WO2019105454A1 - 电子膨胀阀及具有其的制冷系统 - Google Patents

电子膨胀阀及具有其的制冷系统 Download PDF

Info

Publication number
WO2019105454A1
WO2019105454A1 PCT/CN2018/118535 CN2018118535W WO2019105454A1 WO 2019105454 A1 WO2019105454 A1 WO 2019105454A1 CN 2018118535 W CN2018118535 W CN 2018118535W WO 2019105454 A1 WO2019105454 A1 WO 2019105454A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic expansion
expansion valve
carrier
valve
ring gear
Prior art date
Application number
PCT/CN2018/118535
Other languages
English (en)
French (fr)
Inventor
吕锋
刘唐青
舒小辉
魏先让
Original Assignee
浙江三花智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711487611.3A external-priority patent/CN109869488B/zh
Application filed by 浙江三花智能控制股份有限公司 filed Critical 浙江三花智能控制股份有限公司
Priority to MYPI2020002707A priority Critical patent/MY198032A/en
Priority to US16/767,561 priority patent/US11168804B2/en
Priority to EP18882847.9A priority patent/EP3719365B1/en
Priority to JP2020529260A priority patent/JP7053830B2/ja
Priority to KR1020207017654A priority patent/KR102391438B1/ko
Publication of WO2019105454A1 publication Critical patent/WO2019105454A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing

Definitions

  • the present invention relates to the field of refrigeration, and in particular to an electronic expansion valve and a refrigeration system therewith.
  • Fig. 1 shows a typical deceleration type electronic expansion valve structure.
  • the deceleration type electronic expansion valve for an inverter air conditioner is mainly composed of two parts, one part is a valve body part for flow adjustment, and the other part is a coil part for driving.
  • the coil part comprises: a permanent magnet type stepping motor 1', a gear reducer 2' having a three-stage deceleration, a thread sub-structure 5' for converting a rotary motion of the motor into a vertical movement of the screw rod 3', and the valve body comprises a valve seat 10', and a core member such as a spring 7 that controls the lift and lowering of the valve needle 8.
  • the electronic controller of the air conditioning system controls the output shaft of the stepping motor 1' of the electronic expansion valve to rotate, and the motor 1' cooperates with the gear reducer 2' to drive the gear reducer 2'
  • the output shaft rotates, and the output shaft of the gear reducer 2' cooperates with the screw rod to drive the screw rod to rotate, and then the screw rod cooperates with the thread pair structure 5' to enable the screw rod to move up and down.
  • a steel ball 11' is welded to the tip end of the screw, a bushing 6' is provided at the lower end of the steel ball 11', and a valve needle 8 is connected to the lower end of the bushing 6'.
  • valve needle 8 When the screw is driven to move downward by the driving member, the screw will bear against the steel ball 11', the steel ball 11' bears against the bushing 6', and the bushing 6' bears against the valve needle 8 so that the valve needle 8 can be screwed with the screw.
  • the downward movement is synchronized until the valve needle 8 is in the closed position, that is, the position at which the valve needle 8 abuts against the valve body 10'.
  • the spring 7 is in a continuously stretched state.
  • the speed reduction mechanism of the electronic expansion valve is usually a spur gear reduction mechanism (fixed shaft train).
  • 2 shows a specific structure of a three-stage reduction gear reducer 2', wherein the first-stage reduction mechanism is constituted by a gear 1a and a gear 1b, and the second-stage reduction mechanism is constituted by a gear 2a and a gear 2b, and the third-stage deceleration
  • the mechanism is composed of a gear 3a and a gear 3b.
  • the motor shaft 12' is disposed coaxially with the gear 1a, the motor shaft 12' drives the gear 1a to rotate, and the gear 1a drives the gear 1b to rotate.
  • the gear 1b drives the gear 2a of the second stage reduction mechanism to rotate, and the gear 2a drives the gear 2b to rotate.
  • the gear 2b drives the gear 3a of the third stage reduction mechanism to rotate, and the gear 3a drives the gear 3b to rotate, eventually driving the output shaft 13' to rotate.
  • the output torque in order to increase the flow control range, the output torque must be increased, and in order to improve the control accuracy, if other conditions are constant (for example, the input torque is constant), a large reduction ratio must be set.
  • the other is to increase the number of stages of gear reduction, but the above structure is bound to cause an increase in the number of gears, thus also causing an increase in the volume of the gear reducer. In the end, the requirements for high precision and miniaturization cannot be achieved. In addition, an increase in the number of stages can also result in reduced transmission efficiency and stability of the overall system. At the same time, there is room for improvement in the structure of the gearbox.
  • a primary object of the present invention is to provide an electronic expansion valve employing a new gearbox structure, on the basis of which a refrigeration system employing an electronic expansion valve is provided.
  • an electronic expansion valve includes: a valve seat having a cavity and a valve port portion communicating with the cavity; and a valve needle movably disposed in the cavity,
  • the valve needle has an open position for opening the valve mouth portion and a closed position for closing the valve mouth portion;
  • the drive mechanism includes a rotor and a coil surrounding the circumferential direction of the rotor;
  • the planetary gear speed reduction mechanism includes a planet carrier, a planetary gear, and a gear box
  • the gear box includes a box body, a fixed ring gear, and an output ring gear movably disposed in the box body, and one end of the box body is provided with a folded portion, and the folded portion
  • the valve seat is fixedly connected; the other end of the box body is fixedly connected to the fixed ring gear.
  • a refrigeration system including an electronic expansion valve which is the above-described electronic expansion valve.
  • the electronic expansion valve includes a planetary gear speed reduction mechanism, and the driving mechanism serves as an input end of the planetary gear speed reduction mechanism.
  • the planetary gear speed reduction mechanism has an output inner ring gear, and the output inner ring gear is fixedly connected with the screw of the transmission mechanism.
  • the screw rod is rotated, and the screw rod is screwed with the nut to convert the rotation of the screw rod into a linear motion. Since the screw can move up and down, the valve needle that abuts the screw can also move up and down, and finally the needle can be moved between the open position and the closed position.
  • the transmission space is fully utilized, so the space size of the entire reduction mechanism is much smaller than that of the spur gear reduction mechanism under the same conditions. That is to say, under the same size conditions, the reduction ratio of the planetary gear reduction mechanism is much larger than the reduction ratio of the spur gear reduction mechanism.
  • the increase in the reduction ratio makes the stroke control accuracy of the valve needle higher. Therefore, the above structure enables the electronic expansion valve to achieve high precision and miniaturization while increasing the flow adjustment range, and solves the problem that the electronic expansion valve of the prior art cannot achieve high precision while increasing the flow adjustment range. The problem of miniaturization requirements.
  • FIG. 1 is a schematic view showing the internal structure of an electronic expansion valve in the background art
  • FIG. 2 is a schematic structural view of a speed reduction mechanism of the electronic expansion valve of FIG. 1;
  • Figure 3 is a schematic longitudinal sectional view showing an embodiment of an electronic expansion valve according to the present invention.
  • FIG. 4 is a partial cross-sectional structural view showing the planetary gear reduction mechanism of the electronic expansion valve of FIG. 3 in cooperation with the rotor and the screw;
  • Figure 5 is a longitudinal sectional view showing the planetary gear reduction mechanism of the electronic expansion valve of Figure 4 in cooperation with the rotor and the screw;
  • FIG. 6 is a schematic exploded view showing the planetary gear reduction mechanism of the electronic expansion valve of FIG. 4 and the rotor and the screw;
  • FIG. 7 is a partial cross-sectional structural view showing the cooperation of the casing body of the electronic expansion valve of FIG. 4 and the fixed ring gear;
  • Figure 8 is a perspective view showing the output inner ring gear of the electronic expansion valve of Figure 4 and the screw structure;
  • Figure 9 is a partial cross-sectional structural view showing the rotor and the carrier of the electronic expansion valve of Figure 4;
  • Fig. 10 is a schematic longitudinal sectional view showing the rotor and the carrier of Fig. 9.
  • the electronic expansion valve of the present embodiment includes a valve seat 10, a valve needle 20, a drive mechanism 30, a planetary gear reduction mechanism 40, and a transmission mechanism 50, wherein the valve seat 10 has a cavity 6 and A valve port portion 11 that communicates with the cavity 6.
  • the valve needle 20 is movably disposed within the cavity 6, the valve needle 20 having an open position to open the valve port portion 11 and a closed position to close the valve port portion 11.
  • the drive mechanism 30 includes a rotor 32 and a coil 31 that is circumferentially outward of the rotor 32.
  • the planetary gear reduction mechanism 40 includes a carrier 41, a planetary gear 42 and a gearbox 43.
  • the rotor 32, the carrier 41 and the gearbox 43 are coaxially disposed.
  • the drive mechanism 30 serves as an input end of the planetary gear reduction mechanism 40, and the rotor 32 and the carrier 41 is fixedly connected to drive the planet carrier 41 to rotate along its axis, the carrier 41 is provided with a first mounting shaft 411, the planetary gear 42 is sleeved on the first mounting shaft 411, and the gearbox 43 includes a box body fixedly disposed on the valve seat 10. 431.
  • the fixed inner ring gear 432 disposed on the box body 431 and the output inner ring gear 433 movably disposed in the box body 431.
  • the planetary gear 42 extends into the box body 431 and simultaneously fixes the inner ring gear 432.
  • the output ring gear 433 is meshed, and the output ring gear 433 supports the carrier 41.
  • the transmission mechanism 50 includes a nut 52 fixed to the valve seat 10 and a screw shaft 51 matched with the internal thread of the nut 52.
  • the first end of the screw rod 51 is fixedly connected with the output inner ring gear 433, and the second end of the screw rod 51 is
  • the valve needle 20 abuts to move the valve needle 20 between an open position and a closed position.
  • the electronic expansion valve includes a planetary gear speed reduction mechanism 40, and the drive mechanism 30 serves as an input end of the planetary gear speed reduction mechanism 40.
  • the planetary gear speed reduction mechanism has an output inner ring gear 433, an output inner ring gear 433 and a transmission mechanism 50.
  • the lead screw 51 is fixedly coupled to rotate the lead screw 51, and the lead screw 51 is screwed to the nut 52 to convert the rotational motion of the lead screw 51 into a linear motion. Since the screw shaft 51 can move up and down, the valve needle 20 that abuts against the screw shaft 51 can also move up and down, and finally the purpose of the valve needle 20 can be moved between the open position and the closed position.
  • the transmission space is fully utilized, so the space size of the entire reduction mechanism is much smaller than that of the spur gear reduction mechanism under the same conditions. That is to say, under the same size condition, the reduction ratio of the planetary gear reduction mechanism 40 is much larger than the reduction ratio of the spur gear reduction mechanism.
  • the increase in the reduction ratio makes the stroke control accuracy of the valve needle 20 higher. Therefore, the above structure enables the electronic expansion valve to achieve high precision and miniaturization while increasing the flow adjustment range, and solves the problem that the electronic expansion valve of the prior art cannot achieve high precision while increasing the flow adjustment range. The problem of miniaturization requirements.
  • the carrier 41 fixedly disposed with the rotor 32 rotates therewith.
  • the planetary gear 42 will revolve around the rotational axis of the carrier 41.
  • the orbiting planetary gear 42 begins to rotate after engaging the fixed ring gear 432.
  • the rotating planetary gear 42 is again meshed with the output ring gear 433 such that the output ring gear 433 rotates. Since the output ring gear 433 is fixedly coupled to the lead screw 51, the lead screw 51 will also rotate accordingly.
  • the screw shaft 51 cooperates with a nut 52 fixed to the valve seat 10 during the rotation to convert the rotation of the screw shaft 51 into a linear motion.
  • the output inner ring gear 433 which is fixedly coupled thereto, will also move downward.
  • the output ring gear 433 supports the carrier 41 and the rotor 32 fixed to the carrier 41, so that as the output ring gear 433 moves downward, the carrier 41 and the rotor 32 also move downward.
  • the output inner ring gear 433, which is fixedly coupled thereto will also move upward.
  • the output ring gear 433 supports the carrier 41 and the rotor 32 fixed to the carrier 41, so that as the output ring gear 433 moves upward, the carrier 41 and the rotor 32 also move upward. Therefore, as the screw 51 moves up and down, the carrier 41 and the rotor 32 also move up and down.
  • the electronic expansion valve further includes a housing 60.
  • the outer casing 60 is disposed on the upper portion of the valve seat 10 and supported by the valve seat 10.
  • the outer casing 60 has an accommodation space 1 communicating with the cavity 6.
  • the rotor 32, the planetary gear reduction mechanism 40 and the transmission mechanism 50 are disposed in the accommodation space 1.
  • the coil 31 is disposed around the circumferential direction of the outer casing 60.
  • the carrier 41 and the rotor 32 are pressed against the output ring gear 433 by the force of gravity.
  • the above structure is simple, but the electronic expansion valve vibrates during operation (such as that generated when the drive mechanism 30 is operated). Vibration), the carrier 41 and the rotor 32 may move up and down under the influence of the above-mentioned vibration, which causes the carrier 41 and the rotor 32 to collide with the output ring gear 433 or other components, thereby generating abnormal noise, resulting in the user. Poor use experience.
  • the electronic expansion valve further includes a top frame 100 and a vibration damper 110.
  • the top frame 100 is fixedly disposed in the accommodating space 1 and above the planet carrier 41.
  • the damper member 110 is disposed between the top frame 100 and the carrier 41 to provide a downward abutting force to the carrier 41.
  • the above structure causes the carrier 41 to be pressed against the output ring gear 433 by its own weight, and is also subjected to a downward abutting force applied by the damper member 110 to press it against the output ring gear 433. Therefore, the above structure can greatly reduce the collision between the carrier 41 and the rotor 32 and the output ring gear 433 or other components, thereby greatly reducing abnormal noise and improving the user experience. It should be noted that the magnitude of the abutting force applied to the carrier 41 by the vibration damper 110 can be adjusted according to actual conditions.
  • the top frame 100 may not be provided, and the vibration damper 110 may be disposed directly between the top of the casing and the planet carrier 41, and the object of the present invention can also be achieved.
  • the planetary gear speed reduction mechanism 40 further includes a core shaft 44 that is sequentially disposed in the top frame 100 , the carrier 41 , and the screw rod 51 from top to bottom. And the top frame 100, the carrier 41 and the screw rod 51 are in clearance fit.
  • the above structure is simple, and it is possible to ensure that the carrier 41 and the lead screw 51 are coaxial.
  • the vibration damping member 110 is a vibration damping spring, and the vibration damping spring is sleeved on the core shaft 44.
  • the first end of the vibration damping spring abuts against the bottom surface of the top frame 100, and the vibration is damped.
  • the second end of the spring abuts against the top surface of the planet carrier 41.
  • the damping spring is sleeved on the mandrel 44 so that the damper spring is not compressed when the damper spring is compressed, so that the damper spring can provide a predetermined abutting force for the planet carrier 41, thereby ensuring the noise reduction effect.
  • the above structure encloses the damper spring on the existing mandrel 44, and it is not necessary to provide other components that cooperate with the damper spring, thereby reducing the production cost.
  • the top surface of the carrier 41 is provided with a positioning groove 413, and the second end of the damping spring abuts against the groove bottom of the positioning groove 413.
  • the above structure can further avoid the occurrence of a eccentricity when the damper spring is compressed.
  • the rotor 32 is injection molded integrally with the carrier 41, and/or the lead screw 51 is injection molded integrally with the output ring gear 433.
  • the above structure is simple and easy to process. Further, since the above structure avoids fixing the rotor 32 to the carrier 41 by other fasteners, the assembly efficiency is greatly improved, and the production cost is lowered. It should be noted that, during processing, the carrier 41 should be formed first, and then the rotor 32 is injection molded on the carrier 41. Of course, those skilled in the art will appreciate that the fixing between the rotor 32 and the planet carrier 41 can be fixed together by welding, bonding, screwing or the like in addition to the method of integral injection molding.
  • the fixed ring gear 432 is integrally injection molded with the case body 431.
  • the case body 431 has a cylindrical shape, and the fixed ring gear 432 is located at the upper end of the case body 431.
  • the lower end of the case body 431 is fixed to the valve seat 10 by welding.
  • the case body 431 has a substantially cylindrical structure, and has a folded portion 431a at one end, and the folded portion 431a is fixedly coupled to the valve seat 10 by welding.
  • the other end of the casing body 431 is provided with a penetrating portion 431b penetrating the body thereof.
  • the number of the penetrating portions 431b is one or more.
  • the casing body 431 may be first placed in a mold and then injection molded. In this way, the fixed ring gear 432 can be formed on the casing body 431, and the penetration portion 431b can be filled with a part of the material of the fixed ring gear 432. Due to the provision of the through portion 431b, the fixed ring gear 432 is tightly coupled to the case body 431 and cannot be detached, and has a high connection strength.
  • the longitudinal cross-sectional shape of the penetration portion 431b is not limited to a circular shape, and may be a rectangular shape, a triangular shape, or an irregular shape. Those skilled in the art can understand that as long as the peripheral wall of the casing body 431 is penetrated, the fixed internal tooth is fixed. At the time of injection molding, the plastic material can flow into the penetration portion 431b to achieve the purpose of filling the penetration portion 431b.
  • the above structure is simple and easy to process.
  • the above structure avoids fixing the fixed ring gear 432 to the case body 431 by other fasteners, assembly efficiency is greatly improved, and production cost is reduced.
  • the first mounting shaft 411 is one or more disposed along the circumferential direction of the carrier 41 , and the planetary gears 42 are disposed in one-to-one correspondence with the first mounting shaft 411 .
  • the first mounting shaft 411 may be one.
  • the planetary gear 42 is one corresponding to the first mounting shaft 411, and the first mounting shaft 411 is located in the circumferential direction of the axis of the carrier 41. Outside.
  • the first mounting shafts 411 are a plurality of (two or more, for example, two, three, four, . . . ) spaced apart in the circumferential direction of the carrier 41,
  • the planetary gears 42 are provided in plurality (two or more, for example, two, three, four, ...) in one-to-one correspondence with the first mounting shaft 411.
  • the above structure makes the operation of the planetary gear reduction mechanism 40 more stable.
  • the first mounting shaft 411 is three, and the planetary gears 42 are three disposed in one-to-one correspondence with the first mounting shaft 411.
  • each of the planetary gears 42 is sleeved on each of the first mounting shafts 411 in one-to-one correspondence.
  • the planetary gears 42 rotate at a high speed, in order to prevent the planetary gears 42 from being removed from the first mounting shaft 411.
  • FIG. 4 and FIG. 6 each of the planetary gears 42 is sleeved on each of the first mounting shafts 411 in one-to-one correspondence.
  • the planetary gears 42 rotate at a high speed, in order to prevent the planetary gears 42 from being removed from the first mounting shaft 411.
  • the carrier 41 further includes a plurality of second mounting shafts 415 and a plurality of ribs 414 disposed in one-to-one correspondence with the plurality of second mounting shafts 415, each of the ribs 414 Wrapped in the circumferential outer side of each of the second mounting shafts 415, the first mounting shaft 411 is spaced apart from the second mounting shaft 415, and the planetary gear reduction mechanism 40 further includes a cover plate 412 on which the first mounting shaft 411 is disposed.
  • the mounting hole 4121 mated with the second mounting shaft 415, the top surface of the cover 412 abuts against the bottom surface of the rib 414.
  • the upper end of the planetary gear 42 is stopped by the carrier 41, and the lower end of the planetary gear 42 is stopped by the cover 412, so that the planetary gear 42 can be prevented from coming off the first mounting shaft 411.
  • the rib position 414 and the second mounting shaft 415 are integrally injection molded.
  • the electronic expansion valve further includes a valve needle sleeve 80 and a spring 90.
  • the valve sleeve 80 is sleeved outside the valve needle 20 and fixedly disposed on the valve seat 10.
  • the valve needle 20 is movably disposed in the valve needle sleeve 80.
  • the valve needle sleeve 80 includes a mounting portion 81 and is located below the mounting portion 81.
  • the guide section 82, the junction of the mounting section 81 and the guide section 82 forms a stepped surface 83 which is adapted to the valve needle 20.
  • the spring 90 is located in the mounting section 81, one end of the spring 90 abuts against the abutting protrusion 21 at the top of the valve needle 20, and the other end of the spring 90 abuts against the stepped surface 83, when the valve needle 20 moves from the closed position to the open position
  • the valve needle 20 is subjected to an upward elastic restoring force of the spring 90.
  • the screw shaft 51 rotates and moves upward, and the abutting force at the top of the valve needle 20 is reduced.
  • the valve needle 20 begins to have a tendency to move upward, and the stroke of the particular valve needle 20 is moved upward. It is determined by the stroke in which the screw 51 moves.
  • the mounting section 81 realizes the mounting of the spring 90, and the guiding section 82 achieves the guiding of the valve needle 20.
  • the present application also provides a refrigeration system.
  • the refrigeration system (not shown) according to the present application includes: an electronic expansion valve, which is the above-described electronic expansion valve. Since the above-described electronic expansion valve has advantages such as high precision and small volume, the refrigeration system having the same has the above advantages.
  • an electronic expansion valve which is the above-described electronic expansion valve. Since the above-described electronic expansion valve has advantages such as high precision and small volume, the refrigeration system having the same has the above advantages.
  • the above description is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

公开了一种电子膨胀阀及具有其的制冷系统。电子膨胀阀包括:阀座(10);具有打开及关闭位置的阀针(20);包括转子(32)及线圈(31)的驱动机构(30);包括行星架(41)、行星轮(42)及齿轮箱(43)的行星齿轮减速机构(40);和包括螺母(52)及丝杆(51)的传动机构(50)。转子(32)、行星架(41)及齿轮箱(43)同轴设置,转子(32)与行星架(41)固定连接以驱动行星架(41)沿其轴线转动。行星轮(42)套设于第一安装轴(411),齿轮箱(43)包括箱体本体(431)、固定内齿圈(432)及输出内齿圈(433),行星轮(42)同时与固定内齿圈(432)及输出内齿圈(433)啮合。丝杆(51)的第一端与输出内齿圈(433)固定连接,丝杆(51)的第二端与阀针(20)抵接以使阀针(20)在打开位置与关闭位置之间移动。这种电子膨胀阀不仅可增大流量调节范围且实现了高精度及小型化。

Description

电子膨胀阀及具有其的制冷系统
本申请要求下述中国专利申请的优先权,其全部内容通过引用结合在本申请中:
1、2017年12月01日提交中国专利局、申请号为201711255162.X、发明名称为“电子膨胀阀及具有其的制冷系统”的中国专利申请;
2、2017年12月30日提交中国专利局、申请号为201711487611.3、发明名称为“电子膨胀阀及具有其的制冷系统”的中国专利申请。
技术领域
本发明涉及制冷领域,具体而言,涉及一种电子膨胀阀及具有其的制冷系统。
背景技术
图1示出了一种典型的减速式电子膨胀阀结构,变频空调用减速式电子膨胀阀主要由两部分组成,一部分为阀体部分用于流量调节,另一部分为用于驱动的线圈部分。其中线圈部分包括:永磁式步进电机1’、具有三级减速的齿轮减速器2’、具有将电机旋转运动转化成丝杆3’垂直运动的螺纹副结构5’,阀体包括阀座10’,以及控制阀针8升降的弹簧7等核心部件构成。下面介绍一下上述电子膨胀阀的工作原理:首先,空调系统的电子控制器控制电子膨胀阀的步进电机1’的输出轴旋转,电机1’与齿轮 减速器2’配合带动齿轮减速器2’的输出轴旋转,齿轮减速器2’的输出轴与丝杆配合,带动丝杆旋转,然后丝杆与螺纹副结构5’配合,以使丝杆能够上下移动。丝杆的顶端焊接有钢球11’,钢球11’的下端设置有衬套6’,衬套6’的下端连接有阀针8。当丝杆被驱动部件驱动向下移动时,丝杆会顶住钢球11’,钢球11’顶住衬套6’,衬套6’顶住阀针8使得阀针8能够与丝杆同步向下运动直至阀针8位于关闭位置,即阀针8与阀体10’相抵接的位置。当阀针8处于关闭位置时,弹簧7处于不断拉伸状态。当施加反向脉冲时,丝杆3’向上运动,阀针8在弹簧7的回复弹力和系统压力作用下不断向上运动,从而改变阀口部9的开启程度,使得通流面积发生变化,达到控制流量调节过热度的目的。
目前,电子膨胀阀的减速机构通常为正齿轮减速机构(定轴轮系)。图2示出了三级减速的齿轮减速器2’的具体结构,其中,第一级减速机构由齿轮1a和齿轮1b构成,第二级减速机构由齿轮2a和齿轮2b构成,第三级减速机构由齿轮3a和齿轮3b构成。电机轴12’与齿轮1a同轴设置,电机轴12’驱动齿轮1a转动,齿轮1a带动齿轮1b转动。齿轮1b驱动第二级减速机构的齿轮2a转动,齿轮2a带动齿轮2b转动。齿轮2b驱动第三级减速机构的齿轮3a转动,齿轮3a带动齿轮3b转动,最终带动输出轴13’转动。对于上述减速机构来说,为了提高流量控制范围,则必须增大输出力矩,同时为了提高控制精度,在其他条件不变的情况下(如:输入力矩不变),必须设置较大的减速比。而提高减速比有两种方式:一种是提高各级齿轮的减速比,即增加大齿轮的齿数,但是上述结构势必会导致大齿轮 的外径的增大,从而导致齿轮减速器的体积增大。另一种是增加齿轮减速的级数,但是上述结构势必会导致齿轮的数量增加,因此同样会导致齿轮减速器的体积增大。最终无法达到高精度、小型化的要求。此外,级数的增加还会导致整个系统的传动效率及稳定性降低。同时,齿轮箱的结构也存在改进的空间。
发明内容
本发明的主要目的在于提供一种电子膨胀阀,采用新的齿轮箱结构,在此基础上,提供一种采用电子膨胀阀的制冷系统。
为了实现上述目的,根据本发明的一个方面,提供了一种电子膨胀阀,包括:阀座,具有空腔以及与空腔连通的阀口部;阀针,可移动地设置在空腔内,阀针具有打开阀口部的打开位置以及封堵阀口部的关闭位置;驱动机构,包括转子以及围设在转子周向外侧的线圈;行星齿轮减速机构,包括行星架、行星轮以及齿轮箱,所述齿轮箱包括箱体本体、固定内齿圈以及可移动地设置在所述箱体本体内的输出内齿圈,所述箱体本体的一端设置有折边部,所述折边部与所述阀座固定连接;所述箱体本体的另一端与所述固定内齿圈固定连接。
根据本发明的另一方面,提供了一种制冷系统,包括电子膨胀阀,电子膨胀阀为上述的电子膨胀阀。
应用本发明的技术方案,电子膨胀阀包括行星齿轮减速机构,驱动机构作为行星齿轮减速机构的输入端,行星齿轮减速机构具有输出内齿圈, 输出内齿圈与传动机构的丝杆固定连接以使丝杆自转,丝杆与螺母螺纹连接以将丝杆的转动运抵转化为直线运动。由于丝杆能够上下运动,因此与丝杆抵顶的阀针也能够上下运动,最终实现阀针能够在打开位置与关闭位置之间移动的目的。由于行星齿轮减速机构中采用了内啮合齿轮,充分利用了传动空间,因此整个减速机构的空间尺寸要比相同条件下的正齿轮减速机构小的多。也就是说,在相同尺寸的条件下,行星齿轮减速机构的减速比要比正齿轮减速机构的减速比大的多。减速比的提高使得阀针的行程控制精度更高。因此上述结构使得电子膨胀阀在增大流量调节范围的同时,能够达到高精度、小型化的要求,解决了现有技术中的电子膨胀阀在增大流量调节范围的同时,无法达到高精度、小型化的要求的问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了背景技术中的电子膨胀阀的内部结构示意图;
图2示出了图1的电子膨胀阀的减速机构的结构示意图;
图3示出了根据本发明的电子膨胀阀的实施例的纵剖结构示意图;
图4示出了图3的电子膨胀阀的行星齿轮减速机构与转子以及丝杆配合的局部剖视结构示意图;
图5示出了图4的电子膨胀阀的行星齿轮减速机构与转子以及丝杆配合的纵剖结构示意图;
图6示出了图4的电子膨胀阀的行星齿轮减速机构与转子以及丝杆的分解结构示意图;
图7示出了图4的电子膨胀阀的箱体本体与固定内齿圈配合的局部剖视结构示意图;
图8示出了图4的电子膨胀阀的输出内齿圈以及丝杆的立体结构示意图;
图9示出了图4的电子膨胀阀的转子与行星架的局部剖视结构示意图;以及
图10示出了图9的转子与行星架的纵剖结构示意图。
其中,上述附图包括以下附图标记:
1、容纳空间;6、空腔;10、阀座;11、阀口部;80、阀针套;81、安装段;82、导向段;83、台阶面;20、阀针;21、抵接凸起;30、驱动机构;31、线圈;32、转子;40、行星齿轮减速机构;41、行星架;411、第一安装轴;412、盖板;4121、安装孔;413、定位凹槽;414、筋位;415、第二安装轴;42、行星轮;43、齿轮箱;431、箱体本体;432、固定内齿圈;433、输出内齿圈;44、芯轴;50、传动机构;51、丝杆;52、螺母;60、外壳;90、弹簧;100、顶架;110、减振件。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如图3至图10所示,本实施例的电子膨胀阀包括:阀座10、阀针20、驱动机构30、行星齿轮减速机构40以及传动机构50,其中,阀座10具有空腔6以及与空腔6连通的阀口部11。阀针20可移动地设置在空腔6内,阀针20具有打开阀口部11的打开位置以及封堵阀口部11的关闭位置。驱动机构30包括转子32以及围设在转子32周向外侧的线圈31。行星齿轮减速机构40包括行星架41、行星轮42以及齿轮箱43,转子32、行星架41以及齿轮箱43同轴设置,驱动机构30作为行星齿轮减速机构40的输入端,转子32与行星架41固定连接以驱动行星架41沿其轴线转动,行星架41设置有第一安装轴411,行星轮42套设于第一安装轴411,齿轮箱43包括固定设置于阀座10的箱体本体431、设置于箱体本体431的固定内齿圈432以及可移动地设置在箱体本体431内的输出内齿圈433,行星轮42伸入箱体本体431内并同时与固定内齿圈432以及输出内齿圈433啮合,输出内齿圈433支撑行星架41。传动机构50包括固定在阀座10上的螺母52以及与螺母52的内螺纹配合的丝杆51,丝杆51的第一端与输出内齿圈433固定连接,丝杆51的第二端与阀针20抵接以使阀针20在打开位置与关闭位置之间移动。
应用本发明的技术方案,电子膨胀阀包括行星齿轮减速机构40,驱动机构30作为行星齿轮减速机构40的输入端,行星齿轮减速机构具有输出 内齿圈433,输出内齿圈433与传动机构50的丝杆51固定连接以使丝杆51自转,丝杆51与螺母52螺纹连接以将丝杆51的转动运动转化为直线运动。由于丝杆51能够上下运动,因此与丝杆51抵顶的阀针20也能够上下运动,最终实现阀针20能够在打开位置与关闭位置之间移动的目的。由于行星齿轮减速机构40中采用了内啮合齿轮,充分利用了传动空间,因此整个减速机构的空间尺寸要比相同条件下的正齿轮减速机构小的多。也就是说,在相同尺寸的条件下,行星齿轮减速机构40的减速比要比正齿轮减速机构的减速比大的多。减速比的提高使得阀针20的行程控制精度更高。因此上述结构使得电子膨胀阀在增大流量调节范围的同时,能够达到高精度、小型化的要求,解决了现有技术中的电子膨胀阀在增大流量调节范围的同时,无法达到高精度、小型化的要求的问题。
需要说明的是,在本实施例中,行星架41、转子32、输出内齿圈433以及丝杆51的重量将由螺母52的螺纹支撑。下面具体描述一下电子膨胀阀的具体工作过程:
当转子32转动时,与转子32固定设置的行星架41随之转动。此时,行星轮42将绕行星架41的转动轴公转。公转的行星轮42在与固定内齿圈432啮合后开始自转。自转的行星轮42再与输出内齿圈433啮合,使得输出内齿圈433自转。由于输出内齿圈433与丝杆51固定连接,因此丝杆51也将随之转动。丝杆51在转动的过程中与固定在阀座10上的螺母52配合,以将丝杆51的转动运抵转化为直线运动。随着丝杆51的向下移动,与其固定连接的输出内齿圈433也将向下移动。输出内齿圈433支撑行星 架41以及与行星架41固定的转子32,因此随着输出内齿圈433的向下移动,行星架41与转子32也会随之向下移动。同样地,随着丝杆51的向上移动,与其固定连接的输出内齿圈433也将向上移动。输出内齿圈433支撑行星架41以及与行星架41固定的转子32,因此随着输出内齿圈433的向上移动,行星架41与转子32也会随之向上移动。故,随着丝杆51的上下移动,行星架41与转子32也会随之上下移动。
如图3所示,在本实施例中,电子膨胀阀还包括外壳60。外壳60罩设于阀座10的上部并被阀座10支撑,外壳60内部具有与空腔6连通的容纳空间1,转子32、行星齿轮减速机构40以及传动机构50设置在容纳空间1内,线圈31围设在外壳60的周向外侧。上述结构使得转子32、行星齿轮减速机构40以及传动机构50等精密部件设置在密闭的空间内,从而防止这些精密部件被外界的水汽、灰尘影响,从而提高电子膨胀阀的使用寿命。
在本实施例中,行星架41与转子32在其重力的作用下压在输出内齿圈433,上述结构虽然简单,但是一旦电子膨胀阀在工作时发生震动(如驱动机构30工作时产生的震动),行星架41与转子32可能在上述震动的影响下发生上下窜动,这样导致行星架41和转子32与输出内齿圈433或者其他零部件相互碰撞,从而产生异常的噪音,导致用户使用体验差。为了解决上述问题,如图3所示,在本实施例中,电子膨胀阀还包括顶架100以及减振件110。其中,顶架100固定设置在容纳空间1内并位于行星架41的上方。减振件110设置在顶架100与行星架41之间,用以为行星架 41提供向下的抵顶力。上述结构使得行星架41除了在自身重力的作用下压在输出内齿圈433上以外,还受到减振件110施加的向下的抵顶力以使其压在输出内齿圈433上。因此上述结构能够大大减小行星架41和转子32与输出内齿圈433或者其他零部件相互碰撞,从而大大降低了异常噪音,改善了用户的使用体验。需要说明的是,减振件110的对行星架41施加的抵顶力的大小可以根据实际情况进行调整。
作为可替换的方案,也可以不设置顶架100,而将减振件110直接设置于外壳顶部和行星架41之间,也可以实现本发明目的。
如图3至图6所示,在本实施例中,行星齿轮减速机构40还包括芯轴44,芯轴44从上至下依次穿设在顶架100、行星架41与丝杆51内,并与顶架100、行星架41和丝杆51间隙配合。上述结构简单,能够保证行星架41以及丝杆51同轴。
如图3所示,在本实施例中,减振件110为减振弹簧,减振弹簧套设在芯轴44上,减振弹簧的第一端抵接于顶架100的底面,减振弹簧的第二端抵接于行星架41的顶面。减振弹簧套设在芯轴44上使得减振弹簧被压缩时不会产生偏位现象,从而使得减振弹簧能够为行星架41提供预定的抵顶力,进而保证降噪效果。此外,上述结构将减振弹簧套设在已有的芯轴44上,不必设置其他的与减振弹簧配合的零部件从而降低了生产成本。
如图3、图5和图6所示,在本实施例中,行星架41的顶面上设置有定位凹槽413,减振弹簧的第二端抵接于定位凹槽413的槽底。上述结构能够进一步避免减振弹簧被压缩时产生的偏位现象。
在本实施例中,转子32与行星架41注塑为一体,和/或丝杆51与输出内齿圈433注塑为一体。上述结构简单,便于加工。此外,由于上述结构避免通过其他紧固件将转子32固定在行星架41上,因此大大提高了装配效率,降低了生产成本。需要说明的是,在加工时,应当先将行星架41加工成型,然后再将转子32注塑在行星架41上。当然,本领域技术人员应当知道转子32与行星架41之间的固定除了可以使用一体注塑成型的方法以外还可以通过焊接、粘接、螺接等形式固定在一起。
如图7所示,在本实施例中,固定内齿圈432与箱体本体431一体注塑成型。具体地,箱体本体431呈筒状,固定内齿圈432位于箱体本体431的上端。箱体本体431的下端通过焊接固定在阀座10上。
具体地,箱体本体431大体呈筒状结构,一端具有折边部431a,折边部431a通过焊接的方式与阀座10固定连接。在箱体本体431的另一端,设置有贯穿其本体的贯通部431b,贯通部431b的数量为1个以上,具体在制造时,可以先将箱体本体431放入模具中,然后通过注塑的方式,这样,就可以将固定内齿圈432在箱体本体431上成型,贯通部431b被固定内齿圈432的部分材料所填充。由于贯通部431b的设置,使得固定内齿圈432与箱体本体431连接紧密,且无法脱离,具有较高的连接强度。
当然,还可以对贯通部431b的形状和数量作出各种不同的变换,比如沿着箱体本体431的筒状周壁上均匀或者不均匀地设置多个贯通部431b,比如采用钻孔的方式,成形简单,便于批量化地生产。贯通部431b的纵向截面形状也不局限于圆形,也可以是矩形、三角型或者不规则的形状,本 领域技术人员能够理解,只要能满足将箱体本体431的周壁贯穿,使得固定内齿圈在注塑时,塑性材料能流入贯通部431b,达到填充贯通部431b的目的即可。
上述结构简单,便于加工。此外,由于上述结构避免通过其他紧固件将固定内齿圈432固定在箱体本体431上,因此大大提高了装配效率,降低了生产成本。
如图3至图6所示,在本实施例中,第一安装轴411为沿行星架41的周向方向设置的一个或多个,行星轮42为与第一安装轴411一一对应设置的一个或多个。具体地,第一安装轴411可以为一个,当第一安装轴411为一个时,行星轮42为与第一安装轴411对应的一个,第一安装轴411位于行星架41的轴线的周向外侧。
优选地,如图4和图6所示,第一安装轴411为沿行星架41的周向方向上间隔设置的多个(两个以上,例如2个、3个、4个….),行星轮42为与第一安装轴411一一对应设置的多个(两个以上,例如2个、3个、4个….)。上述结构使得行星齿轮减速机构40的运行更加稳定。优选地,在本实施例中,第一安装轴411为三个,行星轮42为与第一安装轴411一一对应设置的三个。
如图4和图6所示,各行星轮42一一对应地套设在各第一安装轴411上,工作时,各行星轮42高速旋转,为了防止行星轮42从第一安装轴411上脱出,如图4所示,在本实施例中,行星架41还包括多个第二安装轴415以及与多个第二安装轴415一一对应设置的多个筋位414,各筋位414 包裹在各第二安装轴415的周向外侧,第一安装轴411与第二安装轴415间隔设置,行星齿轮减速机构40还包括盖板412,盖板412上设置有与第一安装轴411和第二安装轴415配合的安装孔4121,盖板412的顶面与筋位414的底面抵接。在上述结构中,行星轮42的上端被行星架41止挡,行星轮42的下端被盖板412止挡,因此能够防止行星轮42从第一安装轴411上脱出。在本实施例中,筋位414与第二安装轴415为一体注塑成型的结构。
如图3所示,在本实施例中,电子膨胀阀还包括:阀针套80以及弹簧90。其中,阀针套80套设在阀针20外侧并固定设置于阀座10,阀针20可移动地设置在阀针套80内,阀针套80包括安装段81以及位于安装段81下方的导向段82,安装段81与导向段82的连接处形成台阶面83,导向段82与阀针20适配。弹簧90位于安装段81内,弹簧90的一端与阀针20顶部的抵接凸起21抵接,弹簧90的另一端与台阶面83抵接,当阀针20由关闭位置向打开位置移动时,阀针20受到弹簧90的向上的弹性回复力。
具体地,当需要阀针20打开阀口部11时,丝杆51旋转并向上运动,阀针20顶部的抵顶力随之减小。当丝杆51向阀针20施加的向下的力小于阀针20受到的向上的弹性回复力时,阀针20则开始具有向上运动的趋势,而具体阀针20向上移动的行程大小还要由丝杆51移动的行程决定。上述结构简单,安装段81实现了弹簧90的安装,导向段82实现了对阀针20的导向。
本申请还提供了一种制冷系统,根据本申请的制冷系统(图中未示出)包括:电子膨胀阀,电子膨胀阀为上述的电子膨胀阀。由于上述电子膨胀阀具有高精度、体积小等优点,因此具有其的制冷系统也具有上述优点。以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种电子膨胀阀,其特征在于,包括:
    阀座(10),具有空腔(6)以及与所述空腔(6)连通的阀口部(11);
    阀针(20),可移动地设置在所述空腔(6)内,所述阀针(20)具有打开所述阀口部(11)的打开位置以及封堵所述阀口部(11)的关闭位置;
    驱动机构(30),包括转子(32)以及围设在所述转子(32)周向外侧的线圈(31);
    行星齿轮减速机构(40),包括行星架(41)、行星轮(42)以及齿轮箱(43),所述转子(32)、所述行星架(41)以及所述齿轮箱(43)同轴设置,所述驱动机构(30)作为所述行星齿轮减速机构(40)的输入端,所述转子(32)与所述行星架(41)固定连接以驱动所述行星架(41)沿其轴线转动,所述行星架(41)设置有第一安装轴(411),所述行星轮(42)套设于所述第一安装轴(411),所述齿轮箱(43)包括固定设置于所述阀座(10)的箱体本体(431)、设置于所述箱体本体(431)的固定内齿圈(432)以及可移动地设置在所述箱体本体(431)内的输出内齿圈(433),所述行星轮(42)伸入所述箱体本体(431)内并同时与所述固定内齿圈(432)以及所述输出内齿圈(433)啮合;
    传动机构(50),包括固定在所述阀座(10)上的螺母(52)以及 与所述螺母(52)的内螺纹配合的丝杆(51),所述丝杆(51)的第一端与所述输出内齿圈(433)固定连接。
  2. 根据权利要求1所述的电子膨胀阀,其特征在于,所述电子膨胀阀还包括:
    外壳(60),罩设于所述阀座(10)的上部并被所述阀座(10)支撑,所述外壳(60)内部具有容纳空间(1),所述转子(32)、所述行星齿轮减速机构(40)以及所述传动机构(50)设置在所述容纳空间(1)内,所述线圈(31)围设在所述外壳(60)的周向外侧。
  3. 根据权利要求2所述的电子膨胀阀,其特征在于,所述行星齿轮减速机构(40)还包括芯轴(44),所述芯轴(44)从上至下依次穿设在所述顶架(100)、所述行星架(41)与所述丝杆(51)内,并与顶架(100)、所述行星架(41)和所述丝杆(51)间隙配合。
  4. 根据权利要求3所述的电子膨胀阀,其特征在于,所述减振件(110)为减振弹簧,所述减振弹簧套设于所述芯轴(44),所述减振弹簧的第一端抵接于所述顶架(100)的底面,所述减振弹簧的第二端抵接于所述行星架(41)的顶面。
  5. 根据权利要求4所述的电子膨胀阀,其特征在于,所述行星架(41)的顶面上设置有定位凹槽(413),所述减振弹簧的第二端抵接于所述定位凹槽(413)的槽底。
  6. 根据权利要求1所述的电子膨胀阀,其特征在于,所述转子(32)与所述行星架(41)注塑为一体,和/或所述丝杆(51)与所述输出内齿圈(433)注塑为一体。
  7. 根据权利要求1所述的电子膨胀阀,其特征在于,所述固定内齿圈(432)与所述箱体本体(431)一体注塑成型。
  8. 根据权利要求1所述的电子膨胀阀,其特征在于,所述第一安装轴(411)为沿所述行星架(41)的周向方向设置的一个或多个,所述行星轮(42)为与所述第一安装轴(411)一一对应设置的一个或多个。
  9. 根据权利要求1所述的电子膨胀阀,其特征在于,所述行星齿轮减速机构(40)还包括盖板(412),所述盖板(412)上设置有安装孔(4121),所述盖板(412)盖设在所述行星架(41)的下端,所述第一安装轴(411)的下端插入所述安装孔(4121)内。
  10. 根据权利要求1所述的电子膨胀阀,其特征在于,所述电子膨胀阀还包括:
    阀针套(80),套设在所述阀针(20)外侧并固定设置于所述阀座(10),所述阀针(20)可移动地设置在所述阀针套(80)内,所述阀针套(80)包括安装段(81)以及位于所述安装段(81)下方的导向段(82),所述安装段(81)与所述导向段(82)的连接处形成台阶面(83),所述导向段(82)与所述阀针(20)适配;
    弹簧(90),位于所述安装段(81)内,所述弹簧(90)的一端与 所述阀针(20)顶部的抵接凸起(21)抵接,所述弹簧(90)的另一端与所述台阶面(83)抵接,当所述阀针(20)由所述关闭位置向所述打开位置移动时,所述阀针(20)受到所述弹簧(90)的向上的弹性回复力。
  11. 根据权利要求1所述的电子膨胀阀,其特征在于,所述箱体本体(431)的一端设置有折边部(431a),所述折边部(431a)与所述阀座(10)固定连接;所述箱体本体(431)的另一端与所述固定内齿圈(432)固定连接。
  12. 根据权利要求11所述的电子膨胀阀,其特征在于,所述箱体本体(431)设置有贯穿其本体的贯通部(431b),所述固定内齿圈(432)通过注塑的方式与所述箱体本体(431)固定,所述贯通部(431b)被所述固定内齿圈(432)所填充。
  13. 根据权利要求12所述的电子膨胀阀,其特征在于,所述贯通部(431b)的截面形状为圆形、矩形或者不规则形状,所述贯通部(431b)的数量为一个以上,且均匀分布于所述箱体本体的周壁。
  14. 根据权利要求1所述的电子膨胀阀,其特征在于,所述行星齿轮减速机构(40)还包括芯轴(44),所述芯轴(44)从上至下依次穿设在所述顶架(100)、所述行星架(41)与所述丝杆(51)内,并与顶架(100)、所述行星架(41)和所述丝杆(51)间隙配合。
  15. 一种制冷系统,包括电子膨胀阀,其特征在于,所述电子膨胀阀为权利要求1至15中任一项所述的电子膨胀阀。
PCT/CN2018/118535 2017-12-01 2018-11-30 电子膨胀阀及具有其的制冷系统 WO2019105454A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MYPI2020002707A MY198032A (en) 2017-12-01 2018-11-30 Electronic expansion valve and cooling system having same
US16/767,561 US11168804B2 (en) 2017-12-01 2018-11-30 Electronic expansion valve and cooling system having same
EP18882847.9A EP3719365B1 (en) 2017-12-01 2018-11-30 Electronic expansion valve and cooling system having same
JP2020529260A JP7053830B2 (ja) 2017-12-01 2018-11-30 電子膨張弁及びそれを具備する冷凍システム
KR1020207017654A KR102391438B1 (ko) 2017-12-01 2018-11-30 전자 팽창 밸브 및 이를 구비하는 냉동 시스템

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711255162.X 2017-12-01
CN201711255162 2017-12-01
CN201711487611.3 2017-12-30
CN201711487611.3A CN109869488B (zh) 2017-12-01 2017-12-30 电子膨胀阀及具有其的制冷系统

Publications (1)

Publication Number Publication Date
WO2019105454A1 true WO2019105454A1 (zh) 2019-06-06

Family

ID=66664713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118535 WO2019105454A1 (zh) 2017-12-01 2018-11-30 电子膨胀阀及具有其的制冷系统

Country Status (1)

Country Link
WO (1) WO2019105454A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141097A (ja) * 1999-11-17 2001-05-25 Saginomiya Seisakusho Inc 電動流量制御弁
CN1865740A (zh) * 2005-05-19 2006-11-22 株式会社不二工机 电动阀
CN103775717A (zh) * 2012-10-22 2014-05-07 艾默生环境优化技术(苏州)有限公司 电子膨胀阀
CN203656223U (zh) * 2013-10-16 2014-06-18 浙江新三荣制冷有限公司 一种制冷系统中的电子膨胀阀
CN203979607U (zh) * 2014-06-30 2014-12-03 浙江盾安禾田金属有限公司 一种电子膨胀阀
CN204533762U (zh) * 2015-01-08 2015-08-05 艾默生环境优化技术(苏州)有限公司 减速机构以及包括该减速机构的电子膨胀阀
CN105822822A (zh) * 2015-01-08 2016-08-03 艾默生环境优化技术(苏州)有限公司 减速机构以及包括该减速机构的电子膨胀阀

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141097A (ja) * 1999-11-17 2001-05-25 Saginomiya Seisakusho Inc 電動流量制御弁
CN1865740A (zh) * 2005-05-19 2006-11-22 株式会社不二工机 电动阀
CN103775717A (zh) * 2012-10-22 2014-05-07 艾默生环境优化技术(苏州)有限公司 电子膨胀阀
CN203656223U (zh) * 2013-10-16 2014-06-18 浙江新三荣制冷有限公司 一种制冷系统中的电子膨胀阀
CN203979607U (zh) * 2014-06-30 2014-12-03 浙江盾安禾田金属有限公司 一种电子膨胀阀
CN204533762U (zh) * 2015-01-08 2015-08-05 艾默生环境优化技术(苏州)有限公司 减速机构以及包括该减速机构的电子膨胀阀
CN105822822A (zh) * 2015-01-08 2016-08-03 艾默生环境优化技术(苏州)有限公司 减速机构以及包括该减速机构的电子膨胀阀

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3719365A4 *

Similar Documents

Publication Publication Date Title
CN109869488B (zh) 电子膨胀阀及具有其的制冷系统
JP6877749B2 (ja) 電動弁
CN105734905B (zh) 一种洗衣机减速离合器及洗衣机
CN106594340B (zh) 电子膨胀阀
CN203979607U (zh) 一种电子膨胀阀
WO2019105454A1 (zh) 电子膨胀阀及具有其的制冷系统
JP5022960B2 (ja) 減速歯車装置付き電動弁
KR20070116719A (ko) 전동 밸브
CN109723830B (zh) 电子膨胀阀及具有其的制冷系统
JP2021165590A (ja) 電動弁
CN110296267A (zh) 电子膨胀阀
WO2005111461A1 (en) A speed reducing gear box driven by motor
CN109723899A (zh) 电子膨胀阀及具有其的制冷系统
KR20170050869A (ko) 직류모터를 이용한 전동액추에이터
JP6375412B2 (ja) 電動弁
CN206468796U (zh) 高精度行星减速器
CN109723832B (zh) 电子膨胀阀以及具有其的制冷系统
JP6133459B2 (ja) 電動弁
JP6765214B2 (ja) 遊星歯車式減速装置及びこれを備えた電動弁
WO2021169037A1 (zh) 一种电动阀
JP2018189202A (ja) 電動弁
CN204403285U (zh) 一种行星减速机构及减速箱
CN105734903B (zh) 一种洗衣机脱水轴及减速离合器
CN210290679U (zh) 一种电动推杆结构
CN113446405A (zh) 电子膨胀阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529260

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207017654

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018882847

Country of ref document: EP

Effective date: 20200701