WO2019078044A1 - Thermally conductive resin composition, cured object, and heat radiation method - Google Patents

Thermally conductive resin composition, cured object, and heat radiation method Download PDF

Info

Publication number
WO2019078044A1
WO2019078044A1 PCT/JP2018/037446 JP2018037446W WO2019078044A1 WO 2019078044 A1 WO2019078044 A1 WO 2019078044A1 JP 2018037446 W JP2018037446 W JP 2018037446W WO 2019078044 A1 WO2019078044 A1 WO 2019078044A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
component
resin composition
conductive resin
mass
Prior art date
Application number
PCT/JP2018/037446
Other languages
French (fr)
Japanese (ja)
Inventor
由智 小野
Original Assignee
株式会社スリーボンド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スリーボンド filed Critical 株式会社スリーボンド
Priority to JP2019549213A priority Critical patent/JPWO2019078044A1/en
Priority to CN201880067861.8A priority patent/CN111247207B/en
Publication of WO2019078044A1 publication Critical patent/WO2019078044A1/en
Priority to JP2023029107A priority patent/JP2023078170A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the present invention relates to a thermally conductive resin composition, a cured product obtained by curing the composition, and a heat dissipation method of an electric and electronic component using the composition.
  • a thermally conductive resin is used between a heating element of an electrical / electronic component and a heat dissipation member such as a radiation fin in order to dissipate heat generated from the electrical / electronic component such as a semiconductor to the outside.
  • a heat conductive resin an epoxy resin-based heat conductive resin is often used because it can achieve both adhesiveness and heat conductivity.
  • the conventional epoxy resin-based thermally conductive resin uses dicyandiamide, hydrazide or the like as a curing agent, and therefore, it has been necessary to heat it at over 150 ° C. in order to cure it.
  • plastic materials are known to be susceptible to high temperatures. Therefore, low temperature curability (specifically, curability at 150 ° C. or less) is required for the epoxy resin-based thermally conductive resin.
  • JP 2009-292881 A (corresponding to US Patent Application Publication 2009/298965) includes a low temperature curing property including an amine adduct type latent curing agent and a high thermal conductivity filler.
  • a high thermal conductivity epoxy resin based composition is disclosed.
  • the thermal conductivity of the cured product of the epoxy resin composition disclosed in the experimental example of JP 2009-292881 A is 2.3 W / m. It was K, and its thermal conductivity was not satisfactory. Further, the epoxy resin-based composition disclosed in the experimental example of the above-mentioned publication contains a large amount of aluminum oxide for the purpose of imparting thermal conductivity, and therefore has a problem of high viscosity and poor handling. .
  • an object of the present invention is to provide a thermally conductive resin composition which can form a cured product which is excellent in low-temperature curing properties (curing properties at 150 ° C. or lower) and handling properties and is excellent in thermal conductivity. .
  • the present invention includes the following embodiments.
  • (C) A mixture of the following (C1) to (C3), and the mass ratio of (C1) to (C3) ((C1) A mixture wherein / (C3)) is 0.14 to 1.0, and the mass ratio of (C2) to (C3) ((C2) / (C3)) is 0.25 to 1.5; (C1) thermally conductive powder having an average particle diameter of 0.01 ⁇ m or more and less than 2 ⁇ m (C2) thermally conductive powder having an average particle diameter of 2 ⁇ m or more and less than 20 ⁇ m (C3) thermally conductive powder having an average particle diameter of 20 ⁇ m or more and less than 150 ⁇ m .
  • the components (C1) to (C3) are each independently at least one thermally conductive powder selected from the group consisting of alumina, zinc oxide, aluminum nitride, boron nitride, carbon and diamond.
  • the thermally conductive resin composition as described in [1].
  • [3] The thermally conductive resin composition according to [1] or [2], wherein the shape of the components (C1) to (C3) is spherical or amorphous.
  • the component (C1) is 5 to 60% by mass
  • the component (C2) is 10 to 65% by mass
  • the component (C3) is 100% by mass of the total of (C1), (C2) and (C3)
  • One embodiment of the present invention is a thermally conductive resin composition (hereinafter also referred to as a composition) containing the following components (A) to (C): (A) Epoxy resin (B) Adduct-type latent curing agent which is solid at 25 ° C.
  • (C) A mixture of the following (C1) to (C3), and the mass ratio of (C1) to (C3) ((C1) A mixture wherein / (C3)) is 0.14 to 1.0, and the mass ratio of (C2) to (C3) ((C2) / (C3)) is 0.25 to 1.5; (C1) thermally conductive powder having an average particle diameter of 0.01 ⁇ m or more and less than 2 ⁇ m (C2) thermally conductive powder having an average particle diameter of 2 ⁇ m or more and less than 20 ⁇ m (C3) thermally conductive powder having an average particle diameter of 20 ⁇ m or more and less than 150 ⁇ m .
  • the heat conductive resin composition can form a cured product excellent in low temperature curability and handling property and excellent in thermal conductivity.
  • low temperature refers to, for example, 150 ° C. or less, preferably 120 ° C. or less, more preferably 100 ° C. or less, and still more preferably 80 ° C. or less.
  • excellent in low-temperature curing property means that when the composition is heated at the above temperature, a cured product without tack (stickiness) on the surface is obtained.
  • excellent in handling properties means that the viscosity of the thermally conductive resin composition is low and the coating operation is easy.
  • thermoplastic resin composition according to the present invention details of the thermoplastic resin composition according to the present invention will be described.
  • the epoxy resin which is the component (A) of the present invention any compound having two or more glycidyl groups in one molecule and not falling under the component (B) can be used without particular limitation.
  • the component (A) for example, an epoxy resin having two glycidyl groups in one molecule (hereinafter also referred to as “bifunctional epoxy resin”), an epoxy resin having three or more glycidyl groups in one molecule (hereinafter And “polyfunctional epoxy resin”).
  • the component (A) is a bifunctional epoxy resin and a multifunctional epoxy resin from the viewpoint of reducing the viscosity of the composition to improve the handling property, and the viewpoint of enhancing the thermal conductivity and / or heat resistance of the cured product. It is preferable to use in combination with At this time, the polyfunctional epoxy resin is more preferably a trifunctional or tetrafunctional epoxy resin, and still more preferably a tetrafunctional epoxy resin.
  • the mass ratio (bifunctional epoxy resin: multifunctional epoxy resin) is preferably in the range of 30:70 to 70:30, and more preferably 40: It is in the range of 60 to 60:40. Within the above range, the handling properties of the composition and the thermal conductivity of the cured product can be highly compatible.
  • the component (A) can be used either liquid or solid at 25 ° C., but is preferably liquid at 25 ° C. from the viewpoint of improving the handling property of the composition.
  • liquid means having fluidity, and specifically, when the component is inclined 45 °, it means that the shape can not be maintained for 10 minutes or more, resulting in a change in shape.
  • the viscosity at 25 ° C. of the component (A) is preferably 1 to 50 Pa ⁇ s, more preferably 3 to 40 Pa ⁇ s, and 5 to 30 Pa Even more preferably s.
  • the viscosity is a value measured by the method described in the examples described later.
  • the epoxy equivalent of the component (A) is preferably 50 to 250 g / eq, more preferably 100 to 200 g / eq.
  • the epoxy equivalent is a value measured in accordance with JIS K 7236: 2001.
  • the bifunctional epoxy resin is not particularly limited.
  • bisphenol A epoxy resin and bisphenol F epoxy resin are preferably used from the
  • the polyfunctional epoxy resin is not particularly limited, but novolac epoxy resin such as phenol novolac epoxy resin and cresol novolac epoxy resin; N, N-diglycidyl-4-glycidyloxyaniline, 4,4'-methylene bis (N And glycidyl amine compounds such as tetraglycidyldiaminodiphenylmethane and tetraglycidyl-m-xylylenediamine; and naphthalene type epoxy resins having four glycidyl groups. These compounds may be used alone or in combination of two or more.
  • the commercial product of the component (A) is not particularly limited.
  • jER registered trademark
  • 828 1001, 801, 806, 807, 152, 604, 630, 871, YX8000, YX8034, YX4000
  • Epiclon registered trademark
  • EP 4920 (made by ADEKA Co., Ltd.); TEPIC (made by Nissan Chemical Industries, Ltd.); KF-101, KF-1001, KF-105, X-22-163B, X-22-9002 (Shin-Etsu Chemical Co., Ltd.) ; Denacol (registered trademark) EX411, 314, 201, 212, 252 (manufactured by Nagase ChemteX Co., Ltd.); DER-331, 332, 334, 431, 542 (manufactured by Dow Chemical Company); YH-434, YH-434L Examples include (manufactured by Nippon Steel Sumitomo Chemical Co., Ltd.) and the like, but are not limited thereto.
  • the component (B) used in the present invention is an adduct type latent curing agent which is solid at 25 ° C.
  • a solid refers to a thing which does not have fluidity, and when an ingredient is inclined 45 degrees, it says that the shape can be maintained for 10 minutes or more specifically ,.
  • the mixture of the components (A) and (B) is stable without heating (for example 25 ° C.), but by heating to 70 to 170 ° C. (preferably 70 to 150 ° C.), the component (B) is stabilized. Acts as a curing agent to cure the component (A).
  • the adduct type refers to, for example, a compound in which an epoxy resin and an amine compound react to an intermediate stage, or a compound in which an amine compound and an isocyanate compound or a urea compound react to an intermediate stage.
  • the component (B) is selected and combined with the components (C1) to (C3) to be described later to handle the handling of the composition and the heat of the cured product. It can be compatible with conductivity.
  • the component (B) is not contained, the viscosity of the composition becomes high and the handling property is poor, and / or the thermal conductivity of the cured product becomes insufficient (see Comparative Examples 1 to 3).
  • the average particle diameter of the component (B) is preferably in the range of 0.1 to 100 ⁇ m, more preferably in the range of 1 to 30 ⁇ m, and still more preferably 2 to 15 ⁇ m. And even more preferably in the range of 3 to 10 ⁇ m, particularly preferably more than 5 ⁇ m and less than 10 ⁇ m.
  • the average particle size of the component (B) is the particle size (D50) at a cumulative volume ratio of 50% in the particle size distribution determined by the laser diffraction scattering method.
  • the upper limit of the softening temperature of the component (B) is, for example, 170 ° C. or less, preferably 160 ° C. or less, more preferably 150 ° C. or less, particularly preferably 145 ° C. or less .
  • the lower limit of the softening temperature of the component (B) is, for example, 80 ° C. or higher, preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 110 ° C. or higher from the viewpoint of handling. is there.
  • the measuring method of the said softening temperature is calculated
  • the component (B) is not particularly limited, but a reaction product obtained by reacting an amine compound and an isocyanate compound or a urea compound (urea adduct type latent curing agent) or a reaction product of an amine compound and an epoxy compound Resin amine adduct type latent curing agents are preferred. These may be used in combination. Among them, an epoxy resin amine adduct type latent curing agent is preferable from the viewpoint of achieving a high degree of compatibility between the handling property of the composition and the thermal conductivity of the cured product.
  • the softening temperature is preferably 110 ° C. or higher, more preferably 120 ° C., from the viewpoint of reducing the viscosity of the composition and enhancing the handling property. It is the above, still more preferably 130 ° C or more, and particularly preferably 135 ° C or more.
  • the method of measuring the softening temperature is the same as described above.
  • the commercial product of the component (B) is not particularly limited.
  • the urea adduct type latent curing agent for example, Fujicure (registered trademark, the same in the following) FXE-1000, FXR-1020, FXR-1030, FXB- 1050 (above, T & K TOKA Co., Ltd. product) etc. are mentioned.
  • epoxy resin amine adduct type latent curing agent for example, AMICURE (registered trademark, the same as the following) PN-23, AMICURE PN-H, AMICURE PN-31, AMICURE PN-40, AMICURE PN-50, AMICURE PN-F Amicure PN-23J, Amicure PN-31J, Amicure PN-40J, Amicure MY-24, Amicure MY-25, Amicure MY-R, Amicure PN-R (manufactured by Ajinomoto Fine Techno Co., Ltd.) and the like. Also, these may be used alone or in combination.
  • the compounding amount of the component (B) in the present invention is preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the component (A), and still more preferably 15 to 30 parts by mass.
  • the component (A) can be sufficiently cured when the amount of the component (B) is 5 parts by mass or more, and the heat resistance of the cured product of the thermally conductive resin composition can be 50 parts by mass or less Is excellent.
  • the component (C) of the present invention is (C1) thermally conductive powder having an average particle diameter of 0.01 ⁇ m or more and less than 2 ⁇ m, (C2) thermally conductive powder having an average particle diameter of 2 ⁇ m or more and less than 20 ⁇ m, (C3) average particle It is a mixture of thermally conductive powder having a diameter of 20 ⁇ m or more and less than 150 ⁇ m.
  • the average particle diameter of the component (C1) is 0.01 ⁇ m or more to 2 ⁇ m (2.0 ⁇ m) from the viewpoint of obtaining a cured product having high thermal conductivity while reducing the viscosity of the thermally conductive resin composition to improve the handling property.
  • the average particle diameter of the component (C2) is 2 ⁇ m (2.0 ⁇ m) or more from the viewpoint of obtaining a cured product having high thermal conductivity while reducing the viscosity of the thermal conductive resin composition to improve the handling property.
  • the average particle diameter of the component (C3) is preferably 20 ⁇ m or more and 150 ⁇ m or less from the viewpoint of obtaining a cured product with high thermal conductivity while reducing the viscosity of the thermally conductive resin composition to enhance handling. 23 micrometers or more and 100 micrometers or less are more preferable, 25 micrometers or more and 70 micrometers or less are still more preferable, and 30 micrometers or more and less than 50 micrometers are especially preferable.
  • the average particle diameter of the components (C1) to (C3) is the particle diameter (D50) at a cumulative volume ratio of 50% in the particle size distribution determined by the laser diffraction scattering method.
  • the mass ratio ((C1) / (C3)) of the component (C1) to the component (C3) is 0.14 to 1.0.
  • (C1) / (C3) is less than 0.14, the composition has a high viscosity and poor handleability, and the thermal conductivity of the formed cured product is also insufficient (see Comparative Example 4).
  • (C1) / (C3) exceeds 1.0, the composition has a very high viscosity and handling is difficult, and the formation of a cured product becomes difficult (see Comparative Examples 6 and 7).
  • (C1) / (C3) is preferably 0.16 to 0.90, more preferably 0.18 to 0.80, and still more preferably 0. It is preferably from 20 to 0.70, particularly preferably from 0.25 to 0.65.
  • the mass ratio ((C2) / (C3)) of the component (C2) to the component (C3) is 0.25 to 1.5.
  • (C2) / (C3) is less than 0.25, the composition has a high viscosity and poor handleability, and the thermal conductivity of the formed cured product is also insufficient (see Comparative Example 5).
  • (C2) / (C3) exceeds 1.5, the composition has a very high viscosity and handling is difficult, and the formation of a cured product becomes difficult (see Comparative Examples 6 and 8).
  • (C2) / (C3) is preferably 0.27 to 1.2, more preferably 0.30 to 1.0, and still more preferably 0. 40 to 0.95.
  • (C1) / (C3) is 0.14 to 1.0 and (C2) / (C3) is 0.25 to 1.5.
  • (C1) / (C3) is preferably 0.16 to 0.9 (0.90) and (C2) / (C3) is 0.27 to 1.2, and more preferably (C1) / (C1) C3) is 0.18 to 0.8 (0.80) and (C2) / (C3) is 0.3 (0.30) to 1.0.
  • the content of the component (C3) is preferably 30 to 85% by mass, that of the component (C1) is preferably 5 to 30% by mass, the component (C2) is 10 to 50% by mass, and the component (C3) is 30 It is more preferable that the content is 80 to 80% by mass, that of 7 to 28% by mass of the component (C1), 15 to 40% by mass of the component (C2), and 40 to 70% by mass of the component (C3). preferable.
  • the mixing ratio of the components (C1) to (C3) is within the above range, both the handling property and the thermal conductivity of the cured product can be well achieved.
  • the content of the component (C1) is preferably 80 to 300 parts by mass, more preferably 120 to 250 parts by mass with respect to 100 parts by mass of the component (A). is there.
  • the content of the component (C2) is preferably 150 to 400 parts by mass, more preferably 180 to 350 parts by mass with respect to 100 parts by mass of the component (A).
  • the content of the component (C3) is preferably 250 to 500 parts by mass, and more preferably 300 to 450 parts by mass with respect to 100 parts by mass of the component (A).
  • the content of the component (C) (that is, the total content of the components (C1) to (C3)) is not particularly limited, but, for example, 55 to 99 mass with respect to the entire thermally conductive resin composition of the present invention % Is preferable, 60 to 95% by mass is more preferable, 70 to 93% by mass is more preferable, 75 to 90% by mass is still more preferable, and 80 to 86% by mass is particularly preferable. If it is 55 mass% or more, the heat conduction performance is sufficient, and if it is 99 mass% or less, both the workability (handling property of the composition) and the thermal conductivity of the cured product can be achieved.
  • the components (C1) to (C3) are each independently at least one thermally conductive powder selected from the group consisting of alumina, zinc oxide, aluminum nitride, boron nitride, carbon and diamond.
  • at least one heat conductive powder is particularly preferably selected from the group consisting of alumina, aluminum nitride and boron nitride, because they are excellent in thermal conductivity.
  • at least one of the components (C1) to (C3) is preferably alumina, and it is particularly preferable that all of the components (C1) to (C3) are alumina.
  • the component (C) may be surface-treated. Also, these may be used alone or in combination.
  • the shapes of the components (C1) to (C3) are preferably spherical or indeterminate.
  • spherical includes not only perfect spheres but also shapes such as approximately spheres and ovals. More specifically, “spherical” means that the average circularity is 0.4 or more.
  • indeterminate refers to a shape having corners other than a spherical shape (eg, needle shape, fiber shape, scaly shape, dendritic shape, flat shape, crushed shape, etc.). More specifically, "amorphous” means that the average circularity is less than 0.4. Furthermore, when the component (C) is a mixture containing a spherical thermally conductive powder and an amorphous thermally conductive powder, a cured product with further improved thermal conductivity can be obtained.
  • the degree of circularity is obtained by, for example, acquiring a particle projection image using a flow type particle image analyzer FPIA-3000 (manufactured by Malvern Co., Ltd.), and X,
  • grain projection image is set to Y, it is a value represented by X / Y.
  • the average circularity is calculated by summing the circularity of each particle and dividing by the total number of particles.
  • the shape of the component (C1) is preferably spherical.
  • the shape of the component (C1) is preferably indeterminate.
  • the shape of the component (C2) is preferably spherical.
  • the shape of the component (C3) is preferably spherical. Therefore, in one embodiment of the present invention, the (C2) and (C3) components are spherical thermally conductive powders.
  • the thermally conductive resin composition of the present invention may further contain any additive component as long as the properties of the composition are not impaired.
  • the components include plasticizers, solvents, diluents, adhesion-improving components such as silane coupling agents, dispersants, leveling agents, wetting agents, surfactants such as antifoaming agents, antistatic agents, surface lubrication Agents, rust inhibitors, preservatives, viscoelastic modifiers, rheology modifiers, colorants, anti-aging agents such as UV absorbers, non-heat conductive fillers, and the like.
  • the thermally conductive resin composition of the present invention may contain a polymer material such as polyester resin, polycarbonate resin, polyacrylic resin, polyurethane resin, polyvinyl resin or the like for the purpose of adjusting the viscoelasticity and the like.
  • the thermally conductive resin composition of the present invention can be produced by a conventionally known method. For example, after blending the above-mentioned components (A), (B), (C1), (C2) and (C3), and optional components as required, using a known mixing means such as a mixer It can be prepared by mixing preferably at a temperature of 10 to 70 ° C., preferably for 0.1 to 5 hours.
  • the thermally conductive resin composition of the present invention is preferably liquid at 25 ° C.
  • the viscosity at 25 ° C. is preferably less than 250 Pa ⁇ s (lower limit: For example, 0.5 Pa ⁇ s or more).
  • the viscosity is a value measured by the method described in the examples described later.
  • the thermally conductive resin composition of the present invention is excellent in low-temperature curing property and handling property, and can form a cured product excellent in thermal conductivity, so that it can be used in electronic parts such as circuit boards made of plastic materials.
  • a cured product can be formed on an electrical and electronic component by applying the heat conductive composition of the present invention to the electrical and electronic component and heat treating it. Since the formed cured product is excellent in thermal conductivity, the heat generated from the electric and electronic component can be dissipated to the outside through the cured product. It does not restrict
  • the heat treatment conditions are not particularly limited, but in the case of a plastic electric / electronic component, the heat treatment is performed, for example, at 150 ° C. or less (eg, 40 to 120 ° C.) for 5 to 120 minutes.
  • heat dissipation of electrical and electronic components is achieved by radiating the heat generated from the electrical and electronic components to the outside by applying the above-described heat conductive composition to the electrical and electronic components.
  • a method is provided.
  • curing said heat conductive resin composition is provided.
  • ⁇ (A) component> a1 Bisphenol F-type bifunctional epoxy resin (jER (registered trademark) 806, made by Mitsubishi Chemical Corporation, viscosity 15 to 25 Pa ⁇ s (25 ° C.), epoxy equivalent 160 to 170 g / eq) liquid at 25 ° C.
  • jER registered trademark
  • a2 Glycidylamine type tetrafunctional epoxy resin (tetraglycidyl diaminodiphenylmethane, YH-434 L, made by Nippon Steel Sumikin Chemical Co., Ltd., liquid at 25 ° C., viscosity 6 to 9 Pa ⁇ s (25 ° C.), epoxy equivalent 115 to 119 g / eq ) ⁇ (B) component>
  • b1 Urea adduct type latent curing agent which is solid at 25 ° C., has an average particle diameter of 7 ⁇ m and a softening temperature of 140 ° C.
  • b'2 1,3-bis (hydrazino carbonoethyl) -5-isopropyl hydantoin (Amicure VDH manufactured by Ajinomoto Fine Techno Co., Ltd.)
  • b'3 3-phenyl-1,1-dimethylurea (Omicure 94 manufactured by Pyi T I Japan Co., Ltd.)
  • b'4 Dicyandiamide having an average particle diameter of 4 ⁇ m (Omicure DDA-5 manufactured by Pyi T I Japan Co., Ltd.) ⁇ (C) component>
  • c1-1 Amorphous alumina powder with an average particle diameter of 1.0 ⁇ m (manufactured by Showa Denko KK, average circularity less than 0.4)
  • c1-2 Spherical alumina powder having an average particle diameter of 1.0 ⁇ m (manufactured by Sumitomo Chemical Co., Ltd., average circularity of 0.4 or more)
  • c2 Spherical alumina powder having an average
  • ⁇ Viscosity measurement> The viscosity of the thermally conductive resin composition of the Example of Table 1 and a comparative example was evaluated.
  • the viscosity (Pa ⁇ s) was measured at 25 ° C. using an EHD viscometer (TV-33 manufactured by Toki Sangyo Co., Ltd.).
  • the measurement conditions are as follows. The lower the viscosity, the better the coating workability and the better the handling property.
  • the viscosity of the composition is preferably less than 250 Pa ⁇ s, more preferably less than 220 Pa ⁇ s, from the viewpoint of the handling property of the composition.
  • "*" indicates that the viscosity was too high to be measured: [Measurement condition] Corn rotor: 3 ° ⁇ R14 Rotation speed: 0.5 rpm.
  • the thermally conductive resin compositions of the examples and comparative examples in Table 1 are applied on a fluorine resin plate to a thickness of 0.5 mm, and heated at 80 ° C. for 1 hour to cure the composition. , Test pieces were made.
  • the thermal conductivity is measured using a thermal conductivity meter (QTM-D3 manufactured by Kyoto Denshi Kogyo Co., Ltd.).
  • the thermal conductivity (W / (m ⁇ K)) of the surface on which the cured product of the test piece is formed is 25 Measured in ° C.
  • the cured product is preferable because the larger the thermal conductivity, the easier it is for heat to be transmitted.
  • the thermal conductivity of the cured product is preferably 3.8 W / (m ⁇ K) or more from the viewpoint of the thermal conductivity of the cured product. It is suggested that there is a significant difference in the performance of radiating heat generated from the electric / electronic component to the outside between the case where the lower limit value is satisfied and the case where the value is not satisfied.
  • the thermal conductivity of the cured product is preferably 4.0 W / (m ⁇ K) or more.
  • the thermally conductive resin compositions according to the examples in Table 1 all have low temperature curability because heat treatment at 80 ° C. for 1 hour yielded a cured product without tack (stickiness) on the surface. Was admitted. Moreover, in Table 1, "**" represents that the viscosity of the composition was too high to form a cured product.
  • thermally conductive resin composition of the present invention can form a cured product excellent in low temperature curability and handling properties and excellent in thermal conductivity.
  • the compositions of Comparative Examples 1 and 3 are compared with the composition of the example (C) It was confirmed that the heat conductivity of the cured product formed was inferior despite the fact that it contained a large amount of components. Moreover, it was confirmed that the composition of Comparative Example 2 has high viscosity and poor handling.
  • composition containing components (C1) to (C3) of the present invention wherein (C1) / (C3) is less than 0.14, or (C2) / (C3) is less than 0.25 Comparative Examples 4 and 5) were confirmed to be inferior in both the handling property and the thermal conductivity of the formed cured product.
  • the composition (C1) / (C3) exceeds 1.0 or / and (C2) / (C3) exceeds 1.5 ( In Comparative Examples 6 to 8), the viscosity was so high that handling was difficult, and a cured product could not be formed.
  • the thermally conductive resin composition of the present invention is excellent in low-temperature curing property and handling property, and can form a cured product excellent in thermal conductivity, so that it is used for heat radiation of electronic parts such as circuit boards made of plastic materials. Etc. are applicable to a wide range of fields.

Abstract

A thermally conductive resin composition comprising the following components (A) to (C): (A) an epoxy resin, (B) an adduct-type latent hardener which is solid at 25°C, and (C) a mixture of the following ingredients (C1) to (C3), in which the mass ratio of the ingredient (C1) to the ingredient (C3) is 0.14-1.0 and the mass ratio of the ingredient (C2) to the ingredient (C3) is 0.25-1.5. (C1) a thermally conductive powder having an average particle diameter of 0.01 μm or larger but smaller than 2 μm; (C2) a thermally conductive powder having an average particle diameter of 2 μm or larger but smaller than 20 μm; and (C3) a thermally conductive powder having an average particle diameter of 20 μm or larger but smaller than 150 μm. The thermally conductive resin composition of the present invention is excellent in terms of low-temperature curability and handleability and can form cured objects having excellent thermal conductivity.

Description

熱伝導性樹脂組成物、硬化物および放熱方法Thermally conductive resin composition, cured product and heat dissipation method
 本発明は、熱伝導性樹脂組成物、当該組成物を硬化してなる硬化物および当該組成物を用いた電気電子部品の放熱方法に関する。 The present invention relates to a thermally conductive resin composition, a cured product obtained by curing the composition, and a heat dissipation method of an electric and electronic component using the composition.
 近年、半導体などの電気電子部品からの発熱を外部に放熱させる目的で、電気電子部品の発熱体と放熱フィンなどの放熱部材との間に熱伝導性樹脂が使用されている。熱伝導性樹脂としては、接着性と熱伝導性とを両立できることから、エポキシ樹脂系熱伝導性樹脂が多用されている。従来のエポキシ樹脂系熱伝導性樹脂は、硬化剤としてジシアンジアミド、ヒドラジドなどを用いていたため、硬化させるためには150℃超の加熱をする必要があった。 BACKGROUND In recent years, a thermally conductive resin is used between a heating element of an electrical / electronic component and a heat dissipation member such as a radiation fin in order to dissipate heat generated from the electrical / electronic component such as a semiconductor to the outside. As the heat conductive resin, an epoxy resin-based heat conductive resin is often used because it can achieve both adhesiveness and heat conductivity. The conventional epoxy resin-based thermally conductive resin uses dicyandiamide, hydrazide or the like as a curing agent, and therefore, it has been necessary to heat it at over 150 ° C. in order to cure it.
 電気電子部品の軽量化の要求からプラスチック材料の使用が進んでいるが、プラスチック材料は高温に弱いことが知られている。そのため、エポキシ樹脂系熱伝導性樹脂には低温硬化性(具体的には、150℃以下での硬化性)が求められている。 Although the use of plastic materials is advancing due to the demand for weight reduction of electric and electronic parts, plastic materials are known to be susceptible to high temperatures. Therefore, low temperature curability (specifically, curability at 150 ° C. or less) is required for the epoxy resin-based thermally conductive resin.
 そのような背景から、特開2009-292881号公報(米国特許出願公開第2009/298965号明細書に対応)には、アミンアダクト系潜在性硬化剤および高熱伝導性充填剤を含む、低温硬化性に優れる高熱伝導性エポキシ樹脂系組成物が開示されている。 From such a background, JP 2009-292881 A (corresponding to US Patent Application Publication 2009/298965) includes a low temperature curing property including an amine adduct type latent curing agent and a high thermal conductivity filler. A high thermal conductivity epoxy resin based composition is disclosed.
 しかしながら、特開2009-292881号公報(米国特許出願公開第2009/298965号明細書に対応)の実験例に開示されているエポキシ樹脂系組成物の硬化物の熱伝導率は2.3W/m・Kであり、その熱伝導率は満足するものではなかった。また、上記公報の実験例に開示されているエポキシ樹脂系組成物は、熱伝導性を付与する目的で酸化アルミニウムを大量に含んでいるため、高粘度でありハンドリング性が劣るという問題があった。 However, the thermal conductivity of the cured product of the epoxy resin composition disclosed in the experimental example of JP 2009-292881 A (corresponding to US Patent Application Publication 2009/298965) is 2.3 W / m. It was K, and its thermal conductivity was not satisfactory. Further, the epoxy resin-based composition disclosed in the experimental example of the above-mentioned publication contains a large amount of aluminum oxide for the purpose of imparting thermal conductivity, and therefore has a problem of high viscosity and poor handling. .
 そこで、本発明は、低温硬化性(150℃以下での硬化性)およびハンドリング性に優れ、かつ熱伝導性に優れた硬化物を形成できる熱伝導性樹脂組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide a thermally conductive resin composition which can form a cured product which is excellent in low-temperature curing properties (curing properties at 150 ° C. or lower) and handling properties and is excellent in thermal conductivity. .
 本発明は以下の実施態様を含む。
[1]下記の(A)~(C)成分を含む熱伝導性樹脂組成物:
 (A)エポキシ樹脂
 (B)25℃で固体であるアダクト型潜在性硬化剤
 (C)下記(C1)~(C3)の混合物であり、(C3)に対する(C1)の質量比((C1)/(C3))が0.14~1.0であり、かつ(C3)に対する(C2)の質量比((C2)/(C3))が0.25~1.5である、混合物;
  (C1)平均粒径0.01μm以上2μm未満の熱伝導性粉体
  (C2)平均粒径2μm以上20μm未満の熱伝導性粉体
  (C3)平均粒径20μm以上150μm未満の熱伝導性粉体。
[2]前記(C1)~(C3)成分が、それぞれ独立して、アルミナ、酸化亜鉛、窒化アルミニウム、窒化ホウ素、カーボンおよびダイヤモンドからなる群より選択される少なくとも1種の熱伝導性粉体である、[1]に記載の熱伝導性樹脂組成物。
[3]前記(C1)~(C3)成分の形状が、球状または不定形である、[1]または[2]に記載の熱伝導性樹脂組成物。
[4]前記(C)成分が、球状熱伝導性粉体と不定形熱伝導性粉体とを含む混合物である、[1]~[3]のいずれかに記載の熱伝導性樹脂組成物。
[5]前記(C1)、(C2)および(C3)の合計100質量%中、(C1)成分は5~60質量%、(C2)成分は10~65質量%、および(C3)成分は30~85質量%含まれる、[1]~[4]のいずれかに記載の熱伝導性樹脂組成物。
[6]熱伝導性樹脂組成物中の前記(C)成分の含有量は、55~99質量%である、[1]~[5]のいずれかに記載の熱伝導性樹脂組成物。
[7]前記(A)成分が、25℃で液状である、[1]~[6]のいずれかに記載の熱伝導性樹脂組成物。
[8]前記(A)成分100質量部に対して、(B)成分を5~50質量部含む、[1]~[7]のいずれかに記載の熱伝導性樹脂組成物。
[9]25℃で液状である、[1]~[8]のいずれかに記載の熱伝導性樹脂組成物。
[10]前記(B)成分の平均粒径が0.1~100μmの範囲である、[1]~[9]のいずれかに記載の熱伝導性樹脂組成物。
[11]前記(B)成分が、ウレアアダクト型潜在性硬化剤またはエポキシ樹脂アミンアダクト型潜在性硬化剤である、[1]~[10]のいずれかに記載の熱伝導性樹脂組成物。
[12][1]~[11]のいずれかに記載の熱伝導性樹脂組成物を硬化してなる、硬化物。
[13][1]~[11]のいずれかに記載の熱伝導性組成物を電気電子部品に塗布することにより電気電子部品から発生した熱を外部へ放熱させることを有する、電気電子部品の放熱方法。
The present invention includes the following embodiments.
[1] Thermally Conductive Resin Composition Containing the Following Components (A) to (C):
(A) Epoxy resin (B) Adduct-type latent curing agent which is solid at 25 ° C. (C) A mixture of the following (C1) to (C3), and the mass ratio of (C1) to (C3) ((C1) A mixture wherein / (C3)) is 0.14 to 1.0, and the mass ratio of (C2) to (C3) ((C2) / (C3)) is 0.25 to 1.5;
(C1) thermally conductive powder having an average particle diameter of 0.01 μm or more and less than 2 μm (C2) thermally conductive powder having an average particle diameter of 2 μm or more and less than 20 μm (C3) thermally conductive powder having an average particle diameter of 20 μm or more and less than 150 μm .
[2] The components (C1) to (C3) are each independently at least one thermally conductive powder selected from the group consisting of alumina, zinc oxide, aluminum nitride, boron nitride, carbon and diamond. The thermally conductive resin composition as described in [1].
[3] The thermally conductive resin composition according to [1] or [2], wherein the shape of the components (C1) to (C3) is spherical or amorphous.
[4] The thermally conductive resin composition according to any one of [1] to [3], wherein the component (C) is a mixture containing spherical thermally conductive powder and amorphous thermally conductive powder. .
[5] The component (C1) is 5 to 60% by mass, the component (C2) is 10 to 65% by mass, and the component (C3) is 100% by mass of the total of (C1), (C2) and (C3) The thermally conductive resin composition according to any one of [1] to [4], containing 30 to 85% by mass.
[6] The thermally conductive resin composition according to any one of [1] to [5], wherein the content of the component (C) in the thermally conductive resin composition is 55 to 99% by mass.
[7] The thermally conductive resin composition according to any one of [1] to [6], wherein the component (A) is liquid at 25 ° C.
[8] The thermally conductive resin composition according to any one of [1] to [7], which contains 5 to 50 parts by mass of the component (B) with respect to 100 parts by mass of the component (A).
[9] The thermally conductive resin composition according to any one of [1] to [8], which is liquid at 25 ° C.
[10] The thermally conductive resin composition according to any one of [1] to [9], wherein the average particle diameter of the component (B) is in the range of 0.1 to 100 μm.
[11] The thermally conductive resin composition according to any one of [1] to [10], wherein the component (B) is a urea adduct type latent curing agent or an epoxy resin amine adduct type latent curing agent.
[12] A cured product obtained by curing the thermally conductive resin composition according to any one of [1] to [11].
[13] An electrical and electronic component having heat dissipation generated from the electrical and electronic component to the outside by applying the thermally conductive composition according to any one of [1] to [11] to the electrical and electronic component. How to dissipate heat.
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、特記しない限り、操作および物性等の測定は室温(20℃~25℃の範囲)/相対湿度40~50%RHの条件で測定する。また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments. Unless otherwise specified, measurements of operations and physical properties etc. are carried out under the conditions of room temperature (range of 20 ° C. to 25 ° C.) / Relative humidity of 40 to 50% RH. Further, in the present specification, “X to Y” indicating a range means “X or more and Y or less”.
 本発明の一実施形態は、下記の(A)~(C)成分を含む熱伝導性樹脂組成物(以下、組成物とも称する)である:
 (A)エポキシ樹脂
 (B)25℃で固体であるアダクト型潜在性硬化剤
 (C)下記(C1)~(C3)の混合物であり、(C3)に対する(C1)の質量比((C1)/(C3))が0.14~1.0であり、かつ(C3)に対する(C2)の質量比((C2)/(C3))が0.25~1.5である、混合物;
  (C1)平均粒径0.01μm以上2μm未満の熱伝導性粉体
  (C2)平均粒径2μm以上20μm未満の熱伝導性粉体
  (C3)平均粒径20μm以上150μm未満の熱伝導性粉体。
One embodiment of the present invention is a thermally conductive resin composition (hereinafter also referred to as a composition) containing the following components (A) to (C):
(A) Epoxy resin (B) Adduct-type latent curing agent which is solid at 25 ° C. (C) A mixture of the following (C1) to (C3), and the mass ratio of (C1) to (C3) ((C1) A mixture wherein / (C3)) is 0.14 to 1.0, and the mass ratio of (C2) to (C3) ((C2) / (C3)) is 0.25 to 1.5;
(C1) thermally conductive powder having an average particle diameter of 0.01 μm or more and less than 2 μm (C2) thermally conductive powder having an average particle diameter of 2 μm or more and less than 20 μm (C3) thermally conductive powder having an average particle diameter of 20 μm or more and less than 150 μm .
 当該熱伝導性樹脂組成物は、低温硬化性およびハンドリング性に優れ、かつ熱伝導性に優れた硬化物を形成することができる。なお、本明細書において、「低温」とは、例えば150℃以下、好ましくは120℃以下、より好ましくは100℃以下、さらにより好ましくは80℃以下を指す。また、「低温硬化性に優れる」とは、組成物を上記温度で加熱した際、表面にタック(べたつき)のない硬化物が得られることをいう。また、「ハンドリング性に優れる」とは、熱伝導性樹脂組成物の粘度が低く塗布作業しやすいことを意味する。 The heat conductive resin composition can form a cured product excellent in low temperature curability and handling property and excellent in thermal conductivity. In the present specification, “low temperature” refers to, for example, 150 ° C. or less, preferably 120 ° C. or less, more preferably 100 ° C. or less, and still more preferably 80 ° C. or less. In addition, “excellent in low-temperature curing property” means that when the composition is heated at the above temperature, a cured product without tack (stickiness) on the surface is obtained. Further, “excellent in handling properties” means that the viscosity of the thermally conductive resin composition is low and the coating operation is easy.
 以下、本発明に係る熱可塑性樹脂組成物の詳細を説明する。 Hereinafter, details of the thermoplastic resin composition according to the present invention will be described.
 [熱伝導性樹脂組成物]
 <(A)成分>
 本発明の(A)成分であるエポキシ樹脂としては、1分子中にグリシジル基を2以上有し、かつ(B)成分に該当しない化合物であれば、特に限定なく使用することができる。(A)成分としては、例えば、1分子中にグリシジル基を2つ有するエポキシ樹脂(以下、「2官能エポキシ樹脂」とも称する)や、1分子中にグリシジル基を3つ以上有するエポキシ樹脂(以下、「多官能エポキシ樹脂」とも称する)などが挙げられる。
[Heat conductive resin composition]
<(A) component>
As the epoxy resin which is the component (A) of the present invention, any compound having two or more glycidyl groups in one molecule and not falling under the component (B) can be used without particular limitation. As the component (A), for example, an epoxy resin having two glycidyl groups in one molecule (hereinafter also referred to as “bifunctional epoxy resin”), an epoxy resin having three or more glycidyl groups in one molecule (hereinafter And “polyfunctional epoxy resin”).
 本発明において、(A)成分は、組成物の粘度を低減してハンドリング性を高める観点や、硬化物の熱伝導性または/および耐熱性を高める観点から、2官能エポキシ樹脂と多官能エポキシ樹脂とを併用することが好ましい。この際、多官能エポキシ樹脂は、3官能または4官能のエポキシ樹脂であることがより好ましく、4官能エポキシ樹脂であることがさらにより好ましい。 In the present invention, the component (A) is a bifunctional epoxy resin and a multifunctional epoxy resin from the viewpoint of reducing the viscosity of the composition to improve the handling property, and the viewpoint of enhancing the thermal conductivity and / or heat resistance of the cured product. It is preferable to use in combination with At this time, the polyfunctional epoxy resin is more preferably a trifunctional or tetrafunctional epoxy resin, and still more preferably a tetrafunctional epoxy resin.
 2官能エポキシ樹脂および多官能エポキシ樹脂を併用する場合において、その質量比(2官能エポキシ樹脂:多官能エポキシ樹脂)は、好ましくは30:70~70:30の範囲であり、より好ましくは40:60~60:40の範囲である。上記範囲内であれば、組成物のハンドリング性および硬化物の熱伝導性を高度に両立することができる。 In the case of using a bifunctional epoxy resin and a multifunctional epoxy resin in combination, the mass ratio (bifunctional epoxy resin: multifunctional epoxy resin) is preferably in the range of 30:70 to 70:30, and more preferably 40: It is in the range of 60 to 60:40. Within the above range, the handling properties of the composition and the thermal conductivity of the cured product can be highly compatible.
 (A)成分は、25℃で液状でも固体でも使用可能であるが、組成物のハンドリング性向上の観点から、25℃で液状であることが好ましい。ここで、液状とは、流動性を有することをいい、具体的には、成分を45°傾けた際に、その形状を10分以上保持できず、形状の変化を生じることをいう。 The component (A) can be used either liquid or solid at 25 ° C., but is preferably liquid at 25 ° C. from the viewpoint of improving the handling property of the composition. Here, “liquid” means having fluidity, and specifically, when the component is inclined 45 °, it means that the shape can not be maintained for 10 minutes or more, resulting in a change in shape.
 本発明の効果を一層向上させる観点から、(A)成分は、25℃での粘度が、1~50Pa・sであることが好ましく、3~40Pa・sであることがより好ましく、5~30Pa・sであることがさらにより好ましい。ここで、粘度は、後述の実施例に記載されている方法により測定される値である。 From the viewpoint of further improving the effect of the present invention, the viscosity at 25 ° C. of the component (A) is preferably 1 to 50 Pa · s, more preferably 3 to 40 Pa · s, and 5 to 30 Pa Even more preferably s. Here, the viscosity is a value measured by the method described in the examples described later.
 本発明の効果を一層向上させる観点から、(A)成分のエポキシ当量は、好ましくは50~250g/eqであり、より好ましくは100~200g/eqである。ここで、エポキシ当量は、JIS K7236:2001に準拠して測定される値である。 From the viewpoint of further improving the effects of the present invention, the epoxy equivalent of the component (A) is preferably 50 to 250 g / eq, more preferably 100 to 200 g / eq. Here, the epoxy equivalent is a value measured in accordance with JIS K 7236: 2001.
 2官能エポキシ樹脂としては、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型、ビスフェノールAD型エポキシ樹脂などのビスフェノール型エポキシ樹脂、水素化ビスフェノール型エポキシ樹脂、1,2-ブタンジオールジグリシジルエーテル、1,3-ブタンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、2,3-ブタンジオールジグリシジルエーテル、1,5-ペンタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,4-シクロヘキサンジメタノールジグリシジルエーテルなどのアルキレングリコール型エポキシ樹脂などが挙げられる。これらの中でも、芳香族ポリエステル樹脂に対する接着性に優れ、組成物の流動性が高くなる(粘度が低くなる)という観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましく用いられる。また、これらは単独あるいは混合で使用してもよい。 The bifunctional epoxy resin is not particularly limited. For example, bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, bisphenol A epoxy resin such as bisphenol AD epoxy resin, hydrogenated bisphenol epoxy resin, 1 , 2-butanediol diglycidyl ether, 1,3-butanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 2,3-butanediol diglycidyl ether 1,5-pentanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,4-cyclohexane dimer And alkylene glycol type epoxy resins such as Nord diglycidyl ether. Among them, bisphenol A epoxy resin and bisphenol F epoxy resin are preferably used from the viewpoints of excellent adhesion to aromatic polyester resin and high fluidity of the composition (lower viscosity). Also, these may be used alone or in combination.
 多官能エポキシ樹脂としては、特に限定されないが、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂;N,N-ジグリシジル-4-グリシジルオキシアニリン、4,4’-メチレンビス(N,N-ジグリシジルアニリン)、テトラグリシジルジアミノジフェニルメタン、テトラグリシジル-m-キシリレンジアミン等のグリシジルアミン化合物;グリシジル基を4つ有するナフタレン型エポキシ樹脂などを挙げることができる。これらの化合物は、それぞれ単独で用いてもよく、また2種類以上を混合して用いてもよい。 The polyfunctional epoxy resin is not particularly limited, but novolac epoxy resin such as phenol novolac epoxy resin and cresol novolac epoxy resin; N, N-diglycidyl-4-glycidyloxyaniline, 4,4'-methylene bis (N And glycidyl amine compounds such as tetraglycidyldiaminodiphenylmethane and tetraglycidyl-m-xylylenediamine; and naphthalene type epoxy resins having four glycidyl groups. These compounds may be used alone or in combination of two or more.
 (A)成分の市販品としては、特に限定されないが、例えばjER(登録商標)828、1001、801、806、807、152、604、630、871、YX8000、YX8034、YX4000(三菱ケミカル株式会社製);エピクロン(登録商標)830、850、830LVP、850CRP、835LV、HP4032D、703、720、726、820(DIC株式会社製);EP4100、EP4000、EP4080,EP4085、EP4088、EPU6、EPU7N、EPR4023、EPR1309、EP4920(株式会社ADEKA製);TEPIC(日産化学工業株式会社製);KF-101、KF-1001、KF-105、X-22-163B、X-22-9002(信越化学工業株式会社製);デナコール(登録商標)EX411、314、201、212、252(ナガセケムテックス株式会社製);DER-331、332、334、431、542(ダウケミカル社製);YH-434、YH-434L(新日鉄住友化学株式会社製)等が挙げられるが、これらに限定されるものではない。 The commercial product of the component (A) is not particularly limited. For example, jER (registered trademark) 828, 1001, 801, 806, 807, 152, 604, 630, 871, YX8000, YX8034, YX4000 (manufactured by Mitsubishi Chemical Corporation) Epiclon (registered trademark) 830, 850, 830 LVP, 850 CRP, 835 LV, HP4032D, 703, 720, 726, 820 (manufactured by DIC Corporation); EP4100, EP4000, EP4080, EP4085, EP4088, EPU6, EPU7N, EPR4023, EPR1309. , EP 4920 (made by ADEKA Co., Ltd.); TEPIC (made by Nissan Chemical Industries, Ltd.); KF-101, KF-1001, KF-105, X-22-163B, X-22-9002 (Shin-Etsu Chemical Co., Ltd.) ; Denacol (registered trademark) EX411, 314, 201, 212, 252 (manufactured by Nagase ChemteX Co., Ltd.); DER-331, 332, 334, 431, 542 (manufactured by Dow Chemical Company); YH-434, YH-434L Examples include (manufactured by Nippon Steel Sumitomo Chemical Co., Ltd.) and the like, but are not limited thereto.
 <(B)成分>
 本発明に使用される(B)成分は、25℃で固体であるアダクト型潜在性硬化剤である。ここで、固体とは、流動性を有さないものを指し、具体的には、成分を45°傾けた際に、その形状を10分以上保持できることをいう。(A)成分および(B)成分の混合物は、非加熱下(例えば25℃)で安定しているが、70~170℃(好ましくは70~150℃)に加熱することにより、(B)成分が硬化剤として作用し、(A)成分を硬化させる。ここで、アダクト型とは、例えば、エポキシ樹脂とアミン化合物が途中段階まで反応した化合物や、アミン化合物とイソシアネート化合物または尿素化合物とを途中段階まで反応した化合物をいう。特に、本発明においては、従来のエポキシ樹脂用硬化剤の中でも、(B)成分を選択し、後述する(C1)~(C3)成分と組み合わせることで、組成物のハンドリング性と硬化物の熱伝導性とを両立することができる。一方、(B)成分を含まない場合には、組成物の粘度が高くなりハンドリング性に劣る、または/および硬化物の熱伝導性が不十分となる(比較例1~3参照)。
<(B) component>
The component (B) used in the present invention is an adduct type latent curing agent which is solid at 25 ° C. Here, a solid refers to a thing which does not have fluidity, and when an ingredient is inclined 45 degrees, it says that the shape can be maintained for 10 minutes or more specifically ,. The mixture of the components (A) and (B) is stable without heating (for example 25 ° C.), but by heating to 70 to 170 ° C. (preferably 70 to 150 ° C.), the component (B) is stabilized. Acts as a curing agent to cure the component (A). Here, the adduct type refers to, for example, a compound in which an epoxy resin and an amine compound react to an intermediate stage, or a compound in which an amine compound and an isocyanate compound or a urea compound react to an intermediate stage. In particular, in the present invention, among the conventional curing agents for epoxy resin, the component (B) is selected and combined with the components (C1) to (C3) to be described later to handle the handling of the composition and the heat of the cured product. It can be compatible with conductivity. On the other hand, when the component (B) is not contained, the viscosity of the composition becomes high and the handling property is poor, and / or the thermal conductivity of the cured product becomes insufficient (see Comparative Examples 1 to 3).
 本発明の効果を一層向上させる観点から、(B)成分の平均粒径は、好ましくは0.1~100μmの範囲であり、より好ましくは1~30μmの範囲であり、さらに好ましくは2~15μmの範囲であり、さらにより好ましくは3~10μmの範囲であり、特に好ましくは5μm超10μm未満である。ここで、(B)成分の平均粒径は、レーザー回折散乱法によって求めた粒度分布における累積体積比率50%での粒径(D50)である。 From the viewpoint of further improving the effects of the present invention, the average particle diameter of the component (B) is preferably in the range of 0.1 to 100 μm, more preferably in the range of 1 to 30 μm, and still more preferably 2 to 15 μm. And even more preferably in the range of 3 to 10 μm, particularly preferably more than 5 μm and less than 10 μm. Here, the average particle size of the component (B) is the particle size (D50) at a cumulative volume ratio of 50% in the particle size distribution determined by the laser diffraction scattering method.
 低温硬化性の観点から、(B)成分の軟化温度の上限は、たとえば170℃以下であり、好ましくは160℃以下であり、より好ましくは150℃以下であり、特に好ましくは145℃以下である。また、ハンドリング性の観点から、(B)成分の軟化温度の下限は、例えば80℃以上であり、好ましくは90℃以上であり、より好ましくは100℃以上であり、特に好ましくは110℃以上である。前記軟化温度の測定方法は、JIS K7234:1986に準拠した試験方法により求められる。 From the viewpoint of low temperature curability, the upper limit of the softening temperature of the component (B) is, for example, 170 ° C. or less, preferably 160 ° C. or less, more preferably 150 ° C. or less, particularly preferably 145 ° C. or less . The lower limit of the softening temperature of the component (B) is, for example, 80 ° C. or higher, preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 110 ° C. or higher from the viewpoint of handling. is there. The measuring method of the said softening temperature is calculated | required by the test method based on JISK7234: 1986.
 前記(B)成分としては、特に限定されないが、アミン化合物とイソシアネート化合物または尿素化合物とを反応させた反応生成物(ウレアアダクト型潜在性硬化剤)またはアミン化合物とエポキシ化合物との反応生成物(エポキシ樹脂アミンアダクト型潜在性硬化剤)が好ましい。これらは組み合わせて使用してもよい。中でも、組成物のハンドリング性および硬化物の熱伝導性をより高度に両立する観点から、エポキシ樹脂アミンアダクト型潜在性硬化剤が好ましい。 The component (B) is not particularly limited, but a reaction product obtained by reacting an amine compound and an isocyanate compound or a urea compound (urea adduct type latent curing agent) or a reaction product of an amine compound and an epoxy compound Resin amine adduct type latent curing agents are preferred. These may be used in combination. Among them, an epoxy resin amine adduct type latent curing agent is preferable from the viewpoint of achieving a high degree of compatibility between the handling property of the composition and the thermal conductivity of the cured product.
 (B)成分がウレアアダクト型潜在性硬化剤である場合には、組成物の粘度を低減してハンドリング性を高める観点から、その軟化温度は、好ましくは110℃以上であり、より好ましくは120℃以上であり、さらにより好ましくは130℃以上であり、特に好ましくは135℃以上である。軟化温度の測定方法は上記と同様である。 In the case where the component (B) is a urea adduct type latent curing agent, the softening temperature is preferably 110 ° C. or higher, more preferably 120 ° C., from the viewpoint of reducing the viscosity of the composition and enhancing the handling property. It is the above, still more preferably 130 ° C or more, and particularly preferably 135 ° C or more. The method of measuring the softening temperature is the same as described above.
 前記(B)成分の市販品としては、特に限定されないが、例えば、ウレアアダクト型潜在性硬化剤としては、例えばフジキュアー(登録商標、以下同じ)FXE-1000、FXR-1020、FXR-1030、FXB-1050(以上、株式会社T&K TOKA製品)等が挙げられる。エポキシ樹脂アミンアダクト型潜在性硬化剤としては、例えば、アミキュア(登録商標、以下同じ)PN-23、アミキュアPN-H、アミキュアPN-31、アミキュアPN-40、アミキュアPN-50、アミキュアPN-F、アミキュアPN-23J、アミキュアPN-31J、アミキュアPN-40J、アミキュアMY-24、アミキュアMY-25、アミキュアMY-R、アミキュアPN-R(以上、味の素ファインテクノ株式会社製品)等が挙げられる。また、これらは単独あるいは混合で使用してもよい。 The commercial product of the component (B) is not particularly limited. For example, as the urea adduct type latent curing agent, for example, Fujicure (registered trademark, the same in the following) FXE-1000, FXR-1020, FXR-1030, FXB- 1050 (above, T & K TOKA Co., Ltd. product) etc. are mentioned. As an epoxy resin amine adduct type latent curing agent, for example, AMICURE (registered trademark, the same as the following) PN-23, AMICURE PN-H, AMICURE PN-31, AMICURE PN-40, AMICURE PN-50, AMICURE PN-F Amicure PN-23J, Amicure PN-31J, Amicure PN-40J, Amicure MY-24, Amicure MY-25, Amicure MY-R, Amicure PN-R (manufactured by Ajinomoto Fine Techno Co., Ltd.) and the like. Also, these may be used alone or in combination.
 本発明における(B)成分の配合量としては、前記(A)成分100質量部に対して、好ましくは5~50質量部であり、より好ましくは10~40質量部であり、さらにより好ましくは15~30質量部である。(B)成分の配合量が5質量部以上であると、前記(A)成分を十分に硬化させることができ、50質量部以下であると、熱伝導性樹脂組成物の硬化物の耐熱性が優れる。 The compounding amount of the component (B) in the present invention is preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the component (A), and still more preferably 15 to 30 parts by mass. The component (A) can be sufficiently cured when the amount of the component (B) is 5 parts by mass or more, and the heat resistance of the cured product of the thermally conductive resin composition can be 50 parts by mass or less Is excellent.
 <(C)成分>
 本発明の(C)成分は、(C1)平均粒径0.01μm以上2μm未満の熱伝導性粉体、(C2)平均粒径2μm以上20μm未満の熱伝導性粉体、(C3)平均粒径20μm以上150μm未満の熱伝導性粉体の混合物である。当該(C1)~(C3)成分を併用し、本発明のその他成分と組み合わせることにより、組成物のハンドリング性および硬化物の熱伝導性を両立できるという顕著な効果を有する。
<(C) component>
The component (C) of the present invention is (C1) thermally conductive powder having an average particle diameter of 0.01 μm or more and less than 2 μm, (C2) thermally conductive powder having an average particle diameter of 2 μm or more and less than 20 μm, (C3) average particle It is a mixture of thermally conductive powder having a diameter of 20 μm or more and less than 150 μm. By using the components (C1) to (C3) in combination and combining with the other components of the present invention, there is a remarkable effect that the handling property of the composition and the thermal conductivity of the cured product can be compatible.
 前記(C1)成分の平均粒径は、熱伝導性樹脂組成物の粘度を低減してハンドリング性を高めつつ、熱伝導性の高い硬化物を得る観点から、0.01μm以上2μm(2.0μm)未満が好ましく、0.1μm以上1.7μm以下がより好ましく、0.2μm以上1.5μm以下がさらにより好ましく、0.5μm以上1.2μm以下が特に好ましい。 The average particle diameter of the component (C1) is 0.01 μm or more to 2 μm (2.0 μm) from the viewpoint of obtaining a cured product having high thermal conductivity while reducing the viscosity of the thermally conductive resin composition to improve the handling property. Is preferably 0.1 μm or more and 1.7 μm or less, more preferably 0.2 μm or more and 1.5 μm or less, and particularly preferably 0.5 μm or more and 1.2 μm or less.
 また、前記(C2)成分の平均粒径は、熱伝導性樹脂組成物の粘度を低減してハンドリング性を高めつつ、熱伝導性の高い硬化物を得る観点から、2μm(2.0μm)以上20μm未満が好ましく、2.2μm以上15μm以下がより好ましく、2.5μm以上8μm以下がさらにより好ましく、3.0μm以上5.0μm以下が特に好ましい。 Further, the average particle diameter of the component (C2) is 2 μm (2.0 μm) or more from the viewpoint of obtaining a cured product having high thermal conductivity while reducing the viscosity of the thermal conductive resin composition to improve the handling property. Less than 20 μm is preferable, 2.2 μm to 15 μm is more preferable, 2.5 μm to 8 μm is further more preferable, and 3.0 μm to 5.0 μm is particularly preferable.
 また、前記(C3)成分の平均粒径は、熱伝導性樹脂組成物の粘度を低減してハンドリング性を高めつつ、熱伝導性の高い硬化物を得る観点から、20μm以上150μm以下が好ましく、23μm以上100μm以下がより好ましく、25μm以上70μm以下がさらにより好ましく、30μm以上50μm未満が特に好ましい。 The average particle diameter of the component (C3) is preferably 20 μm or more and 150 μm or less from the viewpoint of obtaining a cured product with high thermal conductivity while reducing the viscosity of the thermally conductive resin composition to enhance handling. 23 micrometers or more and 100 micrometers or less are more preferable, 25 micrometers or more and 70 micrometers or less are still more preferable, and 30 micrometers or more and less than 50 micrometers are especially preferable.
 ここで、(C1)~(C3)成分の平均粒径は、レーザー回折散乱法によって求めた粒度分布における累積体積比率50%での粒径(D50)である。 Here, the average particle diameter of the components (C1) to (C3) is the particle diameter (D50) at a cumulative volume ratio of 50% in the particle size distribution determined by the laser diffraction scattering method.
 本発明の組成物において、(C3)成分に対する(C1)成分の質量比((C1)/(C3))は、0.14~1.0である。(C1)/(C3)が0.14未満の場合には、組成物が高粘度でハンドリング性に乏しく、形成される硬化物の熱伝導性も不十分となる(比較例4参照)。また、(C1)/(C3)が1.0を超える場合には、組成物が非常に高粘度でハンドリングが困難であり、硬化物の形成が困難となる(比較例6、7参照)。本発明の効果を一層向上させる観点から、(C1)/(C3)は、好ましくは0.16~0.90であり、より好ましくは0.18~0.80であり、さらにより好ましくは0.20~0.70であり、特に好ましくは0.25~0.65である。 In the composition of the present invention, the mass ratio ((C1) / (C3)) of the component (C1) to the component (C3) is 0.14 to 1.0. When (C1) / (C3) is less than 0.14, the composition has a high viscosity and poor handleability, and the thermal conductivity of the formed cured product is also insufficient (see Comparative Example 4). When (C1) / (C3) exceeds 1.0, the composition has a very high viscosity and handling is difficult, and the formation of a cured product becomes difficult (see Comparative Examples 6 and 7). From the viewpoint of further improving the effects of the present invention, (C1) / (C3) is preferably 0.16 to 0.90, more preferably 0.18 to 0.80, and still more preferably 0. It is preferably from 20 to 0.70, particularly preferably from 0.25 to 0.65.
 本発明の組成物において、(C3)成分に対する(C2)成分の質量比((C2)/(C3))は、0.25~1.5である。(C2)/(C3)が0.25未満の場合には、組成物が高粘度でハンドリング性に乏しく、形成される硬化物の熱伝導性も不十分となる(比較例5参照)。また、(C2)/(C3)が1.5を超える場合には、組成物が非常に高粘度でハンドリングが困難であり、硬化物の形成が困難となる(比較例6、8参照)。本発明の効果を一層向上させる観点から、(C2)/(C3)は、好ましくは0.27~1.2であり、より好ましくは0.30~1.0であり、さらにより好ましくは0.40~0.95である。 In the composition of the present invention, the mass ratio ((C2) / (C3)) of the component (C2) to the component (C3) is 0.25 to 1.5. When (C2) / (C3) is less than 0.25, the composition has a high viscosity and poor handleability, and the thermal conductivity of the formed cured product is also insufficient (see Comparative Example 5). When (C2) / (C3) exceeds 1.5, the composition has a very high viscosity and handling is difficult, and the formation of a cured product becomes difficult (see Comparative Examples 6 and 8). From the viewpoint of further improving the effects of the present invention, (C2) / (C3) is preferably 0.27 to 1.2, more preferably 0.30 to 1.0, and still more preferably 0. 40 to 0.95.
 したがって、ハンドリング性および硬化物の熱伝導性の両立の観点から、(C1)/(C3)が0.14~1.0かつ(C2)/(C3)が0.25~1.5であり、好ましくは(C1)/(C3)が0.16~0.9(0.90)かつ(C2)/(C3)が0.27~1.2であり、より好ましくは(C1)/(C3)が0.18~0.8(0.80)かつ(C2)/(C3)が0.3(0.30)~1.0である。 Therefore, from the viewpoint of coexistence of handling property and thermal conductivity of the cured product, (C1) / (C3) is 0.14 to 1.0 and (C2) / (C3) is 0.25 to 1.5. (C1) / (C3) is preferably 0.16 to 0.9 (0.90) and (C2) / (C3) is 0.27 to 1.2, and more preferably (C1) / (C1) C3) is 0.18 to 0.8 (0.80) and (C2) / (C3) is 0.3 (0.30) to 1.0.
 (C1)~(C3)成分の混合割合としては、(C1)、(C2)及び(C3)の合計100質量%中、(C1)成分は5~60質量%、(C2)成分は10~65質量%、および(C3)成分は30~85質量%であることが好ましく、(C1)成分は5~30質量%、(C2)成分は10~50質量%、および(C3)成分は30~80質量%であることがより好ましく、(C1)成分は7~28質量%、(C2)成分は15~40質量%、および(C3)成分は40~70質量%であることがさらにより好ましい。(C1)~(C3)成分の混合割合が上記の範囲内であることで、ハンドリング性および硬化物の熱伝導性を良好に両立できる。 As a mixing ratio of the (C1) to (C3) components, 5 to 60 mass% of the (C1) component and 10 to 10% of the (C2) component in 100% by mass in total of (C1), (C2) and (C3) The content of the component (C3) is preferably 30 to 85% by mass, that of the component (C1) is preferably 5 to 30% by mass, the component (C2) is 10 to 50% by mass, and the component (C3) is 30 It is more preferable that the content is 80 to 80% by mass, that of 7 to 28% by mass of the component (C1), 15 to 40% by mass of the component (C2), and 40 to 70% by mass of the component (C3). preferable. When the mixing ratio of the components (C1) to (C3) is within the above range, both the handling property and the thermal conductivity of the cured product can be well achieved.
 本発明の効果のさらなる向上の観点から、(C1)成分の含有量は、(A)成分100質量部に対して、好ましくは80~300質量部であり、より好ましくは120~250質量部である。 From the viewpoint of further improving the effects of the present invention, the content of the component (C1) is preferably 80 to 300 parts by mass, more preferably 120 to 250 parts by mass with respect to 100 parts by mass of the component (A). is there.
 同様の観点から、(C2)成分の含有量は、(A)成分100質量部に対して、好ましくは150~400質量部であり、より好ましくは180~350質量部である。 From the same viewpoint, the content of the component (C2) is preferably 150 to 400 parts by mass, more preferably 180 to 350 parts by mass with respect to 100 parts by mass of the component (A).
 同様の観点から、(C3)成分の含有量は、(A)成分100質量部に対して、好ましくは250~500質量部であり、より好ましくは300~450質量部である。 From the same viewpoint, the content of the component (C3) is preferably 250 to 500 parts by mass, and more preferably 300 to 450 parts by mass with respect to 100 parts by mass of the component (A).
 前記(C)成分の含有量(すなわち(C1)~(C3)成分の合計含有量)は、特に限定されないが、例えば、本発明の熱伝導性樹脂組成物全体に対して、55~99質量%が好ましく、60~95質量%がより好ましく、70~93質量%がさらに好ましく、75~90質量%がさらにより好ましく、80~86質量%が特に好ましい。55質量%以上であれば熱伝導性能が十分であり、99質量%以下であれば作業性(組成物のハンドリング性)と硬化物の熱伝導性とを両立できる。 The content of the component (C) (that is, the total content of the components (C1) to (C3)) is not particularly limited, but, for example, 55 to 99 mass with respect to the entire thermally conductive resin composition of the present invention % Is preferable, 60 to 95% by mass is more preferable, 70 to 93% by mass is more preferable, 75 to 90% by mass is still more preferable, and 80 to 86% by mass is particularly preferable. If it is 55 mass% or more, the heat conduction performance is sufficient, and if it is 99 mass% or less, both the workability (handling property of the composition) and the thermal conductivity of the cured product can be achieved.
 前記(C1)~(C3)成分は、それぞれ独立して、アルミナ、酸化亜鉛、窒化アルミニウム、窒化ホウ素、カーボンおよびダイヤモンドからなる群より選択される少なくとも1種の熱伝導性粉体であることが好ましく、特に、熱伝導性に優れることから、それぞれ独立して、アルミナ、窒化アルミニウムおよび窒化ホウ素からなる群より選択される少なくとも1種の熱伝導性粉体であることがより好ましい。本発明の効果を一層向上させる観点から、(C1)~(C3)成分のうち少なくとも1成分はアルミナであることが好ましく、(C1)~(C3)成分の全てがアルミナであることが特に好ましい。また、(C)成分は表面処理したものであってもよい。また、これらは単独あるいは混合で使用してもよい。 The components (C1) to (C3) are each independently at least one thermally conductive powder selected from the group consisting of alumina, zinc oxide, aluminum nitride, boron nitride, carbon and diamond. In particular, at least one heat conductive powder is particularly preferably selected from the group consisting of alumina, aluminum nitride and boron nitride, because they are excellent in thermal conductivity. From the viewpoint of further improving the effects of the present invention, at least one of the components (C1) to (C3) is preferably alumina, and it is particularly preferable that all of the components (C1) to (C3) are alumina. . The component (C) may be surface-treated. Also, these may be used alone or in combination.
 前記(C1)~(C3)成分の形状は、球状または不定形であることが好ましい。 The shapes of the components (C1) to (C3) are preferably spherical or indeterminate.
 本明細書において、「球状」には、完全な球形のみではなく、ほぼ球形、楕円形などの形状が含まれる。より具体的に、「球状」とは、平均円形度が0.4以上であることをいう。 As used herein, "spherical" includes not only perfect spheres but also shapes such as approximately spheres and ovals. More specifically, "spherical" means that the average circularity is 0.4 or more.
 本明細書において、「不定形」は、球形以外の角を有する形状(例えば、針状、繊維状、鱗片状、樹枝状、平板状、破砕形状等)を指す。より具体的に、「不定形」とは、平均円形度が0.4未満であることをいう。さらには、(C)成分が、球状熱伝導性粉体と不定形熱伝導性粉体とを含む混合物であると、熱伝導性がさらに向上した硬化物を得ることができる。 In the present specification, “indeterminate” refers to a shape having corners other than a spherical shape (eg, needle shape, fiber shape, scaly shape, dendritic shape, flat shape, crushed shape, etc.). More specifically, "amorphous" means that the average circularity is less than 0.4. Furthermore, when the component (C) is a mixture containing a spherical thermally conductive powder and an amorphous thermally conductive powder, a cured product with further improved thermal conductivity can be obtained.
 ここで、円形度は、例えばフロー式粒子像分析装置FPIA-3000(マルバーン株式会社製)を用いて粒子投影像を取得し、当該粒子投影像と等しい投影面積を有する円の周囲長をX、当該粒子投影像の輪郭線の長さをYとした場合、X/Yで表される値である。さらに、各粒子の円形度を合計し、全粒子数で割ることにより、平均円形度が算出される。 Here, the degree of circularity is obtained by, for example, acquiring a particle projection image using a flow type particle image analyzer FPIA-3000 (manufactured by Malvern Co., Ltd.), and X, When the length of the outline of the said particle | grain projection image is set to Y, it is a value represented by X / Y. Furthermore, the average circularity is calculated by summing the circularity of each particle and dividing by the total number of particles.
 組成物のハンドリング性を考慮すると、(C1)成分の形状は、球状であることが好ましい。一方、硬化物の熱伝導性を考慮すると、(C1)成分の形状は、不定形であることが好ましい。
ハンドリング性を考慮すると、(C2)成分の形状は、球状であることが好ましい。また、ハンドリング性を考慮すると、(C3)成分の形状は、球状であることが好ましい。したがって、本発明の一実施形態において、(C2)および(C3)成分は、球状熱伝導性粉体である。
In consideration of the handleability of the composition, the shape of the component (C1) is preferably spherical. On the other hand, in consideration of the thermal conductivity of the cured product, the shape of the component (C1) is preferably indeterminate.
In consideration of the handling property, the shape of the component (C2) is preferably spherical. In addition, in consideration of the handling property, the shape of the component (C3) is preferably spherical. Therefore, in one embodiment of the present invention, the (C2) and (C3) components are spherical thermally conductive powders.
 <任意成分>
 本発明の熱伝導性樹脂組成物は、その特性を損なわない範囲において、任意の添加成分をさらに含んでいてもよい。前記成分としては、例えば、可塑剤、溶剤、希釈剤、シランカップリング剤等の接着性向上成分、分散剤、レベリング剤、湿潤剤、消泡剤等の界面活性剤、帯電防止剤、表面潤滑剤、防錆剤、防腐剤、粘弾性調整剤、レオロジー調整剤、着色剤、紫外線吸収剤等の老化防止剤、非熱伝導性の充填剤等を挙げることができる。さらに本発明の熱伝導性樹脂組成物には、粘弾性の調整等を目的としてとして、ポリエステル樹脂、ポリカーボネート樹脂、ポリアクリル樹脂、ポリウレタン樹脂、ポリビニル樹脂等の高分子材料を含有させてもよい。
<Optional component>
The thermally conductive resin composition of the present invention may further contain any additive component as long as the properties of the composition are not impaired. Examples of the components include plasticizers, solvents, diluents, adhesion-improving components such as silane coupling agents, dispersants, leveling agents, wetting agents, surfactants such as antifoaming agents, antistatic agents, surface lubrication Agents, rust inhibitors, preservatives, viscoelastic modifiers, rheology modifiers, colorants, anti-aging agents such as UV absorbers, non-heat conductive fillers, and the like. Furthermore, the thermally conductive resin composition of the present invention may contain a polymer material such as polyester resin, polycarbonate resin, polyacrylic resin, polyurethane resin, polyvinyl resin or the like for the purpose of adjusting the viscoelasticity and the like.
 本発明の熱伝導性樹脂組成物は、従来公知の方法により製造することができる。例えば、上記の(A)、(B)、(C1)、(C2)および(C3)成分、ならびに必要に応じて任意成分を所定の割合で配合した後、ミキサー等の公知の混合手段を使用して、好ましくは10~70℃の温度で好ましくは0.1~5時間混合することにより製造することができる。 The thermally conductive resin composition of the present invention can be produced by a conventionally known method. For example, after blending the above-mentioned components (A), (B), (C1), (C2) and (C3), and optional components as required, using a known mixing means such as a mixer It can be prepared by mixing preferably at a temperature of 10 to 70 ° C., preferably for 0.1 to 5 hours.
 ハンドリング性の観点から、本発明の熱伝導性樹脂組成物は、25℃で液状であることが好ましく、具体的には、25℃での粘度が250Pa・s未満であることが好ましい(下限:例えば0.5Pa・s以上)。ここで、粘度は、後述の実施例に記載されている方法により測定される値である。 From the viewpoint of handleability, the thermally conductive resin composition of the present invention is preferably liquid at 25 ° C. Specifically, the viscosity at 25 ° C. is preferably less than 250 Pa · s (lower limit: For example, 0.5 Pa · s or more). Here, the viscosity is a value measured by the method described in the examples described later.
 <用途>
 本発明の熱伝導性樹脂組成物は、低温硬化性およびハンドリング性に優れ、かつ熱伝導性に優れた硬化物を形成することができることから、プラスチック材料で構成された回路基板等の電子部品の放熱、電子基板の放熱、光ピックアップモジュールの放熱、カメラモジュールの放熱、パワー半導体の放熱、HEV、FCV、EV用インバーターの放熱、HEV、FCV、EV用コンバーターの放熱、HEV、FCV、EV用ECU部品の放熱などの各種用途で使用可能である。
<Use>
The thermally conductive resin composition of the present invention is excellent in low-temperature curing property and handling property, and can form a cured product excellent in thermal conductivity, so that it can be used in electronic parts such as circuit boards made of plastic materials. Heat dissipation, heat dissipation of electronic board, heat dissipation of optical pickup module, heat dissipation of camera module, heat dissipation of power semiconductor, heat dissipation of HEV, FCV, inverter for EV, heat dissipation of converter for HEV, FCV, EV, ECU for HEV, FCV, EV It can be used in various applications such as heat dissipation of parts.
 <放熱方法>
 本発明の熱伝導性組成物を電気電子部品に塗布し、加熱処理することにより、電気電子部品上に硬化物を形成することができる。形成された硬化物は熱伝導性に優れるため、当該硬化物を介して、電気電子部品から発生した熱を外部へ放熱することができる。電気電子部品としては、特に制限されず、上記<用途>に記載したもの等が挙げられる。
<Heat dissipation method>
A cured product can be formed on an electrical and electronic component by applying the heat conductive composition of the present invention to the electrical and electronic component and heat treating it. Since the formed cured product is excellent in thermal conductivity, the heat generated from the electric and electronic component can be dissipated to the outside through the cured product. It does not restrict | limit especially as an electrical and electronic component, What was described in the said <use>, etc. are mentioned.
 加熱処理条件は、特に制限されないが、プラスチック製の電気電子部品を対象とする場合には、例えば、150℃以下(例えば40~120℃)で5~120分行う。 The heat treatment conditions are not particularly limited, but in the case of a plastic electric / electronic component, the heat treatment is performed, for example, at 150 ° C. or less (eg, 40 to 120 ° C.) for 5 to 120 minutes.
 したがって、本発明の他の形態によれば、上記の熱伝導性組成物を電気電子部品に塗布することにより、電気電子部品から発生した熱を外部へ放熱させることを有する、電気電子部品の放熱方法が提供される。また、本発明の他の形態によれば、上記の熱伝導性樹脂組成物を硬化してなる、硬化物が提供される。 Therefore, according to another aspect of the present invention, heat dissipation of electrical and electronic components is achieved by radiating the heat generated from the electrical and electronic components to the outside by applying the above-described heat conductive composition to the electrical and electronic components. A method is provided. Moreover, according to the other form of this invention, the hardened | cured material formed by hardening | curing said heat conductive resin composition is provided.
 以下に実施例によって本発明について具体的に説明するが、本発明は以下の実施例により制約されるものではない。 EXAMPLES The present invention will be specifically described below by way of examples, but the present invention is not limited by the following examples.
 <熱伝導性樹脂組成物の調製>
 下記(A)成分、(B)成分(または(B)の比較成分)、および(C)成分を表1に示す質量部で採取し、常温(25℃)にてプラネタリーミキサーで60分混合し、熱伝導性樹脂組成物を調製し、各種物性に関して次のようにして測定した。
<Preparation of Thermally Conductive Resin Composition>
The following (A) component, (B) component (or the comparison component of (B) component, and (C) component are extract | collected with the mass part which shows in Table 1, and are mixed for 60 minutes by a planetary mixer at normal temperature (25 degreeC). The heat conductive resin composition was prepared, and various physical properties were measured as follows.
 <(A)成分>
 a1:25℃で液状であるビスフェノールF型2官能エポキシ樹脂(jER(登録商標)806、三菱ケミカル株式会社製、粘度15~25Pa・s(25℃)、エポキシ当量160~170g/eq)
 a2:25℃で液状であるグリシジルアミン型4官能エポキシ樹脂(テトラグリシジルジアミノジフェニルメタン、YH-434L、新日鉄住金化学株式会社製、粘度6~9Pa・s(25℃)、エポキシ当量115~119g/eq)
 <(B)成分>
 b1:25℃で固体であり、平均粒径7μm、軟化温度140℃であるウレアアダクト型潜在性硬化剤(株式会社T&K TOKA製フジキュアーFXR-1030)
 b2:25℃で固体であり、平均粒径7μm、軟化温度120℃であるウレアアダクト型潜在性硬化剤(株式会社T&K TOKA製フジキュアーFXE-1000)
 b3:25℃で固体であり、平均粒径9μm、軟化温度115℃であるエポキシ樹脂アミンアダクト型潜在性硬化剤(味の素ファインテクノ株式会社製アミキュアMY-24)
 <(B)の比較成分>
 b’1:25℃で液状である2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン イソシアヌル酸付加物(四国化成工業株式会社製2MA-OK)
 b’2:1,3-ビス(ヒドラジノカルボノエチル)-5-イソプロピルヒダントイン(味の素ファインテクノ株式会社製アミキュアVDH)
 b’3:3-フェニル-1,1-ジメチルウレア(ピイ・ティ・アイ・ジャパン株式会社製オミキュア94)
 b’4:平均粒径4μmのジシアンジアミド(ピイ・ティ・アイ・ジャパン株式会社製オミキュアDDA-5)
 <(C)成分>
 c1-1:平均粒径1.0μmの不定形アルミナ粉(昭和電工株式会社製、平均円形度0.4未満)
 c1-2:平均粒径1.0μmの球状アルミナ粉(住友化学株式会社製、平均円形度0.4以上)
 c2:平均粒径3.0μmの球状アルミナ粉(新日鉄住金マテリアルズ株式会社製、平均円形度0.4以上)
 c3:平均粒径35.0μmの球状アルミナ粉(新日鉄住金マテリアルズ株式会製、平均円形度0.4以上)
 実施例及び比較例において使用した試験法は下記の通りである。
<(A) component>
a1: Bisphenol F-type bifunctional epoxy resin (jER (registered trademark) 806, made by Mitsubishi Chemical Corporation, viscosity 15 to 25 Pa · s (25 ° C.), epoxy equivalent 160 to 170 g / eq) liquid at 25 ° C.
a2: Glycidylamine type tetrafunctional epoxy resin (tetraglycidyl diaminodiphenylmethane, YH-434 L, made by Nippon Steel Sumikin Chemical Co., Ltd., liquid at 25 ° C., viscosity 6 to 9 Pa · s (25 ° C.), epoxy equivalent 115 to 119 g / eq )
<(B) component>
b1: Urea adduct type latent curing agent which is solid at 25 ° C., has an average particle diameter of 7 μm and a softening temperature of 140 ° C. (Fujicure FXR-1030 manufactured by T & K TOKA CO., LTD.)
b2: Urea adduct type latent curing agent which is solid at 25 ° C., has an average particle diameter of 7 μm and a softening temperature of 120 ° C. (Fujicure FXE-1000 manufactured by T & K TOKA CO., LTD.)
b3: Epoxy resin amine adduct type latent curing agent which is solid at 25 ° C., average particle diameter 9 μm, and softening temperature 115 ° C. (Amicure MY-24 manufactured by Ajinomoto Fine Techno Co., Ltd.)
<Comparative component of (B)>
b'1: 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine isocyanuric acid adduct which is liquid at 25 ° C. (manufactured by Shikoku Kasei Kogyo Co., Ltd. 2MA-OK )
b'2: 1,3-bis (hydrazino carbonoethyl) -5-isopropyl hydantoin (Amicure VDH manufactured by Ajinomoto Fine Techno Co., Ltd.)
b'3: 3-phenyl-1,1-dimethylurea (Omicure 94 manufactured by Pyi T I Japan Co., Ltd.)
b'4: Dicyandiamide having an average particle diameter of 4 μm (Omicure DDA-5 manufactured by Pyi T I Japan Co., Ltd.)
<(C) component>
c1-1: Amorphous alumina powder with an average particle diameter of 1.0 μm (manufactured by Showa Denko KK, average circularity less than 0.4)
c1-2: Spherical alumina powder having an average particle diameter of 1.0 μm (manufactured by Sumitomo Chemical Co., Ltd., average circularity of 0.4 or more)
c2: Spherical alumina powder having an average particle diameter of 3.0 μm (manufactured by Nippon Steel & Sumikin Materials Co., Ltd., average circularity of 0.4 or more)
c3: Spherical alumina powder having an average particle size of 35.0 μm (manufactured by Nippon Steel & Sumikin Materials Co., Ltd., average circularity of 0.4 or more)
The test methods used in the examples and comparative examples are as follows.
 <粘度測定>
 表1の実施例及び比較例の熱伝導性樹脂組成物の粘度を評価した。粘度測定は、EHD型粘度計(東機産業株式会社製TV-33)を用いて、粘度(Pa・s)を25℃で測定した。測定条件は以下の通りである。粘度が低いほど、塗布作業性に優れハンドリング性が良好となる。特に本発明において、組成物のハンドリング性の観点から、組成物の粘度は250Pa・s未満であることが好ましく、220Pa・s未満であることがより好ましい。なお、表1中、「*」は、粘度が高すぎて測定不可能であったことを表す:
 [測定条件]
 コーンローター:3°×R14
 回転速度:0.5rpm。
<Viscosity measurement>
The viscosity of the thermally conductive resin composition of the Example of Table 1 and a comparative example was evaluated. The viscosity (Pa · s) was measured at 25 ° C. using an EHD viscometer (TV-33 manufactured by Toki Sangyo Co., Ltd.). The measurement conditions are as follows. The lower the viscosity, the better the coating workability and the better the handling property. In the present invention, in particular, the viscosity of the composition is preferably less than 250 Pa · s, more preferably less than 220 Pa · s, from the viewpoint of the handling property of the composition. In Table 1, "*" indicates that the viscosity was too high to be measured:
[Measurement condition]
Corn rotor: 3 ° × R14
Rotation speed: 0.5 rpm.
 <熱伝導率測定>
 表1の実施例及び比較例の熱伝導性樹脂組成物を、厚さが0.5mmになるようにフッ素樹脂製板上に塗布し、80℃にて1時間加熱して組成物を硬化させ、試験片を作製した。熱伝導率の測定は熱伝導計(京都電子工業株式会社製QTM-D3)を用いて、試験片の硬化物が形成された面について、熱伝導率(W/(m・K))を25℃で測定した。硬化物は、熱伝導率が大きいほど、熱が伝わりやすいことから好ましい。特に、本発明において、硬化物の熱伝導性の観点から、硬化物の熱伝導率は3.8W/(m・K)以上であることが好ましい。当該下限値を満たす場合と満たさない場合とでは、電気電子部品からの発熱を外部に放熱する性能において顕著な差があると示唆される。硬化物の熱伝導率は、4.0W/(m・K)以上であることが好ましい。なお、表1の実施例に係る熱伝導性樹脂組成物は、すべて80℃にて1時間加熱処理することで、表面にタック(べたつき)の無い硬化物が得られたため、低温硬化性を有することが認められた。また、表1中、「**」は、組成物の粘度が高すぎて、硬化物を形成できなかったことを表す。
<Thermal conductivity measurement>
The thermally conductive resin compositions of the examples and comparative examples in Table 1 are applied on a fluorine resin plate to a thickness of 0.5 mm, and heated at 80 ° C. for 1 hour to cure the composition. , Test pieces were made. The thermal conductivity is measured using a thermal conductivity meter (QTM-D3 manufactured by Kyoto Denshi Kogyo Co., Ltd.). The thermal conductivity (W / (m · K)) of the surface on which the cured product of the test piece is formed is 25 Measured in ° C. The cured product is preferable because the larger the thermal conductivity, the easier it is for heat to be transmitted. In the present invention, in particular, the thermal conductivity of the cured product is preferably 3.8 W / (m · K) or more from the viewpoint of the thermal conductivity of the cured product. It is suggested that there is a significant difference in the performance of radiating heat generated from the electric / electronic component to the outside between the case where the lower limit value is satisfied and the case where the value is not satisfied. The thermal conductivity of the cured product is preferably 4.0 W / (m · K) or more. The thermally conductive resin compositions according to the examples in Table 1 all have low temperature curability because heat treatment at 80 ° C. for 1 hour yielded a cured product without tack (stickiness) on the surface. Was admitted. Moreover, in Table 1, "**" represents that the viscosity of the composition was too high to form a cured product.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1~11の結果より、本発明の熱伝導性樹脂組成物は、低温硬化性およびハンドリング性に優れ、かつ熱伝導性に優れた硬化物を形成できることが確認された。 From the results of Examples 1 to 11 in Table 1, it was confirmed that the thermally conductive resin composition of the present invention can form a cured product excellent in low temperature curability and handling properties and excellent in thermal conductivity.
 一方で、本発明の(B)成分ではないb’1~b’4の硬化剤を配合した組成物において、比較例1および3の組成物は、実施例の組成物に比べて(C)成分を多く含有しているにもかかわらず、形成される硬化物の熱伝導率が劣ることが確認された。また、比較例2の組成物は、高粘度でありハンドリング性が劣ることが確認された。 On the other hand, in the composition containing the curing agent of b'1 to b'4 which is not the component (B) of the present invention, the compositions of Comparative Examples 1 and 3 are compared with the composition of the example (C) It was confirmed that the heat conductivity of the cured product formed was inferior despite the fact that it contained a large amount of components. Moreover, it was confirmed that the composition of Comparative Example 2 has high viscosity and poor handling.
 また、本発明の(C1)~(C3)成分を含むものの、(C1)/(C3)が0.14未満である、または(C2)/(C3)が0.25未満である組成物(比較例4および5)は、ハンドリング性および形成される硬化物の熱伝導率がともに劣ることが確認された。 Further, a composition containing components (C1) to (C3) of the present invention, wherein (C1) / (C3) is less than 0.14, or (C2) / (C3) is less than 0.25 Comparative Examples 4 and 5) were confirmed to be inferior in both the handling property and the thermal conductivity of the formed cured product.
 また、本発明の(C1)~(C3)成分を含むものの、(C1)/(C3)が1.0を超える、または/および(C2)/(C3)が1.5を超える組成物(比較例6~8)は、非常に高粘度でハンドリングが困難となり、硬化物を形成することができなかった。 Moreover, although it contains the (C1)-(C3) component of this invention, the composition (C1) / (C3) exceeds 1.0 or / and (C2) / (C3) exceeds 1.5 ( In Comparative Examples 6 to 8), the viscosity was so high that handling was difficult, and a cured product could not be formed.
 本発明の熱伝導性樹脂組成物は、低温硬化性およびハンドリング性に優れ、かつ熱伝導性に優れた硬化物を形成できることから、プラスチック材料で構成された回路基板等の電子部品の放熱の用途など、広い分野に適用可能である。 The thermally conductive resin composition of the present invention is excellent in low-temperature curing property and handling property, and can form a cured product excellent in thermal conductivity, so that it is used for heat radiation of electronic parts such as circuit boards made of plastic materials. Etc. are applicable to a wide range of fields.
 本出願は、2017年10月18日に出願された日本特許出願番号2017-202015号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2017-202015 filed Oct. 18, 2017, the disclosure of which is incorporated by reference in its entirety.

Claims (13)

  1.  下記の(A)~(C)成分を含む熱伝導性樹脂組成物:
     (A)エポキシ樹脂
     (B)25℃で固体であるアダクト型潜在性硬化剤
     (C)下記(C1)~(C3)成分の混合物であり、(C3)成分に対する(C1)成分の質量比が0.14~1.0であり、かつ(C3)成分に対する(C2)成分の質量比が0.25~1.5である、混合物;
      (C1)平均粒径0.01μm以上2μm未満の熱伝導性粉体
      (C2)平均粒径2μm以上20μm未満の熱伝導性粉体
      (C3)平均粒径20μm以上150μm未満の熱伝導性粉体。
    Thermal conductive resin composition containing the following components (A) to (C):
    (A) Epoxy resin (B) Adduct type latent curing agent which is solid at 25 ° C. (C) A mixture of the following components (C1) to (C3), and the mass ratio of the component (C1) to the component (C3) is A mixture having a mass ratio of the component (C2) to the component (C3) of 0.25 to 1.5;
    (C1) thermally conductive powder having an average particle diameter of 0.01 μm or more and less than 2 μm (C2) thermally conductive powder having an average particle diameter of 2 μm or more and less than 20 μm (C3) thermally conductive powder having an average particle diameter of 20 μm or more and less than 150 μm .
  2.  前記(C1)~(C3)成分が、それぞれ独立して、アルミナ、酸化亜鉛、窒化アルミニウム、窒化ホウ素、カーボンおよびダイヤモンドからなる群より選択される少なくとも1種の熱伝導性粉体である、請求項1に記載の熱伝導性樹脂組成物。 The (C1) to (C3) components are each independently at least one thermally conductive powder selected from the group consisting of alumina, zinc oxide, aluminum nitride, boron nitride, carbon and diamond. The thermally conductive resin composition according to Item 1.
  3.  前記(C1)~(C3)成分の形状が、球状または不定形である、請求項1または2に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to claim 1, wherein the shape of the components (C1) to (C3) is spherical or amorphous.
  4.  前記(C)成分が、球状熱伝導性粉体および不定形熱伝導性粉体を含む混合物である、請求項1~3のいずれか1項に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to any one of claims 1 to 3, wherein the component (C) is a mixture containing spherical thermally conductive powder and amorphous thermally conductive powder.
  5.  前記(C1)、(C2)および(C3)成分の合計100質量%中、(C1)成分は5~60質量%、(C2)成分は10~65質量%、および(C3)成分は30~85質量%含まれる、請求項1~4のいずれか1項に記載の熱伝導性樹脂組成物。 In the total 100% by mass of the (C1), (C2) and (C3) components, the (C1) component is 5 to 60% by mass, the (C2) component is 10 to 65% by mass, and the (C3) component is 30 to The thermally conductive resin composition according to any one of claims 1 to 4, which contains 85% by mass.
  6.  前記熱伝導性樹脂組成物中の前記(C)成分の含有量は、55~99質量%である、請求項1~5のいずれか1項に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to any one of claims 1 to 5, wherein the content of the component (C) in the thermally conductive resin composition is 55 to 99% by mass.
  7.  前記(A)成分が、25℃で液状である、請求項1~6のいずれか1項に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to any one of claims 1 to 6, wherein the component (A) is liquid at 25 ° C.
  8.  前記(A)成分100質量部に対して、(B)成分を5~50質量部含む、請求項1~7のいずれか1項に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to any one of claims 1 to 7, which contains 5 to 50 parts by mass of the component (B) with respect to 100 parts by mass of the component (A).
  9.  25℃で液状である、請求項1~8のいずれか1項に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to any one of claims 1 to 8, which is liquid at 25 ° C.
  10.  前記(B)成分の平均粒径が0.1~100μmの範囲である、請求項1~9のいずれか1項に記載の熱伝導性樹脂組成物。 The heat conductive resin composition according to any one of claims 1 to 9, wherein the average particle diameter of the component (B) is in the range of 0.1 to 100 μm.
  11.  前記(B)成分が、ウレアアダクト型潜在性硬化剤またはエポキシ樹脂アミンアダクト型潜在性硬化剤である、請求項1~10のいずれか1項に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to any one of claims 1 to 10, wherein the component (B) is a urea adduct type latent curing agent or an epoxy resin amine adduct type latent curing agent.
  12.  請求項1~11のいずれか1項に記載の熱伝導性樹脂組成物を硬化してなる、硬化物。 A cured product obtained by curing the thermally conductive resin composition according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか1項に記載の熱伝導性組成物を電気電子部品に塗布することにより、電気電子部品から発生した熱を外部へ放熱させることを有する、電気電子部品の放熱方法。 A method of radiating heat of electrical and electronic components, comprising radiating the heat generated from the electrical and electronic components to the outside by applying the thermally conductive composition according to any one of claims 1 to 11 to the electrical and electronic components. .
PCT/JP2018/037446 2017-10-18 2018-10-05 Thermally conductive resin composition, cured object, and heat radiation method WO2019078044A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019549213A JPWO2019078044A1 (en) 2017-10-18 2018-10-05 Thermally conductive resin composition, cured product and heat dissipation method
CN201880067861.8A CN111247207B (en) 2017-10-18 2018-10-05 Thermally conductive resin composition, cured product, and heat dissipation method
JP2023029107A JP2023078170A (en) 2017-10-18 2023-02-28 Heat-conductive resin composition, cured product, and method of heat release

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-202015 2017-10-18
JP2017202015 2017-10-18

Publications (1)

Publication Number Publication Date
WO2019078044A1 true WO2019078044A1 (en) 2019-04-25

Family

ID=66173636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037446 WO2019078044A1 (en) 2017-10-18 2018-10-05 Thermally conductive resin composition, cured object, and heat radiation method

Country Status (3)

Country Link
JP (2) JPWO2019078044A1 (en)
CN (1) CN111247207B (en)
WO (1) WO2019078044A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206725A (en) * 2004-01-23 2005-08-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2007246861A (en) * 2006-03-20 2007-09-27 Nippon Steel Chem Co Ltd Resin composition, and varnish obtained using the resin composition, film adhesive, and copper foil attached with film adhesive
JP2012188632A (en) * 2011-03-14 2012-10-04 Sekisui Chem Co Ltd Insulating material, and layered structure
WO2014115637A1 (en) * 2013-01-22 2014-07-31 東レ株式会社 Adhesive composition and adhesive sheet, and cured material and semiconductor device using same
JP2016050301A (en) * 2014-08-28 2016-04-11 スリーボンドファインケミカル株式会社 Thermally conductive resin composition
WO2016125664A1 (en) * 2015-02-05 2016-08-11 味の素株式会社 Resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379108B (en) * 2006-02-03 2011-11-30 旭化成电子材料株式会社 Microcapsule based harderner for epoxy resin, masterbatch-based hardenercomposition for epoxy resin, one-part epoxy resin composition, and processed good
JP2012529555A (en) * 2009-06-12 2012-11-22 トリリオン サイエンス インク Latent curing agent for epoxy composition
WO2013145608A1 (en) * 2012-03-29 2013-10-03 住友ベークライト株式会社 Resin composition and semiconductor device
JP2017128637A (en) * 2016-01-19 2017-07-27 東レ株式会社 Adhesive composition, adhesive sheet, and laminate, substrate, and led module having the adhesive sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206725A (en) * 2004-01-23 2005-08-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2007246861A (en) * 2006-03-20 2007-09-27 Nippon Steel Chem Co Ltd Resin composition, and varnish obtained using the resin composition, film adhesive, and copper foil attached with film adhesive
JP2012188632A (en) * 2011-03-14 2012-10-04 Sekisui Chem Co Ltd Insulating material, and layered structure
WO2014115637A1 (en) * 2013-01-22 2014-07-31 東レ株式会社 Adhesive composition and adhesive sheet, and cured material and semiconductor device using same
JP2016050301A (en) * 2014-08-28 2016-04-11 スリーボンドファインケミカル株式会社 Thermally conductive resin composition
WO2016125664A1 (en) * 2015-02-05 2016-08-11 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
CN111247207B (en) 2022-11-08
JP2023078170A (en) 2023-06-06
CN111247207A (en) 2020-06-05
JPWO2019078044A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
JP6712402B2 (en) Coated particles
JPWO2013111697A1 (en) Resin composition and semiconductor mounting substrate formed by molding the same
TWI693250B (en) Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material
JP2019196433A (en) Highly thermoconductive curable resin composition, cured product of the composition, laminate including resin layer provided by using the composition, and power module including the laminate
JP7275469B2 (en) coated particles
TWI801488B (en) Resin composition and its cured product, adhesives for electronic parts, semiconductor devices, and electronic parts
JP6420626B2 (en) Conductive resin composition for bonding electronic components
JP2015183093A (en) Composition suitable to interlaminar filler for lamination type semiconductor device, lamination type semiconductor device, and method for producing lamination type semiconductor device
WO2014103552A1 (en) Liquid epoxy resin composition
JP2020132779A (en) Liquid epoxy resin composition and cured product obtained by curing the same
JP6772946B2 (en) Low temperature curable liquid epoxy resin composition
JP6439924B2 (en) Thermally conductive resin composition
JP5258191B2 (en) Adhesive for semiconductor chip bonding
JP2018039992A (en) Resin composition and three-dimensional laminated type semiconductor device using the resin composition
WO2019078044A1 (en) Thermally conductive resin composition, cured object, and heat radiation method
JP2016117869A (en) Resin composition for semiconductor adhesion and semiconductor device
JP2019167436A (en) Resin composition, semiconductor device and method for producing semiconductor device
TWI817988B (en) Epoxy resin composition
JP6508508B2 (en) Resin composition, thermally conductive adhesive and laminate
WO2018159564A1 (en) Resin composition
JP7119477B2 (en) RESIN COMPOSITION, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP6867894B2 (en) Compositions, epoxy resin curing agents, epoxy resin compositions, thermosetting compositions, cured products, semiconductor devices, and interlayer insulating materials
CN115703919A (en) Thermally conductive resin composition
JP2023027752A (en) Thermally conductive resin composition
JP2019167434A (en) Resin composition, semiconductor device and method for producing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549213

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868541

Country of ref document: EP

Kind code of ref document: A1