JP6123277B2 - RESIN COMPOSITION, RESIN COMPOSITION SHEET, AND METHOD FOR PRODUCING RESIN COMPOSITION SHEET, RESIN COMPOSITION SHEET WITH METAL FILMS, B STAGE SHEET, RESIN COMPOSITION SHEET WITH SEMI-HARDENED METAL FILMS, METAL BASE WIRING BOARD MATERIAL, METAL BASE WIRING BOARD , LED light source member, and power semiconductor device - Google Patents

RESIN COMPOSITION, RESIN COMPOSITION SHEET, AND METHOD FOR PRODUCING RESIN COMPOSITION SHEET, RESIN COMPOSITION SHEET WITH METAL FILMS, B STAGE SHEET, RESIN COMPOSITION SHEET WITH SEMI-HARDENED METAL FILMS, METAL BASE WIRING BOARD MATERIAL, METAL BASE WIRING BOARD , LED light source member, and power semiconductor device Download PDF

Info

Publication number
JP6123277B2
JP6123277B2 JP2012276043A JP2012276043A JP6123277B2 JP 6123277 B2 JP6123277 B2 JP 6123277B2 JP 2012276043 A JP2012276043 A JP 2012276043A JP 2012276043 A JP2012276043 A JP 2012276043A JP 6123277 B2 JP6123277 B2 JP 6123277B2
Authority
JP
Japan
Prior art keywords
resin composition
sheet
inorganic filler
resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012276043A
Other languages
Japanese (ja)
Other versions
JP2013151655A (en
Inventor
靖夫 宮崎
靖夫 宮崎
正貴 後藤
正貴 後藤
福田 和真
和真 福田
田仲 裕之
裕之 田仲
真司 天沼
真司 天沼
高橋 裕之
裕之 高橋
原 直樹
直樹 原
智喜 江連
智喜 江連
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012276043A priority Critical patent/JP6123277B2/en
Publication of JP2013151655A publication Critical patent/JP2013151655A/en
Application granted granted Critical
Publication of JP6123277B2 publication Critical patent/JP6123277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、樹脂組成物、樹脂組成物シート及び樹脂組成物シートの製造方法、金属箔付樹脂組成物シート、Bステージシート、半硬化の金属箔付樹脂組成物シート、メタルベース配線板材料、メタルベース配線板、LED光源部材、並びにパワー半導体装置に関する。   The present invention includes a resin composition, a resin composition sheet and a method for producing the resin composition sheet, a resin composition sheet with a metal foil, a B stage sheet, a semi-cured resin composition sheet with a metal foil, a metal base wiring board material, The present invention relates to a metal base wiring board, an LED light source member, and a power semiconductor device.

モーターや発電機から、プリント配線基板やICチップに至るまでの殆どの電気機器は、電気を通すための導体と、絶縁材料とを含んで構成される。近年、これら電気機器は急速に小型化されつつあり、絶縁材料の性能を改善する要求が高まっている。特に、小型化に伴い高密度化した導体から発生する発熱量は著しく増大しており、絶縁材料においていかに熱を放散させるかが重要な課題となっている。   Most electrical devices ranging from motors and generators to printed wiring boards and IC chips include a conductor for conducting electricity and an insulating material. In recent years, these electric devices are being miniaturized rapidly, and the demand for improving the performance of insulating materials is increasing. In particular, the amount of heat generated from a high-density conductor with a reduction in size has increased remarkably, and how to dissipate heat in an insulating material has become an important issue.

これまで各種の電気機器に配設される絶縁材料としては、絶縁性能の高さや成型の容易さから、有機樹脂を含む樹脂組成物が広く用いられている。しかし、一般的に樹脂組成物は熱伝導率が低く、電気機器における熱の放散を妨げる一要因となっている。したがって、高い熱伝導率を有する樹脂組成物が求められている。   Conventionally, resin compositions containing organic resins have been widely used as insulating materials disposed in various electrical devices because of their high insulating performance and ease of molding. However, the resin composition generally has a low thermal conductivity, which is one factor that hinders heat dissipation in electrical equipment. Therefore, a resin composition having high thermal conductivity is demanded.

樹脂組成物の高熱伝導率化を達成する方法として、高熱伝導性セラミックからなる無機充填材を樹脂組成物に充填してコンポジットとする方法がある。高熱伝導性セラミックとしては、シリカ、アルミナ、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、及び窒化ケイ素等の例が知られている。特に絶縁性、熱伝導性、化学的安定性及び価格の観点からアルミナが使用されることが多く、これらの無機充填材を樹脂組成物に充填することにより、絶縁性と高熱伝導性との両立を図ることが検討されている。   As a method of achieving a high thermal conductivity of the resin composition, there is a method of filling a resin composition with an inorganic filler made of a high thermal conductive ceramic to form a composite. Examples of high thermal conductive ceramics are silica, alumina, magnesium oxide, boron nitride, aluminum nitride, and silicon nitride. In particular, alumina is often used from the viewpoints of insulation, thermal conductivity, chemical stability, and price. By filling these inorganic fillers into the resin composition, both insulation and high thermal conductivity can be achieved. It is being considered to plan.

また、樹脂組成物の高熱伝導率化を達成するその他の方法として、メソゲン骨格を有するモノマーを秩序的に配列させることで、樹脂そのものの高熱伝導化を図る手法が検討されている。メソゲン骨格とは、ビフェニル骨格などに代表される液晶性を発現するような剛直な部位をいう。例えば、メソゲン骨格を有するエポキシ樹脂は、分子間でスタッキングを起こして秩序的に分子が配列する。これを硬化剤により硬化したものを絶縁材料として用いることができる。特許文献1には、このようなメソゲン骨格を有するモノマーの一例として、液晶性を示すエポキシ化合物が掲載されている。   In addition, as another method for achieving high thermal conductivity of the resin composition, a technique for increasing the thermal conductivity of the resin itself by orderly arranging monomers having a mesogen skeleton has been studied. The mesogen skeleton refers to a rigid portion that exhibits liquid crystallinity represented by a biphenyl skeleton and the like. For example, an epoxy resin having a mesogenic skeleton causes stacking between molecules and the molecules are arranged in an orderly manner. What hardened | cured this with the hardening | curing agent can be used as an insulating material. Patent Document 1 discloses an epoxy compound exhibiting liquid crystallinity as an example of a monomer having such a mesogen skeleton.

特開2005−206814号公報JP 2005-206814 A

上記の無機充填材を充填する樹脂組成物において、近年に要求されている高い熱伝導率を実現するには、無機充填材の充填量を多くする必要がある。無機充填材を高充填した樹脂組成物では、無機充填材表面と樹脂の相互作用により粘度が著しく上昇する。また、無機充填材を高充填した樹脂組成物では、無機充填材どうしが嵌合する頻度が高くなるために、流動性が著しく低下する。その結果、無機充填材を高充填した樹脂組成物を被着材に付与した場合に、被着材の表面構造の埋め込み不良による空孔、又は塗工時に発生した気泡が生じて、電気機器の絶縁破壊の原因となったり、流動性が不足するために被着材への接着性が不足し、加工の過程で剥離したりするなどの問題が生じやすい。   In the resin composition filled with the above inorganic filler, in order to realize the high thermal conductivity required in recent years, it is necessary to increase the filling amount of the inorganic filler. In a resin composition highly filled with an inorganic filler, the viscosity is remarkably increased due to the interaction between the surface of the inorganic filler and the resin. Moreover, in the resin composition highly filled with the inorganic filler, the frequency with which the inorganic fillers are fitted to each other is increased, so that the fluidity is remarkably lowered. As a result, when a resin composition highly filled with an inorganic filler is applied to the adherend, voids due to poor embedding of the surface structure of the adherend or bubbles generated during coating are generated, resulting in Problems such as insulation breakdown or lack of fluidity tend to result in insufficient adhesion to the adherend and separation during processing.

また、メソゲン骨格を有するモノマーは一般に結晶化しやすく常温で固体であるため、汎用の樹脂と比べて取り扱いが困難である。更に、メソゲン骨格を有するモノマーを秩序的に配列させて樹脂組成物の高熱伝導率化を図る場合において無機充填材を高充填すると、流動性が著しく低下するという無機充填材に起因する上記の困難性が加わるためにいっそう成形が困難になる。   In addition, since a monomer having a mesogenic skeleton is generally easy to crystallize and is solid at room temperature, it is difficult to handle compared with a general-purpose resin. Furthermore, when the monomer having a mesogen skeleton is regularly arranged to increase the thermal conductivity of the resin composition, if the inorganic filler is highly charged, the fluidity is remarkably lowered, and the above-mentioned difficulty caused by the inorganic filler Due to the added properties, molding becomes more difficult.

このような状況のもと、本発明は、シート形状としたときの柔軟性と流動性に優れ、硬化物としたときに高い熱伝導性及び高い絶縁性を示す樹脂組成物を提供することを課題とする。また、これを用いた樹脂組成物シート及び樹脂組成物シートの製造方法、金属箔付樹脂組成物シート、Bステージシート、半硬化の金属箔付樹脂組成物シート、メタルベース配線板材料、メタルベース配線板、LED光源部材、並びにパワー半導体装置を提供することを課題とする。   Under such circumstances, the present invention provides a resin composition that is excellent in flexibility and fluidity when formed into a sheet shape, and exhibits high thermal conductivity and high insulation when formed into a cured product. Let it be an issue. In addition, a resin composition sheet using the same, a method for producing the resin composition sheet, a resin composition sheet with metal foil, a B stage sheet, a semi-cured resin composition sheet with metal foil, a metal base wiring board material, and a metal base It is an object to provide a wiring board, an LED light source member, and a power semiconductor device.

本発明者らは、上記課題を解決するため鋭意検討した結果、本発明に至った。すなわち、本発明は、以下の通りである。   As a result of intensive studies to solve the above problems, the present inventors have reached the present invention. That is, the present invention is as follows.

<1> (A)ビフェニル骨格を有するエポキシ樹脂と、(B)常温で液状のエポキシ樹脂と、(C)フェノール樹脂と、(D)無機充填材とを含み、前記(D)無機充填材としてアルミナを含み、前記(D)無機充填材の含有率が全固形分中75質量%以上であり、かつ含有される前記(D)無機充填材全体の吸油量が7.5ml/100g以下である樹脂組成物。 <1> (A) An epoxy resin having a biphenyl skeleton, (B) an epoxy resin that is liquid at room temperature, (C) a phenol resin, and (D) an inorganic filler, and the (D) inorganic filler It contains alumina, the content of the (D) inorganic filler is 75% by mass or more in the total solid content, and the oil absorption amount of the whole (D) inorganic filler contained is 7.5 ml / 100 g or less. Resin composition.

<2> 前記(C)フェノール樹脂として、下記一般式(I)で表される構造単位を有するフェノール樹脂を含む前記<1>に記載の樹脂組成物。 <2> The resin composition according to <1>, including a phenol resin having a structural unit represented by the following general formula (I) as the (C) phenol resin.

一般式(I)中、Rは、アルキル基、アリール基、又はアラルキル基を表し、R及びRは、各々独立に、水素原子、アルキル基、アリール基、又はアラルキル基を表し、mは0〜2の整数を表し、nは1〜10の数を表す。 In general formula (I), R 1 represents an alkyl group, an aryl group, or an aralkyl group, R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group, m Represents an integer of 0 to 2, and n represents a number of 1 to 10.

<3> 前記(D)無機充填材は、重量累積粒度分布の小粒径側からの累積50%に対応する粒子径D50が5μm以上100μm以下の無機充填材群(D−1)と、D50が前記無機充填材群(D−1)の1/2以下であり1μm以上10μm以下の無機充填材群(D−2)と、D50が前記無機充填材群(D−2)の1/2以下であり0.1μm以上5μm以下の無機充填材群(D−3)と、を含んで構成され、
前記(D)無機充填材の全量に対する前記無機充填材群(D−1)、(D−2)及び(D−3)の割合が、それぞれ、40質量%以上90質量%以下、5質量%以上40質量%以下、1質量%以上30質量%以下(ただし、前記無機充填材群(D−1)、(D−2)及び(D−3)の総質量%は100質量%)である前記<1>又は<2>に記載の樹脂組成物。
<3> The inorganic filler (D-1) includes an inorganic filler group (D-1) having a particle diameter D50 of 5 μm or more and 100 μm or less corresponding to 50% cumulative from the small particle size side of the weight cumulative particle size distribution; Is 1/2 or less of the inorganic filler group (D-1), the inorganic filler group (D-2) is 1 μm or more and 10 μm or less, and D50 is 1/2 of the inorganic filler group (D-2). And an inorganic filler group (D-3) of 0.1 μm or more and 5 μm or less,
The ratio of the inorganic filler group (D-1), (D-2) and (D-3) to the total amount of the (D) inorganic filler is 40% by mass to 90% by mass and 5% by mass, respectively. 40 mass% or less, 1 mass% or more and 30 mass% or less (however, the total mass% of the inorganic filler group (D-1), (D-2) and (D-3) is 100 mass%). The resin composition according to <1> or <2>.

<4> 前記無機充填材(D−3)は、重量累積粒度分布の小粒径側からの累積50%に対応する粒子径D50が0.1μm以上1μm以下の球状アルミナを0.5質量%以上15質量%以下の範囲で含有する前記<3>に記載の樹脂組成物。 <4> The inorganic filler (D-3) is 0.5% by mass of spherical alumina having a particle diameter D50 of 0.1 μm or more and 1 μm or less corresponding to 50% accumulated from the small particle size side of the weight cumulative particle size distribution. The resin composition according to <3>, which is contained in the range of 15% by mass or less.

<5> 前記(B)常温で液状のエポキシ樹脂は、ビスフェノールA、ビスフェノールF、およびジヒドロキシナフタレンから選択される少なくとも1種に由来する骨格を有する液状エポキシ樹脂を含み、総エポキシ樹脂/総フェノール樹脂の当量比が0.8〜1.1である前記<1>〜<4>のいずれか一項に記載の樹脂組成物。 <5> The epoxy resin that is liquid at room temperature (B) includes a liquid epoxy resin having a skeleton derived from at least one selected from bisphenol A, bisphenol F, and dihydroxynaphthalene, and is a total epoxy resin / total phenol resin. The resin composition according to any one of <1> to <4>, wherein an equivalent ratio of is from 0.8 to 1.1.

<6> 前記<1>〜<5>のいずれか一項に記載の樹脂組成物をシート状に成型してなる樹脂組成物シート。 <6> A resin composition sheet obtained by molding the resin composition according to any one of <1> to <5> into a sheet shape.

<7> 金属箔と、
前記金属箔上に設けられた前記<1>〜<5>のいずれか一項に記載の樹脂組成物から形成されてなる樹脂組成物層と、
を有する金属箔付樹脂組成物シート。
<7> Metal foil,
A resin composition layer formed from the resin composition according to any one of <1> to <5> provided on the metal foil;
A resin composition sheet with a metal foil.

<8> 前記<6>に記載の樹脂組成物シートの半硬化物であるBステージシート。 <8> A B stage sheet which is a semi-cured product of the resin composition sheet according to <6>.

<9> 前記<7>に記載の金属箔付樹脂組成物シートの半硬化物である、半硬化の金属箔付樹脂組成物シート。 <9> A semi-cured resin composition sheet with a metal foil, which is a semi-cured product of the resin composition sheet with a metal foil according to <7>.

<10> 金属箔と、金属板と、
前記金属箔と前記金属板との間に設けられた、前記<1>〜<5>のいずれか一項に記載の樹脂組成物の硬化物である熱伝導性絶縁層と、
を有するメタルベース配線板材料。
<10> Metal foil, metal plate,
A thermally conductive insulating layer that is a cured product of the resin composition according to any one of <1> to <5>, provided between the metal foil and the metal plate;
Metal base wiring board material having

<11> 配線層と、金属板と、前記配線層と前記金属板との間に、前記<1>〜<5>のいずれか一項に記載の樹脂組成物の硬化物である熱伝導性絶縁層と、
を有するメタルベース配線板。
<11> Thermal conductivity that is a cured product of the resin composition according to any one of <1> to <5>, between the wiring layer, the metal plate, and the wiring layer and the metal plate. An insulating layer;
Metal base wiring board having

<12> 前記<6>に記載の樹脂組成物シート、前記<7>に記載の金属箔付樹脂組成物シート、前記<8>に記載のBステージシート、前記<9>に記載の半硬化の金属箔付樹脂組成物シート、前記<10>に記載のメタルベース配線板材料、及び前記<11>に記載のメタルベース配線板のうちのいずれか1つを用いて製造されたLED光源部材。 <12> The resin composition sheet according to <6>, the resin composition sheet with metal foil according to <7>, the B stage sheet according to <8>, and the semi-cured material according to <9> LED light source member manufactured using any one of the resin composition sheet with metal foil, the metal base wiring board material according to <10>, and the metal base wiring board according to <11>. .

<13> 前記<6>に記載の樹脂組成物シート、前記<7>に記載の金属箔付樹脂組成物シート、前記<8>に記載のBステージシート、前記<9>に記載の半硬化の金属箔付樹脂組成物シート、前記<10>に記載のメタルベース配線板材料、及び前記<11>に記載のメタルベース配線板のうちのいずれか1つを用いて製造されたパワー半導体装置。 <13> The resin composition sheet according to <6>, the resin composition sheet with metal foil according to <7>, the B stage sheet according to <8>, and the semi-cured material according to <9> A power semiconductor device manufactured using any one of the resin composition sheet with metal foil, the metal base wiring board material according to <10>, and the metal base wiring board according to <11>. .

<14> ジヒドロキシベンゼン由来の(C)フェノール樹脂を含有する前記<1>〜<5>のいずれか一項に記載の樹脂組成物を基材上に塗布し、前記ジヒドロキシベンゼンがシート中にモノマーの状態で残存する条件で乾燥させることによりシート状に成型する工程を含む樹脂組成物シートの製造方法。 <14> The resin composition according to any one of <1> to <5> containing (C) a phenolic resin derived from dihydroxybenzene is applied onto a substrate, and the dihydroxybenzene is a monomer in the sheet. The manufacturing method of the resin composition sheet | seat including the process shape | molded in a sheet form by making it dry on the conditions which remain | survive in this state.

本発明によれば、シート形状としたときの柔軟性と流動性に優れ、硬化物としたときに高い熱伝導性及び高い絶縁性を示す樹脂組成物を提供することができる。また、これを用いた樹脂組成物シート及び樹脂組成物シートの製造方法、金属箔付樹脂組成物シート、Bステージシート、半硬化の金属箔付樹脂組成物シート、メタルベース配線板材料、メタルベース配線板、LED光源部材、並びにパワー半導体装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the resin composition which is excellent in the softness | flexibility and fluidity | liquidity when it is set as a sheet | seat shape, and shows high heat conductivity and high insulation when it is set as a hardened | cured material can be provided. In addition, a resin composition sheet using the same, a method for producing the resin composition sheet, a resin composition sheet with metal foil, a B stage sheet, a semi-cured resin composition sheet with metal foil, a metal base wiring board material, and a metal base A wiring board, an LED light source member, and a power semiconductor device can be provided.

本発明にかかる樹脂組成物の硬化物を用いて構成されたパワー半導体装置の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the power semiconductor device comprised using the hardened | cured material of the resin composition concerning this invention. 本発明にかかる樹脂組成物の硬化物を用いて構成されたパワー半導体装置の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the power semiconductor device comprised using the hardened | cured material of the resin composition concerning this invention. 本発明にかかる樹脂組成物の硬化物を用いて構成されたパワー半導体装置の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the power semiconductor device comprised using the hardened | cured material of the resin composition concerning this invention. 本発明にかかる樹脂組成物の硬化物を用いて構成されたLEDライトバーの構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the LED light bar comprised using the hardened | cured material of the resin composition concerning this invention. 本発明にかかる樹脂組成物の硬化物を用いて構成されたLED電球の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the LED light bulb comprised using the hardened | cured material of the resin composition concerning this invention. 本発明にかかる樹脂組成物の硬化物を用いて構成されたLED電球の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the LED light bulb comprised using the hardened | cured material of the resin composition concerning this invention. 本発明にかかる樹脂組成物の硬化物を用いて構成されたLED基板の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the LED board comprised using the hardened | cured material of the resin composition concerning this invention.

本発明において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
また本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
さらに本明細書において組成物中の各成分の量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
In the present invention, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes.
In the present specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
Furthermore, in this specification, the amount of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity.

<樹脂組成物>
本発明の樹脂組成物は、(A)ビフェニル骨格を有するエポキシ樹脂と、(B)常温で液状のエポキシ樹脂と、(C)フェノール樹脂と、(D)無機充填材を含み、前記(D)無機充填材としてアルミナを含み、前記(D)無機充填材の含有率が全固形分中75質量%以上であり、かつ含有される前記(D)無機充填材全体の吸油量が7.5ml/100g以下である。本発明の樹脂組成物は、更に必要に応じて、その他の成分を含んでもよい。
<Resin composition>
The resin composition of the present invention includes (A) an epoxy resin having a biphenyl skeleton, (B) an epoxy resin that is liquid at room temperature, (C) a phenol resin, and (D) an inorganic filler, Alumina is included as the inorganic filler, the content of the (D) inorganic filler is 75% by mass or more in the total solid content, and the oil absorption amount of the whole (D) inorganic filler contained is 7.5 ml / 100 g or less. The resin composition of the present invention may further contain other components as necessary.

(A)ビフェニル骨格を有するエポキシ樹脂を用いることで、汎用のエポキシ樹脂を用いた場合に比べ樹脂の熱伝導率が高くなるために熱伝導性の観点で好ましい。また、(B)常温で液状のエポキシ樹脂を含むことで、未硬化状態又は半硬化状態での可とう性が付与され、また、エポキシ樹脂として(A)ビフェニル骨格を有するエポキシ樹脂を単独で用いる場合よりも架橋密度を向上させやすいために好ましい。
また、(D)無機充填材としてアルミナを含むことで、熱伝導性及び耐湿性のバランスが良好となる。そして、樹脂組成物中に含有される(D)無機充填材全体の吸油量を7.5ml/100g以下とすることで、樹脂組成物シート中により多くの無機充填材を充填することができ、高い熱伝導率と流動性を両立させることができる。無機充填材全体の吸油量は小さければ小さいほどより高い充填量でも成形性と流動性が両立するために好ましい。
以下に各成分について説明する。
(A) Use of an epoxy resin having a biphenyl skeleton is preferable from the viewpoint of thermal conductivity because the thermal conductivity of the resin is higher than when a general-purpose epoxy resin is used. In addition, (B) by including an epoxy resin that is liquid at normal temperature, flexibility in an uncured state or a semi-cured state is imparted, and (A) an epoxy resin having a biphenyl skeleton is used alone as an epoxy resin. This is preferable because it is easier to improve the crosslink density than in the case.
Moreover, the balance of thermal conductivity and moisture resistance is improved by including alumina as the inorganic filler (D). And by making the oil absorption amount of the whole (D) inorganic filler contained in the resin composition 7.5 ml / 100 g or less, more inorganic filler can be filled in the resin composition sheet, Both high thermal conductivity and fluidity can be achieved. The smaller the amount of oil absorption of the entire inorganic filler, the better the moldability and fluidity at the same time even with a higher filling amount.
Each component will be described below.

〔エポキシ樹脂〕
本発明の樹脂組成物は、エポキシ樹脂として、少なくとも(A)ビフェニル骨格を有するエポキシ樹脂と、(B)常温で液状のエポキシ樹脂とを含む。必要に応じて、適宜その他のエポキシ樹脂を含有してもよい。
〔Epoxy resin〕
The resin composition of the present invention contains at least (A) an epoxy resin having a biphenyl skeleton and (B) an epoxy resin that is liquid at room temperature as an epoxy resin. You may contain another epoxy resin suitably as needed.

・(A)ビフェニル骨格を有するエポキシ樹脂
(A)ビフェニル骨格を有するエポキシ樹脂は、分子鎖中に少なくとも1つのビフェニル骨格を含めば特に制限はない。(A)ビフェニル骨格を有するエポキシ樹脂はメソゲン骨格を有するため、樹脂の高次構造を高めることが可能となり、高い放熱性を実現することができる。
前記ビフェニル骨格としては、下記一般式(II)で表される構造を挙げることができる。
(A) Epoxy resin having a biphenyl skeleton (A) The epoxy resin having a biphenyl skeleton is not particularly limited as long as it includes at least one biphenyl skeleton in the molecular chain. (A) Since the epoxy resin having a biphenyl skeleton has a mesogen skeleton, it is possible to increase the higher order structure of the resin and realize high heat dissipation.
Examples of the biphenyl skeleton include structures represented by the following general formula (II).

一般式(II)中、R11〜R18は、各々独立に、水素原子、又は炭素数1〜10の置換もしくは非置換の一価の炭化水素基を表す。 In general formula (II), R 11 to R 18 each independently represents a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms.

前記一般式(II)で表されるようなビフェニル骨格は、z軸方向(分子構造面に対し垂直方向)へのエポキシ樹脂の配向が容易であるという特徴を有する。こうした特徴は、エポキシ樹脂組成物の硬化後の低熱抵抗化に有利に働き、結果として硬化物の熱放散性を高め、高い放熱性を与える。   The biphenyl skeleton represented by the general formula (II) has a feature that the orientation of the epoxy resin in the z-axis direction (perpendicular to the molecular structure plane) is easy. Such characteristics are advantageous for lowering the thermal resistance after curing of the epoxy resin composition, and as a result, increase the heat dissipation of the cured product and give high heat dissipation.

前記一般式(II)で表されるビフェニル骨格を有するエポキシ樹脂としては、例えば下記一般式(III)で表される化合物等が例示可能である。   Examples of the epoxy resin having a biphenyl skeleton represented by the general formula (II) include compounds represented by the following general formula (III).

一般式(III)中、R11〜R18は、各々独立に、水素原子、又は炭素数1〜10の置換もしくは非置換の一価の炭化水素基を表す。nは0〜3の整数を示す。 In the general formula (III), R 11 to R 18 each independently represents a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms. n represents an integer of 0 to 3.

前記R11〜R18で表される炭素数1〜10の置換もしくは非置換の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等を挙げることができる。なかでもR11〜R18は、熱伝導性の観点から、水素原子又はメチル基が好ましい。 Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 11 to R 18 include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and an isobutyl group. be able to. Among these, R 11 to R 18 are preferably a hydrogen atom or a methyl group from the viewpoint of thermal conductivity.

前記一般式(III)におけるnは、流動性の点から、0〜2であることが好ましく、0または1であることがより好ましく、0であることが特に好ましい。   N in the general formula (III) is preferably 0 to 2, more preferably 0 or 1, and particularly preferably 0 from the viewpoint of fluidity.

前記一般式(III)で示される化合物としては、R11、R13、R16、及びR18がメチル基、R12、R14、R15、及びR17が水素原子、n=0である4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニルを主成分とする「YX4000H」(三菱化学株式会社製、商品名);、R11、R13、R16、及びR18がメチル基、R12、R14、R15、及びR17が水素原子、n=0である4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニルを主成分とする化合物と、R11〜R18が水素原子、n=0である4,4’−ビス(2,3−エポキシプロポキシ)ビフェニルを主成分とする化合物との混合物である「YL6121H」(三菱化学株式会社製、商品名);等を市場で入手可能である。また、低融点による成形性向上の観点からテトラメチル体を含むエポキシ樹脂であることが好ましい。 As the compound represented by the general formula (III), R 11 , R 13 , R 16 , and R 18 are methyl groups, R 12 , R 14 , R 15 , and R 17 are hydrogen atoms, and n = 0. "YX4000H" (trade name, manufactured by Mitsubishi Chemical Corporation) mainly composed of 4,4'-bis (2,3-epoxypropoxy) -3,3 ', 5,5'-tetramethylbiphenyl; R 11 , R 13 , R 16 , and R 18 are methyl groups, R 12 , R 14 , R 15 , and R 17 are hydrogen atoms, 4,4′-bis (2,3-epoxypropoxy)-, where n = 0 A compound mainly composed of 3,3 ′, 5,5′-tetramethylbiphenyl, and 4,4′-bis (2,3-epoxypropoxy) biphenyl in which R 11 to R 18 are hydrogen atoms and n = 0 "YL, which is a mixture with a compound mainly composed of 121H "(Mitsubishi Chemical Co., Ltd., trade name); available etc. in the market. Moreover, it is preferable that it is an epoxy resin containing a tetramethyl body from a viewpoint of the moldability improvement by low melting | fusing point.

(A)ビフェニル骨格を有するエポキシ樹脂のエポキシ当量は、170g/eq〜540g/eqであることが好ましく、170g/eq〜360g/eqであることがより好ましく、170g/eq〜180g/eqであることが更に好ましい。   (A) The epoxy equivalent of the epoxy resin having a biphenyl skeleton is preferably 170 g / eq to 540 g / eq, more preferably 170 g / eq to 360 g / eq, and 170 g / eq to 180 g / eq. More preferably.

本発明の効果を充分得る観点から、(A)ビフェニル骨格を有するエポキシ樹脂の含有率は、エポキシ樹脂全体の70質量%以上とすることが好ましく、80質量%以上とすることがより好ましく、90質量%以上とすることが特に好ましい。   From the viewpoint of sufficiently obtaining the effects of the present invention, the content of the epoxy resin (A) having a biphenyl skeleton is preferably 70% by mass or more, more preferably 80% by mass or more of the entire epoxy resin, 90% It is especially preferable to set it as mass% or more.

・(B)常温で液状のエポキシ樹脂
本発明の樹脂組成物は、(B)常温で液状のエポキシ樹脂を含む。(B)常温で液状のエポキシ樹脂を含有することで、常温で樹脂組成物シートを取り扱う際に良好な可とう性を付与することができる。
なお、本発明において「常温で液状」とは、結晶化した樹脂を加熱により一旦融解させた後に、常温(25℃)まで戻しても6時間以上室温で流動性を有する液状であることを意味する。可とう性付与の観点から、室温での粘度が100mPa・s〜10000mPa・sであることが特に好ましい。
-(B) Epoxy resin that is liquid at room temperature The resin composition of the present invention includes (B) an epoxy resin that is liquid at room temperature. (B) By containing a liquid epoxy resin at normal temperature, good flexibility can be imparted when the resin composition sheet is handled at normal temperature.
In the present invention, “liquid at normal temperature” means a liquid that has fluidity at room temperature for 6 hours or more even when the crystallized resin is once melted by heating and then returned to normal temperature (25 ° C.). To do. From the viewpoint of imparting flexibility, it is particularly preferable that the viscosity at room temperature is 100 mPa · s to 10000 mPa · s.

(B)常温で液状のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂などが挙げられる。ビスフェノールA型エポキシ樹脂としては「エピコ−ト 828」(三菱化学株式会社製、商品名)、ビスフェノールF型エポキシ樹脂としては「YDF8170」(東都化成株式会社製、商品名)、オルト体のノボラックをエポキシ化した「エピコート 152」(三菱化学株式会社製、商品名)、ジヒドロキシナフタレン型エポキシ樹脂としては「HP−4032D」(DIC株式会社製、商品名)、半水添ビフェニル型エポキシ樹脂としては「YL6800」(三菱化学株式会社製、商品名)等が挙げられる。   (B) Examples of epoxy resins that are liquid at room temperature include bisphenol A type epoxy resins, bisphenol F type epoxy resins, and dihydroxynaphthalene type epoxy resins. “Epicoat 828” (trade name, manufactured by Mitsubishi Chemical Corporation) as the bisphenol A type epoxy resin, “YDF8170” (trade name, manufactured by Toto Kasei Co., Ltd.) as the bisphenol F type epoxy resin, and ortho-type novolak Epoxidized “Epicoat 152” (trade name, manufactured by Mitsubishi Chemical Corporation), “HP-4032D” (trade name, manufactured by DIC Corporation) as a dihydroxynaphthalene type epoxy resin, and “half-hydrogenated biphenyl type epoxy resin” YL6800 "(trade name, manufactured by Mitsubishi Chemical Corporation).

反応性及び硬化性の観点からフェノール性水酸基にエピクロルヒドリンを作用させて得られる液状エポキシ樹脂が好ましく、特にビフェニル骨格を有するエポキシ樹脂と組み合わせたときの硬化物の特性を考慮すると、ビスフェノールF型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、又はビスフェノールA型エポキシ樹脂であることが好ましい。これら(B)常温で液状のエポキシ樹脂は単一種のみ用いてもよく、複数種を併用してもよい。   From the viewpoints of reactivity and curability, a liquid epoxy resin obtained by allowing epichlorohydrin to act on a phenolic hydroxyl group is preferred, and in particular, considering the properties of the cured product when combined with an epoxy resin having a biphenyl skeleton, a bisphenol F type epoxy resin Dihydroxynaphthalene type epoxy resin or bisphenol A type epoxy resin is preferable. These (B) normal temperature liquid epoxy resins may be used alone or in combination of two or more.

(B)常温で液状のエポキシ樹脂の含有率は、可とう性付与の観点から、エポキシ樹脂全体の1質量%以上30質量%以下とするのが好ましく、熱伝導率との両立の観点から5質量%以上20質量%以下とするのが好ましい。   (B) The content of the epoxy resin that is liquid at room temperature is preferably 1% by mass or more and 30% by mass or less of the entire epoxy resin from the viewpoint of imparting flexibility, and 5 from the viewpoint of coexistence with thermal conductivity. It is preferable to set it as mass% or more and 20 mass% or less.

・その他のエポキシ樹脂
また、本発明では、エポキシ樹脂として、前記(A)ビフェニル骨格を有するエポキシ樹脂や前記(B)常温で液状のエポキシ樹脂以外のその他のエポキシ樹脂を、本発明の効果を損なわない範囲において用いることが可能である。その他のエポキシ樹脂としては、封止用エポキシ樹脂組成物に一般に使用されているエポキシ樹脂が挙げられる。
-Other epoxy resin Moreover, in this invention, the epoxy resin other than the epoxy resin which has said (A) biphenyl frame | skeleton and said (B) liquid epoxy resin at normal temperature as an epoxy resin is impaired. It is possible to use in the range which is not. Examples of the other epoxy resins include epoxy resins that are generally used in epoxy resin compositions for sealing.

併用可能なその他のエポキシ樹脂として、例えばフェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものが挙げられる。   Examples of other epoxy resins that can be used in combination include phenols such as phenol novolac type epoxy resins, orthocresol novolac type epoxy resins, phenols such as cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, and / or α-. Epoxy is a novolak resin obtained by condensation or cocondensation of naphthols such as naphthol, β-naphthol, dihydroxynaphthalene and the like and compounds having an aldehyde group such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde in the presence of an acidic catalyst. Can be listed.

また、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールA/D等のジグリシジルエーテル;フェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂のエポキシ化物;スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂;ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂;シクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物であるジシクロペンタジエン型エポキシ樹脂;ヒドロキシナフタレン及び/又はジヒドロキシナフタレンの2量体等のエポキシ化物;トリフェノールメタン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;テルペン変性エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;脂環族エポキシ樹脂;硫黄原子含有エポキシ樹脂;及びこれらのエポキシ樹脂をシリコーン、アクリロニトリル、ブタジエン、イソプレン系ゴム、ポリアミド系樹脂等により変性したエポキシ樹脂;などが挙げられる。   In addition, diglycidyl ethers such as bisphenol A, bisphenol F, bisphenol S, bisphenol A / D; epoxidized products of phenol aralkyl resins synthesized from phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl; Glycidyl ester type epoxy resin obtained by reaction of polybasic acid such as stilbene type epoxy resin, hydroquinone type epoxy resin, phthalic acid or dimer acid and epichlorohydrin; glycidylamine obtained by reaction of polyamine such as diaminodiphenylmethane or isocyanuric acid and epichlorohydrin Type epoxy resin; dicyclopentadiene type epoxy resin which is an epoxidized product of co-condensation resin of cyclopentadiene and phenols; hydroxynaphthalene and Or epoxidized product such as dihydroxynaphthalene dimer; triphenolmethane type epoxy resin; trimethylolpropane type epoxy resin; terpene modified epoxy resin; linear aliphatic obtained by oxidizing olefinic bond with peracid such as peracetic acid Epoxy resin; alicyclic epoxy resin; sulfur atom-containing epoxy resin; and epoxy resins obtained by modifying these epoxy resins with silicone, acrylonitrile, butadiene, isoprene-based rubber, polyamide-based resin, or the like.

〔(C)フェノール樹脂〕
(C)フェノール樹脂としては、多官能性フェノールが好ましく、フェノールノボラック、フェノールアラルキル、ナフトールアラルキル、ビフェニレンアラルキル、ジシクロペンタジエンフェノール、カテコールノボラック、レゾルシノールノボラック等を挙げることができる。フェノール樹脂は、1種単独でも、2種以上を組み合わせて用いてもよい。
[(C) Phenolic resin]
(C) The phenol resin is preferably a polyfunctional phenol, and examples thereof include phenol novolak, phenol aralkyl, naphthol aralkyl, biphenylene aralkyl, dicyclopentadiene phenol, catechol novolak, and resorcinol novolak. A phenol resin may be used individually by 1 type or in combination of 2 or more types.

前記多官能性フェノール樹脂は水酸基当量が小さいため、多官能性フェノール樹脂を用いた樹脂組成物では、同一の無機充填材の充填率としたときにエポキシ樹脂の比率を大きくすることができる。そのため、(A)ビフェニル骨格を有するエポキシ樹脂を用いた場合に、樹脂組成物中のメソゲン比率を高めることができることでより多くの配列構造が形成され、樹脂そのものの熱伝導率が高くなり、その結果として樹脂組成物の硬化物の熱伝導率が高くなる。   Since the polyfunctional phenol resin has a small hydroxyl equivalent, the ratio of the epoxy resin can be increased in the resin composition using the polyfunctional phenol resin when the filling rate of the same inorganic filler is used. Therefore, when (A) an epoxy resin having a biphenyl skeleton is used, more arrangement structures can be formed by increasing the mesogen ratio in the resin composition, and the thermal conductivity of the resin itself is increased. As a result, the thermal conductivity of the cured product of the resin composition is increased.

特に、熱伝導性及び耐熱性の観点から、レゾルシノール型のノボラックが好ましく、特に下記一般式(I)で表される構造単位を有するフェノール樹脂が好ましい。   In particular, from the viewpoint of thermal conductivity and heat resistance, a resorcinol type novolak is preferable, and a phenol resin having a structural unit represented by the following general formula (I) is particularly preferable.

一般式(I)中、Rは、アルキル基、アリール基、又はアラルキル基を表し、R及びRは、各々独立に、水素原子、アルキル基、アリール基、又はアラルキル基を表し、mは0〜2の整数を表し、nは1〜10の数を表す。 In general formula (I), R 1 represents an alkyl group, an aryl group, or an aralkyl group, R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group, m Represents an integer of 0 to 2, and n represents a number of 1 to 10.

、R及びRで表されるアルキル基、アリール基及びアラルキル基は、可能であれば置換基をさらに有していてもよく、該置換基としては、アルキル基、アリール基、ハロゲン原子、及び水酸基等を挙げることができる。 The alkyl group, aryl group, and aralkyl group represented by R 1 , R 2, and R 3 may further have a substituent if possible. Examples of the substituent include an alkyl group, an aryl group, a halogen atom, An atom, a hydroxyl group, etc. can be mentioned.

及びRとしては、保存安定性と熱伝導率の観点から、水素原子、アルキル基、アリール基であることが好ましく、水素原子、炭素数1〜4のアルキル基又は炭素数3〜6のアリール基であることがより好ましく、水素原子であることがさらに好ましい。 R 2 and R 3 are preferably a hydrogen atom, an alkyl group, or an aryl group from the viewpoint of storage stability and thermal conductivity, and are preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or 3 to 6 carbon atoms. Of the aryl group is more preferable, and a hydrogen atom is more preferable.

一般式(I)におけるmは0〜2の整数であり、mが2の場合、2つのRは同一であっても異なってもよい。本発明においては、熱伝導性の観点から、mは0又は1であることが好ましく、0であることがより好ましい。 M in the general formula (I) is an integer of 0 to 2, and when m is 2, two R 1 may be the same or different. In the present invention, m is preferably 0 or 1 and more preferably 0 from the viewpoint of thermal conductivity.

一般式(I)で表される構造単位を有するフェノール樹脂は、フェノール性化合物としてレゾルシノールに由来する部分構造を含むが、レゾルシノール以外のフェノール性化合物に由来する部分構造の少なくとも1種をさらに含んでいてもよい。
ここでフェノール性化合物に由来する部分構造とは、フェノール性化合物のベンゼン環部分から水素原子を1個又は2個取り除いて構成される1価又は2価の基を意味する。尚、水素原子が取り除かれる位置は特に限定されない。
The phenol resin having the structural unit represented by the general formula (I) includes a partial structure derived from resorcinol as a phenolic compound, but further includes at least one partial structure derived from a phenolic compound other than resorcinol. May be.
Here, the partial structure derived from the phenolic compound means a monovalent or divalent group constituted by removing one or two hydrogen atoms from the benzene ring portion of the phenolic compound. The position where the hydrogen atom is removed is not particularly limited.

本発明においてレゾルシノール以外のフェノール性化合物に由来する部分構造としては、熱伝導率、接着性、保存安定性の観点から、フェノール、クレゾール、カテコール、ヒドロキノン、1,2,3−トリヒドロキシベンゼン、1,2,4−トリヒドロキシベンゼン、及び1,3,5−トリヒドロキシベンゼンから選ばれる少なくとも1種に由来する部分構造であることが好ましく、これらに由来する部分構造を1種単独でも、2種以上組み合わせて含んでいてもよい。特にカテコール、ヒドロキノン等のジヒドロキシベンゼンに由来する部分構造であることが架橋性及び耐熱性の観点からより好ましい。   In the present invention, partial structures derived from phenolic compounds other than resorcinol include phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1 from the viewpoint of thermal conductivity, adhesiveness, and storage stability. , 2,4-trihydroxybenzene, and a partial structure derived from at least one selected from 1,3,5-trihydroxybenzene, and the partial structures derived from these may be used alone or in combination of two kinds. It may be included in combination. In particular, a partial structure derived from dihydroxybenzene such as catechol and hydroquinone is more preferable from the viewpoint of crosslinkability and heat resistance.

また前記フェノール樹脂におけるレゾルシノールに由来する部分構造の含有比率については特に制限はないが、熱伝導率と保存安定性の観点から、フェノール樹脂の全質量に対するレゾルシノールに由来する部分構造の含有比率が55質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。   Further, the content ratio of the partial structure derived from resorcinol in the phenol resin is not particularly limited, but from the viewpoint of thermal conductivity and storage stability, the content ratio of the partial structure derived from resorcinol to the total mass of the phenol resin is 55. It is preferably at least mass%, more preferably at least 80 mass%, and even more preferably at least 90 mass%.

本発明における一般式(I)で表される構造単位を有するフェノール樹脂として、具体的には、以下に示す一般式(Ia)〜一般式(If)のいずれかで表される部分構造を有する化合物を含むフェノール樹脂であることが好ましい。   Specifically, the phenol resin having the structural unit represented by the general formula (I) in the present invention has a partial structure represented by any one of the following general formulas (Ia) to (If). A phenol resin containing a compound is preferable.

前記一般式(Ia)〜一般式(If)において、i、jはそれぞれのフェノール性化合物に由来する構造単位の含有比率(質量%)を表し、iは5質量%〜30質量%、jは70質量%〜95質量%であり、iとjの合計は100質量%である。   In the general formula (Ia) to general formula (If), i and j represent the content ratio (% by mass) of structural units derived from the respective phenolic compounds, i is 5% by mass to 30% by mass, and j is It is 70 mass%-95 mass%, and the sum total of i and j is 100 mass%.

前記一般式(I)で表される構造単位を有するフェノール樹脂は、例えば特開2005−206814号公報に記載の方法で合成することができる。   The phenol resin having the structural unit represented by the general formula (I) can be synthesized, for example, by the method described in JP-A-2005-206814.

また、前記一般式(I)で表される構造単位を有するフェノール樹脂を用いる際には、樹脂組成物中に多官能のフェノール性化合物のモノマーを含むことが好ましく、融点と水酸基当量の観点から、特にカテコール、レゾルシノール、ヒドロキノン等のジヒドロキシベンゼンをモノマー状態で含むと好ましい。これらモノマーとしてのフェノール性化合物は1種単独で含んでいても2種類以上を含んでもよい。融点の観点から、カテコール又はレゾルシノールを含むことが好ましく、反応性及び架橋性の観点から、レゾルシノールを含むことがより好ましい。   Moreover, when using the phenol resin which has a structural unit represented by the said general formula (I), it is preferable that the monomer of a polyfunctional phenolic compound is included in a resin composition, and it is preferable from a viewpoint of melting | fusing point and a hydroxyl equivalent. In particular, it is preferable that dihydroxybenzene such as catechol, resorcinol, hydroquinone or the like is contained in a monomer state. These phenolic compounds as monomers may be contained singly or in combination of two or more. From the viewpoint of melting point, it is preferable to contain catechol or resorcinol, and from the viewpoint of reactivity and crosslinkability, it is more preferable to include resorcinol.

これらモノマーは一般に前記フェノール樹脂よりも溶融粘度が低く、これを樹脂組成物に含有させることで加熱又は溶融時に樹脂組成物全体が低粘度化し、樹脂組成物に流動性を付与できる傾向にある。また、樹脂組成物シート中にモノマーとして残存させることで、樹脂組成物を塗工して樹脂組成物シートを作製する際に、樹脂組成物シートの巻取り等の製造上必要な工程に対応するための樹脂組成物シートの柔軟性を向上することができる。これらモノマーの含有は、熱伝導性の制約により前記(B)常温で液状のエポキシ樹脂を充分に添加できないときに特に有用である。   These monomers generally have a lower melt viscosity than the phenol resin, and by adding this to the resin composition, the entire resin composition has a low viscosity when heated or melted, and tends to impart fluidity to the resin composition. In addition, by remaining as a monomer in the resin composition sheet, when the resin composition is applied to produce a resin composition sheet, it corresponds to a process necessary for production such as winding of the resin composition sheet. Therefore, the flexibility of the resin composition sheet can be improved. The inclusion of these monomers is particularly useful when (B) the epoxy resin that is liquid at room temperature cannot be sufficiently added due to thermal conductivity limitations.

前記(C)フェノール樹脂及びモノマーであるジヒドロキシベンゼンの総質量のうち、ジヒドロキシベンゼンの総質量の占める割合が、5質量%〜80質量%であることで樹脂組成物の粘度(溶剤を含んだ状態での液粘度及び溶剤が蒸発した後の溶融時の粘度)を効果的に下げて良好な成形性を得ることができるため好ましく、10質量%〜50質量%であることがより好ましく、樹脂の架橋性と耐熱性との両立の観点から、15質量%〜40質量%であることがさらに好ましい。   The proportion of the total mass of dihydroxybenzene in the total mass of the (C) phenolic resin and the monomer dihydroxybenzene is 5% by mass to 80% by mass, so that the viscosity of the resin composition (including the solvent) The liquid viscosity and the viscosity at the time of melting after the solvent evaporates can be effectively reduced to obtain good moldability, and is preferably 10% by mass to 50% by mass. From the viewpoint of achieving both crosslinkability and heat resistance, the content is more preferably 15% by mass to 40% by mass.

(C)フェノール樹脂の水酸基当量は、58g/eq〜200g/eqであることが好ましく、60g/eq〜100g/eqであることがより好ましく、60g/eq〜70g/eqであることが更に好ましい。なお、この水酸基当量は、フェノール樹脂がモノマーとしてのフェノール性化合物を含有する場合には、フェノール性化合物を含めて測定される。   (C) The hydroxyl equivalent of the phenol resin is preferably 58 g / eq to 200 g / eq, more preferably 60 g / eq to 100 g / eq, and still more preferably 60 g / eq to 70 g / eq. . In addition, this hydroxyl equivalent is measured including a phenolic compound, when a phenol resin contains the phenolic compound as a monomer.

本発明においては、エポキシ樹脂とフェノール樹脂、フェノール性化合物との反応等を促進させる目的で硬化促進剤を含んでいてもよい。硬化促進剤の種類や配合量は特に限定するものではないが、反応速度、反応温度、保管性等の観点から、適切なものを選択することができる。促進剤の具体例としては、イミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。これらは1種単独で用いても、2種類以上を併用してもよい。   In this invention, the hardening accelerator may be included in order to accelerate | stimulate reaction etc. with an epoxy resin, a phenol resin, and a phenolic compound. Although the kind and compounding quantity of a hardening accelerator are not specifically limited, An appropriate thing can be selected from viewpoints, such as reaction rate, reaction temperature, and storage property. Specific examples of the accelerator include imidazole compounds, organophosphorus compounds, tertiary amines, and quaternary ammonium salts. These may be used alone or in combination of two or more.

なお、本発明においては、上記の当量比は、樹脂組成物をシート状に成型する過程でモノマー状態のフェノール性化合物が溶媒と共に昇華又は蒸発することで、溶媒を含んだ状態の樹脂組成物に比べ、エポキシ基の比率が増加した状態になる。エポキシ基同士で単独重合が起こらない硬化触媒を選択する場合は、当量比が0.9〜1.1とすることが好ましく、エポキシ樹脂同士の単独重合も起こるイミダゾール系化合物などを用いる場合には、0.8〜1.0となるようにすると、未反応の水酸基があまりにくくなり、耐熱性が向上するために好ましい。   In the present invention, the equivalent ratio is obtained by subliming or evaporating the phenolic compound in the monomer state together with the solvent in the process of molding the resin composition into a sheet shape, so that the resin composition containing the solvent contains In comparison, the epoxy group ratio is increased. When selecting a curing catalyst that does not cause homopolymerization between epoxy groups, the equivalent ratio is preferably 0.9 to 1.1, and when an imidazole compound that also causes homopolymerization between epoxy resins is used. , 0.8 to 1.0 is preferable because unreacted hydroxyl groups are hardly formed and heat resistance is improved.

〔(D)無機充填材〕
本発明の樹脂組成物では、無機充填材は、熱伝導性及び耐湿性のバランスの観点からアルミナを含み、更に必要に応じて、窒化アルミニウム、窒化ホウ素、窒化珪素、酸化マグネシウム等を併用してもよい。
[(D) inorganic filler]
In the resin composition of the present invention, the inorganic filler contains alumina from the viewpoint of a balance between thermal conductivity and moisture resistance, and further uses aluminum nitride, boron nitride, silicon nitride, magnesium oxide, or the like as necessary. Also good.

アルミナの結晶型は特に限定されず、α型、γ型、δ型、及びθ型のいずれであってもよく、熱伝導率が高く、融点が高く、機械的強度が高く、且つ電気絶縁性に優れる点から、α−アルミナが好ましい。また、流動性を向上させるためにα−アルミナを溶射し、球状としてもよい。   The crystal type of alumina is not particularly limited and may be any of α-type, γ-type, δ-type, and θ-type, and has high thermal conductivity, high melting point, high mechanical strength, and electrical insulation. Α-alumina is preferable from the viewpoint of superiority. Moreover, in order to improve fluidity, it is good also as a spherical form by spraying (alpha) -alumina.

また、熱伝導率の観点では、窒化アルミニウム、窒化ホウ素、窒化珪素等の窒化物充填材が優れるため、所望の熱伝導率によって窒化物充填材とアルミナとを併用することができる。   In addition, from the viewpoint of thermal conductivity, nitride fillers such as aluminum nitride, boron nitride, and silicon nitride are excellent, so that the nitride filler and alumina can be used in combination depending on the desired thermal conductivity.

前記無機充填材は、単一の粒度分布を有する無機充填材群であってもよいが、無機充填材の充填性の観点からは、単一の粒度分布を有する無機充填材群で75質量%以上充填することは困難である。そこで、異なる粒度分布を持つ2種類以上の無機充填材群を組み合わせて充填することが好ましく、異なる粒度分布を持つ3種類以上の無機充填材群を組み合わせると更に好ましい。   The inorganic filler may be a group of inorganic fillers having a single particle size distribution, but from the viewpoint of the filling properties of the inorganic filler, 75% by mass of the inorganic filler group having a single particle size distribution. It is difficult to fill the above. Therefore, it is preferable to combine two or more inorganic filler groups having different particle size distributions, and it is more preferable to combine three or more inorganic filler groups having different particle size distributions.

混合の割合については、例えば異なる粒度分布を持つ3種類の無機充填材群を適用する場合を例に挙げると、重量累積粒度分布の小粒径側からの累積50%に対応する粒子径D50が5μm以上100μm以下の無機充填材群(D−1)、D50が無機充填材群(D−1)の1/2以下であり1μm以上10μm以下の無機充填材群(D−2)、及び、D50が無機充填材群(D−2)の1/2以下であり0.1μm以上5μm以下の無機充填材群(D−3)、を含んで構成され、(D)無機充填材の全量に対する無機充填材群(D−1)、(D−2)及び(D−3)の割合が、それぞれ、40質量%以上90質量%以下、5質量%以上40質量%以下、1質量%以上30質量%以下(ただし、無機充填材群(D−1)、(D−2)及び(D−3)の総質量%は100質量%)の割合で充填すると好適である。   Regarding the mixing ratio, for example, in the case of applying three types of inorganic filler groups having different particle size distributions, the particle size D50 corresponding to 50% cumulative from the small particle size side of the weight cumulative particle size distribution is Inorganic filler group (D-1) of 5 μm or more and 100 μm or less, D50 is 1/2 or less of inorganic filler group (D-1), inorganic filler group (D-2) of 1 μm or more and 10 μm or less, and D50 is 1/2 or less of the inorganic filler group (D-2) and includes an inorganic filler group (D-3) of 0.1 μm or more and 5 μm or less, and (D) with respect to the total amount of the inorganic filler The proportions of the inorganic filler groups (D-1), (D-2), and (D-3) are 40% by mass to 90% by mass, 5% to 40% by mass, and 1% by mass to 30%, respectively. % By mass or less (however, inorganic filler groups (D-1), (D-2) and (D-3 The total weight percent of it is preferable to fill in a proportion of 100 mass%).

また、粒度分布が広域にわたる無機充填材を用いる際には、混合後の粒度分布を明確に分離することは困難な場合がある。このような場合は設計する樹脂組成物シートの膜厚を考慮して最大粒径を決定した上で、重量累積粒度分布を描いた際に大粒径側をFuller曲線などの従来の知見にあうよう粒度分布を設計すると好ましい。   Moreover, when using an inorganic filler having a wide particle size distribution, it may be difficult to clearly separate the particle size distribution after mixing. In such a case, after determining the maximum particle size in consideration of the film thickness of the resin composition sheet to be designed, when drawing the weight cumulative particle size distribution, the large particle size side meets the conventional knowledge such as the Fuller curve. It is preferable to design the particle size distribution.

また、樹脂組成物に重量累積粒度分布の小粒径側からの累積50%に対応する粒子径D50が0.1μm以上1μm以下の球状アルミナで、無機充填材群(D−3)の一部を特定量(好ましくは0.5質量%以上15質量%以下)置換することにより、樹脂組成物に含まれる無機充填材同士の嵌合を抑制し、潤滑効果を得ることができるために好ましい。
この効果により、熱伝導率が高いα-アルミナ、及び窒化アルミニウム、窒化ホウ素、窒化珪素等の窒化物充填材の非真球状充填材を入れた場合でも無機充填材同士の嵌合が抑制できるため、より多くの充填材を充填した樹脂組成物を作製することができる。また、本発明の樹脂組成物を用いて形成した樹脂組成物シート及び金属箔付樹脂組成物シートでは、作製時に形成された気泡や被着材界面との空孔を、これらシートの貼付時に良好に埋めることができるため、耐絶縁破壊性が向上する。更に、良好な流動性により、被着材の形状に良好に追従できるため、被着材への接着性も良好となる。
Further, the resin composition is a spherical alumina having a particle diameter D50 corresponding to 50% cumulative from the small particle diameter side of the weight cumulative particle size distribution of 0.1 μm to 1 μm, and part of the inorganic filler group (D-3) Is preferably replaced by a specific amount (preferably 0.5% by mass or more and 15% by mass or less), since the fitting between the inorganic fillers contained in the resin composition can be suppressed and a lubricating effect can be obtained.
Because of this effect, α-alumina with high thermal conductivity and non-spherical fillers such as aluminum nitride, boron nitride, and silicon nitride can be used to suppress fitting between inorganic fillers. A resin composition filled with more filler can be produced. In addition, in the resin composition sheet and the resin composition sheet with metal foil formed using the resin composition of the present invention, the air bubbles formed at the time of production and the pores with the adherend interface are good when these sheets are attached. Therefore, the dielectric breakdown resistance is improved. Furthermore, since the fluidity can follow the shape of the adherend satisfactorily, the adhesion to the adherend is also good.

また、前記無機充填材群(D−1)の平均粒子径および最大粒子径は、樹脂組成物シートの目標とする膜厚によって制限される。他の制限が特にない場合には、熱導電率の観点からは前記無機充填材群(D−1)の平均粒子径は大きいほど好ましい。但し、熱抵抗の観点から絶縁性が許容する範囲で、樹脂組成物シートの膜厚はなるべく薄くすることが好ましい。また、絶縁性の観点から無機充填材の最大粒子径は、樹脂組成物シートの膜厚の7/8以下とすることが好ましく、2/3以下とすることがより好ましく、1/2以下とすることがさらに好ましい。
よって、前記無機充填材群(D−1)の粒子径D50は、一般的な樹脂組成物シートの膜厚を踏まえると、5μm以上100μm以下であることが好ましく、充填性および熱抵抗及び熱伝導性の観点から、10μm以上75μm以下であることがより好ましく、10μm以上45μm以下であることが更に好ましい。
Moreover, the average particle diameter and the maximum particle diameter of the inorganic filler group (D-1) are limited by the target film thickness of the resin composition sheet. When there is no other restriction, from the viewpoint of thermal conductivity, the average particle diameter of the inorganic filler group (D-1) is preferably as large as possible. However, it is preferable that the thickness of the resin composition sheet is as thin as possible within a range that the insulating property allows from the viewpoint of thermal resistance. From the viewpoint of insulation, the maximum particle size of the inorganic filler is preferably 7/8 or less, more preferably 2/3 or less, and more preferably 1/2 or less of the film thickness of the resin composition sheet. More preferably.
Therefore, the particle diameter D50 of the inorganic filler group (D-1) is preferably 5 μm or more and 100 μm or less in view of the film thickness of a general resin composition sheet. From the viewpoint of property, it is more preferably 10 μm or more and 75 μm or less, and further preferably 10 μm or more and 45 μm or less.

本発明において(D)無機充填材の粒子径D50はレーザー回折法を用いて測定され、累積粒度分布極性を小粒径側から描いた場合に重量累積が50%となる粒子径に対応する。レーザー回折法を用いた粒度分布測定は、レーザー回折散乱強度分布測定装置(例えば、ベックマン・コールター社製、LS230)を用いて行うことができる。   In the present invention, (D) the particle diameter D50 of the inorganic filler is measured using a laser diffraction method, and corresponds to the particle diameter at which the cumulative weight size distribution is drawn from the small particle diameter side and the weight accumulation is 50%. The particle size distribution measurement using the laser diffraction method can be performed using a laser diffraction scattering intensity distribution measurement device (for example, LS230 manufactured by Beckman Coulter, Inc.).

なお、上述において無機充填材の好適な粒子径の組み合わせについて記述したが、実際は粒子の形状や、粒度分布の広がり方などの影響があるために、単純に粒子径の組み合わせるだけでなく、良好な流動性及び成形性を得るために混合比を調整することが好ましい。それぞれの無機充填材に合った好適な混合比を見出すには、大まかに上記の範囲で決定した混合比を中心に混合比を変化させ、下記手法による吸油量測定により最適混合比を決定するとよい。   In addition, in the above description, a combination of suitable particle sizes of the inorganic filler has been described. However, since there is an influence on the shape of the particles and the way the particle size distribution spreads, it is not only a combination of the particle sizes but also a good combination. It is preferable to adjust the mixing ratio in order to obtain fluidity and moldability. In order to find a suitable mixing ratio suitable for each inorganic filler, it is better to change the mixing ratio mainly around the mixing ratio determined in the above range and determine the optimal mixing ratio by measuring the oil absorption amount by the following method. .

(D)無機充填材の含有率は、樹脂組成物の全固形分中75質量%以上であり、85質量%以上98質量%以下であることが好ましく、熱伝導率、電気絶縁性、及び樹脂組成物シートの可とう性の観点から、90質量%以上95質量%以下であることがより好ましい。
なお、樹脂組成物中の固形分とは、樹脂組成物を構成する成分から揮発性の成分を除去した残分を意味する。
(D) The content of the inorganic filler is 75% by mass or more in the total solid content of the resin composition, preferably 85% by mass or more and 98% by mass or less, and has a thermal conductivity, electrical insulation, and resin. From the viewpoint of the flexibility of the composition sheet, it is more preferably 90% by mass or more and 95% by mass or less.
In addition, solid content in a resin composition means the residue which removed the volatile component from the component which comprises a resin composition.

また、樹脂組成物に含有される(D)無機充填材全体の吸油量は、7.5ml/100g以下である。無機充填材全体の吸油量を7.5ml/100g以下とすることで、樹脂組成物シート中により多くの無機充填材を充填することができ、高い熱伝導率と流動性を両立させることができる。無機充填材全体の吸油量は小さければ小さいほどより高い充填量でも成形性と流動性が両立するために好ましく、7ml/100g以下とすると無機充填材同士の嵌合が少なくなるため、良好に成型できるため好ましく、6.5ml/100g以下とすると密度が設計密度付近で安定し、絶縁性が向上するためにより好ましく、6ml/100g以下とすると充填量をより増やすことができ、熱伝導率を向上できるためにさらに好ましい。   Moreover, the oil absorption amount of the whole (D) inorganic filler contained in the resin composition is 7.5 ml / 100 g or less. By setting the oil absorption amount of the entire inorganic filler to 7.5 ml / 100 g or less, more inorganic filler can be filled in the resin composition sheet, and both high thermal conductivity and fluidity can be achieved. . The smaller the total amount of oil absorption of the inorganic filler, the better the moldability and fluidity at a higher filling amount. When the amount is 7 ml / 100 g or less, the fit between the inorganic fillers is reduced, and the molding is better. It is preferable because it can be made 6.5ml / 100g or less, and the density is more stable near the design density and the insulation is improved, and it is more preferable if it is made 6ml / 100g or less. It is further preferable because it can be done.

以下に、本発明における吸油量の測定方法について記載する。
(1)チャック付ポリ袋「ユニパックE−4」(株式会社日本生産社製)に分散剤としてのED−113(密度0.94g/ml、楠本化成株式会社製)を0.3g、設定混合比の無機充填材を50g計りとる。
(2)チャックを締め、袋を揉んでED−113を充填材に馴染ませる。
(3)フタル酸ジオクチル(DOP、密度0.988g/ml)を0.2〜0.3g程度ずつ添加し、都度袋を揉んで馴染ませる。袋の中の充填材が一体化して表面にテリが出た点を終点とし、下記の式にて吸油量を求める。
この際、充填材としてAA−18(住友化学株式会社製)31.5g、AA−3(住友化学株式会社製)11.25g、AA−04(住友化学株式会社製)7.25gで測定した場合、DOPを2.8g入れ、馴染ませたもの(吸油量:6.2ml/100g)の感触及び外観を終点の目安とするとよい。また、充填材の表面積が大きい場合、DOPが充填材に馴染むのに時間がかかることがある。その場合はED−113の添加量を増やすことで馴染むまでの時間を短くすることができる。終点判断を誤り、過剰にDOPを添加してしまうのを防止することができる。
Below, the measuring method of the oil absorption amount in this invention is described.
(1) 0.3 g of ED-113 (density 0.94 g / ml, manufactured by Enomoto Kasei Co., Ltd.) as a dispersant in a plastic bag “Unipack E-4” (manufactured by Nippon Production Co., Ltd.) Weigh 50 g of the inorganic filler of the ratio.
(2) Tighten the chuck and squeeze the bag so that ED-113 fits into the filler.
(3) Dioctyl phthalate (DOP, density 0.988 g / ml) is added in an amount of about 0.2 to 0.3 g, and the bag is rubbed to acclimate each time. The end point is the point at which the filler in the bag is integrated and the surface is tapped, and the oil absorption is obtained by the following formula.
Under the present circumstances, it measured by AA-18 (made by Sumitomo Chemical Co., Ltd.) 31.5g, AA-3 (made by Sumitomo Chemical Co., Ltd.) 11.25g, AA-04 (made by Sumitomo Chemical Co., Ltd.) 7.25g as a filler. In this case, it is recommended that 2.8 g of DOP is added and the feel and appearance of the blended product (oil absorption amount: 6.2 ml / 100 g) are used as a measure of the end point. Further, when the surface area of the filler is large, it may take time for the DOP to become familiar with the filler. In that case, it is possible to shorten the time until it is adapted by increasing the addition amount of ED-113. It is possible to prevent the end point from being erroneously determined and excessively adding DOP.

(充填材混合物の吸油量)[ml/100g]={(ED−113の重量)/(ED−113の密度)+(DOPの重量)/(DOPの密度)}[ml]/(充填材の総重量[g])×100   (Oil absorption amount of filler mixture) [ml / 100 g] = {(weight of ED-113) / (density of ED-113) + (weight of DOP) / (density of DOP)} [ml] / (filler Total weight [g]) × 100

また、無機充填材の充填量は、下式にて吸油量から算出される上限体積分率よりも3体積%〜10体積%、好ましくは6体積%〜10体積%少ない充填量とすると、無機充填材の充填限界よりも余裕があるため、接着性など樹脂固有の特性が発揮される。上限体積分率と実際の無機充填材の充填量との差を大きく取るほど、製造工程上のマージンが広がるために好ましいが、差を大きく取り過ぎると流動性が過剰となり欠陥が発生する場合がある。流動性が過剰となる場合は、無機充填材の増量、又は高分子量成分の添加により流動性を調整することができる。   In addition, when the filling amount of the inorganic filler is 3 volume% to 10 volume%, preferably 6 volume% to 10 volume% less than the upper limit volume fraction calculated from the oil absorption amount in the following formula, Since there is more margin than the filling limit of the filler, the resin-specific characteristics such as adhesiveness are exhibited. The larger the difference between the upper limit volume fraction and the actual inorganic filler filling amount, the better the margin in the manufacturing process is, but it is preferable that the difference is too large. is there. When the fluidity becomes excessive, the fluidity can be adjusted by increasing the inorganic filler or adding a high molecular weight component.

(上限体積分率)[体積%]=(充填材100gの体積)[ml/100g]/{(充填材100gの体積)[ml/100g]+(充填材混合物の吸油量)[ml/100g]}×100   (Upper volume fraction) [volume%] = (volume of filler 100 g) [ml / 100 g] / {(volume of filler 100 g) [ml / 100 g] + (oil absorption of filler mixture) [ml / 100 g ] × 100

但し、
(充填材100gの体積)[ml/100g]=100/(充填材の平均密度)=100/Σ{(i番目の充填材の体積分率)×(i番目の充填材の密度)}
However,
(Volume of filler 100 g) [ml / 100 g] = 100 / (average density of filler) = 100 / Σ {(volume fraction of i-th filler) × (density of i-th filler)}

なお、樹脂組成物シートまたはその半硬化物若しくは硬化物中に含まれる無機充填材の全体の吸油量は、樹脂組成物シートまたはその半硬化物若しくは硬化物の灰分の吸油量を測定することにより確認することができる。樹脂組成物シートまたはその半硬化物若しくは硬化物の灰分は、樹脂組成物シートまたはその半硬化物若しくは硬化物をるつぼにいれ、樹脂分を燃焼するなどして回収することができる。その際の燃焼温度は無機充填材同士が焼結及び化学変化しない範囲であればよく、特に低温で焼結する成分が含まれない場合は500℃〜800℃で10分〜30分程度燃焼させることが好ましい。無機充填材成分の同定は樹脂組成物シート、又は半硬化物若しくは硬化物のエネルギー分散型X線分析とX線回折の組み合わせ等により推測することができる。   The total oil absorption amount of the inorganic filler contained in the resin composition sheet or its semi-cured product or cured product is obtained by measuring the oil absorption amount of the ash content of the resin composition sheet or its semi-cured product or cured product. Can be confirmed. The ash content of the resin composition sheet or semi-cured product or cured product thereof can be recovered by placing the resin composition sheet or semi-cured product or cured product thereof in a crucible and burning the resin content. The combustion temperature in that case should just be the range which inorganic fillers do not sinter and chemically change, and when especially the component which sinters at low temperature is not included, it is made to burn for about 10 minutes-30 minutes at 500 to 800 degreeC. It is preferable. The identification of the inorganic filler component can be inferred from a resin composition sheet or a combination of energy-dispersed X-ray analysis and X-ray diffraction of a semi-cured product or a cured product.

〔その他の添加剤〕
本発明の樹脂組成物にはシランカップリング剤を含むことが好ましい。シランカップリング剤は、無機充填材の表面とその周りを取り囲む有機樹脂の間で共有結合を形成する役割(バインダ剤に相当)を果たし、熱を効率よく伝達する働きや、更には水分の浸入を妨げることにより、絶縁信頼性の向上にも寄与する。
[Other additives]
The resin composition of the present invention preferably contains a silane coupling agent. The silane coupling agent plays a role of forming a covalent bond (corresponding to the binder agent) between the surface of the inorganic filler and the organic resin surrounding the inorganic filler, and functions to efficiently transfer heat, and further to infiltrate moisture. This also contributes to improved insulation reliability.

シランカップリング剤は、一般に市販のものを使用できるが、エポキシ樹脂やフェノール樹脂との相溶性および樹脂層と無機フィラー層との界面での熱伝導欠損を低減することを考慮すると、末端にエポキシ基、2級以上のアミン骨格、メルカプト基、ウレイド基、水酸基を有するシランカップリング剤を用いることが好適である。   In general, commercially available silane coupling agents can be used, but considering the compatibility with epoxy resins and phenol resins and the reduction of thermal conduction deficiency at the interface between the resin layer and the inorganic filler layer, the terminal is epoxy. It is preferable to use a silane coupling agent having a group, a secondary or higher amine skeleton, a mercapto group, a ureido group, or a hydroxyl group.

シランカップリング剤の例として、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−フェニルアミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトトリエトキシシラン、3−ウレイドプロピルトリエトキシシランなどがあり、またSC−6000KS2に代表されるシランカップリング剤オリゴマ(日立化成コーテットサンド株式会社製)を使用することができる。またこれらシランカップリング剤は単独または2種類以上を併用することもできる。   Examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2 -(3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptotriethoxysilane, 3-ureidopropyltriethoxysilane, etc. Silane coupling agent oligomers (manufactured by Hitachi Chemical Coated Sand Co., Ltd.) represented by SC-6000KS2 can be used. These silane coupling agents can be used alone or in combination of two or more.

また、本発明の樹脂組成物は分散剤を含有してもよい。分散剤をしてはアルミナの分散に効果のある分散剤を特に制限なく使用できる。分散剤としては例えば、味の素ファインテック株式会社製アジスパーシリーズ、楠本化成株式会社製HIPLAADシリーズ、株式会社花王製ホモゲノールシリーズ等が挙げられる。これら分散剤は二種類以上を併用することができる。   Moreover, the resin composition of this invention may contain a dispersing agent. As the dispersant, a dispersant effective for dispersing alumina can be used without any particular limitation. As the dispersant, for example, Ajinomoto Finetech Co., Ltd. Ajisper series, Enomoto Kasei Co., Ltd. HIPLAAD series, Kao Corporation homogenol series, and the like can be mentioned. Two or more kinds of these dispersants can be used in combination.

さらに、本発明の樹脂組成物には、アクリルゴムや、アクリルエラストマー、エポキシ樹脂のプレポリマーなどの高分子量成分を添加してもよい。これら高分子量成分を適量含ませることで、塗工性の改善、流動性の制御、応力緩和性の付与等、樹脂組成物シートの物性を改善することができる。   Furthermore, you may add high molecular weight components, such as a prepolymer of an acrylic rubber, an acrylic elastomer, and an epoxy resin, to the resin composition of this invention. By including an appropriate amount of these high molecular weight components, the physical properties of the resin composition sheet can be improved, such as improvement of coating properties, control of fluidity, and imparting stress relaxation properties.

また、後述の樹脂組成物シートを製造するときの乾燥温度、時間、膜厚等の成型工程にあわせて、適切な沸点の有機溶剤を含有させてもよい。有機溶剤としては、通常用いられる有機溶剤を用いることができる。具体的には、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、アミド系溶剤、芳香族炭化水素系溶剤、エステル系溶剤、ニトリル系溶剤等を挙げることができる。例えば、メチルイソブチルケトン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、γ−ブチロラクトン、スルホラン、シクロヘキサノン、メチルエチルケトンを用いることができる。   Moreover, you may contain the organic solvent of a suitable boiling point according to shaping | molding processes, such as a drying temperature when manufacturing the below-mentioned resin composition sheet | seat, time, and a film thickness. As the organic solvent, a commonly used organic solvent can be used. Specific examples include alcohol solvents, ether solvents, ketone solvents, amide solvents, aromatic hydrocarbon solvents, ester solvents, nitrile solvents, and the like. For example, methyl isobutyl ketone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, γ-butyrolactone, sulfolane, cyclohexanone, methyl ethyl ketone can be used.

これの有機溶剤は1種単独でも、2種類以上を併用した混合溶剤として用いてもよい。この際、沸点が130℃以上のものを含んで用いると、乾燥がマイルドに進行し、表面にレベリングの作用が生じるために好ましい。特にシクロペンタノン、シクロヘキサノンは沸点と溶解性のバランスの観点から特に好ましく用いることができる。   These organic solvents may be used alone or as a mixed solvent using two or more kinds in combination. At this time, it is preferable to use a material having a boiling point of 130 ° C. or higher because drying proceeds mildly and a leveling action is generated on the surface. In particular, cyclopentanone and cyclohexanone can be particularly preferably used from the viewpoint of the balance between boiling point and solubility.

〔樹脂組成物の製造方法〕
本発明の樹脂組成物は上述の各成分を、混合、溶解、及び分散することで製造される。混合及び分散は公知の方法で行われる。具体的にはホモミキサー、2本ロール、3本ロール、プラネタリミキサー、ボールミル、ビーズミル、などの装置を単独、又は組み合わせて用いることができる。
[Method for producing resin composition]
The resin composition of the present invention is produced by mixing, dissolving, and dispersing the above-described components. Mixing and dispersion are performed by known methods. Specifically, devices such as a homomixer, two rolls, three rolls, a planetary mixer, a ball mill, and a bead mill can be used alone or in combination.

〔樹脂組成物の用途等〕
本発明の樹脂組成物は、高い熱伝導性及び優れた流動性が両立される。また本発明の樹脂組成物を用いて形成された樹脂硬化物は、熱伝導率が高く、また絶縁性に優れる。したがって、LED光源部材や、パワー半導体装置の放熱材料への展開が期待できる。
[Use of resin composition, etc.]
The resin composition of the present invention achieves both high thermal conductivity and excellent fluidity. Moreover, the resin cured material formed using the resin composition of this invention has high heat conductivity, and is excellent in insulation. Therefore, it can be expected that LED light source members and power semiconductor devices will be developed into heat dissipation materials.

<樹脂組成物シート>
本発明の樹脂組成物シートは、前記樹脂組成物をシート状に成形したものである。具体的には、前記樹脂組成物を基材上に塗布し、乾燥することで製造される。本発明の樹脂組成物シートは、前記樹脂組成物に由来する半硬化樹脂組成物からなる、いわゆるBステージシートであることが好ましい。塗工後の樹脂層は硬化反応がほとんど進行していないため、可とう性を有するものの、シートとしての柔軟性に乏しく、基材を除去した状態ではシート自立性に乏しく、取り扱いが困難である。しかしながらBステージシートは半硬化されているため取り扱い性に優れる。
<Resin composition sheet>
The resin composition sheet of the present invention is obtained by molding the resin composition into a sheet shape. Specifically, the resin composition is applied on a substrate and dried. The resin composition sheet of the present invention is preferably a so-called B stage sheet made of a semi-cured resin composition derived from the resin composition. Since the resin layer after coating hardly undergoes a curing reaction, it has flexibility, but it is poor in flexibility as a sheet, and when the substrate is removed, the sheet is not self-supporting and difficult to handle. . However, since the B stage sheet is semi-cured, it is excellent in handleability.

なお、Bステージシートとは樹脂組成物シートの粘度として、常温(25℃)においては10Pa・s〜10Pa・sであるのに対して、100℃で10Pa・s〜10Pa・sに粘度が低下するものである。これに対して後述する硬化後の硬化樹脂層は、加温によっても溶融することは無い。なお、上記粘度は、動的粘弾性測定(周波数1ヘルツ、荷重40g、昇温速度3℃/分)によって測定される。 The B stage sheet has a viscosity of the resin composition sheet of 10 4 Pa · s to 10 5 Pa · s at room temperature (25 ° C.), whereas 10 2 Pa · s to 10 5 at 100 ° C. The viscosity decreases to 3 Pa · s. On the other hand, the cured resin layer, which will be described later, does not melt even by heating. The viscosity is measured by dynamic viscoelasticity measurement (frequency 1 Hz, load 40 g, temperature increase rate 3 ° C./min).

前記基材は、乾燥時の温度に耐えうるものであれば特に制限はなく、後の工程で剥離しやすいように離型処理された離型基材であることが好ましい。離型基材としては、一般的に用いられる離型剤付きのポリエチレンテレフタレートフィルム、ポリイミドフィルム、アラミドフィルム、離型剤付きのアルミニウム箔等の金属箔を用いることができる。   The substrate is not particularly limited as long as it can withstand the temperature at the time of drying, and is preferably a release substrate that has been subjected to a release treatment so that it can be easily peeled off in a later step. As the release substrate, a metal foil such as a commonly used polyethylene terephthalate film with a release agent, a polyimide film, an aramid film, or an aluminum foil with a release agent can be used.

本発明の樹脂組成物シート(Bステージシート)の厚みは、目的に応じて適宜選択することができ、例えば、平均厚みは30μm〜300μmが好ましく、熱伝導率、電気絶縁性及び樹脂組成物シート(Bステージシート)の可とう性の観点から、無機充填材の最大粒子径の8/7倍以上かつ60μm〜200μmであることが好ましい。無機充填材の最大粒子径の8/7倍以上かつ60μm以上の場合は電気絶縁性に優れ、200μm以下の場合は熱抵抗の増大が抑えられる。   The thickness of the resin composition sheet (B stage sheet) of the present invention can be appropriately selected according to the purpose. For example, the average thickness is preferably 30 μm to 300 μm, and the thermal conductivity, electrical insulation, and resin composition sheet. From the viewpoint of the flexibility of the (B stage sheet), it is preferably 8/7 times the maximum particle diameter of the inorganic filler and 60 μm to 200 μm. When the maximum particle diameter of the inorganic filler is 8/7 times or more and 60 μm or more, the electric insulation is excellent, and when it is 200 μm or less, the increase in thermal resistance is suppressed.

樹脂組成物シート(Bステージシート)は、例えば、下記のようにして得られる。
まず、上述の樹脂組成物で説明した各成分を、混合、溶解、及び分散して、樹脂組成物を調製する。そして、調製した樹脂組成物を離型基材上に塗布し塗膜を形成する。塗布は、公知の方法により実施することができる。塗布方法として具体的には、コンマコート、ダイコート、リップコート、グラビアコート等の方法が挙げられる。所定の厚みに樹脂組成物シートを形成するための塗布方法としては、ギャップ間に被塗工物を通過させるコンマコート法、ノズルから流量を調整したワニス状の樹脂組成物を塗布するダイコート法等を適用することができる。また、必要に応じて各々の塗布装置のワニス溜め部分を緩やかに攪拌しながら塗布することで、無機充填物の沈降による分離を抑制しながら塗布することができる。
The resin composition sheet (B stage sheet) is obtained, for example, as follows.
First, the components described in the above resin composition are mixed, dissolved, and dispersed to prepare a resin composition. And the prepared resin composition is apply | coated on a mold release base material, and a coating film is formed. Application | coating can be implemented by a well-known method. Specific examples of the coating method include comma coating, die coating, lip coating, and gravure coating. Examples of a coating method for forming a resin composition sheet with a predetermined thickness include a comma coating method in which an object to be coated is passed between gaps, a die coating method in which a varnish-like resin composition having a flow rate adjusted from a nozzle is applied, and the like. Can be applied. Moreover, it can apply | coat, suppressing the isolation | separation by sedimentation of an inorganic filler by apply | coating while stirring gently the varnish reservoir part of each coating device as needed.

塗膜の乾燥温度は、樹脂組成物に用いる溶剤によって適宜設定することが望ましく、一般には80℃〜180℃程度である。塗膜の乾燥時間は樹脂組成物のゲル化時間と膜厚、使用する溶剤の沸点との兼ね合いで決めることができ、特に制限はない。塗膜の乾燥後、離型基材を除去して、樹脂組成物シート(Bステージシート)を得る。   The drying temperature of the coating film is desirably set as appropriate depending on the solvent used in the resin composition, and is generally about 80 ° C to 180 ° C. The drying time of the coating film can be determined by considering the gelation time and film thickness of the resin composition and the boiling point of the solvent used, and is not particularly limited. After the coating film is dried, the release substrate is removed to obtain a resin composition sheet (B stage sheet).

樹脂組成物シート(Bステージシート)における揮発分量は、硬化時のアウトガス発生時の気泡形成への懸念の観点から、1.2質量%以下であることが好ましく、0.8質量%以下であることが更に好ましい。揮発分のうち、溶剤成分は少ないほど好ましいが、得られた樹脂組成物シート(Bステージシート)のロール等への巻きとり性の観点から、0.4質量%以上であると好ましい。   The amount of volatile components in the resin composition sheet (B stage sheet) is preferably 1.2% by mass or less, and preferably 0.8% by mass or less, from the viewpoint of concern about bubble formation during outgas generation during curing. More preferably. Among the volatile components, the smaller the solvent component, the better. However, from the viewpoint of winding up of the obtained resin composition sheet (B stage sheet) to a roll or the like, it is preferably 0.4% by mass or more.

樹脂組成物シート(Bステージシート)における揮発分量は以下のように測定される。上記方法で得られた樹脂組成物シート(Bステージシート)を50mm角に切り出し、180℃に予熱した恒温槽中で30分間乾燥させたときの、乾燥前後の質量変化から求める。   The amount of volatile components in the resin composition sheet (B stage sheet) is measured as follows. The resin composition sheet (B stage sheet) obtained by the above method is cut into 50 mm squares, and obtained from the change in mass before and after drying when dried in a thermostatic bath preheated to 180 ° C. for 30 minutes.

本発明の樹脂組成物シート(Bステージシート)は、金属基板等の被着材に積層又は貼付する前に、プレスやロールラミネータなどによる熱間加圧により、予め表面を平坦化してから使用してもよい。表面を平坦化することで、被着材の形状に追従する樹脂が表面に染み出した状態となるために、接着性および絶縁性が改善される。熱間加圧の方法は、熱プレス、熱ロール、ラミネータ等の方法を任意に選択することができる。この際、基材上に樹脂組成物を塗工して乾燥した樹脂組成物層の上に基材を当て、熱間加圧して樹脂組成物シート(Bステージシート)を得てもよく、基材上に樹脂組成物を塗工して乾燥したものを2枚用意し、それぞれの樹脂組成物層を重ね合わせるように貼りあわせることで樹脂組成物シート(Bステージシート)を得てもよい。2枚貼り合わせた場合、塗工時のピンホール等を解消できるため好ましい。   The resin composition sheet (B stage sheet) of the present invention is used after the surface is flattened in advance by hot pressing with a press or a roll laminator before being laminated or adhered to an adherend such as a metal substrate. May be. By flattening the surface, the resin that follows the shape of the adherend is in a state of oozing out on the surface, so that adhesion and insulation are improved. As a method of hot pressurization, a method such as a hot press, a hot roll, and a laminator can be arbitrarily selected. At this time, a resin composition sheet (B-stage sheet) may be obtained by applying a resin composition layer on a substrate and applying the substrate onto a dried resin composition layer and applying hot pressure. A resin composition sheet (B stage sheet) may be obtained by preparing two sheets obtained by applying a resin composition on a material and drying them, and bonding the resin composition layers so as to overlap each other. When two sheets are bonded together, it is preferable because pinholes during coating can be eliminated.

熱プレスで熱間加圧を行う際には空気の巻き込みを避けるためにも真空プレスで行うことが好ましい。加熱温度は、樹脂組成物に用いる樹脂の種類などに応じて適宜設定することが望ましく、一般には、60℃〜180℃とすることが好ましく、120℃〜150℃とすることがより好ましい。また、加圧を開始する真空度は、3kPa〜0.1kPaとすることが好ましい。プレス圧は、0.2MPa〜4MPaとすることが好ましく、0.5MPa〜2MPaとすることがより好ましい。   When hot pressing is performed by hot pressing, it is preferable to perform by vacuum pressing in order to avoid air entrainment. The heating temperature is preferably set as appropriate according to the type of resin used in the resin composition, and is generally preferably 60 ° C to 180 ° C, more preferably 120 ° C to 150 ° C. Moreover, it is preferable that the vacuum degree which starts a pressurization shall be 3 kPa-0.1 kPa. The pressing pressure is preferably 0.2 MPa to 4 MPa, and more preferably 0.5 MPa to 2 MPa.

ラミネータの加熱温度は、70℃〜170℃が好ましく、80℃〜160℃がより好ましく、90℃〜150℃が更に好ましい。また、ラミネータの圧力は、好ましくは0.1MPa〜3MPa、より好ましくは0.3MPa〜2MPa、更に好ましくは0.6MPa〜1.5MPaである。   The heating temperature of the laminator is preferably 70 ° C to 170 ° C, more preferably 80 ° C to 160 ° C, and still more preferably 90 ° C to 150 ° C. The pressure of the laminator is preferably 0.1 MPa to 3 MPa, more preferably 0.3 MPa to 2 MPa, and still more preferably 0.6 MPa to 1.5 MPa.

樹脂組成物シート(Bステージシート)の最低溶融粘度は、BステージからCステージとする加圧加熱工程での樹脂組成物の流動性に影響する。そのため、加圧加熱工程で加えられる温度範囲20℃〜200℃における最低溶融粘度を調整することが、取り扱い性や、端部からの樹脂組成物シート(Bステージシート)の流出を押さえる観点から望ましい。   The minimum melt viscosity of the resin composition sheet (B stage sheet) affects the fluidity of the resin composition in the pressure heating process from the B stage to the C stage. Therefore, adjusting the minimum melt viscosity in the temperature range of 20 ° C. to 200 ° C. applied in the pressure heating step is desirable from the viewpoint of handling and suppressing the outflow of the resin composition sheet (B stage sheet) from the end. .

樹脂組成物シート(Bステージシート)の最低溶融粘度は、ずり粘弾性の温度依存性を測定した際に、温度上昇による粘度低下と硬化反応による粘度増加によって現れる最小値である。
ずり粘弾性を測定する条件の例として、昇温速度5℃/min(プレスの昇温速度)、周波数1Hz〜10Hzが挙げられ、樹脂組成物シート(Bステージシート)をはさむ測定冶具は円形の平板が挙げられる。サンプルは、必要に応じて樹脂組成物シート(Bステージシート)を積層したものを用いてもよい。
The minimum melt viscosity of the resin composition sheet (B stage sheet) is a minimum value that appears due to a decrease in viscosity due to an increase in temperature and an increase in viscosity due to a curing reaction when the temperature dependence of shear viscoelasticity is measured.
Examples of conditions for measuring shear viscoelasticity include a heating rate of 5 ° C./min (press heating rate) and a frequency of 1 Hz to 10 Hz, and the measuring jig sandwiching the resin composition sheet (B stage sheet) is circular. A flat plate is mentioned. The sample may be a laminate of resin composition sheets (B stage sheets) as necessary.

樹脂組成物シート(Bステージシート)の20℃〜200℃における最低溶融粘度は、10Pa・s〜1000Pa・sであることが好ましく、被着材の凹凸への追従性の観点から20Pa・s〜800Pa・sであることがより好ましく、圧着条件のマージンの広さの観点から30Pa・s〜600Pa・sであることがさらに好ましい。最低溶融粘度が低すぎると熱伝導性絶縁層の厚みばらつきが発生し、最低溶融粘度が高すぎると熱伝導性絶縁層が銅箔や金属基板等の被着材に充分に密着しなくなり、接着力の低下及び絶縁破壊電圧の低下が発生する。よって、20℃〜200℃における最低溶融粘度が上記範囲内にあると、加熱時に優れた流動性を示し、凹凸構造を有する被着材に対しても追従するため、本硬化後に高い接着力を示す。   The minimum melt viscosity at 20 ° C. to 200 ° C. of the resin composition sheet (B stage sheet) is preferably 10 Pa · s to 1000 Pa · s, and from the viewpoint of the ability to follow unevenness of the adherend, 20 Pa · s to More preferably, it is 800 Pa · s, and more preferably 30 Pa · s to 600 Pa · s from the viewpoint of the margin of the pressure bonding condition. If the minimum melt viscosity is too low, the thickness of the heat conductive insulating layer will vary. If the minimum melt viscosity is too high, the heat conductive insulating layer will not adhere sufficiently to the adherend such as a copper foil or a metal substrate. A drop in force and a breakdown voltage occur. Therefore, when the minimum melt viscosity at 20 ° C. to 200 ° C. is in the above range, it exhibits excellent fluidity during heating and follows a substrate having a concavo-convex structure. Show.

また本発明の樹脂組成物シート(Bステージシート)は、フロー率が130%以上210%以下であることが好ましく、150%以上200%以下であることがより好ましい。このフロー率は、熱圧着時の溶融流動性の指標である。フロー率が130%以上の場合には埋め込み性が充分となり、210%以下の場合にはバリや樹脂抜けが抑えられる。   Further, the resin composition sheet (B stage sheet) of the present invention preferably has a flow rate of 130% or more and 210% or less, and more preferably 150% or more and 200% or less. This flow rate is an index of melt fluidity during thermocompression bonding. When the flow rate is 130% or more, the embeddability is sufficient, and when it is 210% or less, burrs and resin omission are suppressed.

樹脂組成物シート(Bステージシート)のフロー率は以下の方法で測定される。
厚みの合計が180μm〜200μmとなるよう樹脂組成物シート(Bステージシート)を重ね、30mm角に打ち抜いて試料を準備し、この試料を大気圧条件下で、0.5mm厚のテフロン(登録商標)フィルムを介して温度130℃、プレス圧0.2MPaの条件で20秒間押圧したときの、押圧前後の樹脂組成物シート(Bステージシート)の面積変化率を測定する。
面積変化率は、試料を300DPI以上のスキャナで取り込み、画像解析ソフト(Adobe Photoshop)にて2値化処理した後、面積(ピクセル数)の変化率から求める。
The flow rate of the resin composition sheet (B stage sheet) is measured by the following method.
A resin composition sheet (B stage sheet) is stacked so that the total thickness becomes 180 μm to 200 μm, and a sample is prepared by punching out to 30 mm square. This sample is 0.5 mm thick Teflon (registered trademark) under atmospheric pressure conditions. ) The area change rate of the resin composition sheet (B stage sheet) before and after pressing is measured when pressed through a film at a temperature of 130 ° C. and a pressing pressure of 0.2 MPa for 20 seconds.
The area change rate is obtained from the change rate of the area (number of pixels) after taking a sample with a scanner of 300 DPI or more, binarizing with a sample analysis software (Adobe Photoshop).

フロー率(%)=(押圧後の樹脂組成物シート(Bステージシート)の面積)/(押圧前の樹脂組成物シート(Bステージシート)の面積)   Flow rate (%) = (Area of resin composition sheet (B stage sheet) after pressing) / (Area of resin composition sheet (B stage sheet) before pressing)

<金属箔付樹脂組成物シート>
本発明の金属箔付樹脂組成物シートは、金属箔と、前記金属箔上に設けられた前記樹脂組成物から形成されてなる樹脂組成物層と、を有する。樹脂組成物層は半硬化され、いわゆるBステージであることが好ましい。
金属箔付樹脂組成物シートは、前記樹脂組成物を金属箔上に塗布及び乾燥して樹脂組成物層を形成することで、又は前記樹脂組成物シートを金属箔と貼り合せることで作製することができる。なお、金属箔上に樹脂組成物を塗布及び乾燥して樹脂組成物層を形成する場合、前記樹脂組成物シートと同様に、樹脂組成物層の乾燥後に必要に応じて樹脂組成物層が対向するように背合せ、或いは樹脂組成物層に離型基材をあてて熱間加圧することで、接着面を平滑化することができ、この工程により塗工時のピンホール等を解消できる確率が高まるため好ましい。また、樹脂組成物層が対向するように背合せして2枚の樹脂組成物層を熱間加圧することにより、所望の膜厚が厚過ぎて1回の塗布では塗りきれない場合に充分な膜厚を得ることが可能となる。
<Resin composition sheet with metal foil>
The resin composition sheet with metal foil of the present invention has a metal foil and a resin composition layer formed from the resin composition provided on the metal foil. The resin composition layer is semi-cured and is preferably a so-called B stage.
The resin composition sheet with metal foil is produced by applying and drying the resin composition on the metal foil to form a resin composition layer, or by bonding the resin composition sheet to the metal foil. Can do. In addition, when a resin composition is applied and dried on a metal foil to form a resin composition layer, the resin composition layer is opposed to the resin composition layer as necessary after drying, as in the case of the resin composition sheet. As a result, the adhesive surface can be smoothed by back-to-back or by applying a release substrate to the resin composition layer and hot pressing, and this process can eliminate pinholes during coating. Is preferable because of the increase. Also, when the two resin composition layers are hot-pressed back to back so that the resin composition layers face each other, it is sufficient when the desired film thickness is too thick to be completely applied by one application. A film thickness can be obtained.

金属箔としては、用途に応じて銅、アルミニウム、ニッケル、スズ、又はそれらを含む合金のいずれかの材質からなる金属箔を用いることができる。また、金属箔の層構造は1層に限らず、2層〜3層の複合箔を用いることもできる。低コスト、電気伝導率の高さ、及び回路形成上の利便性を考えて、一般的には銅箔が用いられる。銅箔は電解銅箔でも圧延銅箔でもよいが、接着性の観点から、膜厚上粗化面粗さが許容できない場合を除いては電解銅箔が好ましい。また、銅箔の厚みは使用する電流及び電力値によって適切な厚みの物を使用することができる。   As the metal foil, a metal foil made of any material of copper, aluminum, nickel, tin, or an alloy containing them can be used depending on the application. Further, the layer structure of the metal foil is not limited to one layer, and a composite foil of two to three layers can also be used. In view of low cost, high electrical conductivity, and convenience in circuit formation, copper foil is generally used. The copper foil may be an electrolytic copper foil or a rolled copper foil, but from the viewpoint of adhesiveness, an electrolytic copper foil is preferred unless the roughened surface roughness is not acceptable in terms of film thickness. Moreover, the thickness of copper foil can use the thing of suitable thickness by the electric current and electric power value to be used.

金属箔の厚みは9μm〜210μmであることが好ましく、18μm〜105μmであることがより好ましく、35μm〜70μmであることがさらに好ましい。9μm以上の場合には取扱いに優れ、わずかな力で折れるのを防ぐことができる。また、210μm以下の場合には、高価な金属箔の使用量が抑えられる。   The thickness of the metal foil is preferably 9 μm to 210 μm, more preferably 18 μm to 105 μm, and further preferably 35 μm to 70 μm. In the case of 9 μm or more, it is excellent in handling and can be prevented from being broken by a slight force. Moreover, when it is 210 micrometers or less, the usage-amount of expensive metal foil is suppressed.

金属箔の取扱性を向上させるために、キャリアフィルムを貼り付けた状態で金属箔を取り扱ってもよい。そのようなキャリアフィルムとして、微粘着性の粘着フィルム、自己吸着性の粘着フィルム、UV硬化性の粘着フィルム等を用いることができる。金属基板及び金属箔への樹脂組成物シートによる接着工程、あるいは金属箔付き樹脂組成物シートを得るための塗工工程において、金属箔にキャリアフィルムが貼り付いた状態であることで金属箔の折れ等を抑制することができる。   In order to improve the handleability of the metal foil, the metal foil may be handled with the carrier film attached. As such a carrier film, a slightly adhesive adhesive film, a self-adsorbing adhesive film, a UV curable adhesive film, or the like can be used. In the adhesion process by the resin composition sheet to the metal substrate and the metal foil, or in the coating process to obtain the resin composition sheet with the metal foil, the metal foil is folded by being in a state where the carrier film is adhered to the metal foil. Etc. can be suppressed.

その他の製造方法、樹脂組成物シートの厚み、揮発分量、最低溶融粘度、フロー率等の好ましい範囲は、前記樹脂組成物シートに関するものと同様である。   Other preferable production methods, thicknesses of the resin composition sheet, volatile content, minimum melt viscosity, flow rate, and the like are the same as those for the resin composition sheet.

<熱伝導性絶縁層(Cステージ)>
熱伝導性絶縁層は、後述のメタルベース配線板材料やメタルベース配線板において、金属基板と配線層又は金属箔との間を絶縁させる接着層であり、前記樹脂組成物の硬化物層である。前記樹脂組成物シートの半硬化物であるBステージシート又は半硬化の金属箔付き樹脂組成物シートを本硬化(Cステージ化)して熱伝導性絶縁層(Cステージ)とすることができる。
<Thermal conductive insulating layer (C stage)>
The thermally conductive insulating layer is an adhesive layer that insulates between a metal substrate and a wiring layer or a metal foil in a metal base wiring board material or a metal base wiring board described later, and is a cured layer of the resin composition. . A B-stage sheet, which is a semi-cured product of the resin composition sheet, or a semi-cured resin composition sheet with a metal foil can be fully cured (C stage) to form a heat conductive insulating layer (C stage).

更に具体的には、金属基板と樹脂組成物シートと金属箔とをこの順に積層する積層体を、プレス機等で加圧加熱することにより、金属基板と金属箔とを接着させる。この積層体は、金属箔付樹脂組成物シートに金属基板を積層したものであってもよい。金属箔付樹脂組成物シートに金属基板を積層する場合、金属板は、金属箔付樹脂組成物シートにおける金属箔の反対面に積層する。   More specifically, the metal substrate, the metal foil, and the metal foil are bonded to each other by pressurizing and heating a laminate in which the metal substrate, the resin composition sheet, and the metal foil are laminated in this order with a press machine or the like. This laminate may be obtained by laminating a metal substrate on a resin composition sheet with metal foil. When laminating a metal substrate on the resin composition sheet with metal foil, the metal plate is laminated on the opposite surface of the metal foil in the resin composition sheet with metal foil.

半硬化状態(Bステージ)である前記樹脂組成物シート又は金属箔付樹脂組成物シートは、加圧加熱工程で再溶融し、金属基板及び金属箔に樹脂組成物シートが密着し、その後、樹脂組成物シートを本硬化(Cステージ化)して熱伝導性絶縁層(Cステージ)となり、金属基板と金属箔とが接着される。本硬化した後の熱伝導性絶縁層は、加熱によって溶融することはない。   The resin composition sheet or the metal foil-attached resin composition sheet in a semi-cured state (B stage) is re-melted in a pressure heating process, and the resin composition sheet adheres to the metal substrate and the metal foil. The composition sheet is fully cured (C stage) to become a heat conductive insulating layer (C stage), and the metal substrate and the metal foil are bonded. The thermally conductive insulating layer after the main curing is not melted by heating.

<メタルベース配線板材料>
メタルベース配線板材料は、金属箔と、金属基板とを有し、金属箔と金属基板との間に、前記樹脂組成物の硬化物である熱伝導性絶縁層を備える。熱伝導性絶縁層は、前記樹脂組成物シートの硬化物であっても、前記金属箔付樹脂組成物シートの硬化物であってもよい。以下、前記樹脂組成物シート又は金属箔付樹脂組成物シートの硬化物を、「シート硬化物」と総称する場合がある。本発明におけるシート硬化物により金属基板と金属箔は絶縁される。
<Metal base wiring board material>
The metal base wiring board material includes a metal foil and a metal substrate, and includes a thermally conductive insulating layer that is a cured product of the resin composition between the metal foil and the metal substrate. The thermally conductive insulating layer may be a cured product of the resin composition sheet or a cured product of the resin composition sheet with metal foil. Hereinafter, the cured product of the resin composition sheet or the resin composition sheet with metal foil may be collectively referred to as “sheet cured product”. The metal substrate and the metal foil are insulated by the cured sheet in the present invention.

金属基板は、熱伝導率が高く、熱容量が大きい金属材料からなり、銅、アルミニウム、鉄、リードフレームに使われる合金等が例示できる。金属基板が厚いほどメタルベース配線板の強度が高まるが、電子部品を搭載した配線板が金属製シャーシ等にネジや接着性材料等によって一体化される場合は、強度が向上するために金属基板は特に厚い必要はない。金属基板は軽量化や加工性を優先する場合はアルミニウム、強度を優先する場合は鉄、というように目的を応じて材質を選定してもよい。
配線板を大きなサイズで作製した後、電子部品実装後に使用するサイズにカットすることが生産性を高めるために好ましい。そのため、金属基板はカットするための加工性が高いことが望ましい。
The metal substrate is made of a metal material having a high thermal conductivity and a large heat capacity, and examples thereof include copper, aluminum, iron, and alloys used for lead frames. The thicker the metal substrate, the higher the strength of the metal base wiring board. However, when the wiring board on which electronic components are mounted is integrated into a metal chassis or the like with screws or adhesive material, the metal board is used to improve the strength. Need not be particularly thick. The material of the metal substrate may be selected according to the purpose, such as aluminum when priority is given to weight reduction and workability, and iron when priority is given to strength.
In order to increase productivity, it is preferable to cut the wiring board into a size to be used after mounting the electronic component after the wiring board is manufactured in a large size. Therefore, it is desirable that the metal substrate has high workability for cutting.

アルミニウムの金属基板としては、アルミニウム又はアルミニウムを主成分とする合金を材質として選定でき、その化学組成と熱処理条件により多種類のものが入手可能であるが、切削しやすい等の加工性が高く、かつ強度に優れたA5052などのアルミニウム合金を選定することが好ましい。また、樹脂との加工時の密着強度を向上するために、表面を粗化するとよい。表面粗化の方法としては、バフ研磨、ジェットスクラブ処理、サンドブラスト処理、アルマイト処理等の方法が挙げられるが、表面スクラッチが少なく仕上がり、異方性の小ささから、ジェットスクラブ処理が特に好ましい。   As a metal substrate of aluminum, aluminum or an alloy mainly composed of aluminum can be selected as a material, and various types are available depending on its chemical composition and heat treatment conditions, but it has high workability such as easy cutting, It is also preferable to select an aluminum alloy such as A5052 that is excellent in strength. Moreover, in order to improve the adhesive strength at the time of processing with resin, the surface is preferably roughened. Examples of the surface roughening method include methods such as buffing, jet scrub treatment, sand blast treatment, and alumite treatment. Jet scrub treatment is particularly preferred because it can be finished with little surface scratching and has low anisotropy.

配線板材料は、前記樹脂組成物シートを金属基板と金属箔とで挟み、プレス機等で加圧加熱する方法等により作製される。または、金属箔付き樹脂組成物シートと金属基板を加圧加熱する方法等により作製される。前記樹脂組成物シートを硬化する加熱及び加圧処理の条件は、樹脂組成物シートの構成に応じて適宜選択される。例えば、常温から昇温した時の加熱温度が80℃〜250℃で、圧力が0.5MPa〜8.0MPaであることが好ましく、加熱温度が130℃〜230℃で、圧力が1.5MPa〜5.0MPaであることがより好ましい。   The wiring board material is produced by a method of sandwiching the resin composition sheet between a metal substrate and a metal foil and pressurizing and heating with a press machine or the like. Or it produces by the method etc. which pressurize and heat the resin composition sheet with metal foil, and a metal substrate. The conditions of the heating and pressure treatment for curing the resin composition sheet are appropriately selected according to the configuration of the resin composition sheet. For example, when the temperature is raised from room temperature, the heating temperature is preferably 80 ° C. to 250 ° C., the pressure is preferably 0.5 MPa to 8.0 MPa, the heating temperature is 130 ° C. to 230 ° C., and the pressure is 1.5 MPa to More preferably, it is 5.0 MPa.

また、これらの圧着工程の後に硬化反応が不充分な場合は恒温槽などで後硬化させることができる。その際、そりを抑制するために金属板などに挟んで後硬化させてもよく、表面の酸化を抑えるために窒素雰囲気などに置換して後硬化を行ってもよい。   Further, when the curing reaction is insufficient after these pressure bonding steps, it can be post-cured in a thermostatic bath or the like. At that time, the film may be post-cured by being sandwiched between metal plates in order to suppress warpage, or may be post-cured by substituting with a nitrogen atmosphere or the like in order to suppress surface oxidation.

<メタルベース配線板>
メタルベース配線板は、金属基板と配線層とを有し、前記シート硬化物を備える。前記シート硬化物により金属基板と配線層は絶縁される。
<Metal base wiring board>
The metal base wiring board includes a metal substrate and a wiring layer, and includes the cured sheet. The metal substrate and the wiring layer are insulated by the cured sheet.

前記配線層は、前記メタルベース配線板材料の金属箔を配線加工することで得られる。金属箔の配線加工の方法としては、エッチングが工業的に好ましい。   The wiring layer is obtained by wiring a metal foil of the metal base wiring board material. Etching is industrially preferable as a method for wiring the metal foil.

メタルベース配線板は電子部品を搭載するためのパッド部を除き、ソルダレジストが表面に形成されていることが望ましい。メタルベース配線板は回路加工及びソルダレジスト形成の後に、LED光源部材のような電子部品搭載部材のサイズにカットされることが好ましい。例えば、メタルベース配線板のパッド部にはんだ等の電気接続材料を塗布し、電子部品を配置した後に、はんだリフロー工程を通すことで、電子部品が実装される。   The metal base wiring board preferably has a solder resist formed on the surface except for a pad portion for mounting electronic components. The metal base wiring board is preferably cut to the size of an electronic component mounting member such as an LED light source member after circuit processing and solder resist formation. For example, the electronic component is mounted by applying an electrical connection material such as solder to the pad portion of the metal base wiring board, placing the electronic component, and then passing through a solder reflow process.

<パワー半導体装置>
本発明のパワー半導体装置は、前記樹脂組成物シート、前記金属箔付樹脂組成物シート、前記Bステージシート、前記半硬化の金属箔付樹脂組成物シート、前記メタルベース配線板材料、及び前記メタルベース配線板のうちのいずれか1つを用いて作製される。図1〜図3に、本発明のパワー半導体装置の構成例を示す。
<Power semiconductor device>
The power semiconductor device of the present invention includes the resin composition sheet, the resin composition sheet with metal foil, the B-stage sheet, the semi-cured resin composition sheet with metal foil, the metal base wiring board material, and the metal. It is produced using any one of the base wiring boards. 1 to 3 show configuration examples of the power semiconductor device of the present invention.

図1は、ハウジング14内に、パワー半導体チップ10が、はんだ層12を介して配置された銅板4と、本発明の樹脂組成物の硬化物層2と、グリース層8を介して水冷ジャケット20上に配置された放熱ベース6と、が積層されて構成されたパワー半導体装置100の構成例を示す概略断面図である。パワー半導体チップ10を含む発熱体が本発明の樹脂組成物の硬化物層2を介して放熱ベース6と接触していることで、効率よく放熱が行なわれる。尚、前記放熱ベース6は、熱伝導性を有する銅やアルミニウムを用いて構成することができる。   FIG. 1 shows a copper plate 4 in which a power semiconductor chip 10 is disposed in a housing 14 via a solder layer 12, a cured product layer 2 of the resin composition of the present invention, and a water cooling jacket 20 via a grease layer 8. It is a schematic sectional drawing which shows the structural example of the power semiconductor device 100 comprised by laminating | stacking the thermal radiation base 6 arrange | positioned on the top. Since the heating element including the power semiconductor chip 10 is in contact with the heat dissipation base 6 through the cured product layer 2 of the resin composition of the present invention, heat dissipation is performed efficiently. In addition, the said thermal radiation base 6 can be comprised using copper and aluminum which have thermal conductivity.

図2は、パワー半導体チップ10の両側に、水冷ジャケット20を配置して構成されたパワー半導体装置150の構成例を示す概略断面図である。パワー半導体装置150においては、パワー半導体チップ10の上面側は、2層の銅板4を介して水冷ジャケット20に接続される。かかる構成であることにより、チップ割れやはんだ割れの発生を、より効果的に抑制することができる。
なお、図2では、樹脂組成物の硬化物層2に密着した放熱ベース6と水冷ジャケット20とがグリース層8を介して配置されているが、樹脂組成物の硬化物層2と水冷ジャケット20とが直接接触するように配置されていてもよい。
FIG. 2 is a schematic cross-sectional view showing a configuration example of a power semiconductor device 150 configured by disposing the water cooling jacket 20 on both sides of the power semiconductor chip 10. In the power semiconductor device 150, the upper surface side of the power semiconductor chip 10 is connected to the water cooling jacket 20 via the two layers of copper plates 4. With such a configuration, generation of chip cracks and solder cracks can be more effectively suppressed.
In FIG. 2, the heat radiation base 6 and the water-cooled jacket 20 that are in close contact with the cured product layer 2 of the resin composition are disposed via the grease layer 8, but the cured product layer 2 of the resin composition and the water-cooled jacket 20 are disposed. And may be arranged so as to be in direct contact with each other.

図3は、パワー半導体チップ10の両側に、水冷ジャケット20を配置して構成されたパワー半導体装置200の構成例を示す概略断面図である。パワー半導体装置200においては、パワー半導体チップ10の両面側は、それぞれ1層の銅板4を介して水冷ジャケット20に接続される。
図3では樹脂組成物の硬化物層2に密着した放熱ベース6と水冷ジャケット20とがグリース層8を介して配置されているが、樹脂組成物の硬化物層2と水冷ジャケット20とが直接接触するように配置されていてもよい。
FIG. 3 is a schematic cross-sectional view showing a configuration example of a power semiconductor device 200 configured by disposing the water cooling jacket 20 on both sides of the power semiconductor chip 10. In the power semiconductor device 200, both surface sides of the power semiconductor chip 10 are connected to the water cooling jacket 20 through one layer of copper plate 4.
In FIG. 3, the heat radiation base 6 and the water cooling jacket 20 that are in close contact with the cured product layer 2 of the resin composition are arranged via the grease layer 8. However, the cured product layer 2 of the resin composition and the water cooling jacket 20 are directly You may arrange | position so that it may contact.

<LED光源部材>
本発明のLED光源部材は、前記樹脂組成物シート、前記金属箔付樹脂組成物シート、前記Bステージシート、前記半硬化の金属箔付樹脂組成物シート、前記メタルベース配線板材料、及び前記メタルベース配線板のうちのいずれか1つを用いて作製される。
LED光源部材では、金属基板と配線層との間に熱伝導性絶縁層である樹脂組成物の硬化物層を備え、配線層に電子部品が搭載される。このLED光源機器を用いて、LEDバックライトユニット等が作製でき、あるいはLED電灯やLED電球等を作製することができる。
<LED light source member>
The LED light source member of the present invention includes the resin composition sheet, the resin composition sheet with metal foil, the B stage sheet, the semi-cured resin composition sheet with metal foil, the metal base wiring board material, and the metal. It is produced using any one of the base wiring boards.
The LED light source member includes a cured product layer of a resin composition that is a heat conductive insulating layer between a metal substrate and a wiring layer, and an electronic component is mounted on the wiring layer. Using this LED light source device, an LED backlight unit or the like can be produced, or an LED electric light or an LED bulb can be produced.

図4は、本発明のLED光源部材の一例としてのLEDライトバー300の構成例を示す概略断面図である。LEDライトバー300は、ハウジング38と、グリース層36と、アルミニウム基板34と、本発明の樹脂組成物の硬化物層32と、回路層42と、LEDチップ30とがこの順に配置されて構成される。本発明の樹脂組成物の硬化物層32上には、アルミニウム基板34と樹脂組成物の硬化物層32と回路層42からなるアルミベース基板をハウジング38に固定する固定ネジ40を備える。
発熱体であるLEDチップ30が本発明の樹脂組成物の硬化物層32を介してアルミニウム基板34上に配置されることで、効率よく放熱することができる。
FIG. 4 is a schematic cross-sectional view showing a configuration example of an LED light bar 300 as an example of the LED light source member of the present invention. The LED light bar 300 includes a housing 38, a grease layer 36, an aluminum substrate 34, a cured product layer 32 of the resin composition of the present invention, a circuit layer 42, and an LED chip 30 arranged in this order. The On the cured product layer 32 of the resin composition of the present invention, a fixing screw 40 for fixing an aluminum base substrate composed of the aluminum substrate 34, the cured product layer 32 of the resin composition, and the circuit layer 42 to the housing 38 is provided.
By disposing the LED chip 30 as a heating element on the aluminum substrate 34 via the cured product layer 32 of the resin composition of the present invention, heat can be efficiently radiated.

図5は、LED電球の発光部350の構成例を示す概略断面図である。LED電球の発光部350は、ハウジング38と、グリース層36と、アルミニウム基板34と、本発明の樹脂組成物の硬化物層32と、回路層42と、LEDチップ30とがこの順に配置されて構成される。   FIG. 5 is a schematic cross-sectional view illustrating a configuration example of the light emitting unit 350 of the LED bulb. The light emitting part 350 of the LED bulb has a housing 38, a grease layer 36, an aluminum substrate 34, a cured product layer 32 of the resin composition of the present invention, a circuit layer 42, and an LED chip 30 arranged in this order. Composed.

また図6は、LED電球450の全体の構成の一例を示す概略断面図である。図5のLED電球の発光部350と、発光部350におけるハウジング38の、LEDチップ30を設けていない面側に、電源部材48を配置し、電極部材48は封止樹脂46により封止される。   FIG. 6 is a schematic cross-sectional view showing an example of the overall configuration of the LED bulb 450. A power supply member 48 is disposed on the light emitting portion 350 of the LED bulb in FIG. 5 and the surface side of the housing 38 in the light emitting portion 350 where the LED chip 30 is not provided, and the electrode member 48 is sealed with a sealing resin 46. .

図7は、LED基板400の構成の一例を示す概略断面図である。LED基板400は、アルミニウム基板34と、本発明の樹脂組成物シートの硬化物32と、回路層42と、LEDチップ30とがこの順に配置されて構成される。発熱体であるLEDチップ30が回路層42と本発明の樹脂組成物の硬化物層32を介してアルミニウム基板34上に配置されることで、効率よく放熱することができる。   FIG. 7 is a schematic cross-sectional view showing an example of the configuration of the LED substrate 400. The LED substrate 400 includes an aluminum substrate 34, a cured product 32 of the resin composition sheet of the present invention, a circuit layer 42, and an LED chip 30 arranged in this order. By disposing the LED chip 30 as a heating element on the aluminum substrate 34 via the circuit layer 42 and the cured product layer 32 of the resin composition of the present invention, heat can be efficiently radiated.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。尚、特に断りのない限り、「部」および「%」は質量基準である。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples. Unless otherwise specified, “part” and “%” are based on mass.

<樹脂合成例1>
撹拌機、冷却器、温度計を備えた3Lのセパラブルフラスコに、レゾルシノール594g、カテコール66g、37%ホルマリン316.2g、シュウ酸15g、水100gを入れ、オイルバスで加温しながら100℃に昇温した。還流温度で4時間反応を続けた。
その後水を留去しながら、フラスコ内の温度を170℃に昇温した。170℃を保持しながら8時間反応を続けた。その後減圧下、20分間濃縮を行い系内の水等を除去して、一般式(I)で表される構造単位を有するフェノール樹脂を取り出した。得られたフェノール樹脂の数平均分子量は530、重量平均分子量は930であった。またフェノール樹脂の水酸基当量は65g/eqであった。得られたフェノール樹脂は、モノマーであるレゾルシノールおよびカテコールを合計で35%含んでいた。
<Resin synthesis example 1>
Into a 3 L separable flask equipped with a stirrer, a cooler and a thermometer, 594 g of resorcinol, 66 g of catechol, 316.2 g of 37% formalin, 15 g of oxalic acid, and 100 g of water were added and heated to 100 ° C. while heating in an oil bath. The temperature rose. The reaction was continued for 4 hours at reflux temperature.
Thereafter, the temperature in the flask was raised to 170 ° C. while distilling off water. The reaction was continued for 8 hours while maintaining 170 ° C. Thereafter, concentration was performed under reduced pressure for 20 minutes to remove water and the like in the system, and a phenol resin having a structural unit represented by the general formula (I) was taken out. The number average molecular weight of the obtained phenol resin was 530, and the weight average molecular weight was 930. Moreover, the hydroxyl equivalent of the phenol resin was 65 g / eq. The obtained phenol resin contained a total of 35% of the monomers resorcinol and catechol.

<無機充填材混合物1>
粒子径D50が18μmであるアルミナ(スミコランダムAA18、住友化学株式会社製、密度3.98g/ml)63部、粒子径D50が3μmであるアルミナ(スミコランダムAA3、住友化学株式会社製、密度3.98g/ml)22.5部、粒子径D50が0.4μmであるアルミナ(スミコランダムAA04、住友化学株式会社製、密度3.98g/ml)14.5部を混合した。混合物の吸油量を測定した結果、6.2ml/100gであった。
<Inorganic filler mixture 1>
63 parts of alumina (Sumicorundum AA18, manufactured by Sumitomo Chemical Co., Ltd., density 3.98 g / ml) having a particle diameter D50 of 18 μm, and alumina (Sumicorundum AA3, manufactured by Sumitomo Chemical Co., Ltd., density 3) having a particle diameter D50 of 3 μm 0.95 g / ml) and 24.5 parts of alumina (Sumicorundum AA04, manufactured by Sumitomo Chemical Co., Ltd., density 3.98 g / ml) having a particle diameter D50 of 0.4 μm were mixed. As a result of measuring the oil absorption of the mixture, it was 6.2 ml / 100 g.

<無機充填材混合物2>
粒子径D50が18μmであるアルミナ(スミコランダムAA18、住友化学株式会社製、密度3.98g/ml)66部、粒子径D50が3μmであるアルミナ(スミコランダムAA3、住友化学株式会社製、密度3.98g/ml)24部、粒子径D50が0.4μmであるアルミナ(スミコランダムAA04、住友化学株式会社製、密度3.98g/ml)10部を混合した。混合物の吸油量を測定した結果、6.7ml/100gであった。
<Inorganic filler mixture 2>
66 parts of alumina (Sumicorundum AA18, manufactured by Sumitomo Chemical Co., Ltd., density 3.98 g / ml) having a particle diameter D50 of 18 μm, alumina (Sumicorundum AA3, manufactured by Sumitomo Chemical Co., Ltd., density 3) having a particle diameter D50 of 3 μm .98 g / ml) and 24 parts of alumina (Sumicorundum AA04, manufactured by Sumitomo Chemical Co., Ltd., density 3.98 g / ml) having a particle diameter D50 of 0.4 μm were mixed. As a result of measuring the oil absorption of the mixture, it was 6.7 ml / 100 g.

<無機充填材混合物3>
粒子径D50が18μmであるアルミナ(スミコランダムAA18、住友化学株式会社製、密度3.98g/ml)74部、粒子径D50が3μmであるアルミナ(スミコランダムAA3、住友化学株式会社製、密度3.98g/ml)14部、粒子径D50が0.4μmであるアルミナ(スミコランダムAA04、住友化学株式会社製、密度3.98g/ml)12部を混合した。混合物の吸油量を測定した結果、7.6ml/100gであった。
<Inorganic filler mixture 3>
74 parts of alumina (Sumicorundum AA18, manufactured by Sumitomo Chemical Co., Ltd., density 3.98 g / ml) having a particle diameter D50 of 18 μm, alumina (Sumicorundum AA3, manufactured by Sumitomo Chemical Co., Ltd., density 3) having a particle diameter D50 of 3 μm .98 g / ml) and 14 parts of alumina (Sumicorundum AA04, manufactured by Sumitomo Chemical Co., Ltd., density 3.98 g / ml) having a particle diameter D50 of 0.4 μm were mixed. As a result of measuring the oil absorption of the mixture, it was 7.6 ml / 100 g.

<無機充填材混合物4>
粒子径D50が31μmであるアルミナ(AL35−63、マイクロン社製、密度3.80g/ml)63部、粒子径D50が5μmであるアルミナ(AX3−32、マイクロン社製、密度3.77g/ml)18部、粒子径D50が0.5μmであるアルミナ(LS−235、日本軽金属株式会社製、密度3.94g/ml)17部を、粒子径D50が0.7μmである球状アルミナ(AO802、株式会社アドマテックス製、密度3.7g/ml)2部を混合した。混合物の吸油量を測定した結果、5.6ml/100gであった。
<Inorganic filler mixture 4>
63 parts of alumina (AL35-63, manufactured by Micron, density 3.80 g / ml) having a particle diameter D50 of 31 μm, alumina (AX3-32, manufactured by Micron, density of 3.77 g / ml) having a particle diameter D50 of 5 μm ) 17 parts of alumina (LS-235, manufactured by Nippon Light Metal Co., Ltd., density 3.94 g / ml) having a particle diameter D50 of 0.5 μm and spherical alumina (AO802, particle diameter D50 of 0.7 μm) 2 parts of Admatechs Co., Ltd., density 3.7 g / ml) were mixed. As a result of measuring the oil absorption of the mixture, it was 5.6 ml / 100 g.

<無機充填材混合物5>
粒子径D50が31μmであるアルミナ(AL35−63、マイクロン社製、密度3.80g/ml)63部、粒子径D50が5μmであるアルミナ(AX3−32、マイクロン社製、密度3.77g/ml)18部、粒子径D50が0.4μmであるアルミナ(スミコランダムAA04、住友化学株式会社製、密度3.98g/ml)17部を、粒子径D50が0.7μmである球状アルミナ(AO802、株式会社アドマテックス製、密度3.7g/ml)2部を混合した。混合物の吸油量を測定した結果、5.9ml/100gであった。
<Inorganic filler mixture 5>
63 parts of alumina (AL35-63, manufactured by Micron, density 3.80 g / ml) having a particle diameter D50 of 31 μm, alumina (AX3-32, manufactured by Micron, density of 3.77 g / ml) having a particle diameter D50 of 5 μm ) 18 parts, 17 parts alumina (Sumicorundum AA04, manufactured by Sumitomo Chemical Co., Ltd., density 3.98 g / ml) having a particle diameter D50 of 0.4 μm, spherical alumina (AO802, 2 parts of Admatechs Co., Ltd., density 3.7 g / ml) were mixed. As a result of measuring the oil absorption of the mixture, it was 5.9 ml / 100 g.

<無機充填材混合物6>
粒子径D50が32μmであるアルミナ(A35−01、マイクロン社製、密度3.77g/ml)63部、粒子径D50が5μmであるアルミナ(AX3−32、マイクロン社製、密度3.77g/ml)18部、粒子径D50が0.5μmであるアルミナ(LS−235、日本軽金属株式会社製、密度3.94g/ml)17部を、粒子径D50が0.7μmである球状アルミナ(AO802 、株式会社アドマテックス製、密度3.7g/ml)2部を混合した。混合物の吸油量を測定した結果、5.6ml/100gであった。
<Inorganic filler mixture 6>
63 parts of alumina (A35-01, manufactured by Micron Corporation, density 3.77 g / ml) having a particle diameter D50 of 32 μm, alumina (AX3-32, manufactured by Micron Corporation, density 3.77 g / ml) having a particle diameter D50 of 5 μm ) 18 parts of alumina (LS-235, Nippon Light Metal Co., Ltd., density 3.94 g / ml) having a particle diameter D50 of 0.5 μm, 17 parts of spherical alumina (AO802, 2 parts of Admatechs Co., Ltd., density 3.7 g / ml) were mixed. As a result of measuring the oil absorption of the mixture, it was 5.6 ml / 100 g.

<無機充填材混合物7>
粒子径D50が19μmであるアルミナ(AX−116、マイクロン社製、密度3.71g/ml)63部、粒子径D50が5μmであるアルミナ(AX3−32、マイクロン社製、密度3.77g/ml)18部、粒子径D50が0.5μmであるアルミナ(LS−235、日本軽金属株式会社製、密度3.94g/ml)17部を、粒子径D50が0.7μmである球状アルミナ(AO802、株式会社アドマテックス製、密度3.7g/ml)2部を混合した。混合物の吸油量を測定した結果、7.0ml/100gであった。
<Inorganic filler mixture 7>
63 parts of alumina (AX-116, manufactured by Micron, density 3.71 g / ml) having a particle diameter D50 of 19 μm, alumina (AX3-32, manufactured by Micron, density of 3.77 g / ml) having a particle diameter D50 of 5 μm ) 17 parts of alumina (LS-235, manufactured by Nippon Light Metal Co., Ltd., density 3.94 g / ml) having a particle diameter D50 of 0.5 μm and spherical alumina (AO802, particle diameter D50 of 0.7 μm) 2 parts of Admatechs Co., Ltd., density 3.7 g / ml) were mixed. As a result of measuring the oil absorption of the mixture, it was 7.0 ml / 100 g.

<無機充填材混合物8>
粒子径D50が18μmであるアルミナ(AS−30、昭和電工株式会社製、密度3.95g/ml)63部、粒子径D50が5μmであるアルミナ(TA−982、マイクロン社製、密度3.67g/ml)20.5部、粒子径D50が0.4μmであるアルミナ(スミコランダムAA04、住友化学株式会社製、密度3.98g/ml)14.5部を、粒子径D50が0.7μmである球状アルミナ(AO802、株式会社アドマテックス製、密度3.7g/ml)2部を混合した。混合物の吸油量を測定した結果、7.4ml/100gであった。
<Inorganic filler mixture 8>
63 parts of alumina (AS-30, Showa Denko KK, density 3.95 g / ml) having a particle diameter D50 of 18 μm, alumina (TA-982, Micron Corporation, density 3.67 g having a particle diameter D50 of 5 μm) 10.5 parts alumina (Sumicorundum AA04, manufactured by Sumitomo Chemical Co., Ltd., density 3.98 g / ml) having a particle diameter D50 of 0.4 μm and a particle diameter D50 of 0.7 μm 2 parts of spherical alumina (AO802, manufactured by Admatechs Co., Ltd., density 3.7 g / ml) was mixed. As a result of measuring the oil absorption of the mixture, it was 7.4 ml / 100 g.

<無機充填材混合物9>
粒子径D50が18μmであるアルミナ(AS−30、昭和電工株式会社製、密度3.95g/ml)63部、粒子径D50が5μmであるアルミナ(TA−982、マイクロン社製、密度3.67g/ml)22.5部、粒子径D50が0.4μmであるアルミナ(スミコランダムAA04、住友化学株式会社製、密度3.98g/ml)14.5部を混合した。混合物の吸油量を測定した結果、8.1ml/100gであった。
<Inorganic filler mixture 9>
63 parts of alumina (AS-30, Showa Denko KK, density 3.95 g / ml) having a particle diameter D50 of 18 μm, alumina (TA-982, Micron Corporation, density 3.67 g having a particle diameter D50 of 5 μm) /2.5) 22.5 parts and 14.5 parts of alumina (Sumicorundum AA04, manufactured by Sumitomo Chemical Co., Ltd., density 3.98 g / ml) having a particle diameter D50 of 0.4 μm were mixed. As a result of measuring the oil absorption of the mixture, it was 8.1 ml / 100 g.

<無機充填材混合物10>
粒子径D50が22μmであるアルミナ(AS−20、昭和電工株式会社製、密度3.95g/ml)62.5部、粒子径D50が5μmであるアルミナ(LS−210、日本軽金属株式会社製、密度3.94g/ml)25部、粒子径D50が0.5μmであるアルミナ(LS−235、日本軽金属株式会社製、密度3.94g/ml)12.5部を混合した。混合物の吸油量を測定した結果、7.8ml/100gであった。
<Inorganic filler mixture 10>
62.5 parts of alumina having a particle diameter D50 of 22 μm (AS-20, Showa Denko KK, density 3.95 g / ml), alumina having a particle diameter D50 of 5 μm (LS-210, manufactured by Nippon Light Metal Co., Ltd.) 25 parts of density (3.94 g / ml) and 12.5 parts of alumina (LS-235, manufactured by Nippon Light Metal Co., Ltd., density 3.94 g / ml) having a particle diameter D50 of 0.5 μm were mixed. As a result of measuring the oil absorption of the mixture, it was 7.8 ml / 100 g.

[実施例1]
ポリプロピレン製の100mL蓋付き容器中に、無機充填材混合物1を90.16g秤量し、シランカップリング剤(信越化学工業株式会社製、KBM403)を0.099g、溶剤として2−ブタノン(和光純薬株式会社製)を14.33g、分散剤(楠本化成株式会社製、ED−113)を0.181g、樹脂合成例1で得られたフェノール樹脂を2.62g(固形分)加えて攪拌した。さらにビフェニル骨格を有する2官能エポキシ樹脂(三菱化学株式会社製、YL6121H、エポキシ当量175g/eq)を6.24g、ナフタレン系エポキシ樹脂(DIC株式会社製、HP4032D、エポキシ当量142g/eq)を0.69g、イミダゾール化合物(四国化成工業株式会社製、2PZ−CN)を0.100g加えた。さらに、直径5mmのアルミナ製ボールを120g投入し、ボールミル架台上で、100rpmで12時間攪拌した後、アルミナ製ボールを濾別し、ワニス状の樹脂組成物1を得た。
[Example 1]
90.16 g of the inorganic filler mixture 1 was weighed in a 100 mL polypropylene container, 0.099 g of a silane coupling agent (Shin-Etsu Chemical Co., Ltd., KBM403), and 2-butanone (Wako Pure Chemical) as a solvent. 14.33 g (manufactured by Co., Ltd.), 0.181 g of a dispersant (manufactured by Enomoto Kasei Co., Ltd., ED-113) and 2.62 g (solid content) of the phenol resin obtained in Resin Synthesis Example 1 were added and stirred. Further, 6.24 g of a bifunctional epoxy resin having a biphenyl skeleton (Mitsubishi Chemical Corporation, YL6121H, epoxy equivalent 175 g / eq) and naphthalene-based epoxy resin (DIC Corporation, HP4032D, epoxy equivalent 142 g / eq) of 0.004. 69 g and 0.100 g of an imidazole compound (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PZ-CN) were added. Furthermore, 120 g of an alumina ball having a diameter of 5 mm was added and stirred on a ball mill frame at 100 rpm for 12 hours, and then the alumina ball was filtered to obtain a varnish-like resin composition 1.

上記で得られた樹脂組成物1を、75μmのギャップを有するアプリケーター、及び、テーブルコーター(テスター産業株式会社製)を用いて、PETフィルム(帝人デュポンフィルム社製、A53、厚み50μm)上に塗布し、4分間風乾の後、120℃で4分間乾燥を行なった。乾燥後の膜厚は50μmであった。乾燥後の塗膜2枚の樹脂層同士を重ね合わせ、次いでゴムロールラミネータ(大成ラミネーター(株)製 VA−400III型)を用い、100℃、線圧14〜30N/m、0.5m/minの速度で貼り合せ、シート成形物(Bステージシート)を得た。   The resin composition 1 obtained above is applied onto a PET film (Teijin DuPont Films, A53, thickness 50 μm) using an applicator having a gap of 75 μm and a table coater (manufactured by Tester Sangyo Co., Ltd.). Then, after air drying for 4 minutes, drying was performed at 120 ° C. for 4 minutes. The film thickness after drying was 50 μm. The two resin layers of the coated film after drying are overlapped, and then using a rubber roll laminator (VA-400III type, manufactured by Taisei Laminator Co., Ltd.), 100 ° C., linear pressure 14-30 N / m, 0.5 m / min. Bonding was carried out at a speed to obtain a sheet molded product (B stage sheet).

得られたシート成形物の前述のフロー率測定法によるフロー率は157%であった。また、得られたシート成形物は貼り合わせ前の状態では一般的な塗工機のロールに巻き取ることができ、巻き取り・巻きだし時に割れを生じないレベルの柔軟性を有していた。そのため、工業的な大型設備での塗工も可能であり、生産性に優れているといえる。また、貼り合わせ後も優れた可とう性を有しており、PETフィルムをはがした状態ではφ4cmの円筒に割れることなく巻きつけることが可能であった。表2中、このレベルの柔軟性を有するものを「○」と表示する。   The obtained sheet molding had a flow rate of 157% according to the aforementioned flow rate measurement method. Further, the obtained sheet molded product could be wound around a roll of a general coating machine in a state before bonding, and had a level of flexibility that did not cause cracking during winding and unwinding. Therefore, it can be applied with industrial large-scale equipment, and it can be said that it is excellent in productivity. Moreover, it had excellent flexibility even after bonding, and when the PET film was peeled off, it could be wound around a φ4 cm cylinder without breaking. In Table 2, those having this level of flexibility are indicated as “◯”.

また、逆相液体クロマトグラフ分析装置(カラム:GL Sciences製 Inertsil ODS-34.6mmφ×250mm,検出器:フォトダイオードアレイ(日立L−7455),ポンプ:日立L−7100,解析ソフト:日立D−7000マルチシステムマネージャ)により、得られたシート成形物のアセトニトリルによる抽出成分を278nmの吸光度で分析した結果、モノマーであるレゾルシノールが約8%残存していることが確認された。   Moreover, a reverse phase liquid chromatograph analyzer (column: Inertsil ODS-34.6 mmφ × 250 mm manufactured by GL Sciences, detector: photodiode array (Hitachi L-7455), pump: Hitachi L-7100, analysis software: Hitachi D- 7000 Multi-System Manager) analyzed the components extracted with acetonitrile from the obtained sheet molded product at an absorbance of 278 nm. As a result, it was confirmed that about 8% of the monomer resorcinol remained.

<銅貼硬化物の作製>
上記で得られたシート成形物を200mm角に切り出した後、両面のPETを剥がした樹脂組成物シートを2枚重ね、2枚の銅箔(日本電解社製、35μm)のマット面がそれぞれ樹脂組成物シートに対向するようにして挟んだ。これを両側から厚み1mmのステンレス板で挟み、真空プレス(北川精機製 KVHC型)にて、気圧10kPaまで減圧の後に面圧2MPaで加圧し、常温から昇温速度5℃/分で170℃まで昇温し、1時間保持してプレス中で硬化させ、銅貼硬化物を得た。
<Preparation of hardened copper paste>
After the sheet molded product obtained above was cut into 200 mm squares, two resin composition sheets from which the PET on both sides were peeled were stacked, and the mat surfaces of two copper foils (manufactured by Nippon Electrolytic Co., Ltd., 35 μm) were each resin. The sheet was sandwiched so as to face the composition sheet. This is sandwiched between stainless steel plates with a thickness of 1 mm from both sides, and the pressure is reduced to a pressure of 10 kPa with a vacuum press (KVHC type manufactured by Kitagawa Seiki), and then the surface pressure is increased to 2 MPa. The temperature was raised, held for 1 hour, and cured in a press to obtain a cured copper paste.

<アルミベース基板の作製>
上記で得られたシート成形物を200mm角に切り出した後、両面のPETを剥がした樹脂組成物シートを、銅箔(35μm)とアルミ板(A5052、厚み1mm)とで挟んだ。なお銅箔はマット面が樹脂組成物シートに接するように配置した。これを両側から厚み1mmのステンレス板に挟み、真空プレス(北川精機製 KVHC型)にて、気圧10kPaまで減圧の後に面圧2MPaで加圧し、常温から昇温速度5℃/分で170℃まで昇温し、1時間保持してプレス中で硬化させ、アルミベース基板を得た。
<Production of aluminum base substrate>
The sheet molded product obtained above was cut into a 200 mm square, and then the resin composition sheet from which the PET on both sides had been peeled was sandwiched between a copper foil (35 μm) and an aluminum plate (A5052, thickness 1 mm). The copper foil was arranged so that the mat surface was in contact with the resin composition sheet. This is sandwiched between stainless steel plates with a thickness of 1 mm from both sides, and the pressure is reduced to a pressure of 10 kPa with a vacuum press (KVHC type manufactured by Kitagawa Seiki Co., Ltd.) with a surface pressure of 2 MPa, and from normal temperature to 170 ° C. at a heating rate of 5 ° C./min. The temperature was raised, held for 1 hour, and cured in a press to obtain an aluminum base substrate.

<評価>
得られた銅貼硬化物、アルミベース基板を用いて下記の手法にて特性を評価した。表1には各実施例及び比較例の組成の違いを、表2に各実施例及び比較例の評価結果を示す。
<Evaluation>
The characteristics were evaluated by the following method using the obtained cured copper paste and an aluminum base substrate. Table 1 shows the difference in composition between each Example and Comparative Example, and Table 2 shows the evaluation results of each Example and Comparative Example.

(熱伝導率の測定)
銅箔貼硬化物の銅箔をエッチングした樹脂硬化物を10mm角に切り出してグラファイトスプレーにて黒化処理した後、キセノンフラッシュ法(NETZSCH LFA447 nanoflash)を用いて熱拡散率を評価した。この値をアルキメデス法で測定した密度と、DSC(Perkin Elmer製DSC、Pyris1)で測定した比熱との積から熱伝導率を求めた。
(Measurement of thermal conductivity)
The cured resin obtained by etching the copper foil of the cured copper foil was cut into a 10 mm square and blackened with a graphite spray, and then the thermal diffusivity was evaluated using a xenon flash method (NETZSCH LFA447 nanoflash). The thermal conductivity was obtained from the product of the density measured by the Archimedes method and the specific heat measured by DSC (DSC manufactured by Perkin Elmer, Pyris 1).

(絶縁破壊電圧の測定)
アルミベース基板の銅箔面に直径20mmの丸パターンをエッチングにより形成し、ヤマヨ試験機製YST−243−100RHOを用いて、昇圧速度500V/s、室温、フロリナート(住友3M製、FC−40)中にて測定し、20点以上の測定点で平均値を記録した。
(Measurement of breakdown voltage)
A circular pattern with a diameter of 20 mm is formed on the copper foil surface of the aluminum base substrate by etching, and using YST-243-100RHO manufactured by YAMAYO TEST MACHINE, pressurizing speed 500 V / s, room temperature, Fluorinert (manufactured by Sumitomo 3M, FC-40) The average value was recorded at 20 or more measurement points.

(ピール強度の測定)
JIS−C6481(1996年度版)に準拠して、作製したアルミベース基板を用いて90°ピールの試験片を作製した。金属基板を25mm × 100mmに切り出し、中心10mm幅で残した銅箔(35μm)を、テンシロン引張試験機(オリエンテック社製 TM−100)を用いて常温で50mm/minの速度で90°の方向に引き剥がし多時の平均荷重から、ピール強度を測定した。
(Measurement of peel strength)
In accordance with JIS-C6481 (1996 version), a 90 ° peel test piece was produced using the produced aluminum base substrate. Cut the metal substrate into 25 mm × 100 mm and leave the copper foil (35 μm) left at the center 10 mm width using a Tensilon tensile tester (Orientec TM-100) at a rate of 50 mm / min at 90 ° direction. The peel strength was measured from the average load at various times.

[実施例2]
無機充填材混合物1を無機充填混合物2とした以外は実施例1と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は115%であった。
[Example 2]
A sheet molded product was produced in the same manner as in Example 1 except that the inorganic filler mixture 1 was changed to the inorganic filler mixture 2. The obtained sheet molding was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 115%.

[比較例1]
無機充填材混合物1を無機充填混合物3とした以外は実施例1と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は105%であった。
[Comparative Example 1]
A sheet molded product was produced in the same manner as in Example 1 except that the inorganic filler mixture 1 was changed to the inorganic filler mixture 3. The obtained sheet molding was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 105%.

[実施例3]
ポリプロピレン製の100mL蓋付き容器中に、無機充填材混合物1を90.16g秤量し、シランカップリング剤(信越化学工業株式会社製、KBM403)を0.099g、溶剤として2−ブタノン(和光純薬株式会社製)を14.33g、分散剤(楠本化成株式会社製、ED−113)を0.181g、樹脂合成例1で得られたフェノール樹脂を2.56g(固形分)加えて攪拌した。さらにビフェニル骨格を有する2官能エポキシ樹脂(三菱化学株式会社製、YL6121H、エポキシ当量175g/eq)を6.08g、半水添ビフェニル型エポキシ樹脂(三菱化学株式会社製、YL6800、エポキシ当量193g/eq)を0.92g、イミダゾール化合物(四国化成工業株式会社製、2PZ−CN)を0.100g加えた。さらに、直径5mmのアルミナ製ボールを120g投入し、ボールミル架台上で、100rpmで12時間攪拌した後、アルミナ製ボールを濾別し、ワニス状の樹脂組成物を得た。以下、実施例1と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は170%であった。
[Example 3]
90.16 g of the inorganic filler mixture 1 was weighed in a 100 mL polypropylene container, 0.099 g of a silane coupling agent (Shin-Etsu Chemical Co., Ltd., KBM403), and 2-butanone (Wako Pure Chemical) as a solvent. 14.33 g (manufactured by Co., Ltd.), 0.181 g of dispersant (manufactured by Enomoto Kasei Co., Ltd., ED-113) and 2.56 g (solid content) of the phenol resin obtained in Resin Synthesis Example 1 were added and stirred. Further, bifunctional epoxy resin having biphenyl skeleton (Mitsubishi Chemical Corporation, YL6121H, epoxy equivalent 175 g / eq) 6.08 g, semi-hydrogenated biphenyl type epoxy resin (Mitsubishi Chemical Corporation YL6800, epoxy equivalent 193 g / eq) 0.92 g and 0.100 g of an imidazole compound (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PZ-CN). Furthermore, 120 g of an alumina ball having a diameter of 5 mm was added and stirred on a ball mill base at 100 rpm for 12 hours, and then the alumina ball was separated by filtration to obtain a varnish-like resin composition. Thereafter, a sheet molded product was produced in the same manner as in Example 1. The obtained sheet molded product was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 170%.

[実施例4]
無機充填材混合物1を無機充填混合物4とし、分散剤(楠本化成株式会社製、ED−113)を0.36gとした以外は実施例1と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は220%であった。
[Example 4]
A sheet molded product was prepared in the same manner as in Example 1 except that the inorganic filler mixture 1 was changed to the inorganic filler mixture 4 and the dispersant (ED-113, manufactured by Enomoto Kasei Co., Ltd.) was 0.36 g. The obtained sheet molding was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 220%.

[実施例5]
2−ブタノン(和光純薬株式会社製)を13.6g、樹脂合成例1で得られたフェノール樹脂を2.49g(固形分)、ビフェニル骨格を有する2官能エポキシ樹脂(三菱化学株式会社製、YL6121H、エポキシ当量175g/eq)を5.92g、ナフタレン系エポキシ樹脂(DIC株式会社製、HP4032D、エポキシ当量142g/eq)を0.66g、イミダゾール化合物(四国化成工業株式会社製、2PZ−CN)を0.095gとした以外は実施例4と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は180%であった。
[Example 5]
2-butanone (Wako Pure Chemical Industries, Ltd.) 13.6 g, phenol resin obtained in Resin Synthesis Example 1 2.49 g (solid content), bifunctional epoxy resin having a biphenyl skeleton (Mitsubishi Chemical Corporation, YL6121H, epoxy equivalent of 175 g / eq) 5.92 g, naphthalene epoxy resin (manufactured by DIC Corporation, HP4032D, epoxy equivalent 142 g / eq) 0.66 g, imidazole compound (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PZ-CN) A sheet molded product was produced in the same manner as in Example 4 except that 0.095 g was used. The obtained sheet molding was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 180%.

[実施例6]
2−ブタノン(和光純薬株式会社製)を13.7g、樹脂合成例1で得られたフェノール樹脂を2.36g(固形分)、ビフェニル骨格を有する2官能エポキシ樹脂(三菱化学株式会社製、YL6121H、エポキシ当量175g/eq)を5.61g、ナフタレン系エポキシ樹脂(DIC株式会社製、HP4032D、エポキシ当量142g/eq)を0.62g、イミダゾール化合物(四国化成工業株式会社製、2PZ−CN)を0.09gとした以外は実施例4と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は140%であった。
[Example 6]
2-butanone (Wako Pure Chemical Industries, Ltd.) 13.7 g, phenolic resin obtained in Resin Synthesis Example 1 2.36 g (solid content), bifunctional epoxy resin having a biphenyl skeleton (Mitsubishi Chemical Corporation, YL6121H, epoxy equivalent 175 g / eq) 5.61 g, naphthalene epoxy resin (manufactured by DIC Corporation, HP4032D, epoxy equivalent 142 g / eq) 0.62 g, imidazole compound (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PZ-CN) A sheet molded product was produced in the same manner as in Example 4 except that 0.09 g was used. The obtained sheet molding was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 140%.

[実施例7]
ポリプロピレン製の100mL蓋付き容器中に、無機充填材混合物4を90.16g秤量し、シランカップリング剤(信越化学工業株式会社製、KBM403)を0.099g、溶剤として2−ブタノン(和光純薬株式会社製)を13.59g、分散剤(楠本化成株式会社製、ED−113)を0.361g、フェノール樹脂としてXLC−LL(三井化学株式会社製、水酸基当量174g/eq)を4.57g加えて攪拌した。さらにビフェニル骨格を有する2官能エポキシ樹脂(三菱化学株式会社製、YL6121H、エポキシ当量175g/eq)を4.02g、ナフタレン系エポキシ樹脂(DIC株式会社製、HP4032D、エポキシ当量142g/eq)を0.47g、イミダゾール化合物(四国化成工業株式会社製、2PZ−CN)を0.095g加えた。さらに、直径5mmのアルミナ製ボールを120g投入し、ボールミル架台上で、100rpmで12時間攪拌した後、アルミナ製ボールを濾別し、ワニス状の樹脂組成物を得た。以下、実施例1と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は170%であった。
[Example 7]
90.16g of the inorganic filler mixture 4 was weighed in a polypropylene 100mL lidded container, 0.099g of silane coupling agent (Shin-Etsu Chemical Co., Ltd., KBM403), 2-butanone (Wako Pure Chemical) as a solvent. 13.59g manufactured by Co., Ltd., 0.361g dispersant (manufactured by Enomoto Kasei Co., Ltd., ED-113), 4.57g XLC-LL (Mitsui Chemicals, hydroxyl equivalent 174g / eq) as a phenol resin. Added and stirred. Furthermore, 4.02 g of a bifunctional epoxy resin having a biphenyl skeleton (Mitsubishi Chemical Corporation, YL6121H, epoxy equivalent 175 g / eq) and naphthalene-based epoxy resin (DIC Corporation, HP4032D, epoxy equivalent 142 g / eq) of 0.02 are used. 47 g and 0.095 g of an imidazole compound (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PZ-CN) were added. Furthermore, 120 g of an alumina ball having a diameter of 5 mm was added and stirred on a ball mill base at 100 rpm for 12 hours, and then the alumina ball was separated by filtration to obtain a varnish-like resin composition. Thereafter, a sheet molded product was produced in the same manner as in Example 1. The obtained sheet molded product was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 170%.

[実施例8]
ポリプロピレン製の100mL蓋付き容器中に、無機充填材混合物4を90.16g秤量し、シランカップリング剤(信越化学工業株式会社製、KBM403)を0.099g、溶剤として2−ブタノン(和光純薬株式会社製)を15.40g、分散剤(楠本化成株式会社製、ED−113)を0.171g、樹脂合成例1で得られたフェノール樹脂を2.46g(固形分)加えて攪拌した。さらにビフェニル骨格を有する2官能エポキシ樹脂(三菱化学株式会社製、YL6121H、エポキシ当量175g/eq.)を5.86g、ナフタレン系エポキシ樹脂(DIC株式会社製、HP4032D、エポキシ当量142g/eq.)を0.65g、重量平均分子量61万のメタクリル酸メチル/アクリル酸ブチル/アクリル酸エチル/メタクリル酸グリシジル共重合体系アクリルエラストマ(ナガセケムテックス株式会社製、HTR860−P3−#25)を0.09g、イミダゾール化合物(四国化成工業株式会社製、2PZ−CN)を0.095g加えた。さらに、直径5mmのアルミナ製ボールを120g投入し、ボールミル架台上で、100rpmで12時間攪拌した後、アルミナ製ボールを濾別し、ワニス状の樹脂組成物を得た。以下、実施例1と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は151%であった。
[Example 8]
90.16g of the inorganic filler mixture 4 was weighed in a polypropylene 100mL lidded container, 0.099g of silane coupling agent (Shin-Etsu Chemical Co., Ltd., KBM403), 2-butanone (Wako Pure Chemical) as a solvent. 15.40 g (manufactured by Co., Ltd.), 0.171 g of a dispersant (manufactured by Enomoto Kasei Co., Ltd., ED-113) and 2.46 g (solid content) of the phenol resin obtained in Resin Synthesis Example 1 were added and stirred. Further, 5.86 g of a bifunctional epoxy resin having a biphenyl skeleton (manufactured by Mitsubishi Chemical Corporation, YL6121H, epoxy equivalent 175 g / eq.), Naphthalene-based epoxy resin (manufactured by DIC Corporation, HP4032D, epoxy equivalent 142 g / eq.). 0.65 g, 0.09 g of methyl methacrylate / butyl acrylate / ethyl acrylate / glycidyl methacrylate copolymer acrylic elastomer (manufactured by Nagase ChemteX Corporation, HTR860-P3- # 25) having a weight average molecular weight of 610,000. 0.095 g of an imidazole compound (manufactured by Shikoku Chemicals Co., Ltd., 2PZ-CN) was added. Furthermore, 120 g of an alumina ball having a diameter of 5 mm was added and stirred on a ball mill base at 100 rpm for 12 hours, and then the alumina ball was separated by filtration to obtain a varnish-like resin composition. Thereafter, a sheet molded product was produced in the same manner as in Example 1. The obtained sheet molding was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 151%.

[比較例2]
ポリプロピレン製の100mL蓋付き容器中に、無機充填材混合物4を90.16g秤量し、シランカップリング剤(信越化学工業株式会社製、KBM403)を0.099g、溶剤として2−ブタノン(和光純薬株式会社製)を13.59g、分散剤(楠本化成株式会社製、ED−113)を0.361g、フェノール樹脂としてXLC−LL(三井化学株式会社製、水酸基当量174g/eq)を4.52g加えて攪拌した。さらにビフェニル骨格を有する2官能エポキシ樹脂(三菱化学株式会社製、YL6121H、エポキシ当量175g/eq)を4.54g、イミダゾール化合物(四国化成工業株式会社製、2PZ−CN)を0.095g加えた。さらに、直径5mmのアルミナ製ボールを120g投入し、ボールミル架台上で、100rpmで12時間攪拌した後、アルミナ製ボールを濾別し、ワニス状の樹脂組成物を得た。以下、実施例1と同様にシート成形物を作製した。得られたシート成形物は脆く容易に割れるものであり、前述のフロー率測定法によるフロー率は130%であった。
[Comparative Example 2]
90.16g of the inorganic filler mixture 4 was weighed in a polypropylene 100mL lidded container, 0.099g of silane coupling agent (Shin-Etsu Chemical Co., Ltd., KBM403), 2-butanone (Wako Pure Chemical) as a solvent. 13.59g manufactured by Co., Ltd., 0.361g of dispersant (manufactured by Enomoto Kasei Co., Ltd., ED-113), 4.52g of XLC-LL (Mitsui Chemical Co., Ltd., hydroxyl equivalent 174g / eq) as a phenol resin. Added and stirred. Furthermore, 4.54 g of a bifunctional epoxy resin having a biphenyl skeleton (Mitsubishi Chemical Corporation, YL6121H, epoxy equivalent 175 g / eq) and 0.095 g of an imidazole compound (Shikoku Kasei Kogyo Co., Ltd., 2PZ-CN) were added. Furthermore, 120 g of an alumina ball having a diameter of 5 mm was added and stirred on a ball mill base at 100 rpm for 12 hours, and then the alumina ball was separated by filtration to obtain a varnish-like resin composition. Thereafter, a sheet molded product was produced in the same manner as in Example 1. The obtained sheet molding was brittle and easily cracked, and the flow rate by the above-described flow rate measurement method was 130%.

[実施例9]
無機充填材混合物4を無機充填混合物7とした以外は実施例4と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は165%であった。
[Example 9]
A sheet molded product was produced in the same manner as in Example 4 except that the inorganic filler mixture 4 was changed to the inorganic filler mixture 7. The obtained sheet molding was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 165%.

[実施例10]
無機充填材混合物4を無機充填混合物5とした以外は実施例5と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は170%であった。
[Example 10]
A sheet molded product was produced in the same manner as in Example 5 except that the inorganic filler mixture 4 was changed to the inorganic filler mixture 5. The obtained sheet molded product was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 170%.

[実施例11]
無機充填材混合物4を無機充填混合物6とした以外は実施例4と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は159%であった。
[Example 11]
A sheet molded product was produced in the same manner as in Example 4 except that the inorganic filler mixture 4 was changed to the inorganic filler mixture 6. The obtained sheet molding was excellent in flexibility, and the flow rate according to the flow rate measurement method described above was 159%.

[実施例12]
ポリプロピレン製の100mL蓋付き容器中に、無機充填材混合物4を90.16g秤量し、シランカップリング剤(信越化学工業株式会社製、KBM403)を0.099g、溶剤として2−ブタノン(和光純薬株式会社製)を14.33g、分散剤(楠本化成株式会社製、ED−113)を0.361g、樹脂合成例1で得られたフェノール樹脂を2.47g(固形分)加えて攪拌した。さらにビフェニル骨格を有する2官能エポキシ樹脂(三菱化学株式会社製、YL6121H、エポキシ当量175g/eq)を5.87g、ビスフェノールF型エポキシ樹脂(新日鐵化学株式会社製、YDF−8170C、エポキシ当量160g/eq)を0.73g、イミダゾール化合物(四国化成工業株式会社製、2PZ−CN)を0.095g加えた。さらに、直径5mmのアルミナ製ボールを120g投入し、ボールミル架台上で、100rpmで12時間攪拌した後、アルミナ製ボールを濾別し、ワニス状の樹脂組成物を得た。以下、実施例1と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は185%であった。
[Example 12]
90.16g of the inorganic filler mixture 4 was weighed in a polypropylene 100mL lidded container, 0.099g of silane coupling agent (Shin-Etsu Chemical Co., Ltd., KBM403), 2-butanone (Wako Pure Chemical) as a solvent. 14.33 g (manufactured by Co., Ltd.), 0.361 g of a dispersant (manufactured by Enomoto Kasei Co., Ltd., ED-113) and 2.47 g (solid content) of the phenol resin obtained in Resin Synthesis Example 1 were added and stirred. Further, 5.87 g of a bifunctional epoxy resin having a biphenyl skeleton (manufactured by Mitsubishi Chemical Corporation, YL6121H, epoxy equivalent 175 g / eq), bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YDF-8170C, epoxy equivalent 160 g) / Eq) was added in an amount of 0.73 g and an imidazole compound (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PZ-CN) was added in an amount of 0.095 g. Furthermore, 120 g of an alumina ball having a diameter of 5 mm was added and stirred on a ball mill base at 100 rpm for 12 hours, and then the alumina ball was separated by filtration to obtain a varnish-like resin composition. Thereafter, a sheet molded product was produced in the same manner as in Example 1. The obtained sheet molding was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 185%.

[実施例13]
無機充填材混合物1を無機充填混合物8とした以外は実施例1と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は114%であった。
[Example 13]
A sheet molded product was produced in the same manner as in Example 1 except that the inorganic filler mixture 1 was changed to the inorganic filler mixture 8. The obtained sheet molding was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 114%.

[比較例3]
無機充填材混合物1を無機充填混合物9とした以外は実施例1と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は102%と、ほとんど流動がみられなかった。
[Comparative Example 3]
A sheet molded product was produced in the same manner as in Example 1 except that the inorganic filler mixture 1 was changed to the inorganic filler mixture 9. The obtained sheet molding was excellent in flexibility, and the flow rate by the above-described flow rate measurement method was 102%, and almost no flow was observed.

[比較例4]
無機充填材混合物1を無機充填混合物10とした以外は実施例1と同様にシート成形物を作製した。得られたシート成形物は可とう性に優れており、前述のフロー率測定法によるフロー率は100%と、ほとんど流動がみられなかった。
[Comparative Example 4]
A sheet molded product was produced in the same manner as in Example 1 except that the inorganic filler mixture 1 was changed to the inorganic filler mixture 10. The obtained sheet molding was excellent in flexibility, and the flow rate by the above flow rate measurement method was 100%, and almost no flow was observed.

上記結果から、(A)ビフェニル骨格を有するエポキシ樹脂と、(B)常温で液状のエポキシ樹脂と、(C)フェノール樹脂と、(D)無機充填材を含み、前記(D)無機充填材としてアルミナを含み、前記(D)無機充填材の含有率が全固形分中75質量%以上であり、かつ含有される前記(D)無機充填材全体の吸油量が7.5ml/100g以下である実施例1〜13では、Bステージシートとしたときの柔軟性、およびCステージシートとしたときの熱伝導性、ピール強度、絶縁破壊電圧が良好であり、(D)無機充填材全体の吸油量が小さいものほど上記特性に優れている傾向が得られた。   From the above results, (A) an epoxy resin having a biphenyl skeleton, (B) an epoxy resin that is liquid at room temperature, (C) a phenol resin, and (D) an inorganic filler, the (D) inorganic filler It contains alumina, the content of the (D) inorganic filler is 75% by mass or more in the total solid content, and the oil absorption amount of the whole (D) inorganic filler contained is 7.5 ml / 100 g or less. In Examples 1 to 13, the flexibility when the B stage sheet is used, and the thermal conductivity, peel strength, and dielectric breakdown voltage when the C stage sheet is used are favorable, and (D) the oil absorption amount of the entire inorganic filler The smaller the value, the better the above characteristics.

また、(B)常温で液状のエポキシ樹脂を含有しない比較例2では柔軟性が得られていなかったのに対して、(B)常温で液状のエポキシ樹脂を含有する全ての実施例及び比較例で柔軟性が得られていた。
なお、実施例1と3との比較及び実施例4と12との比較から、(B)常温で液状のエポキシ樹脂を硬化性に影響の小さい範囲で添加すれば、その種類による影響は見られなかった。
Further, (B) all the examples and comparative examples containing the epoxy resin that is liquid at normal temperature, whereas (B) the comparative example 2 that does not contain the liquid epoxy resin at normal temperature did not provide flexibility. The flexibility was obtained.
In addition, from the comparison between Examples 1 and 3 and the comparison between Examples 4 and 12, if (B) an epoxy resin that is liquid at room temperature is added in a range that has a small effect on curability, the effect of the type can be seen. There wasn't.

また、吸油量が7.5ml/100gを超える比較例1,3,4では充分な接着性が得られなかったのに対して、吸油量が7.5ml/100g以下では用途によっては適用可能な接着性が得られ、吸油量が6.5ml/100g以下である全ての実施例で充分な接着性が得られていた。   Further, in Comparative Examples 1, 3 and 4 where the oil absorption amount exceeds 7.5 ml / 100 g, sufficient adhesiveness was not obtained, whereas when the oil absorption amount was 7.5 ml / 100 g or less, it could be applied depending on the application. Adhesiveness was obtained, and sufficient adhesiveness was obtained in all examples in which the oil absorption was 6.5 ml / 100 g or less.

なお吸油量が小さいほど、吸油量から算出される無機充填材の最大体積分率が高くなる傾向がある。算出された最大体積分率が高くなるほど、充填可能な無機充填材の充填量が多くなるため、充填量を増やすことにより熱伝導率に、同一充填量同士ではピール強度、絶縁破壊電圧に優れる傾向が見られた。具体的には、実施例4、5、6の比較から、最大体積分率と充填量の差のマージンの範囲内において無機充填材の充填量を増加させると熱伝導率は上昇した。それに伴いピール強度、絶縁破壊電圧も低下傾向は見られるものの、用途、要求特性に合わせて設計することができる。また、実施例5と8の比較から、エラストマーなどの高分子量成分を添加することによりフロー抑制が可能であり、流動性が過剰となる場合も組成の調整により流動性の制御が可能となる。   Note that the smaller the oil absorption amount, the higher the maximum volume fraction of the inorganic filler calculated from the oil absorption amount. As the calculated maximum volume fraction increases, the amount of inorganic filler that can be filled increases, so increasing the filling amount tends to improve the thermal conductivity, and the same filling amount tends to have excellent peel strength and dielectric breakdown voltage. It was observed. Specifically, from the comparison of Examples 4, 5, and 6, when the filling amount of the inorganic filler was increased within the margin of the difference between the maximum volume fraction and the filling amount, the thermal conductivity increased. Along with this, the peel strength and dielectric breakdown voltage tend to decrease, but they can be designed according to the application and required characteristics. Further, from the comparison between Examples 5 and 8, it is possible to suppress the flow by adding a high molecular weight component such as an elastomer, and even when the fluidity becomes excessive, the fluidity can be controlled by adjusting the composition.

2 樹脂組成物の硬化物層
4 銅板
6 放熱ベース
8 グリース層
10 半導体チップ
12 はんだ層
14 ハウジング
20 水冷ジャケット
30 LEDチップ
32 樹脂組成物の硬化物層
34 アルミニウム基板
36 グリース層
38 ハウジング(筐体)
40 固定ネジ
42 回路層
43 はんだ層
46 封止樹脂
48 電源部材
100 パワー半導体装置
150 パワー半導体装置
200 パワー半導体装置
300 LEDライトバー
350 発光部
400 LED基板
450 LED電球
2 Hardened layer of resin composition 4 Copper plate 6 Heat dissipation base 8 Grease layer 10 Semiconductor chip 12 Solder layer 14 Housing 20 Water-cooled jacket 30 LED chip 32 Hardened layer of resin composition 34 Aluminum substrate 36 Grease layer 38 Housing (housing)
40 fixing screw 42 circuit layer 43 solder layer 46 sealing resin 48 power supply member 100 power semiconductor device 150 power semiconductor device 200 power semiconductor device 300 LED light bar 350 light emitting unit 400 LED substrate 450 LED bulb

Claims (14)

(A)ビフェニル骨格を有するエポキシ樹脂と、(B)常温で液状のエポキシ樹脂と、(C)フェノール樹脂と、(D)無機充填材とを含み、前記(D)無機充填材としてアルミナを含み、前記(D)無機充填材の含有率が全固形分中75質量%以上であり、かつ含有される前記(D)無機充填材全体の吸油量が7.5ml/100g以下であり、前記(D)無機充填材は、異なる粒度分布を持つ2種類以上の無機充填材群を含む樹脂組成物。 (A) an epoxy resin having a biphenyl skeleton, (B) an epoxy resin that is liquid at room temperature, (C) a phenol resin, and (D) an inorganic filler, and (D) an alumina as the inorganic filler the (D) content of the inorganic filler is at a 75% by weight or more total solids, and der the (D) oil absorption of the entire inorganic filler 7.5 ml / 100 g or less contained is, the (D) The inorganic filler is a resin composition including two or more inorganic filler groups having different particle size distributions . 前記(C)フェノール樹脂として、下記一般式(I)で表される構造単位を有するフェノール樹脂を含む請求項1に記載の樹脂組成物。


〔一般式(I)中、Rは、アルキル基、アリール基、又はアラルキル基を表し、R及びRは、各々独立に、水素原子、アルキル基、アリール基、又はアラルキル基を表し、mは0〜2の整数を表し、nは1〜10の数を表す。〕
The resin composition of Claim 1 containing the phenol resin which has a structural unit represented by the following general formula (I) as said (C) phenol resin.


[In General Formula (I), R 1 represents an alkyl group, an aryl group, or an aralkyl group, and R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group, m represents an integer of 0 to 2, and n represents a number of 1 to 10. ]
前記(D)無機充填材は、重量累積粒度分布の小粒径側からの累積50%に対応する粒子径D50が5μm以上100μm以下の無機充填材群(D−1)と、D50が前記無機充填材群(D−1)の1/2以下であり1μm以上10μm以下の無機充填材群(D−2)と、D50が前記無機充填材群(D−2)の1/2以下であり0.1μm以上5μm以下の無機充填材群(D−3)と、を含んで構成され、
前記(D)無機充填材の全量に対する前記無機充填材群(D−1)、(D−2)及び(D−3)の割合が、それぞれ、40質量%以上90質量%以下、5質量%以上40質量%以下、1質量%以上30質量%以下(ただし、前記無機充填材群(D−1)、(D−2)及び(D−3)の総質量%は100質量%)である請求項1又は請求項2に記載の樹脂組成物。
The inorganic filler (D) includes an inorganic filler group (D-1) having a particle diameter D50 corresponding to a cumulative 50% from the small particle size side of the weight cumulative particle size distribution of 5 μm to 100 μm, and D50 is the inorganic filler It is 1/2 or less of the filler group (D-1) and is 1 μm or more and 10 μm or less of the inorganic filler group (D-2), and D50 is 1/2 or less of the inorganic filler group (D-2). An inorganic filler group (D-3) of 0.1 μm or more and 5 μm or less,
The ratio of the inorganic filler group (D-1), (D-2) and (D-3) to the total amount of the (D) inorganic filler is 40% by mass to 90% by mass and 5% by mass, respectively. 40 mass% or less, 1 mass% or more and 30 mass% or less (however, the total mass% of the inorganic filler group (D-1), (D-2) and (D-3) is 100 mass%). The resin composition according to claim 1 or claim 2.
前記無機充填材(D−3)は、重量累積粒度分布の小粒径側からの累積50%に対応する粒子径D50が0.1μm以上1μm以下の球状アルミナを0.5質量%以上15質量%以下の範囲で含有する請求項3に記載の樹脂組成物。   The inorganic filler (D-3) is 0.5 mass% to 15 mass% of spherical alumina having a particle diameter D50 corresponding to 50% accumulated from the small particle size side of the weight cumulative particle size distribution. The resin composition according to claim 3, which is contained in a range of not more than%. 前記(B)常温で液状のエポキシ樹脂は、ビスフェノールA、ビスフェノールF、およびジヒドロキシナフタレンから選択される少なくとも1種に由来する骨格を有する液状エポキシ樹脂を含み、総エポキシ樹脂/総フェノール樹脂の当量比が0.8〜1.1である請求項1〜請求項4のいずれか一項に記載の樹脂組成物。   The (B) normal temperature liquid epoxy resin includes a liquid epoxy resin having a skeleton derived from at least one selected from bisphenol A, bisphenol F, and dihydroxynaphthalene, and an equivalent ratio of total epoxy resin / total phenol resin The resin composition according to any one of claims 1 to 4, wherein is 0.8 to 1.1. 請求項1〜請求項5のいずれか一項に記載の樹脂組成物をシート状に成型してなる樹脂組成物シート。   The resin composition sheet formed by shape | molding the resin composition as described in any one of Claims 1-5 in a sheet form. 金属箔と、
前記金属箔上に設けられた請求項1〜請求項5のいずれか一項に記載の樹脂組成物から形成されてなる樹脂組成物層と、
を有する金属箔付樹脂組成物シート。
Metal foil,
A resin composition layer formed from the resin composition according to any one of claims 1 to 5 provided on the metal foil,
A resin composition sheet with a metal foil.
請求項6に記載の樹脂組成物シートの半硬化物であるBステージシート。   A B stage sheet, which is a semi-cured product of the resin composition sheet according to claim 6. 請求項7に記載の金属箔付樹脂組成物シートの半硬化物である、半硬化の金属箔付樹脂組成物シート。   A semi-cured resin composition sheet with a metal foil, which is a semi-cured product of the resin composition sheet with a metal foil according to claim 7. 金属箔と、金属板と、
前記金属箔と前記金属板との間に設けられた、請求項1〜請求項5のいずれか一項に記載の樹脂組成物の硬化物である熱伝導性絶縁層と、
を有するメタルベース配線板材料。
Metal foil, metal plate,
A thermally conductive insulating layer that is a cured product of the resin composition according to any one of claims 1 to 5, provided between the metal foil and the metal plate,
Metal base wiring board material having
配線層と、金属板と、前記配線層と前記金属板との間に、請求項1〜請求項5のいずれか一項に記載の樹脂組成物の硬化物である熱伝導性絶縁層と、
を有するメタルベース配線板。
Between the wiring layer, the metal plate, and the wiring layer and the metal plate, a thermally conductive insulating layer that is a cured product of the resin composition according to any one of claims 1 to 5,
Metal base wiring board having
請求項6に記載の樹脂組成物シート、請求項7に記載の金属箔付樹脂組成物シート、請求項8に記載のBステージシート、請求項9に記載の半硬化の金属箔付樹脂組成物シート、請求項10に記載のメタルベース配線板材料、及び請求項11に記載のメタルベース配線板のうちのいずれか1つを用いて製造されたLED光源部材。   The resin composition sheet according to claim 6, the resin composition sheet with metal foil according to claim 7, the B stage sheet according to claim 8, and the semi-cured resin composition with metal foil according to claim 9. The LED light source member manufactured using any one of a sheet | seat, the metal base wiring board material of Claim 10, and the metal base wiring board of Claim 11. 請求項6に記載の樹脂組成物シート、請求項7に記載の金属箔付樹脂組成物シート、請求項8に記載のBステージシート、請求項9に記載の半硬化の金属箔付樹脂組成物シート、請求項10に記載のメタルベース配線板材料、及び請求項11に記載のメタルベース配線板のうちのいずれか1つを用いて製造されたパワー半導体装置。   The resin composition sheet according to claim 6, the resin composition sheet with metal foil according to claim 7, the B stage sheet according to claim 8, and the semi-cured resin composition with metal foil according to claim 9. A power semiconductor device manufactured using any one of a sheet, a metal base wiring board material according to claim 10, and a metal base wiring board according to claim 11. ジヒドロキシベンゼン由来の(C)フェノール樹脂を含有する請求項1〜請求項5のいずれか一項に記載の樹脂組成物を基材上に塗布し、前記ジヒドロキシベンゼンがシート中にモノマーの状態で残存する条件で乾燥させることによりシート状に成型する工程を含む樹脂組成物シートの製造方法。   The resin composition according to any one of claims 1 to 5 containing (C) a phenol resin derived from dihydroxybenzene is applied onto a substrate, and the dihydroxybenzene remains in a monomer state in the sheet. The manufacturing method of the resin composition sheet | seat including the process shape | molded in a sheet form by making it dry on the conditions to do.
JP2012276043A 2011-12-28 2012-12-18 RESIN COMPOSITION, RESIN COMPOSITION SHEET, AND METHOD FOR PRODUCING RESIN COMPOSITION SHEET, RESIN COMPOSITION SHEET WITH METAL FILMS, B STAGE SHEET, RESIN COMPOSITION SHEET WITH SEMI-HARDENED METAL FILMS, METAL BASE WIRING BOARD MATERIAL, METAL BASE WIRING BOARD , LED light source member, and power semiconductor device Active JP6123277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012276043A JP6123277B2 (en) 2011-12-28 2012-12-18 RESIN COMPOSITION, RESIN COMPOSITION SHEET, AND METHOD FOR PRODUCING RESIN COMPOSITION SHEET, RESIN COMPOSITION SHEET WITH METAL FILMS, B STAGE SHEET, RESIN COMPOSITION SHEET WITH SEMI-HARDENED METAL FILMS, METAL BASE WIRING BOARD MATERIAL, METAL BASE WIRING BOARD , LED light source member, and power semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011289545 2011-12-28
JP2011289545 2011-12-28
JP2012276043A JP6123277B2 (en) 2011-12-28 2012-12-18 RESIN COMPOSITION, RESIN COMPOSITION SHEET, AND METHOD FOR PRODUCING RESIN COMPOSITION SHEET, RESIN COMPOSITION SHEET WITH METAL FILMS, B STAGE SHEET, RESIN COMPOSITION SHEET WITH SEMI-HARDENED METAL FILMS, METAL BASE WIRING BOARD MATERIAL, METAL BASE WIRING BOARD , LED light source member, and power semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017062034A Division JP2017141464A (en) 2011-12-28 2017-03-28 Resin composition, resin composition sheet and method for producing resin composition sheet, resin composition sheet with metal foil, b stage sheet, semi-cured resin composition sheet with metal foil, metal base wiring board material, metal base wiring board, led light source member, and power semiconductor device

Publications (2)

Publication Number Publication Date
JP2013151655A JP2013151655A (en) 2013-08-08
JP6123277B2 true JP6123277B2 (en) 2017-05-10

Family

ID=48675385

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012276043A Active JP6123277B2 (en) 2011-12-28 2012-12-18 RESIN COMPOSITION, RESIN COMPOSITION SHEET, AND METHOD FOR PRODUCING RESIN COMPOSITION SHEET, RESIN COMPOSITION SHEET WITH METAL FILMS, B STAGE SHEET, RESIN COMPOSITION SHEET WITH SEMI-HARDENED METAL FILMS, METAL BASE WIRING BOARD MATERIAL, METAL BASE WIRING BOARD , LED light source member, and power semiconductor device
JP2017062034A Pending JP2017141464A (en) 2011-12-28 2017-03-28 Resin composition, resin composition sheet and method for producing resin composition sheet, resin composition sheet with metal foil, b stage sheet, semi-cured resin composition sheet with metal foil, metal base wiring board material, metal base wiring board, led light source member, and power semiconductor device
JP2018120281A Pending JP2018159083A (en) 2011-12-28 2018-06-25 Resin composition, resin composition sheet and method for producing resin composition sheet, resin composition sheet with metal foil, b stage sheet, semi-cured resin composition sheet with metal foil, metal base wiring board material, metal base wiring board, led light source member, and power semiconductor device

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2017062034A Pending JP2017141464A (en) 2011-12-28 2017-03-28 Resin composition, resin composition sheet and method for producing resin composition sheet, resin composition sheet with metal foil, b stage sheet, semi-cured resin composition sheet with metal foil, metal base wiring board material, metal base wiring board, led light source member, and power semiconductor device
JP2018120281A Pending JP2018159083A (en) 2011-12-28 2018-06-25 Resin composition, resin composition sheet and method for producing resin composition sheet, resin composition sheet with metal foil, b stage sheet, semi-cured resin composition sheet with metal foil, metal base wiring board material, metal base wiring board, led light source member, and power semiconductor device

Country Status (4)

Country Link
JP (3) JP6123277B2 (en)
KR (2) KR101858758B1 (en)
CN (1) CN103183926B (en)
TW (1) TWI553055B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141464A (en) * 2011-12-28 2017-08-17 日立化成株式会社 Resin composition, resin composition sheet and method for producing resin composition sheet, resin composition sheet with metal foil, b stage sheet, semi-cured resin composition sheet with metal foil, metal base wiring board material, metal base wiring board, led light source member, and power semiconductor device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184288A (en) * 2011-03-03 2012-09-27 Hitachi Chemical Co Ltd Adhesive for circuit connection, adhesive sheet for circuit connection, and method for producing semiconductor device
KR102172297B1 (en) * 2014-04-17 2020-10-30 엘지이노텍 주식회사 Epoxy resin composite and printed curcuit board comprising insulating layer using the same
KR102172296B1 (en) * 2014-04-30 2020-10-30 엘지이노텍 주식회사 Epoxy resin composite and printed curcuit board comprising insulating layer using the same
KR102359868B1 (en) * 2014-06-04 2022-02-07 쇼와덴코머티리얼즈가부시끼가이샤 Film-like epoxy resin composition, method of producing film-like epoxy resin composition, and method of producing semiconductor device
JP6401285B2 (en) * 2014-09-26 2018-10-10 東芝ホクト電子株式会社 Manufacturing method of light emitting module
WO2016093248A1 (en) * 2014-12-08 2016-06-16 日立化成株式会社 Epoxy resin composition, resin sheet, prepreg, metal foil with resin, metal substrate and power semiconductor device
WO2016125664A1 (en) * 2015-02-05 2016-08-11 味の素株式会社 Resin composition
US10988585B2 (en) 2016-02-25 2021-04-27 Showa Denko Materials Co., Ltd. Resin sheet and cured product of resin sheet
SG11201903855PA (en) 2016-10-31 2019-05-30 Sumitomo Bakelite Co Thermally conductive paste and electronic device
JP6791271B2 (en) * 2017-01-26 2020-11-25 信越化学工業株式会社 Thermal conductivity sheet and its manufacturing method
JP7002866B2 (en) * 2017-06-29 2022-01-20 京セラ株式会社 Resin composition for encapsulating powdered and granular semiconductors and semiconductor devices
CN107674382B (en) * 2017-09-28 2020-08-11 泰安盛源粉体有限公司 Method for optimizing grain size composition of electrical filler alumina
WO2019189314A1 (en) 2018-03-27 2019-10-03 三菱ケミカル株式会社 Composite material molded article and method for manufacturing same
JP6408738B1 (en) * 2018-05-23 2018-10-17 日清紡ホールディングス株式会社 Manufacturing method of heat dissipation structure
KR102171222B1 (en) 2018-08-17 2020-10-28 한국과학기술연구원 Composites with enhanced thermal conductivity and method preparing the same
JP7243091B2 (en) * 2018-09-10 2023-03-22 株式会社レゾナック Epoxy resins, epoxy resin compositions, cured epoxy resins and composite materials
JP7119801B2 (en) * 2018-09-10 2022-08-17 昭和電工マテリアルズ株式会社 Epoxy resins, epoxy resin compositions, cured epoxy resins and composite materials
CN110577722A (en) * 2019-09-12 2019-12-17 江苏硕阳电子科技有限公司 Epoxy resin mixed heat-conducting insulating material for air-core reactor and preparation method thereof
JP7410171B2 (en) * 2019-11-15 2024-01-09 タツタ電線株式会社 heat dissipation sheet
WO2021125121A1 (en) * 2019-12-17 2021-06-24 三菱瓦斯化学株式会社 Resin sheet and printed wiring board
JP7465714B2 (en) 2020-04-30 2024-04-11 京セラ株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
US11864355B2 (en) 2020-06-19 2024-01-02 Showa Marutsutsu Company, Ltd. Thermal conductor and method for manufacturing thermal conductor
CN113725302B (en) * 2021-08-31 2023-10-27 长春电子科技学院 Optoelectronic packaging assembly

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265953A (en) * 1989-04-06 1990-10-30 Shin Etsu Chem Co Ltd Thermosetting epoxy resin composition and cured product
TW197458B (en) * 1991-02-14 1993-01-01 Ciba Geigy Ag
JPH04370135A (en) * 1991-06-19 1992-12-22 Hitachi Chem Co Ltd Flame-retardant epoxy resin composition and production of insulation-treated electric part
JPH0525369A (en) * 1991-07-24 1993-02-02 Hitachi Chem Co Ltd Flame retardant epoxy resin composition
JPH05167212A (en) * 1991-12-16 1993-07-02 Matsushita Electric Works Ltd Metal base substrate
JP3479812B2 (en) * 1994-01-25 2003-12-15 信越化学工業株式会社 Epoxy resin composition and semiconductor device
JP4126575B2 (en) * 1998-08-24 2008-07-30 Dic株式会社 Manufacturing method of electronic component sealing material
JP2003261746A (en) * 2002-03-11 2003-09-19 Kyocera Chemical Corp Resin composition for sealing and sealed electronic device
JP4474113B2 (en) * 2003-04-07 2010-06-02 日立化成工業株式会社 Solid epoxy resin molding material for sealing and semiconductor device
JP2007262398A (en) * 2006-03-01 2007-10-11 Hitachi Chem Co Ltd Epoxy resin composition and electronic part device
CN101466757A (en) * 2006-06-07 2009-06-24 住友化学株式会社 Epoxy resin composition and epoxy resin cured product
JP2008013759A (en) * 2006-06-07 2008-01-24 Sumitomo Chemical Co Ltd Epoxy resin composition and epoxy resin cured product
JP2009102622A (en) * 2007-10-03 2009-05-14 Hitachi Chem Co Ltd Epoxy resin composition for sealing, and electronic component device
JP2009188163A (en) * 2008-02-06 2009-08-20 Hitachi Chem Co Ltd Insulating film with multilayer printed wiring board supporter, multilayer printed wiring board, and method of manufacturing same
JP2009224108A (en) * 2008-03-14 2009-10-01 Sekisui Chem Co Ltd Insulation sheet and laminated structural body
EP2484724A4 (en) * 2009-09-29 2017-08-09 Hitachi Chemical Company, Ltd. Multilayer resin sheet and method for producing same, method for producing multilayer resin sheet cured product, and highly thermally conductive resin sheet laminate and method for producing same
CN102549068B (en) * 2009-09-29 2016-05-04 日立化成工业株式会社 Resin combination, resin sheet and resin cured matter and manufacture method thereof
JP2011178894A (en) * 2010-03-01 2011-09-15 Mitsubishi Electric Corp Thermosetting resin composition, thermally conductive sheet, and power module
JP2011246596A (en) * 2010-05-26 2011-12-08 Kyocera Chemical Corp Sheet-like resin composition and circuit component sealed by using the same
JP2011251491A (en) * 2010-06-03 2011-12-15 Hitachi Chem Co Ltd Multilayer resin sheet and high thermal conductivity resin sheet
JP5830974B2 (en) * 2010-07-02 2015-12-09 日立化成株式会社 Resin composition, B stage sheet, metal foil with resin, metal substrate and LED substrate
JP6123277B2 (en) * 2011-12-28 2017-05-10 日立化成株式会社 RESIN COMPOSITION, RESIN COMPOSITION SHEET, AND METHOD FOR PRODUCING RESIN COMPOSITION SHEET, RESIN COMPOSITION SHEET WITH METAL FILMS, B STAGE SHEET, RESIN COMPOSITION SHEET WITH SEMI-HARDENED METAL FILMS, METAL BASE WIRING BOARD MATERIAL, METAL BASE WIRING BOARD , LED light source member, and power semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141464A (en) * 2011-12-28 2017-08-17 日立化成株式会社 Resin composition, resin composition sheet and method for producing resin composition sheet, resin composition sheet with metal foil, b stage sheet, semi-cured resin composition sheet with metal foil, metal base wiring board material, metal base wiring board, led light source member, and power semiconductor device
JP2018159083A (en) * 2011-12-28 2018-10-11 日立化成株式会社 Resin composition, resin composition sheet and method for producing resin composition sheet, resin composition sheet with metal foil, b stage sheet, semi-cured resin composition sheet with metal foil, metal base wiring board material, metal base wiring board, led light source member, and power semiconductor device

Also Published As

Publication number Publication date
JP2017141464A (en) 2017-08-17
KR20130076773A (en) 2013-07-08
TW201341460A (en) 2013-10-16
JP2013151655A (en) 2013-08-08
CN103183926A (en) 2013-07-03
JP2018159083A (en) 2018-10-11
CN103183926B (en) 2016-09-28
KR20180055776A (en) 2018-05-25
KR101858758B1 (en) 2018-05-16
TWI553055B (en) 2016-10-11

Similar Documents

Publication Publication Date Title
JP6123277B2 (en) RESIN COMPOSITION, RESIN COMPOSITION SHEET, AND METHOD FOR PRODUCING RESIN COMPOSITION SHEET, RESIN COMPOSITION SHEET WITH METAL FILMS, B STAGE SHEET, RESIN COMPOSITION SHEET WITH SEMI-HARDENED METAL FILMS, METAL BASE WIRING BOARD MATERIAL, METAL BASE WIRING BOARD , LED light source member, and power semiconductor device
JP6402763B2 (en) Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing the same, multilayer resin sheet with metal foil, and semiconductor device
JP6161864B2 (en) Resin composition, resin sheet, prepreg, laminate, metal substrate, and printed wiring board
JP5431595B2 (en) Resin composition, resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for manufacturing the same, semiconductor device, and LED device
TWI577720B (en) Resin composition, resin sheet, prepreg, laminate, metal substrate, printed wiring board and power semiconductor device
JP5907171B2 (en) Resin composition, resin sheet, cured resin sheet, metal foil with resin, and heat dissipation member
WO2011040415A1 (en) Multilayer resin sheet and method for producing same, method for producing multilayer resin sheet cured product, and highly thermally conductive resin sheet laminate and method for producing same
KR101308326B1 (en) Resin composition, b stage sheet, metal foil with resin, metal substrate, and led substrate
JP5904126B2 (en) Resin composition sheet, resin composition sheet with metal foil, metal base wiring board material, metal base wiring board, and LED light source member
JP6477483B2 (en) Epoxy resin composition, carrier material with resin layer, metal base circuit board, and electronic device
JP2013014671A (en) Resin composition sheet, resin composition sheet with metal foil, metal base wiring board material, metal base wiring board and electronic member
TWI455657B (en) Multilayer resin sheet and resin sheet laminate
JP2012031401A (en) Resin composition, b stage sheet, metal foil with applied resin, metal substrate and led substrate
JP2012031402A (en) Resin composition, b stage sheet, metal foil with applied resin, metal substrate and led substrate
JP2016138194A (en) Resin composition, resin sheet, and resin sheet cured product
JP2013071991A (en) Resin composition, b stage sheet, metal foil with applied resin, metal substrate and led substrate
JP2012111960A (en) Method of manufacturing semiconductor module to which highly heat conductive adhesive sheet with metal foil or highly heat conductive adhesive sheet with metal plate is adhered

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R151 Written notification of patent or utility model registration

Ref document number: 6123277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151