used more suitably. The adhesive film of the present invention can also be suitably used for embedding components of a component built-in circuit board (for embedding components).
 [プリント配線板]
 本発明のプリント配線板は、本発明の樹脂組成物の硬化物により形成された絶縁層を含む。
[Printed wiring board]
The printed wiring board of the present invention includes an insulating layer formed of a cured product of the resin composition of the present invention.
 一実施形態において、本発明のプリント配線板は、上述の接着フィルムを用いて、下記(I)及び(II)の工程を含む方法により製造することができる。
 (I)内層基板上に、接着フィルムを、該接着フィルムの樹脂組成物層が内層基板と接合するように積層する工程
 (II)樹脂組成物層を熱硬化して絶縁層を形成する工程
In one Embodiment, the printed wiring board of this invention can be manufactured by the method including the process of following (I) and (II) using the above-mentioned adhesive film.
(I) A step of laminating an adhesive film on an inner layer substrate so that the resin composition layer of the adhesive film is bonded to the inner layer substrate (II) A step of thermosetting the resin composition layer to form an insulating layer
 工程(I)で用いる「内層基板」とは、主として、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の基板、又は該基板の片面又は両面にパターン加工された導体層(回路)が形成された回路基板をいう。またプリント配線板を製造する際に、さらに絶縁層及び/又は導体層が形成されるべき中間製造物の内層回路基板も本発明でいう「内層基板」に含まれる。プリント配線板が部品内蔵回路板である場合、部品を内蔵した内層基板を使用すればよい。 The “inner layer substrate” used in step (I) is mainly a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, or one or both surfaces of the substrate. A circuit board on which a patterned conductor layer (circuit) is formed. Further, when the printed wiring board is manufactured, an inner layer circuit board of an intermediate product in which an insulating layer and / or a conductor layer is further formed is also included in the “inner layer board” in the present invention. When the printed wiring board is a component built-in circuit board, an inner layer board with built-in components may be used.
 内層基板と接着フィルムの積層は、例えば、支持体側から接着フィルムを内層基板に加熱圧着することにより行うことができる。接着フィルムを内層基板に加熱圧着する部材(以下、「加熱圧着部材」ともいう。)としては、例えば、加熱された金属板(SUS鏡板等)又は金属ロール(SUSロール)等が挙げられる。なお、加熱圧着部材を接着フィルムに直接プレスするのではなく、内層基板の表面凹凸に接着フィルムが十分に追随するよう、耐熱ゴム等の弾性材を介してプレスするのが好ましい。 The lamination of the inner layer substrate and the adhesive film can be performed, for example, by thermocompression bonding the adhesive film to the inner layer substrate from the support side. Examples of the member that heat-presses the adhesive film to the inner layer substrate (hereinafter also referred to as “heat-pressing member”) include a heated metal plate (SUS end plate, etc.) or a metal roll (SUS roll). In addition, it is preferable not to press the thermocompression bonding member directly on the adhesive film but to press it through an elastic material such as heat resistant rubber so that the adhesive film sufficiently follows the surface irregularities of the inner layer substrate.
 内層基板と接着フィルムの積層は、真空ラミネート法により実施してよい。真空ラミネート法において、加熱圧着温度は、好ましくは60℃~160℃、より好ましくは80℃~140℃の範囲であり、加熱圧着圧力は、好ましくは0.098MPa~1.77MPa、より好ましくは0.29MPa~1.47MPaの範囲であり、加熱圧着時間は、好ましくは20秒間~400秒間、より好ましくは30秒間~300秒間の範囲である。積層は、好ましくは圧力26.7hPa以下の減圧条件下で実施する。 The lamination of the inner layer substrate and the adhesive film may be performed by a vacuum laminating method. In the vacuum laminating method, the thermocompression bonding temperature is preferably 60 ° C. to 160 ° C., more preferably 80 ° C. to 140 ° C., and the thermocompression bonding pressure is preferably 0.098 MPa to 1.77 MPa, more preferably 0. The thermocompression bonding time is preferably in the range of 20 seconds to 400 seconds, more preferably in the range of 30 seconds to 300 seconds. Lamination is preferably performed under reduced pressure conditions with a pressure of 26.7 hPa or less.
 積層は、市販の真空ラミネーターによって行うことができる。市販の真空ラミネーターとしては、例えば、(株)名機製作所製の真空加圧式ラミネーター、ニチゴー・モートン(株)製のバキュームアップリケーター等が挙げられる。 Lamination can be performed with a commercially available vacuum laminator. Examples of the commercially available vacuum laminator include a vacuum pressure laminator manufactured by Meiki Seisakusho, a vacuum applicator manufactured by Nichigo Morton, and the like.
 積層の後に、常圧下(大気圧下)、例えば、加熱圧着部材を支持体側からプレスすることにより、積層された接着フィルムの平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記積層の加熱圧着条件と同様の条件とすることができる。平滑化処理は、市販のラミネーターによって行うことができる。なお、積層と平滑化処理は、上記の市販の真空ラミネーターを用いて連続的に行ってもよい。 After the lamination, the laminated adhesive film may be smoothed under normal pressure (atmospheric pressure), for example, by pressing a thermocompression bonding member from the support side. The pressing conditions for the smoothing treatment can be the same conditions as the thermocompression bonding conditions for the laminate. The smoothing treatment can be performed with a commercially available laminator. In addition, you may perform lamination | stacking and a smoothing process continuously using said commercially available vacuum laminator.
 支持体は、工程(I)と工程(II)の間に除去してもよく、工程(II)の後に除去してもよい。 The support may be removed between step (I) and step (II), or may be removed after step (II).
 工程(II)において、樹脂組成物層を熱硬化して絶縁層を形成する。 In step (II), the resin composition layer is thermoset to form an insulating layer.
 樹脂組成物層の熱硬化条件は特に限定されず、プリント配線板の絶縁層を形成するに際して通常採用される条件を使用してよい。 The thermosetting conditions for the resin composition layer are not particularly limited, and the conditions normally employed when forming the insulating layer of the printed wiring board may be used.
 例えば、樹脂組成物層の熱硬化条件は、樹脂組成物の種類等によっても異なるが、硬化温度は120℃~240℃の範囲(好ましくは150℃~220℃の範囲、より好ましくは170℃~200℃の範囲)、硬化時間は5分間~120分間の範囲(好ましくは10分間~100分間、より好ましくは15分間~90分間)とすることができる。 For example, the thermosetting conditions of the resin composition layer vary depending on the type of the resin composition, but the curing temperature is in the range of 120 ° C. to 240 ° C. (preferably in the range of 150 ° C. to 220 ° C., more preferably in the range of 170 ° C. to And the curing time can be in the range of 5 minutes to 120 minutes (preferably 10 minutes to 100 minutes, more preferably 15 minutes to 90 minutes).
 樹脂組成物層を熱硬化させる前に、樹脂組成物層を硬化温度よりも低い温度にて予備加熱してもよい。例えば、樹脂組成物層を熱硬化させるのに先立ち、50℃以上120℃未満(好ましくは60℃以上110℃以下、より好ましくは70℃以上100℃以下)の温度にて、樹脂組成物層を5分間以上(好ましくは5分間~150分間、より好ましくは15分間~120分間)予備加熱してもよい。 The resin composition layer may be preheated at a temperature lower than the curing temperature before the resin composition layer is thermally cured. For example, prior to thermosetting the resin composition layer, the resin composition layer is formed at a temperature of 50 ° C. or higher and lower than 120 ° C. (preferably 60 ° C. or higher and 110 ° C. or lower, more preferably 70 ° C. or higher and 100 ° C. or lower). Preheating may be performed for 5 minutes or more (preferably 5 minutes to 150 minutes, more preferably 15 minutes to 120 minutes).
 本発明の樹脂組成物の硬化物により形成された絶縁層は、十分な熱拡散性を発現することができる。例えば、絶縁層は、使用する樹脂組成物中の無機充填材の含有量及び種類によっても異なるが、好ましくは8W/m・K以上、より好ましくは8.2W/m・K以上、さらに好ましくは8.4W/m・K以上、8.5W/m・K以上、8.6W/m・K以上、8.7W/m・K以上、8.8W/m・K以上、8.9W/m・K以上、又は9.0W/m・K以上の熱伝導率を発現し得る。本発明の絶縁層の熱伝導率の上限は特に限定されないが、通常、30W/m・K以下である。絶縁層の熱伝導率は、例えば、熱流計法及び温度波分析法等の公知の方法により測定することができる。本発明において、絶縁層の熱伝導率は、後述する〔硬化物の熱伝導率の測定〕の記載に従って測定することができる。 The insulating layer formed from the cured product of the resin composition of the present invention can exhibit sufficient thermal diffusivity. For example, the insulating layer varies depending on the content and type of the inorganic filler in the resin composition to be used, but is preferably 8 W / m · K or more, more preferably 8.2 W / m · K or more, and still more preferably. 8.4 W / m · K or more, 8.5 W / m · K or more, 8.6 W / m · K or more, 8.7 W / m · K or more, 8.8 W / m · K or more, 8.9 W / m -The thermal conductivity of K or more, or 9.0 W / m · K or more can be exhibited. The upper limit of the thermal conductivity of the insulating layer of the present invention is not particularly limited, but is usually 30 W / m · K or less. The thermal conductivity of the insulating layer can be measured by known methods such as a heat flow meter method and a temperature wave analysis method. In the present invention, the thermal conductivity of the insulating layer can be measured according to the description of [Measurement of thermal conductivity of cured product] described later.
 プリント配線板を製造するに際しては、(III)絶縁層に穴あけする工程、(IV)絶縁層を粗化処理する工程、(V)導体層を形成する工程をさらに実施してもよい。これらの工程(III)乃至(V)は、プリント配線板の製造に用いられる、当業者に公知の各種方法に従って実施してよい。なお、支持体を工程(II)の後に除去する場合、該支持体の除去は、工程(II)と工程(III)との間、工程(III)と工程(IV)の間、又は工程(IV)と工程(V)との間に実施してよい。
 工程(III)は、絶縁層に穴あけする工程であり、これにより絶縁層にビアホール、スルーホール等のホールを形成することができる。工程(III)は、絶縁層の形成に使用した樹脂組成物の組成等に応じて、例えば、ドリル、レーザー、プラズマ等を使用して実施してよい。ホールの寸法や形状は、プリント配線板のデザインに応じて適宜決定してよい。
 工程(IV)は、絶縁層を粗化処理する工程である。粗化処理の手順、条件は特に限定されず、プリント配線板の絶縁層を形成するに際して通常使用される公知の手順、条件を採用することができる。例えば、膨潤液による膨潤処理、酸化剤による粗化処理、中和液による中和処理をこの順に実施して絶縁層を粗化処理することができる。膨潤液としては特に限定されないが、アルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液であり、該アルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液がより好ましい。市販されている膨潤液としては、例えば、アトテックジャパン(株)製の「スウェリング・ディップ・セキュリガンスP」、「スウェリング・ディップ・セキュリガンスSBU」等が挙げられる。膨潤液による膨潤処理は、特に限定されないが、例えば、30℃~90℃の膨潤液に絶縁層を1分間~20分間浸漬することにより行うことができる。絶縁層の樹脂の膨潤を適度なレベルに抑える観点から、40℃~80℃の膨潤液に硬化体を5分間~15分間浸漬させることが好ましい。酸化剤としては、特に限定されないが、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウムや過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液が挙げられる。アルカリ性過マンガン酸溶液等の酸化剤による粗化処理は、60℃~80℃に加熱した酸化剤溶液に絶縁層を10分間~30分間浸漬させて行うことが好ましい。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5質量%~10質量%が好ましい。市販されている酸化剤としては、例えば、アトテックジャパン(株)製の「コンセントレート・コンパクトCP」、「ドージングソリューション・セキュリガンスP」等のアルカリ性過マンガン酸溶液が挙げられる。また、中和液としては、酸性の水溶液が好ましく、市販品としては、例えば、アトテックジャパン(株)製の「リダクションソリューション・セキュリガントP」が挙げられる。中和液による処理は、酸化剤による粗化処理がなされた処理面を30℃~80℃の中和液に5分間~30分間浸漬させることにより行うことができる。作業性等の点から、酸化剤による粗化処理がなされた対象物を、40℃~70℃の中和液に5分間~20分間浸漬する方法が好ましい。
 一実施形態において、粗化処理後の絶縁層表面の算術平均粗さRaは、好ましくは500nm以下、より好ましくは400nm以下、さらに好ましくは350nm以下、さらにより好ましくは300nm以下、250nm以下、200nm以下、150nm以下、又は100nm以下である。絶縁層表面の算術平均粗さ(Ra)は、非接触型表面粗さ計を用いて測定することができる。非接触型表面粗さ計の具体例としては、ビーコインスツルメンツ社製の「WYKO NT3300」が挙げられる。
 工程(V)は、導体層を形成する工程である。
When manufacturing a printed wiring board, you may further implement (III) the process of drilling in an insulating layer, (IV) the process of roughening an insulating layer, and (V) the process of forming a conductor layer. These steps (III) to (V) may be carried out according to various methods known to those skilled in the art, which are used in the production of printed wiring boards. In addition, when removing a support body after process (II), removal of this support body is performed between process (II) and process (III), between process (III) and process (IV), or process ( It may be carried out between IV) and step (V).
Step (III) is a step of making a hole in the insulating layer, whereby holes such as via holes and through holes can be formed in the insulating layer. Step (III) may be performed using, for example, a drill, laser, plasma, or the like, depending on the composition of the resin composition used for forming the insulating layer. The dimensions and shape of the holes may be appropriately determined according to the design of the printed wiring board.
Step (IV) is a step of roughening the insulating layer. The procedure and conditions for the roughening treatment are not particularly limited, and known procedures and conditions that are usually used when forming an insulating layer of a printed wiring board can be employed. For example, the insulating layer can be roughened by performing a swelling treatment with a swelling liquid, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing liquid in this order. Although it does not specifically limit as a swelling liquid, An alkaline solution, surfactant solution, etc. are mentioned, Preferably it is an alkaline solution, As this alkaline solution, a sodium hydroxide solution and a potassium hydroxide solution are more preferable. Examples of commercially available swelling liquids include “Swelling Dip Securigans P” and “Swelling Dip Securigans SBU” manufactured by Atotech Japan Co., Ltd. The swelling treatment with the swelling liquid is not particularly limited, and can be performed, for example, by immersing the insulating layer in a swelling liquid at 30 ° C. to 90 ° C. for 1 minute to 20 minutes. From the viewpoint of suppressing the swelling of the resin of the insulating layer to an appropriate level, it is preferable to immerse the cured body in a swelling liquid at 40 ° C. to 80 ° C. for 5 minutes to 15 minutes. Although it does not specifically limit as an oxidizing agent, For example, the alkaline permanganate solution which melt | dissolved potassium permanganate and sodium permanganate in the aqueous solution of sodium hydroxide is mentioned. The roughening treatment with an oxidizing agent such as an alkaline permanganic acid solution is preferably performed by immersing the insulating layer in an oxidizing agent solution heated to 60 to 80 ° C. for 10 to 30 minutes. The concentration of permanganate in the alkaline permanganate solution is preferably 5% by mass to 10% by mass. Examples of commercially available oxidizing agents include alkaline permanganic acid solutions such as “Concentrate Compact CP” and “Dosing Solution Securigans P” manufactured by Atotech Japan Co., Ltd. The neutralizing solution is preferably an acidic aqueous solution. Examples of commercially available products include “Reduction Solution Securigant P” manufactured by Atotech Japan Co., Ltd. The treatment with the neutralizing solution can be performed by immersing the treated surface subjected to the roughening treatment with the oxidizing agent in the neutralizing solution at 30 to 80 ° C. for 5 to 30 minutes. From the viewpoint of workability and the like, a method of immersing an object subjected to roughening treatment with an oxidizing agent in a neutralizing solution at 40 ° C. to 70 ° C. for 5 minutes to 20 minutes is preferable.
In one embodiment, the arithmetic average roughness Ra of the surface of the insulating layer after the roughening treatment is preferably 500 nm or less, more preferably 400 nm or less, further preferably 350 nm or less, still more preferably 300 nm or less, 250 nm or less, 200 nm or less. , 150 nm or less, or 100 nm or less. The arithmetic average roughness (Ra) of the insulating layer surface can be measured using a non-contact type surface roughness meter. As a specific example of the non-contact type surface roughness meter, “WYKO NT3300” manufactured by Becoins Instruments is cited.
Step (V) is a step of forming a conductor layer.
 プリント配線板において、導体層に使用する導体材料は特に限定されない。好適な実施形態では、導体層は、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムからなる群から選択される1種以上の金属を含む。導体層は、単金属層であっても合金層であってもよく、合金層としては、例えば、上記の群から選択される2種以上の金属の合金(例えば、ニッケル・クロム合金、銅・ニッケル合金及び銅・チタン合金)から形成された層が挙げられる。中でも、導体層形成の汎用性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金、銅・ニッケル合金、銅・チタン合金の合金層が好ましく、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金の合金層がより好ましく、アルミニウム又は銅の単金属層が更に好ましい。導体層は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。導体層が複層構造である場合、絶縁層と接する層は、クロム、亜鉛若しくはチタンの単金属層、又はニッケル・クロム合金の合金層であることが好ましい。 In the printed wiring board, the conductor material used for the conductor layer is not particularly limited. In a preferred embodiment, the conductor layer is one or more selected from the group consisting of gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin and indium. Contains metal. The conductor layer may be a single metal layer or an alloy layer. As the alloy layer, for example, an alloy of two or more metals selected from the above group (for example, nickel-chromium alloy, copper- A layer formed from a nickel alloy and a copper / titanium alloy). Among them, from the viewpoint of versatility of conductor layer formation, cost, ease of patterning, etc., single metal layer of chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or nickel / chromium alloy, copper / Nickel alloy, copper / titanium alloy layer is preferred, chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper single metal layer, or nickel / chromium alloy layer is more preferred, aluminum or copper The single metal layer is more preferable. The conductor layer may have a single layer structure or a multilayer structure in which two or more single metal layers or alloy layers made of different types of metals or alloys are laminated. When the conductor layer has a multilayer structure, the layer in contact with the insulating layer is preferably a single metal layer of chromium, zinc or titanium, or an alloy layer of nickel / chromium alloy.
 導体層の厚さは、所望のプリント配線板のデザインによるが、一般に3μm~35μm、好ましくは5μm~30μmである。 The thickness of the conductor layer is generally 3 μm to 35 μm, preferably 5 μm to 30 μm, although it depends on the desired printed wiring board design.
 本発明の樹脂組成物を用いて製造される本発明のプリント配線板においては、絶縁層は、導体層(金属層)に対して良好な密着強度を示す。詳細には、本発明のプリント配線板において、絶縁層と導体層との密着強度は、好ましくは0.5kgf/cm以上、より好ましくは0.55kgf/cm以上、さらに好ましくは0.6kgf/cm以上、0.62kgf/cm以上、0.64kgf/cm以上、0.66kgf/cm以上、0.68kgf/cm以上、又は0.7kgf/cm以上とすることができる。該密着強度の上限は特に限定されないが、通常、1.0kgf/cm以下、0.9kgf/cm以下などとなる。本発明のプリント配線板において、絶縁層は優れた熱拡散性を呈すると共に、このように導体層に対して高い密着強度を呈する。したがって、該プリント配線板に半導体素子を実装してなる半導体装置において、半導体素子が発生する熱はプリント配線板全体にわたって効率よく拡散させることができる。なお、絶縁層と導体層との剥離強度とは、導体層を絶縁層に対して垂直方向(90度方向)に引き剥がしたときの剥離強度(90度ピール強度)をいい、導体層を絶縁層に対して垂直方向(90度方向)に引き剥がしたときの剥離強度を引っ張り試験機で測定することにより求めることができる。引っ張り試験機としては、例えば、(株)TSE製の「AC-50C-SL」等が挙げられる。 In the printed wiring board of the present invention produced using the resin composition of the present invention, the insulating layer exhibits good adhesion strength to the conductor layer (metal layer). Specifically, in the printed wiring board of the present invention, the adhesion strength between the insulating layer and the conductor layer is preferably 0.5 kgf / cm or more, more preferably 0.55 kgf / cm or more, and further preferably 0.6 kgf / cm. As mentioned above, it is 0.62 kgf / cm or more, 0.64 kgf / cm or more, 0.66 kgf / cm or more, 0.68 kgf / cm or more, or 0.7 kgf / cm or more. The upper limit of the adhesion strength is not particularly limited, but is usually 1.0 kgf / cm or less, 0.9 kgf / cm or less, and the like. In the printed wiring board of the present invention, the insulating layer exhibits excellent thermal diffusivity, and thus exhibits high adhesion strength to the conductor layer. Therefore, in a semiconductor device in which a semiconductor element is mounted on the printed wiring board, heat generated by the semiconductor element can be efficiently diffused over the entire printed wiring board. The peel strength between the insulating layer and the conductor layer refers to the peel strength (90 degree peel strength) when the conductor layer is peeled in the direction perpendicular to the insulating layer (90 degree direction). The peel strength when peeled in the direction perpendicular to the layer (90-degree direction) can be determined by measuring with a tensile tester. Examples of the tensile tester include “AC-50C-SL” manufactured by TSE Corporation.
 本発明のプリント配線板を用いて、半導体装置を製造することができる。 A semiconductor device can be manufactured using the printed wiring board of the present invention.
 半導体装置としては、電気製品(例えば、コンピューター、携帯電話、デジタルカメラ及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられる。 Examples of the semiconductor device include various semiconductor devices used for electrical products (for example, computers, mobile phones, digital cameras, and televisions) and vehicles (for example, motorcycles, automobiles, trains, ships, airplanes, and the like).
 本発明の半導体装置は、プリント配線板の導通箇所に、半導体素子を実装することにより製造することができる。「導通箇所」とは、「プリント配線板における電気信号を伝える箇所」であって、その場所は表面であっても、埋め込まれた箇所であってもいずれでも構わない。また、半導体素子は半導体を材料とする電気回路素子であれば特に限定されない。 The semiconductor device of the present invention can be manufactured by mounting a semiconductor element on a conductive portion of a printed wiring board. The “conduction location” is a “location where an electrical signal is transmitted on a printed wiring board”, and the location may be a surface or an embedded location. The semiconductor element is not particularly limited as long as it is an electric circuit element made of a semiconductor.
 本発明の半導体装置を製造する際の半導体素子の実装方法は、半導体素子が有効に機能しさえすれば、特に限定されないが、具体的には、ワイヤボンディング実装方法、フリップチップ実装方法、バンプなしビルドアップ層(BBUL)による実装方法、異方性導電フィルム(ACF)による実装方法、非導電性フィルム(NCF)による実装方法、などが挙げられる。ここで、「バンプなしビルドアップ層(BBUL)による実装方法」とは、「半導体素子をプリント配線板の凹部に直接埋め込み、半導体素子とプリント配線板上の回路配線とを接続させる実装方法」のことである。 The semiconductor element mounting method for manufacturing the semiconductor device of the present invention is not particularly limited as long as the semiconductor element functions effectively. Specifically, the wire bonding mounting method, the flip chip mounting method, and the bumpless method are used. Examples include a mounting method using a build-up layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF). Here, “a mounting method using a build-up layer without a bump (BBUL)” means “a mounting method in which a semiconductor element is directly embedded in a recess of a printed wiring board and the semiconductor element is connected to a circuit wiring on the printed wiring board”. That is.
 [パワー半導体装置]
 半導体素子の中でも、電力用半導体素子(パワー半導体素子)は特に発熱量が大きい。先述のとおり、本発明の樹脂組成物は、熱拡散性及び金属層に対する密着強度の双方に優れる硬化物をもたらす。したがって本発明の樹脂組成物は、パワー半導体素子を実装した半導体装置(パワー半導体装置)において、熱拡散層を形成するために有利に使用することができる。
[Power semiconductor devices]
Among semiconductor elements, a power semiconductor element (power semiconductor element) generates a large amount of heat. As described above, the resin composition of the present invention provides a cured product excellent in both thermal diffusibility and adhesion strength to the metal layer. Therefore, the resin composition of the present invention can be advantageously used for forming a thermal diffusion layer in a semiconductor device (power semiconductor device) mounted with a power semiconductor element.
 以下、本発明の樹脂組成物の硬化物により形成された絶縁層を熱拡散層として含むパワー半導体装置の一例を示す。 Hereinafter, an example of a power semiconductor device including an insulating layer formed of a cured product of the resin composition of the present invention as a thermal diffusion layer will be described.
 一実施形態において、本発明のパワー半導体装置は、
 第1及び第2の主面を有する金属放熱体、
 第1及び第2の主面を有する半導体モジュール、及び
 金属放熱体の第1の主面と半導体モジュールの第2の主面と接合するように、金属放熱体と半導体モジュールとの間に設けられた本発明の樹脂組成物の硬化物により形成された絶縁層、を含む。
In one embodiment, the power semiconductor device of the present invention includes:
A metal radiator having first and second main surfaces;
Semiconductor module having first and second main surfaces, and provided between the metal heat sink and the semiconductor module so as to be joined to the first main surface of the metal heat sink and the second main surface of the semiconductor module. And an insulating layer formed by a cured product of the resin composition of the present invention.
 図1に、上記実施形態に係る本発明のパワー半導体装置の模式図を示す(外部回路との配線は省略)。図1において、パワー半導体装置10は、金属放熱体1、半導体モジュール3、及び金属放熱体1と半導体モジュール3との間に設けられた本発明の樹脂組成物の硬化物により形成された絶縁層2を含む。 FIG. 1 shows a schematic diagram of the power semiconductor device of the present invention according to the above embodiment (wiring with an external circuit is omitted). In FIG. 1, a power semiconductor device 10 includes a metal radiator 1, a semiconductor module 3, and an insulating layer formed by a cured product of the resin composition of the present invention provided between the metal radiator 1 and the semiconductor module 3. 2 is included.
 金属放熱体1は、第1の主面1aと第2の主面1bを有する。金属放熱体は、金属材料からなる放熱体であれば特に限定はされず、パワー半導体装置において使用し得る公知の金属放熱体を使用してよい。金属放熱体の金属材料としては、アルミニウム、銅が好適である。 The metal radiator 1 has a first main surface 1a and a second main surface 1b. The metal radiator is not particularly limited as long as it is a radiator made of a metal material, and a known metal radiator that can be used in a power semiconductor device may be used. Aluminum and copper are suitable as the metal material for the metal radiator.
 金属放熱体1の第1の主面1aは、平坦であっても凹凸があってもよい。本発明の樹脂組成物は、金属放熱体の第1の主面1aが平坦であっても、該金属放熱体に対し良好な密着強度を呈する硬化物(絶縁層)を実現することができる。例えば、金属放熱体の第1の主面の算術平均粗さ(Ra)は、500nm以下、400nm以下、300nm以下、200nm以下、100nm以下、又は50nm以下であってもよい。金属放熱体の第1の主面のRaの下限は、特に限定されないが、絶縁層と金属放熱体との密着強度を安定化させる観点から、好ましくは1nm以上、5nm以上、10nm以上などとし得る。 The first main surface 1a of the metal radiator 1 may be flat or uneven. Even if the 1st main surface 1a of a metal heat sink is flat, the resin composition of this invention can implement | achieve the hardened | cured material (insulating layer) which exhibits favorable adhesive strength with respect to this metal heat sink. For example, the arithmetic mean roughness (Ra) of the first main surface of the metal radiator may be 500 nm or less, 400 nm or less, 300 nm or less, 200 nm or less, 100 nm or less, or 50 nm or less. The lower limit of Ra on the first main surface of the metal radiator is not particularly limited, but may be preferably 1 nm or more, 5 nm or more, 10 nm or more, etc. from the viewpoint of stabilizing the adhesion strength between the insulating layer and the metal radiator. .
 金属放熱体1の第2の主面1bは、平坦であっても凹凸があってもよい。外部環境に熱を効率よく放散させる観点から、金属放熱体の第2の主面は、放熱表面積が大きくなるように凹凸形状(図示せず)を有することが好適である。 The second main surface 1b of the metal radiator 1 may be flat or uneven. From the viewpoint of efficiently dissipating heat to the external environment, it is preferable that the second main surface of the metal radiator has an uneven shape (not shown) so as to increase the heat dissipation surface area.
 金属放熱体1は、半導体モジュール3からの熱を効率よく拡散し得るように、内部に熱交換媒体(例えば、水などの冷媒)の流路(図示せず)が形成されていてもよい。 The metal heat dissipating body 1 may have a heat exchange medium (for example, a coolant such as water) formed therein (not shown) so that heat from the semiconductor module 3 can be efficiently diffused.
 図1に示す実施形態において、半導体モジュール3は、半導体素子基板4、パワー半導体素子8、及び半導体素子基板とパワー半導体素子とを導通させるためのリード線9を含む。半導体素子基板4は、基板6と、該基板の絶縁層2側の表面に設けられた金属層7と、該基板の絶縁層2とは反対側の表面に設けられた金属層(回路)5とを含む。基板6は、上記[プリント配線板]における「内層基板」と同様としてよく、本発明の樹脂組成物の硬化物から形成してもよい。金属層(回路)5及び金属層6は、上記[プリント配線板]における「導体層」と同様としてよい。半導体素子基板4はまた、本発明の樹脂組成物の硬化物により形成された絶縁層を含むプリント配線板であってもよい。本発明のパワー半導体装置において、半導体モジュールは、図1に記載する実施形態に限定されるものではなく、パワー半導体素子を含む半導体モジュールであれば特に限定なく使用してよい。例えば、特開2002-246542号公報に記載されるパワー半導体装置のように、リードフレームと、該リードフレームに実装されたパワー半導体素子とを含む半導体モジュールを使用してよい。 In the embodiment shown in FIG. 1, the semiconductor module 3 includes a semiconductor element substrate 4, a power semiconductor element 8, and lead wires 9 for conducting the semiconductor element substrate and the power semiconductor element. The semiconductor element substrate 4 includes a substrate 6, a metal layer 7 provided on the surface of the substrate on the insulating layer 2 side, and a metal layer (circuit) 5 provided on the surface of the substrate opposite to the insulating layer 2. Including. The substrate 6 may be the same as the “inner layer substrate” in the above [printed wiring board], and may be formed from a cured product of the resin composition of the present invention. The metal layer (circuit) 5 and the metal layer 6 may be the same as the “conductor layer” in the [printed wiring board]. The semiconductor element substrate 4 may also be a printed wiring board including an insulating layer formed of a cured product of the resin composition of the present invention. In the power semiconductor device of the present invention, the semiconductor module is not limited to the embodiment shown in FIG. 1, and any semiconductor module including a power semiconductor element may be used without any particular limitation. For example, a semiconductor module including a lead frame and a power semiconductor element mounted on the lead frame may be used as in a power semiconductor device described in Japanese Patent Application Laid-Open No. 2002-246542.
 本発明の樹脂組成物の硬化物により形成された絶縁層2は、金属層に対する密着強度が良好な硬化物をもたらすことから、半導体モジュールの第2の主面3b(すなわち、金属層7の表面)が平坦であっても、該半導体モジュールに対し良好な密着強度を実現することができる。半導体モジュールの第2の主面のRaは、金属放熱体の第1の主面のRaと同様であってよい。 Since the insulating layer 2 formed of the cured product of the resin composition of the present invention provides a cured product having good adhesion strength to the metal layer, the second main surface 3b of the semiconductor module (that is, the surface of the metal layer 7). ) Is flat, good adhesion strength to the semiconductor module can be realized. Ra of the second main surface of the semiconductor module may be the same as Ra of the first main surface of the metal radiator.
 したがって一実施形態において、金属放熱体の第1の主面及び半導体モジュールの第2の主面の少なくとも一方のRaは500nm以下であってもよい。 Therefore, in one embodiment, Ra of at least one of the first main surface of the metal radiator and the second main surface of the semiconductor module may be 500 nm or less.
 本発明の樹脂組成物の硬化物により形成された絶縁層は、熱拡散性及び金属層に対する密着強度の双方に優れる。一実施形態において、絶縁層の熱伝導率は8W/m・K以上であり、絶縁層と金属放熱体の第1の主面及び半導体モジュールの第2の主面の少なくとも一方との密着強度は0.5kgf/cm以上である。なお、絶縁層の熱伝導率の好適な範囲は、上記[プリント配線板]の絶縁層について記載したとおりであり、また、絶縁層と金属放熱体の第1の主面及び半導体モジュールの第2の主面の少なくとも一方との密着強度は、上記[プリント配線板]の絶縁層と導体層との密着強度と同様とし得る。 The insulating layer formed from the cured product of the resin composition of the present invention is excellent in both thermal diffusibility and adhesion strength to the metal layer. In one embodiment, the thermal conductivity of the insulating layer is 8 W / m · K or more, and the adhesion strength between the insulating layer and at least one of the first main surface of the metal radiator and the second main surface of the semiconductor module is 0.5 kgf / cm or more. The preferable range of the thermal conductivity of the insulating layer is as described for the insulating layer of the [printed wiring board], and the insulating layer, the first main surface of the metal radiator, and the second of the semiconductor module. The adhesion strength with at least one of the main surfaces of the printed wiring board can be the same as the adhesion strength between the insulating layer and the conductor layer of the [printed wiring board].
 本発明のパワー半導体装置において、パワー半導体素子を光や熱、湿度などの環境による劣化から保護すべく、半導体モジュールを封止する封止樹脂(図示せず)を設けてもよい。封止樹脂は、半導体装置の製造において使用し得る公知の樹脂を用いてよく、本発明の樹脂組成物を使用してもよい。したがって一実施形態において、本発明のパワー半導体装置は、半導体モジュールを封止するように設けられた本発明の樹脂組成物の硬化物により形成された封止層を備える。 In the power semiconductor device of the present invention, a sealing resin (not shown) for sealing the semiconductor module may be provided in order to protect the power semiconductor element from deterioration due to the environment such as light, heat, and humidity. As the sealing resin, a known resin that can be used in the manufacture of a semiconductor device may be used, or the resin composition of the present invention may be used. Therefore, in one embodiment, the power semiconductor device of the present invention includes a sealing layer formed of a cured product of the resin composition of the present invention provided to seal the semiconductor module.
 [積層体]
 本発明はまた、絶縁層と金属層の積層体を提供する。
[Laminate]
The present invention also provides a laminate of an insulating layer and a metal layer.
 従来、絶縁層の熱拡散性は、金属層に対する密着強度とトレードオフの関係にあり、熱拡散性及び金属層に対する密着強度の双方に優れる絶縁層は存在しなかった。 Conventionally, the thermal diffusivity of the insulating layer has a trade-off relationship with the adhesion strength to the metal layer, and there has been no insulating layer excellent in both thermal diffusibility and adhesion strength to the metal layer.
 本発明の積層体は、絶縁層と金属層の積層体であって、絶縁層の熱伝導率が8W/m・K以上であり、かつ、絶縁層と金属層との密着強度が0.5kgf/cm以上であることを特徴とする。 The laminate of the present invention is a laminate of an insulating layer and a metal layer, the thermal conductivity of the insulating layer is 8 W / m · K or more, and the adhesion strength between the insulating layer and the metal layer is 0.5 kgf. / Cm or more.
 熱拡散性及び金属層に対する密着強度の双方に優れる絶縁層を含む本発明の積層体は、本発明の樹脂組成物を用いてはじめて実現されたものである。すなわち、本発明の積層体は、本発明の樹脂組成物の硬化物により形成された絶縁層と金属層とを含む。絶縁層の熱伝導率の好適な範囲並びに絶縁層と金属層との密着強度の好適な範囲は、上記[プリント配線板]に記載のとおりである。 The laminate of the present invention including an insulating layer excellent in both thermal diffusibility and adhesion strength to a metal layer is realized for the first time using the resin composition of the present invention. That is, the laminated body of this invention contains the insulating layer and metal layer which were formed with the hardened | cured material of the resin composition of this invention. The preferable range of the thermal conductivity of the insulating layer and the preferable range of the adhesion strength between the insulating layer and the metal layer are as described in the above [Printed wiring board].
 本発明の積層体において、金属層の、絶縁層と接合している表面の算術平均粗さ(Ra)は、500nm以下、400nm以下、300nm以下、200nm以下、100nm以下、又は50nm以下であってもよい。該Raの下限は、特に限定されないが、絶縁層と金属層との密着強度を安定化させる観点から、好ましくは1nm以上、5nm以上、10nm以上などとし得る。したがって一実施形態において、金属層の、絶縁層と接合している表面のRaは500nm以下である。本発明の積層体においては、このように金属層の表面のRaが低い場合であっても、絶縁層と金属層は良好な密着強度を呈することができる。 In the laminate of the present invention, the arithmetic average roughness (Ra) of the surface of the metal layer bonded to the insulating layer is 500 nm or less, 400 nm or less, 300 nm or less, 200 nm or less, 100 nm or less, or 50 nm or less. Also good. The lower limit of Ra is not particularly limited, but may be preferably 1 nm or more, 5 nm or more, 10 nm or more, etc. from the viewpoint of stabilizing the adhesion strength between the insulating layer and the metal layer. Therefore, in one embodiment, the Ra of the surface of the metal layer bonded to the insulating layer is 500 nm or less. In the laminate of the present invention, the insulating layer and the metal layer can exhibit good adhesion strength even when the Ra of the surface of the metal layer is low.
 本発明の積層体において、金属層は、上記[プリント配線板]における「導体層」と同様としてよい。金属層はまた、上記[パワー半導体装置]における「金属放熱体」と同様としてよい。したがって本発明の積層体において、金属層は、銅又はアルミニウムからなることが好適である。 In the laminate of the present invention, the metal layer may be the same as the “conductor layer” in the above [printed wiring board]. The metal layer may be the same as the “metal radiator” in the above [power semiconductor device]. Therefore, in the laminate of the present invention, the metal layer is preferably made of copper or aluminum.
 なお、本発明のプリント配線板、パワー半導体装置、及び積層体において、絶縁層の厚さは、[接着フィルム]における樹脂組成物層の好適な厚さと同様としてよい。本発明の接着フィルムを用いて絶縁層を形成する場合、必要に応じて、複数の接着フィルムを用いて樹脂組成物層同士を積層して所期の厚さの絶縁層を達成してもよい。 In the printed wiring board, power semiconductor device, and laminate of the present invention, the thickness of the insulating layer may be the same as the preferred thickness of the resin composition layer in [Adhesive film]. When forming an insulating layer using the adhesive film of the present invention, if necessary, an insulating layer having a desired thickness may be achieved by laminating resin composition layers using a plurality of adhesive films. .
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の記載において、「部」及び「%」は、別途記載のない限り、それぞれ「質量部」及び「質量%」を意味する。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. In the following description, “parts” and “%” mean “parts by mass” and “% by mass”, respectively, unless otherwise specified.
 <測定方法・評価方法>
 まずは各種測定方法・評価方法について説明する。
<Measurement method / Evaluation method>
First, various measurement methods and evaluation methods will be described.
 〔測定・評価用基板の調製〕
 実施例及び比較例で作製した接着フィルムを、高温真空プレス装置(北川精機(株)製「KVHC-PRESS」)を用いて、樹脂組成物層とアルミニウム板とが接合するように、アルミニウム板((株)メタルカット製の5052-H32材)に積層した。積層は、減圧して気圧を13hPa以下とした後、120℃、圧力3kgf/cmで5分間プレスすることにより行った。その後、支持体を剥離し、露出した樹脂組成物層の表面に、樹脂組成物層と電解銅箔の光沢面とが接合するように、電解銅箔(JX日鉱日石金属(株)製「JTCP-35u」、光沢面のRa:200nm)を積層した。次いで、上記高温真空プレス装置を用いて、減圧して気圧を13hPa以下とした後、140℃、圧力5kgf/cmで10分間、次いで200℃、圧力5kgf/cmで90分間プレスして、樹脂組成物層を硬化させて絶縁層を形成した。
[Preparation of measurement and evaluation substrate]
Using the high-temperature vacuum press apparatus (“KVHC-PRESS” manufactured by Kitagawa Seiki Co., Ltd.), the adhesive films produced in the examples and comparative examples were bonded to an aluminum plate (so that the resin composition layer and the aluminum plate were joined together). 5052-H32 material manufactured by Metal Cut Co., Ltd.). Lamination was performed by reducing the pressure to 13 hPa or less and then pressing at 120 ° C. and a pressure of 3 kgf / cm 2 for 5 minutes. Thereafter, the support is peeled off, and an electrolytic copper foil (manufactured by JX Nippon Mining & Metals Co., Ltd.) is attached so that the resin composition layer and the glossy surface of the electrolytic copper foil are bonded to the exposed surface of the resin composition layer. JTCP-35u ”and Ra of glossy surface: 200 nm) were laminated. Next, after reducing the pressure to 13 hPa or less using the high-temperature vacuum press apparatus, pressing was performed at 140 ° C. and a pressure of 5 kgf / cm 2 for 10 minutes, then at 200 ° C. and a pressure of 5 kgf / cm 2 for 90 minutes, The resin composition layer was cured to form an insulating layer.
 〔密着強度の測定〕
 測定・評価用基板の銅箔に、幅10mm、長さ50mmの部分の切込みをいれ、この一端を剥がしてつかみ具((株)ティー・エス・イー製のオートコム型試験機「AC-50C-SL」)で掴み、室温中にて、50mm/分の速度で垂直方向に10mmを引き剥がした時の荷重(kgf/cm)を測定し、密着強度を求めた。
[Measurement of adhesion strength]
Cut a 10mm width and 50mm length into the copper foil of the measurement / evaluation board, peel off one end, and grip the tool (Autocom type tester "AC-50C manufactured by TS E Co., Ltd.) -SL "), and the load (kgf / cm) when 10 mm was peeled off in the vertical direction at a speed of 50 mm / min at room temperature was measured to determine the adhesion strength.
 〔硬化物の熱伝導率の測定〕
(1)硬化物試料の調製
 実施例及び比較例で作製した接着フィルムを、140℃で10分間加熱した後、支持体を剥離した。こうして得られた樹脂組成物層を5枚重ね合わせた後、200℃、圧力20kgf/cmで90分間プレスして樹脂組成物層を硬化させ、硬化物試料を得た。
(2)熱拡散率αの測定
 硬化物試料について、該硬化物の厚さ方向の熱拡散率α(m/s)を、ai-Phase社製「ai-Phase Mobile 1u」を用いて温度波分析法により測定した。同一試料について3回測定を行い、平均値を算出した。
(3)比熱容量Cpの測定
 硬化物試料について、示差走査熱量計(SIIナノテクノロジー(株)製「DSC7020」)を用いて、-40℃から80℃まで10℃/分で昇温し、測定することにより、該硬化物試料の20℃での比熱容量Cp(J/kg・K)を算出した。
(4)密度ρの測定
 硬化物試料の密度(kg/m)を、メトラー・トレド(株)製分析天秤XP105(比重測定キット使用)を用いて測定した。
(5)熱伝導率λの算出
 上記(2)乃至(4)で得られた熱拡散率α(m/s)、比熱容量Cp(J/kg・K)、及び密度ρ(kg/m)を下記式(I)に代入して、熱伝導率λ(W/m・K)を算出した。
 λ=α×Cp×ρ (I)
[Measurement of thermal conductivity of cured product]
(1) Preparation of hardened | cured material sample After heating the adhesive film produced by the Example and the comparative example at 140 degreeC for 10 minute (s), the support body was peeled. After superposing the five resin composition layers thus obtained, the resin composition layer was cured by pressing at 200 ° C. and a pressure of 20 kgf / cm 2 for 90 minutes to obtain a cured product sample.
(2) Measurement of thermal diffusivity α For the cured product sample, the thermal diffusivity α (m 2 / s) in the thickness direction of the cured product was measured using “ai-Phase Mobile 1u” manufactured by ai-Phase. Measured by wave analysis. The same sample was measured three times, and the average value was calculated.
(3) Measurement of specific heat capacity Cp Using a differential scanning calorimeter (“DSC7020” manufactured by SII Nanotechnology Co., Ltd.), the cured sample was heated from −40 ° C. to 80 ° C. at a rate of 10 ° C./min. Thus, the specific heat capacity Cp (J / kg · K) at 20 ° C. of the cured product sample was calculated.
(4) Measurement of density ρ The density (kg / m 3 ) of the cured product sample was measured using an analytical balance XP105 (using a specific gravity measurement kit) manufactured by METTLER TOLEDO Co., Ltd.
(5) Calculation of thermal conductivity λ Thermal diffusivity α (m 2 / s) obtained in the above (2) to (4), specific heat capacity Cp (J / kg · K), and density ρ (kg / m 3 ) was substituted into the following formula (I) to calculate the thermal conductivity λ (W / m · K).
λ = α × Cp × ρ (I)
 〔最低溶融粘度の測定〕
 実施例及び比較例で作製した接着フィルムの樹脂組成物層について、動的粘弾性測定装置((株)ユー・ビー・エム製「Rheosol-G3000」)を使用して溶融粘度を測定した。試料樹脂組成物1.8gについて、直径18mmのパラレルプレートを使用して、測定開始温度60℃から昇温速度5℃/分にて昇温し、測定温度間隔2.5℃、振動数1Hz、歪み1degの測定条件にて測定した。最低の粘度値(η)を最低溶融粘度とした。
[Measurement of minimum melt viscosity]
With respect to the resin composition layers of the adhesive films prepared in Examples and Comparative Examples, the melt viscosity was measured using a dynamic viscoelasticity measuring device (“Reosol-G3000” manufactured by UBM Co., Ltd.). About 1.8 g of the sample resin composition, using a parallel plate having a diameter of 18 mm, the temperature was increased from a measurement start temperature of 60 ° C. at a temperature increase rate of 5 ° C./min, a measurement temperature interval of 2.5 ° C., a frequency of 1 Hz The measurement was performed under a measurement condition of 1 deg strain. The lowest viscosity value (η) was taken as the lowest melt viscosity.
 <実施例1>
 (1)樹脂ワニスの調製
 ビスフェノール型エポキシ樹脂(新日鉄住金化学(株)製「ZX1059」、ビスフェノールA型とビスフェノールF型の1:1混合品、エポキシ当量約169)3部、2官能脂肪族エポキシ樹脂(三菱化学(株)製「YL7410」、エポキシ当量418)2部、ビフェニル型エポキシ樹脂(日本化薬(株)製「NC3000L」、エポキシ当量約269)4.5部、ビキシレノール型エポキシ樹脂(三菱化学(株)製「YX4000HK」、エポキシ当量約185)3部を、ソルベントナフサ10部に撹拌しながら加熱溶解させた。室温まで冷却した後、リン酸エステル型アニオン界面活性剤(東邦化学工業(株)製「RS-610」)1部を溶解し、平均粒子径1.1μmの窒化アルミニウム((株)トクヤマ製「シェイパルH」、比表面積2.5m/g、比重3.0g/cm、以下「窒化アルミニウム1」という。)34部、平均粒子径4.7μmの窒化アルミニウム((株)トクヤマ製「シェイパルH」、比表面積1.0m/g、比重3.1g/cm、以下「窒化アルミニウム2」という。)34部、平均粒子径22.3μmの窒化アルミニウム((株)トクヤマ製「シェイパルH」、比表面積0.2m/g、比重2.9g/cm、以下「窒化アルミニウム3」という。)136部を添加し、3本ロールで混練し分散させた。そこへ、フェノキシ樹脂(三菱化学(株)製「YL7553」、固形分30質量%のメチルエチルケトン(MEK)とシクロヘキサノンの1:1溶液)5.5部、液状フェノール系硬化剤(少なくともアリル基およびアルキル基を有する液状フェノール)群栄化学工業(株)製「ACG-1」、水酸基当量約230、重量平均分子量1690)5.5部、硬化促進剤(4-ジメチルアミノピリジン(DMAP)、固形分5質量%のMEK溶液)4.5部を混合し、樹脂ワニスを調製した。
<Example 1>
(1) Preparation of resin varnish Bisphenol type epoxy resin (“ZX1059” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., 1: 1 mixture of bisphenol A type and bisphenol F type, epoxy equivalent of about 169) 3 parts, bifunctional aliphatic epoxy 2 parts of resin ("YL7410" manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 418), 4.5 parts of biphenyl type epoxy resin ("NC3000L" manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent of about 269), bixylenol type epoxy resin 3 parts (Mitsubishi Chemical Corporation "YX4000HK", epoxy equivalent of about 185) was dissolved in 10 parts of solvent naphtha with stirring. After cooling to room temperature, 1 part of a phosphoric acid ester type anionic surfactant (“RS-610” manufactured by Toho Chemical Industry Co., Ltd.) is dissolved, and aluminum nitride having an average particle diameter of 1.1 μm (manufactured by Tokuyama Co., Ltd.) “Shape H”, specific surface area 2.5 m 2 / g, specific gravity 3.0 g / cm 3 , hereinafter referred to as “aluminum nitride 1”) 34 parts, average particle size 4.7 μm aluminum nitride (“Shapal” manufactured by Tokuyama Corporation) H ”, specific surface area 1.0 m 2 / g, specific gravity 3.1 g / cm 3 , hereinafter referred to as“ aluminum nitride 2 ”) 34 parts, average particle diameter 22.3 μm of aluminum nitride (“ Shapal H ”manufactured by Tokuyama Corporation) ”, Specific surface area of 0.2 m 2 / g, specific gravity of 2.9 g / cm 3 , hereinafter referred to as“ aluminum nitride 3 ”) was added 136 parts, and kneaded with three rolls and dispersed. There, 5.5 parts of phenoxy resin (“YL7553” manufactured by Mitsubishi Chemical Corporation, 1: 1 solution of methyl ethyl ketone (MEK) and cyclohexanone having a solid content of 30% by mass), liquid phenolic curing agent (at least allyl group and alkyl) Liquid phenol having a group) “ACG-1” manufactured by Gunei Chemical Industry Co., Ltd., 5.5 equivalents of a hydroxyl group, weight average molecular weight 1690), curing accelerator (4-dimethylaminopyridine (DMAP), solid content A resin varnish was prepared by mixing 4.5 parts of a 5 mass% MEK solution).
 (2)接着フィルムの作製
 支持体として、離型層付きPETフィルム(リンテック(株)製「PET501010」、厚さ50μm)を用意した。該支持体の離型層側に、乾燥後の樹脂組成物層の厚さが100μmとなるように樹脂ワニスを均一に塗布し、75℃~120℃で10分間乾燥させて、接着フィルムを作製した。
(2) Production of Adhesive Film A PET film with a release layer (“PET501010” manufactured by Lintec Corporation, thickness 50 μm) was prepared as a support. A resin varnish is uniformly applied on the release layer side of the support so that the thickness of the resin composition layer after drying is 100 μm, and dried at 75 ° C. to 120 ° C. for 10 minutes to produce an adhesive film. did.
 <実施例2>
 3本ロールでの混練後にカルボジイミド化合物(日清紡ケミカル(株)製「V-03」、固形分51%、粘度38mPa・s(20℃))2部をさらに加えたこと以外は、実施例1と同様にして接着フィルムを作製した。
<Example 2>
Example 1 except that 2 parts of carbodiimide compound (“V-03” manufactured by Nisshinbo Chemical Co., Ltd., solid content 51%, viscosity 38 mPa · s (20 ° C.)) was further added after kneading with 3 rolls. An adhesive film was prepared in the same manner.
 <実施例3>
 窒化アルミニウム1の配合量を17部に、窒化アルミニウム2の配合量を51部に変更した以外は、実施例1と同様にして接着フィルムを作製した。
<Example 3>
An adhesive film was produced in the same manner as in Example 1 except that the amount of aluminum nitride 1 was changed to 17 parts and the amount of aluminum nitride 2 was changed to 51 parts.
 <実施例4>
 窒化アルミニウム1の配合量を43.5部に、窒化アルミニウム2の配合量を43.5部に、窒化アルミニウム3の配合量を116部に変更した以外は、実施例1と同様にして接着フィルムを作製した。
<Example 4>
Adhesive film in the same manner as in Example 1 except that the amount of aluminum nitride 1 was changed to 43.5 parts, the amount of aluminum nitride 2 was changed to 43.5 parts, and the amount of aluminum nitride 3 was changed to 116 parts. Was made.
 <実施例5>
 窒化アルミニウム1の配合量を63.8部に、窒化アルミニウム2の配合量を38.3部に、窒化アルミニウム3の配合量を102部に変更した以外は、実施例1と同様にして接着フィルムを作製した。
<Example 5>
Adhesive film in the same manner as in Example 1 except that the amount of aluminum nitride 1 was changed to 63.8 parts, the amount of aluminum nitride 2 was changed to 38.3 parts, and the amount of aluminum nitride 3 was changed to 102 parts. Was made.
 <実施例6>
 窒化アルミニウム1の配合量を72.5部に、窒化アルミニウム2の配合量を14.5部に、窒化アルミニウム3の配合量を116部に変更した以外は、実施例1と同様にして接着フィルムを作製した。
<Example 6>
Adhesive film in the same manner as in Example 1 except that the amount of aluminum nitride 1 was changed to 72.5 parts, the amount of aluminum nitride 2 was changed to 14.5 parts, and the amount of aluminum nitride 3 was changed to 116 parts. Was made.
 <実施例7>
 窒化アルミニウム1の配合量を38.1部に、窒化アルミニウム2の配合量を38.1部に、窒化アルミニウム3の配合量を127部に変更した以外は、実施例1と同様にして接着フィルムを作製した。
<Example 7>
Adhesive film in the same manner as in Example 1 except that the amount of aluminum nitride 1 was changed to 38.1 parts, the amount of aluminum nitride 2 was changed to 38.1 parts, and the amount of aluminum nitride 3 was changed to 127 parts. Was made.
 <実施例8>
 ビスフェノール型エポキシ樹脂(新日鉄住金化学(株)製「ZX1059」、ビスフェノールA型とビスフェノールF型の1:1混合品、エポキシ当量約169)5部、ビフェニル型エポキシ樹脂(日本化薬(株)製「NC3000L」、エポキシ当量約269)4.5部、ビキシレノール型エポキシ樹脂(三菱化学(株)製「YX4000HK」、エポキシ当量約185)3部を、ソルベントナフサ10部に撹拌しながら加熱溶解させた。室温まで冷却した後、リン酸エステル型アニオン界面活性剤(東邦化学工業(株)製「RS-710」)1部を溶解し、平均粒子径1.5μmの窒化アルミニウム((株)トクヤマ製「シェイパルH(耐水処理品)」、比表面積2.5m/g、比重3.3g/cm、以下「窒化アルミニウム4」という。)34部、平均粒子径5.2μmの窒化アルミニウム((株)トクヤマ製「シェイパルH(耐水処理品)」、比表面積0.8m/g、比重3.3g/cm、以下「窒化アルミニウム5」という。)34部、平均粒子径23.0μmの窒化アルミニウム((株)トクヤマ製「シェイパルH(耐水処理品)」、比表面積0.2m/g、比重3.0g/cm、以下「窒化アルミニウム6」という。)136部を添加し、3本ロールで混練し分散させた。そこへ、フェノキシ樹脂(三菱化学(株)製「YL7553」、固形分30質量%のメチルエチルケトン(MEK)とシクロヘキサノンの1:1溶液)5.5部、液状フェノール系硬化剤(群栄化学工業(株)製「ACG-1」、水酸基当量約230、重量平均分子量1690)5.5部、硬化促進剤(4-ジメチルアミノピリジン(DMAP)、固形分5質量%のMEK溶液)4.5部を混合し、樹脂ワニスを調製し、実施例1と同様にして接着フィルムを作製した。
<Example 8>
Bisphenol type epoxy resin (“ZX1059” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., 1: 1 mixture of bisphenol A type and bisphenol F type, epoxy equivalent of about 169), 5 parts, biphenyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.) 4.5 parts of “NC3000L”, epoxy equivalent of about 269), 3 parts of bixylenol type epoxy resin (“YX4000HK” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent of about 185) are dissolved in 10 parts of solvent naphtha with stirring while heating. It was. After cooling to room temperature, 1 part of a phosphate ester type anionic surfactant (“RS-710” manufactured by Toho Chemical Industry Co., Ltd.) is dissolved, and aluminum nitride having an average particle size of 1.5 μm (manufactured by Tokuyama Co., Ltd.) "Shape H (water-resistant treated product)", specific surface area 2.5 m 2 / g, specific gravity 3.3 g / cm 3 , hereinafter referred to as “aluminum nitride 4”) 34 parts, average particle size 5.2 μm aluminum nitride (stock ) "Shapal H (water-resistant treated product)" manufactured by Tokuyama, specific surface area 0.8 m 2 / g, specific gravity 3.3 g / cm 3 , hereinafter referred to as “aluminum nitride 5”) 34 parts, nitriding with an average particle diameter of 23.0 μm Add 136 parts of aluminum (“Shape H (water resistant product)” manufactured by Tokuyama Corporation, specific surface area 0.2 m 2 / g, specific gravity 3.0 g / cm 3 , hereinafter referred to as “aluminum nitride 6”). Book It was kneaded and dispersed with Le. There, 5.5 parts of phenoxy resin (“YL7553” manufactured by Mitsubishi Chemical Corporation, 1: 1 solution of methyl ethyl ketone (MEK) and cyclohexanone having a solid content of 30% by mass), liquid phenolic curing agent (Gunei Chemical Industry ( "ACG-1", 5.5 parts by weight, hydroxyl equivalent weight about 230, weight average molecular weight 1690), curing accelerator (4-dimethylaminopyridine (DMAP), MEK solution having a solid content of 5% by mass) 4.5 parts Were mixed to prepare a resin varnish, and an adhesive film was prepared in the same manner as in Example 1.
 <実施例9>
 液状フェノール系硬化剤を明和化成(株)製「MEH-8000H」(アリル基を有する液状フェノール、水酸基当量約140)5.5部に変更した以外は、実施例8と同様にして接着フィルムを作製した。
<Example 9>
An adhesive film was prepared in the same manner as in Example 8 except that the liquid phenolic curing agent was changed to 5.5 parts “MEH-8000H” (liquid phenol having an allyl group, hydroxyl equivalent weight of about 140) manufactured by Meiwa Kasei Co., Ltd. Produced.
 <実施例10>
 窒化アルミニウム4の配合量を17.0部に、窒化アルミニウム5の配合量を51.0部に、硬化促進剤をテトラブチルホスホニウムデカン酸塩(TBPDA)(固形分10質量%のMEK溶液)6部に変更した以外は、実施例8と同様にして接着フィルムを作製した。
<Example 10>
The compounding amount of aluminum nitride 4 is 17.0 parts, the compounding amount of aluminum nitride 5 is 51.0 parts, and the curing accelerator is tetrabutylphosphonium decanoate (TBPDA) (MEK solution having a solid content of 10% by mass). The adhesive film was produced like Example 8 except having changed into the part.
 <実施例11>
 窒化アルミニウム4の配合量を37.8部に、窒化アルミニウム5の配合量を37.8部に変更し、窒化アルミニウム6の代わりに平均粒子径30μmの窒化アルミニウム((株)トクヤマ製「シェイパルH(耐水処理品)」、比表面積0.2m/g、比重3.3g/cm、以下「窒化アルミニウム7」という。)126部を添加し、フェノキシ樹脂を「YL7482」(三菱化学(株)製、固形分30質量%のメチルエチルケトン(MEK)とシクロヘキサノンの1:1溶液)5.5部に変更した以外は、実施例10と同様にして接着フィルムを作製した。
<Example 11>
The amount of aluminum nitride 4 was changed to 37.8 parts, and the amount of aluminum nitride 5 was changed to 37.8 parts. Instead of aluminum nitride 6, aluminum nitride having an average particle diameter of 30 μm (“Shapal H” manufactured by Tokuyama Corporation) was used. (Water-resistant treated product) ”, specific surface area 0.2 m 2 / g, specific gravity 3.3 g / cm 3 , hereinafter referred to as“ aluminum nitride 7 ”) 126 parts, and phenoxy resin“ YL7482 ”(Mitsubishi Chemical Corporation) ), An adhesive film was prepared in the same manner as in Example 10 except that the content was changed to 5.5 parts), a solid solution of methyl ethyl ketone (MEK) having a solid content of 30% by mass and a cyclohexanone (1: 1 solution).
 <実施例12>
 リン酸エステル型アニオン界面活性剤の配合量を1.2部に、窒化アルミニウム4の配合量を44.4部に、窒化アルミニウム5の代わりに平均粒子径4μmのアルミナ(昭和電工(株)製「CB-P05」、比表面積0.7m/g、比重2.2g/cm、以下「アルミナ2」という。)44.4部、窒化アルミニウム6の代わりに平均粒子径28μmのアルミナ(昭和電工(株)製「CB-A30S」、比表面積0.2m/g、比重2.3g/cm、以下「アルミナ3」という。)148部を添加し、フェノキシ樹脂を「YL7482」に変更した以外は、実施例8と同様にして接着フィルムを作製した。
<Example 12>
The amount of phosphate ester type anionic surfactant is 1.2 parts, the amount of aluminum nitride 4 is 44.4 parts, and alumina with an average particle diameter of 4 μm is used instead of aluminum nitride 5 (manufactured by Showa Denko KK) “CB-P05”, specific surface area 0.7 m 2 / g, specific gravity 2.2 g / cm 3 , hereinafter referred to as “alumina 2”) 44.4 parts, instead of aluminum nitride 6, alumina having an average particle diameter of 28 μm (Showa "CB-A30S" manufactured by Denko Co., Ltd., with a specific surface area of 0.2 m 2 / g, specific gravity of 2.3 g / cm 3 (hereinafter referred to as “alumina 3”) was added and 148 parts were added, and the phenoxy resin was changed to “YL7482.” An adhesive film was produced in the same manner as in Example 8 except that.
 <実施例13>
 リン酸エステル型アニオン界面活性剤の配合量を1.1部に変更し、窒化アルミニウム4の代わりに平均粒子径1μmのアルミナ(日本軽金属(株)製「AHP300」、比表面積2.6m/g、比重3.98g/cm、以下「アルミナ1」という。)40.8部を添加し、アルミナ2の配合量を40.8部に変更し、アルミナ3の代わりに窒化アルミニウム7を136部添加し、硬化促進剤をテトラブチルホスホニウムデカン酸塩(TBPDA)(固形分10質量%のMEK溶液)6部に変更した以外は、実施例12と同様にして接着フィルムを作製した。
<Example 13>
The amount of the phosphate ester type anionic surfactant was changed to 1.1 parts. Instead of aluminum nitride 4, alumina having an average particle diameter of 1 μm (“AHP300” manufactured by Nippon Light Metal Co., Ltd., specific surface area 2.6 m 2 / g, specific gravity 3.98 g / cm 3 , hereinafter referred to as “alumina 1”), 40.8 parts was added, the amount of alumina 2 was changed to 40.8 parts, and aluminum nitride 7 was replaced with 136 instead of alumina 3. An adhesive film was produced in the same manner as in Example 12 except that the curing accelerator was changed to 6 parts of tetrabutylphosphonium decanoate (TBPDA) (MEK solution having a solid content of 10% by mass).
 <実施例14>
 硬化促進剤を4-ジメチルアミノピリジン(DMAP)、固形分5質量%のMEK溶液)4.5部に変更した以外は、実施例13と同様にして接着フィルムを作製した。
<Example 14>
An adhesive film was produced in the same manner as in Example 13 except that the curing accelerator was changed to 4.5 parts of 4-dimethylaminopyridine (DMAP) and MEK solution having a solid content of 5% by mass.
 <比較例1>
 i)窒化アルミニウム1の配合量を17部に、窒化アルミニウム2の配合量を51部に変更した点、ii)液状フェノール系硬化剤(群栄化学工業(株)製「ACG-1」、活性基当量約230)5.5部に代えて、固体状フェノール系硬化剤(DIC(株)製「LA7054」、トリアジン構造含有フェノールノボラック樹脂、活性基当量約125、固形分60質量%のMEK溶液)5部及び固体状ナフトール系硬化剤(新日鉄住金化学(株)製「SN-485」、水酸基当量215、固形分50%のMEK溶液)5部を使用した点以外は、実施例1と同様にして接着フィルムを作製した。
<Comparative Example 1>
i) The amount of aluminum nitride 1 is changed to 17 parts, and the amount of aluminum nitride 2 is changed to 51 parts. ii) Liquid phenolic curing agent (“ACG-1” manufactured by Gunei Chemical Industry Co., Ltd.) Instead of 5.5 parts of a base equivalent of about 230), a solid phenolic curing agent (“LA7054” manufactured by DIC Corporation), a phenol novolak resin containing a triazine structure, an active group equivalent of about 125, a MEK solution having a solid content of 60% by mass ) And 5 parts of a solid naphthol-based curing agent (“SN-485” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., MEK solution having a hydroxyl equivalent weight of 215 and a solid content of 50%) was used in the same manner as in Example 1. Thus, an adhesive film was produced.
 <比較例2>
 i)窒化アルミニウム1を使用しなかった点、ii)窒化アルミニウム2の配合量を68部に変更した点以外は、実施例1と同様にして接着フィルムを作製した。
<Comparative example 2>
An adhesive film was produced in the same manner as in Example 1 except that i) aluminum nitride 1 was not used and ii) the amount of aluminum nitride 2 was changed to 68 parts.
 <比較例3>
 i)窒化アルミニウム1の配合量を68部に変更した点、ii)窒化アルミニウム2を使用しなかった点以外は、実施例1と同様にして接着フィルムを作製した。
<Comparative Example 3>
An adhesive film was produced in the same manner as in Example 1 except that i) the amount of aluminum nitride 1 was changed to 68 parts, and ii) aluminum nitride 2 was not used.
 <比較例4>
 i)窒化アルミニウム1の配合量を51部に、窒化アルミニウム2の配合量を153部に変更した点、ii)窒化アルミニウム3を使用しなかった点以外は、実施例1と同様にして接着フィルムを作製した。
<Comparative example 4>
i) Adhesive film in the same manner as in Example 1 except that the amount of aluminum nitride 1 was changed to 51 parts and the amount of aluminum nitride 2 was changed to 153 parts, and ii) aluminum nitride 3 was not used. Was made.
 結果を表1、表2に示す。ただし、比較例1、2及び4については、溶融粘度が高く熱伝導率測定用の硬化物試料の作製が困難であったため、熱伝導率の値を記載していない。また、比較例2及び4については、溶融粘度が高く測定・評価用基板の作製が困難であったため、密着強度の値を記載していない。 Results are shown in Tables 1 and 2. However, in Comparative Examples 1, 2, and 4, since the melt viscosity was high and it was difficult to produce a cured product sample for measuring the thermal conductivity, the value of the thermal conductivity was not described. In Comparative Examples 2 and 4, since the melt viscosity was high and it was difficult to produce a measurement / evaluation substrate, the value of adhesion strength was not described.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 1 金属放熱体
 1a 金属放熱体の第1の主面
 1b 金属放熱体の第2の主面
 2 絶縁層
 3 半導体モジュール
 3b 半導体モジュールの第2の主面
 4 半導体素子基板
 5 金属層(回路)
 6 基板
 7 金属層
 8 半導体素子
 9 リード線
 10 パワー半導体装置
DESCRIPTION OF SYMBOLS 1 Metal heat radiator 1a 1st main surface of metal heat sink 1b 2nd main surface of metal heat sink 2 Insulating layer 3 Semiconductor module 3b 2nd main surface of a semiconductor module 4 Semiconductor element substrate 5 Metal layer (circuit)
6 Substrate 7 Metal layer 8 Semiconductor element 9 Lead wire 10 Power semiconductor device

Claims (24)

  1.  (A)エポキシ樹脂、(B)硬化剤及び(C)無機充填材を含む樹脂組成物であって、
     (B)成分が液状フェノール系硬化剤を含み、
     (C)成分が、(C1)平均粒子径0.1μm以上3μm未満の無機充填材、(C2)平均粒子径3μm以上10μm未満の無機充填材及び(C3)平均粒子径10μm以上35μm以下の無機充填材を含む、樹脂組成物。
    A resin composition comprising (A) an epoxy resin, (B) a curing agent and (C) an inorganic filler,
    (B) a component contains a liquid phenol type hardening | curing agent,
    Component (C) is (C1) an inorganic filler having an average particle size of 0.1 μm or more and less than 3 μm, (C2) an inorganic filler having an average particle size of 3 μm or more and less than 10 μm, and (C3) an inorganic material having an average particle size of 10 μm or more and 35 μm or less A resin composition containing a filler.
  2.  (C)成分の含有量を100質量%とした場合、(C1)成分の含有量が5質量%~40質量%、(C2)成分の含有量が5質量%~40質量%、(C3)成分の含有量が20質量%~90質量%である、請求項1に記載の樹脂組成物。 When the content of component (C) is 100% by mass, the content of component (C1) is 5% by mass to 40% by mass, the content of component (C2) is 5% by mass to 40% by mass, and (C3) The resin composition according to claim 1, wherein the content of the component is 20% by mass to 90% by mass.
  3.  (C1)成分の平均粒径をdc1(μm)、(C2)成分の平均粒径をdc2(μm)、(C3)成分の平均粒径をdc3(μm)としたとき、dc1、dc2及びdc3が、dc2-dc1≧0.5及びdc3-dc2≧5.0の関係を満たす、請求項1又は2に記載の樹脂組成物。 When the average particle size of component (C1) is d c1 (μm), the average particle size of component (C2) is d c2 (μm), and the average particle size of component (C3) is d c3 (μm), d c1 The resin composition according to claim 1, wherein d c2 and d c3 satisfy a relationship of d c2 −d c1 ≧ 0.5 and d c3 −d c2 ≧ 5.0.
  4.  (C)成分の含有量が、樹脂組成物中の不揮発成分を100体積%とした場合、60体積%~90体積%である、請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the content of the component (C) is 60% by volume to 90% by volume when the nonvolatile component in the resin composition is 100% by volume. .
  5.  (C)成分が、熱伝導率25W/m・K以上の無機充填材を含む、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the component (C) includes an inorganic filler having a thermal conductivity of 25 W / m · K or more.
  6.  (C)成分が、窒化アルミニウム、アルミナ、窒化ホウ素、窒化ケイ素及び炭化ケイ素からなる群から選択される1又は2以上の無機充填材を含む、請求項1~5のいずれか1項に記載の樹脂組成物。 The component (C) includes one or more inorganic fillers selected from the group consisting of aluminum nitride, alumina, boron nitride, silicon nitride, and silicon carbide, according to any one of claims 1 to 5. Resin composition.
  7.  (C)成分が、窒化アルミニウムを含む、請求項1~6のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the component (C) contains aluminum nitride.
  8.  (A)成分が、液状エポキシ樹脂を含む、請求項1~7のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the component (A) comprises a liquid epoxy resin.
  9.  (D)硬化促進剤をさらに含む、請求項1~8のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, further comprising (D) a curing accelerator.
  10.  (D)成分が、テトラ置換ホスホニウム塩を含む、請求項9に記載の樹脂組成物。 The resin composition according to claim 9, wherein the component (D) contains a tetra-substituted phosphonium salt.
  11.  (E)カルボジイミド化合物をさらに含む、請求項1~10のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, further comprising (E) a carbodiimide compound.
  12.  支持体と、該支持体と接合している請求項1~11のいずれか1項に記載の樹脂組成物からなる樹脂組成物層とを含む接着フィルム。 An adhesive film comprising a support and a resin composition layer comprising the resin composition according to any one of claims 1 to 11, which is bonded to the support.
  13.  樹脂組成物層の最低溶融粘度が500ポイズ~20000ポイズである、請求項12に記載の接着フィルム。 The adhesive film according to claim 12, wherein the minimum melt viscosity of the resin composition layer is 500 poise to 20000 poise.
  14.  樹脂組成物層の厚さが、(C3)成分の平均粒径をdc3(μm)としたとき、(dc3+45)μm~200μmである、請求項12又は13に記載の接着フィルム。 The adhesive film according to claim 12 or 13, wherein the thickness of the resin composition layer is (d c3 +45) μm to 200 μm, where d c3 (μm) is the average particle diameter of the component (C3).
  15.  高熱伝導用である請求項12~14のいずれか1項に記載の接着フィルム。 The adhesive film according to any one of claims 12 to 14, which is used for high heat conduction.
  16.  金属放熱体と半導体モジュールとの接着に使用される請求項12~15のいずれか1項に記載の接着フィルム。 The adhesive film according to any one of claims 12 to 15, which is used for bonding a metal radiator and a semiconductor module.
  17.  請求項1~11のいずれか1項に記載の樹脂組成物の硬化物により形成された絶縁層を含むプリント配線板。 A printed wiring board comprising an insulating layer formed of a cured product of the resin composition according to any one of claims 1 to 11.
  18.  第1及び第2の主面を有する金属放熱体、
     第1及び第2の主面を有する半導体モジュール、及び
     金属放熱体の第1の主面と半導体モジュールの第2の主面と接合するように、金属放熱体と半導体モジュールとの間に設けられた請求項1~11のいずれか1項に記載の樹脂組成物の硬化物により形成された絶縁層を含むパワー半導体装置。
    A metal radiator having first and second main surfaces;
    Semiconductor module having first and second main surfaces, and provided between the metal heat sink and the semiconductor module so as to be joined to the first main surface of the metal heat sink and the second main surface of the semiconductor module. A power semiconductor device comprising an insulating layer formed of a cured product of the resin composition according to any one of claims 1 to 11.
  19.  金属放熱体の第1の主面及び半導体モジュールの第2の主面の少なくとも一方の算術平均粗さ(Ra)が500nm以下である、請求項18に記載のパワー半導体装置。 19. The power semiconductor device according to claim 18, wherein an arithmetic average roughness (Ra) of at least one of the first main surface of the metal radiator and the second main surface of the semiconductor module is 500 nm or less.
  20.  絶縁層の熱伝導率が8W/m・K以上であり、
     絶縁層と金属放熱体の第1の主面及び半導体モジュールの第2の主面の少なくとも一方との密着強度が0.5kgf/cm以上である、請求項18又は19に記載のパワー半導体装置。
    The thermal conductivity of the insulating layer is 8 W / m · K or more,
    The power semiconductor device according to claim 18 or 19, wherein the adhesion strength between the insulating layer and at least one of the first main surface of the metal radiator and the second main surface of the semiconductor module is 0.5 kgf / cm or more.
  21.  絶縁層と金属層の積層体であって、
     絶縁層の熱伝導率が8W/m・K以上であり、かつ、絶縁層と金属層との密着強度が0.5kgf/cm以上である積層体。
    A laminate of an insulating layer and a metal layer,
    A laminate in which the thermal conductivity of the insulating layer is 8 W / m · K or more and the adhesion strength between the insulating layer and the metal layer is 0.5 kgf / cm or more.
  22.  金属層の絶縁層と接合している表面の算術平均粗さ(Ra)が500nm以下である、請求項21に記載の積層体。 The laminate according to claim 21, wherein the arithmetic average roughness (Ra) of the surface bonded to the insulating layer of the metal layer is 500 nm or less.
  23.  金属層が銅又はアルミニウムからなる、請求項21又は22に記載の積層体。 The laminate according to claim 21 or 22, wherein the metal layer is made of copper or aluminum.
  24.  絶縁層が請求項1~11のいずれか1項に記載の樹脂組成物の硬化物により形成されてなる、請求項21~23のいずれか1項に記載の積層体。 The laminate according to any one of claims 21 to 23, wherein the insulating layer is formed of a cured product of the resin composition according to any one of claims 1 to 11.
PCT/JP2016/052394 2015-02-05 2016-01-27 Resin composition WO2016125664A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016573308A JP6772841B2 (en) 2015-02-05 2016-01-27 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-021416 2015-02-05
JP2015021416 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016125664A1 true WO2016125664A1 (en) 2016-08-11

Family

ID=56564012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052394 WO2016125664A1 (en) 2015-02-05 2016-01-27 Resin composition

Country Status (3)

Country Link
JP (1) JP6772841B2 (en)
TW (1) TWI696657B (en)
WO (1) WO2016125664A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049878A (en) * 2016-09-20 2018-03-29 トヨタ自動車株式会社 Semiconductor device
KR20180035164A (en) * 2016-09-28 2018-04-05 아지노모토 가부시키가이샤 Resin compositions
KR20180108482A (en) * 2017-03-23 2018-10-04 아지노모토 가부시키가이샤 Resin Composition
WO2019078044A1 (en) * 2017-10-18 2019-04-25 株式会社スリーボンド Thermally conductive resin composition, cured object, and heat radiation method
WO2019106953A1 (en) * 2017-11-30 2019-06-06 京セラ株式会社 Resin sheet, semiconductor device and method for producing semiconductor device
JP2019179835A (en) * 2018-03-30 2019-10-17 住友ベークライト株式会社 Heat radiation insulation sheet and semiconductor device
WO2020067364A1 (en) * 2018-09-28 2020-04-02 富士フイルム株式会社 Composition for forming heat conductive materials, heat conductive material, heat conductive sheet, device with heat conductive layer, and film
JP6692512B1 (en) * 2018-12-25 2020-05-13 富士高分子工業株式会社 Thermally conductive composition and thermally conductive sheet using the same
WO2020137086A1 (en) * 2018-12-25 2020-07-02 富士高分子工業株式会社 Heat-conductive composition and heat-conductive sheet employing same
WO2020188641A1 (en) * 2019-03-15 2020-09-24 日立化成株式会社 Epoxy resin composition, electronic component device, and method for manufacturing electronic component device
WO2022113941A1 (en) * 2020-11-30 2022-06-02 株式会社トクヤマ Resin composition
WO2023181905A1 (en) * 2022-03-22 2023-09-28 日本発條株式会社 Laminate manufacturing method
TWI839160B (en) 2022-03-22 2024-04-11 日商日本發條股份有限公司 Method for manufacturing laminate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663203B (en) * 2017-02-14 2019-06-21 日商京瓷股份有限公司 Resin sheet, semiconductor device, and method for manufacturing semiconductor device
CN110577722A (en) * 2019-09-12 2019-12-17 江苏硕阳电子科技有限公司 Epoxy resin mixed heat-conducting insulating material for air-core reactor and preparation method thereof
CN114591708B (en) * 2020-12-30 2023-04-07 广东生益科技股份有限公司 Resin composition, resin adhesive film and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176549A (en) * 2004-12-20 2006-07-06 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2008156383A (en) * 2006-12-20 2008-07-10 Matsushita Electric Works Ltd Liquid resin composition, semiconductor device and method for producing the same
JP2012077098A (en) * 2010-09-10 2012-04-19 Shin-Etsu Chemical Co Ltd Overcoat material and semiconductor device using the same
JP2012077123A (en) * 2010-09-30 2012-04-19 Nippon Steel Chem Co Ltd Adhesive resin composition, cured product of the same, and adhesive film
JP2013053278A (en) * 2011-09-06 2013-03-21 Nisshinbo Holdings Inc Electrically insulating resin composition and metal substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6123277B2 (en) * 2011-12-28 2017-05-10 日立化成株式会社 RESIN COMPOSITION, RESIN COMPOSITION SHEET, AND METHOD FOR PRODUCING RESIN COMPOSITION SHEET, RESIN COMPOSITION SHEET WITH METAL FILMS, B STAGE SHEET, RESIN COMPOSITION SHEET WITH SEMI-HARDENED METAL FILMS, METAL BASE WIRING BOARD MATERIAL, METAL BASE WIRING BOARD , LED light source member, and power semiconductor device
JP2013189625A (en) * 2012-02-15 2013-09-26 Nippon Steel & Sumikin Chemical Co Ltd High thermal conductive resin cured product, high thermal conductive semicured resin film, and high thermal conductive resin composition
JP2015130476A (en) * 2013-12-04 2015-07-16 日東電工株式会社 Epoxy resin composition for optical semiconductor device and lead frame for optical semiconductor device obtained by using the same, sealed optical semiconductor element and optical semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176549A (en) * 2004-12-20 2006-07-06 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2008156383A (en) * 2006-12-20 2008-07-10 Matsushita Electric Works Ltd Liquid resin composition, semiconductor device and method for producing the same
JP2012077098A (en) * 2010-09-10 2012-04-19 Shin-Etsu Chemical Co Ltd Overcoat material and semiconductor device using the same
JP2012077123A (en) * 2010-09-30 2012-04-19 Nippon Steel Chem Co Ltd Adhesive resin composition, cured product of the same, and adhesive film
JP2013053278A (en) * 2011-09-06 2013-03-21 Nisshinbo Holdings Inc Electrically insulating resin composition and metal substrate

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049878A (en) * 2016-09-20 2018-03-29 トヨタ自動車株式会社 Semiconductor device
KR20180035164A (en) * 2016-09-28 2018-04-05 아지노모토 가부시키가이샤 Resin compositions
KR102399146B1 (en) * 2016-09-28 2022-05-19 아지노모토 가부시키가이샤 Resin compositions
KR20180108482A (en) * 2017-03-23 2018-10-04 아지노모토 가부시키가이샤 Resin Composition
KR102610333B1 (en) * 2017-03-23 2023-12-07 아지노모토 가부시키가이샤 Resin Composition
JPWO2019078044A1 (en) * 2017-10-18 2020-11-05 株式会社スリーボンド Thermally conductive resin composition, cured product and heat dissipation method
WO2019078044A1 (en) * 2017-10-18 2019-04-25 株式会社スリーボンド Thermally conductive resin composition, cured object, and heat radiation method
CN111247207A (en) * 2017-10-18 2020-06-05 三键有限公司 Thermally conductive resin composition, cured product, and heat dissipation method
CN111247207B (en) * 2017-10-18 2022-11-08 三键有限公司 Thermally conductive resin composition, cured product, and heat dissipation method
WO2019106953A1 (en) * 2017-11-30 2019-06-06 京セラ株式会社 Resin sheet, semiconductor device and method for producing semiconductor device
JP2019179835A (en) * 2018-03-30 2019-10-17 住友ベークライト株式会社 Heat radiation insulation sheet and semiconductor device
JP7099009B2 (en) 2018-03-30 2022-07-12 住友ベークライト株式会社 Heat dissipation insulation sheet and semiconductor device
WO2020067364A1 (en) * 2018-09-28 2020-04-02 富士フイルム株式会社 Composition for forming heat conductive materials, heat conductive material, heat conductive sheet, device with heat conductive layer, and film
US11781053B2 (en) 2018-12-25 2023-10-10 Fuji Polymer Industries Co., Ltd. Thermally conductive composition and thermally conductive sheet using the same
CN112041411A (en) * 2018-12-25 2020-12-04 富士高分子工业株式会社 Thermally conductive composition and thermally conductive sheet using same
WO2020137086A1 (en) * 2018-12-25 2020-07-02 富士高分子工業株式会社 Heat-conductive composition and heat-conductive sheet employing same
KR102509813B1 (en) 2018-12-25 2023-03-14 후지고분시고오교오가부시끼가이샤 Thermally conductive composition and thermally conductive sheet using the same
KR20200125685A (en) * 2018-12-25 2020-11-04 후지고분시고오교오가부시끼가이샤 Thermally conductive composition and thermally conductive sheet using the same
JP6692512B1 (en) * 2018-12-25 2020-05-13 富士高分子工業株式会社 Thermally conductive composition and thermally conductive sheet using the same
JPWO2020188641A1 (en) * 2019-03-15 2020-09-24
WO2020188641A1 (en) * 2019-03-15 2020-09-24 日立化成株式会社 Epoxy resin composition, electronic component device, and method for manufacturing electronic component device
WO2022113941A1 (en) * 2020-11-30 2022-06-02 株式会社トクヤマ Resin composition
CN115803394A (en) * 2020-11-30 2023-03-14 株式会社德山 Resin composition
CN115803394B (en) * 2020-11-30 2024-03-26 株式会社德山 Resin composition
WO2023181905A1 (en) * 2022-03-22 2023-09-28 日本発條株式会社 Laminate manufacturing method
TWI839160B (en) 2022-03-22 2024-04-11 日商日本發條股份有限公司 Method for manufacturing laminate

Also Published As

Publication number Publication date
TW201704333A (en) 2017-02-01
JPWO2016125664A1 (en) 2017-11-16
JP6772841B2 (en) 2020-10-21
TWI696657B (en) 2020-06-21

Similar Documents

Publication Publication Date Title
JP7279732B2 (en) Resin composition, adhesive film, printed wiring board and semiconductor device
WO2016125664A1 (en) Resin composition
KR102577869B1 (en) Resin composition
CN106256862B (en) Resin composition
JP6595336B2 (en) Resin composition
TWI717464B (en) Resin sheet with support
JP2018044040A (en) Resin composition
JP6672953B2 (en) Resin sheet
JP7400883B2 (en) resin composition
JP6950732B2 (en) Resin composition
JP7156433B2 (en) resin composition
JP2017059779A (en) Method for manufacturing printed wiring board
JP2015135940A (en) Method for manufacturing component-built-in substrate, and semiconductor device
JP6620457B2 (en) Resin composition
JP2017103332A (en) Method of manufacturing semiconductor chip package
JP2019006895A (en) Resin composition
JP2018101703A (en) Method for manufacturing printed wiring board
TWI773796B (en) resin composition
JP2016210852A (en) Resin composition
JP6881552B2 (en) Resin composition
JP2019054066A (en) Method for manufacturing printed wiring board
JP7248000B2 (en) resin composition
JP2017019970A (en) Resin composition
JP2017154397A (en) Resin sheet with support body
JP2020074444A (en) Adhesive film, print circuit board and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746495

Country of ref document: EP

Kind code of ref document: A1