WO2019105315A1 - 视场角测试方法和系统 - Google Patents

视场角测试方法和系统 Download PDF

Info

Publication number
WO2019105315A1
WO2019105315A1 PCT/CN2018/117348 CN2018117348W WO2019105315A1 WO 2019105315 A1 WO2019105315 A1 WO 2019105315A1 CN 2018117348 W CN2018117348 W CN 2018117348W WO 2019105315 A1 WO2019105315 A1 WO 2019105315A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
center line
image
pattern
view
Prior art date
Application number
PCT/CN2018/117348
Other languages
English (en)
French (fr)
Inventor
魏伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/768,144 priority Critical patent/US11562478B2/en
Publication of WO2019105315A1 publication Critical patent/WO2019105315A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras

Definitions

  • the present disclosure relates to a field of view test method and system.
  • Field of View is an important performance of various image output devices, such as Head Up Display (HUD) and Virtual Reality (VR) devices. It refers to the output of the image output device. The angle between the opposite edges of the image and the line connecting a viewpoint. Before the image output device leaves the factory, the field of view of the image output device needs to be detected to ensure that the field of view of the image output device can meet the requirements of the product.
  • HUD Head Up Display
  • VR Virtual Reality
  • Embodiments of the present disclosure provide a field of view test method and system that can be used to test an angle of view of an image output device.
  • At least one embodiment of the present disclosure provides a method of testing a viewing angle, the method comprising: placing an image acquiring device at a set observation point of a video output device, and placing a grid line device before the image acquiring device At a fixed distance, a side of the grid line device opposite to the image acquisition device is provided with a grid pattern; the control image output device outputs a test pattern; the moving grid line device maintains the grid line device and the image acquisition device The spacing between the lines is constant and the center line of the grid pattern and the center line of the test pattern output by the image output device are coincident; the grid pattern and the test pattern are captured by the image acquisition device; The relationship between the test pattern and the grid pattern in the captured image determines the angle of view of the image output device.
  • the grid graphic is an equiangular grid pattern.
  • the grid pattern is a black line on a white background or a white line on a black background.
  • the grid pattern is provided with a scale value for indicating the size of the field of view corresponding to each line in the grid pattern.
  • the grid pattern is provided with a grid center line, the grid center line includes a horizontal center line and a vertical center line, and the color of the grid center line is different from the color of the grid pattern .
  • the test pattern includes an outer frame and a cross center line disposed inside the outer frame, the cross center line including a horizontal center line and a vertical center line, the outer a maximum distance of a portion of the frame located on both sides of the horizontal center line of the cross center line to a horizontal center line of the cross center line, the outer frame being located on both sides of the vertical center line of the cross center line to The maximum distance of the vertical centerline of the cross centerline is equal.
  • the color of the cross center line is different from the color of the grid pattern and the grid center line.
  • determining the angle of view of the image output device according to the relationship between the test pattern and the grid pattern in the captured image comprises: determining an actual length and an actual width of the test pattern according to the captured image; Determining the set distance and the actual length and actual width of the test pattern to determine the field of view of the image output device.
  • the determining the actual length and the actual width of the test pattern according to the captured image comprises: respectively determining a length and a width of the grid pattern in the image and testing in the image Length and width of the graphic; determining an actual length and an actual width of the mesh graphic corresponding to the mesh graphic in the image; according to the length and width of the mesh graphic in the image, the length and width of the test graphic in the image And the actual length and the actual width of the grid pattern corresponding to the grid pattern in the image, determining the actual length and the actual width of the test pattern.
  • the field of view of the image output device includes a horizontal field of view and a vertical field of view, and the horizontal field of view and the vertical field of view are respectively calculated by the following formula: :
  • FOV level arctan (C / S);
  • FOV vertical arctan (D / S);
  • the FOV level is the horizontal field of view of the image output device
  • the FOV is the vertical field of view of the image output device
  • C is the actual length of the test pattern
  • D is the actual width of the test pattern
  • S is the set distance.
  • the set distance is 5-20 meters.
  • the image acquiring device is a CCD (Charge-coupled Device) camera, a compound eye camera or an integrated imaging camera.
  • CCD Charge-coupled Device
  • the image output device comprises a HUD or a holographic image output device.
  • At least one embodiment of the present disclosure also provides a viewing angle test system, including: an image acquisition device and a grid line device, the image acquisition device is located at a set observation point of the image output device, and the grid line device is located Before the image acquisition device sets a distance, a side of the grid line device opposite to the image acquisition device is provided with a grid pattern; the image acquisition device is used for a center line of the grid pattern When the center line of the test pattern output by the image output device coincides, the grid pattern and the test pattern are captured.
  • the field of view test system further includes image processing means for acquiring an image captured by the image acquisition device, and determining a view of the image output device according to the relationship between the test pattern and the grid pattern in the captured image. Field angle.
  • the grid graphic is an equiangular grid pattern.
  • the grid pattern is a black line on a white background or a white line on a black background.
  • the grid pattern is provided with a scale value for indicating the size of the field of view corresponding to each line in the grid pattern.
  • the grid pattern is provided with a grid center line, the grid center line includes a horizontal center line and a vertical center line, and the color of the grid center line is different from the color of the grid pattern .
  • the test pattern includes an outer frame and a cross center line disposed inside the outer frame, the cross center line including a horizontal center line and a vertical center line, the outer a maximum distance of a portion of the frame located on both sides of the horizontal center line of the cross center line to a horizontal center line of the cross center line, the outer frame being located on both sides of the vertical center line of the cross center line to The maximum distance of the vertical centerline of the cross centerline is equal.
  • the color of the cross center line is different from the color of the grid pattern and the grid center line.
  • the set distance is 5-20 meters.
  • the image acquiring device is a CCD (Charge-coupled Device) camera, a compound eye camera or an integrated imaging camera.
  • CCD Charge-coupled Device
  • the image output device comprises a HUD or a holographic image output device.
  • FIG. 1 is a schematic flow chart of a method for testing a viewing angle according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of an application scenario of a method for testing a viewing angle according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of setting a set observation point according to an embodiment of the present disclosure.
  • FIG. 4a is a schematic diagram of a grid pattern provided by an embodiment of the present disclosure.
  • 4b is a schematic diagram of an equi-angle grid pattern provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a test pattern provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of initial alignment of a grid pattern and a test pattern according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a grid pattern and a test pattern after being aligned according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a captured image provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another grid pattern and test pattern after being aligned according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flow chart of a method for testing an angle of view provided by an embodiment of the present disclosure.
  • the method includes: in step S101, placing an image acquisition device at a set observation point of the image output device, and placing the grid line device at a set distance before the image acquisition device.
  • the image output device refers to an image output device in which the output image is not imaged on the physical imaging screen.
  • the output image can be a virtual image (such as an output image of a HUD) or a real image (such as a holographic image output by a holographic image output device).
  • FIG. 2 shows an application scenario of the test method of this embodiment by taking the field of view of the test HUD as an example.
  • the HUD typically includes a display source 1, an optical system (not shown), and an imaging screen 2 (typically a front windshield of the automobile).
  • the display source 1 is for outputting a test pattern 6 based on the input image data, which is projected onto the imaging screen 2 through the optical system, and imaged on the side of the imaging screen 2 remote from the HUD.
  • the image acquisition device 3 is provided at a set observation point of the image output device.
  • an optimum viewing distance is usually set, and a rectangular area is provided as the optimal viewing area S0 (see FIG. 3) at the optimum viewing distance, which may be referred to as an eye box.
  • the set observation point may be the center point O of the rectangular area, that is, the intersection of the diagonal lines of the rectangle.
  • the most recent observation distance S1 and the farthest observation distance S2 are usually also set.
  • the optimal observation position S0 is located between the closest observation distance S1 and the farthest observation distance S2.
  • the rectangular region has a length of usually 140 mm to 160 mm and a width of usually 40 mm to 60 mm.
  • the horizontal height of the rectangular area can be set according to actual needs.
  • the center point O of the rectangular area is usually set at the same level as the center point of the test pattern.
  • Setting the image acquisition device 3 at the set observation point means that the center of the lens of the image acquisition device 3 is located at the set observation point, and the center line of the lens is aligned with the center point of the test pattern.
  • the image acquisition device may be a CCD camera, a compound eye camera, or an integrated imaging camera (also referred to as a light field camera).
  • the mesh line device 4 is provided with a mesh pattern 7 on a side opposite to the image capturing device 3.
  • the grid line device 4 may include a bottom plate and a coating or sticker or the like disposed on one side of the bottom plate. This coating or sticker is used to display the grid pattern 7.
  • the gridline device can be an electronic display. The electronic display is used to display the grid pattern 7.
  • the gridline device 4 can be placed on the bracket 5.
  • the bracket 5 may also be provided with a lifting mechanism and/or a translation mechanism. The lifting mechanism is used to adjust the level of the grid pattern, and the translation mechanism is used to adjust the horizontal position of the grid pattern.
  • the lifting mechanism and the translation mechanism can adopt any existing mechanism, including but not limited to a rack and pinion moving mechanism, a screw moving mechanism, and the like.
  • FIG. 4a is a schematic diagram of a grid pattern provided by an embodiment of the present disclosure.
  • the grid pattern 7 includes a plurality of first straight lines 71 arranged in parallel and a plurality of second straight lines 72 arranged in parallel, the first straight line 71 and the second straight line 72 being perpendicular to each other.
  • the first line 71 is generally a horizontal line and the second line 72 is a vertical line.
  • the grid pattern 4 is an equiangular grid pattern.
  • FIG. 4b is a schematic diagram of an equi-angle grid pattern provided by an embodiment of the present disclosure. As shown in FIG.
  • the angle between the observation point O and the perpendicular lines of any two adjacent first straight lines 71 is set to a fixed angle A, and the observation point is set.
  • the angle between the perpendicular lines of O and any two adjacent second straight lines 72 is also a fixed angle A (only the line in the middle of the grid pattern is illustrated in FIG. 4b as an example).
  • A 1 °.
  • it can also be set to other values according to actual conditions, such as 0.5°, 1.5°, 2°, and the like.
  • the distance between each adjacent first line and each adjacent second line can be determined according to the following formula: the distance between:
  • Yn represents the distance from the nth first line from the horizontal center line of the grid pattern to the horizontal center line of the grid pattern (for example, Y1 represents the first line adjacent to the horizontal center line of the grid pattern)
  • Distance represents the distance from the second line of the mth line from the vertical centerline of the grid pattern to the vertical centerline of the grid pattern (eg, X1 represents the vertical centerline of the grid pattern)
  • S is the aforementioned set distance, that is, the distance from the observation point O to the center point of the grid pattern.
  • n ⁇ 10, m ⁇ 25 Alternatively, n ⁇ 10, m ⁇ 25.
  • the grid pattern 7 may be a black line on a white background or a white line on a black background.
  • the white line black line means that the grid lines (that is, the first line 71 of the horizontal line and the second line 72 of the vertical line) are black lines, and the parts other than the black lines are all white. Due to the high contrast ratio of black and white, setting the grid pattern to a black matrix white line or a white matrix black line is advantageous for obtaining a clear grid line image by the image acquisition device, thereby improving the accuracy of the test result.
  • the grid pattern 7 is provided with a grid center line 73 for indicating the position of the center line of the grid pattern.
  • the grid centerline 73 includes a horizontal centerline and a vertical centerline.
  • the color of the grid center line 73 is different from the color of the grid pattern 7.
  • the grid centerline 73 can be red or green such that the grid centerline 73 can be highlighted in the grid pattern 7 to facilitate alignment of the centerline of the subsequent test pattern with the centerline of the grid pattern.
  • the grid pattern 7 may further be provided with a scale value for indicating the size of the field of view corresponding to each line in the grid pattern 7.
  • a scale value for indicating the size of the field of view corresponding to each line in the grid pattern 7.
  • each of the first straight line 71 and each of the second straight lines 72 corresponds to a scale value.
  • the scale value corresponds to the angle of view corresponding to the first straight line 71 and each second straight line 72.
  • the grid line device 4 is disposed before the image acquisition device 3, and means that the grid line device 4 is located in the direction in which the lens of the image acquisition device 3 is aligned.
  • the grid line device 4 and the image capturing device 3 are spaced apart by a set distance such that the grid line device 4 is disposed near the imaging position of the image output apparatus 1.
  • the imaging distance of most image output devices 1 (that is, the distance between the image output from the image output device and the set observation point) is 3 m, 5 m, and 8 m.
  • the follow-up may develop to more than 20m, or even more than 100 meters.
  • the set distance is set to 5m to 20m, for example, 5m to 10m, and the image can be presented in front of and behind the grid line device or coincident with the grid line device.
  • the distance setting comprehensively considers the focus precision and the required space occupied by the image acquisition device, and is suitable for testing most image output devices, and has good applicability.
  • the set distance may be 5 m.
  • step S102 shown in FIG. 1 the video output device is controlled to output a test pattern.
  • the display source is lit and the image data of the test pattern is input to the display source, thereby causing the image output device to output the test pattern.
  • FIG. 5 is a schematic diagram of a test pattern according to an embodiment of the present disclosure.
  • the test pattern 6 includes a rectangular outer frame 61 and a cross center line 62.
  • the cross center line 62 is used to indicate the position of the centerline of the test pattern.
  • the cross center line 62 includes a horizontal center line that coincides with the center line in the width direction of the rectangular outer frame 61, and a vertical center line that coincides with the center line of the longitudinal direction of the rectangular outer frame 61.
  • the size of the rectangular frame 61 is determined by the maximum range of the image output by the image output device, that is, the image output by the image output device does not exceed the rectangular frame.
  • the outer frame of the test pattern may also be other shapes, such as an ellipse, a diamond, or the like, as long as the outer frame is located at a horizontal center of the cross center line on a portion of the horizontal center line of the cross center line.
  • the maximum distance of the lines is equal, and the maximum distance of the portion of the outer frame located on both sides of the vertical center line of the cross center line to the vertical center line of the cross center line is equal.
  • the outer frame of the test pattern is elliptical
  • the horizontal center line and the vertical center line of the cross center line are respectively located on the long axis and the short axis of the ellipse.
  • the outer frame of the test pattern is a diamond
  • the center line of the cross is located in the diamond shape. On the two diagonals.
  • the color of the cross centerline 62 is different from the color of the grid pattern 7 and the grid centerline 73.
  • the color of the cross center line 62 may be red.
  • the color of the cross center line 62 can be set according to actual needs, as long as the color of the cross center line 62 is easily distinguished from the color of the grid pattern 7.
  • the color of the cross center line 62 is set to be different from the color of the grid pattern 7 and the grid center line 73, so that when the cross center line 62 of the test pattern 6 coincides with the grid pattern 7, it is easy to observe the cross center line 62 with respect to
  • the position of the grid pattern 7 is such that the position of the grid pattern 7 is adjusted to align the cross center line 62 with the center line of the grid pattern 7 (i.e., the grid center line 73).
  • the color of the cross center line 62 may also be the same color as the line in the grid pattern 7 or the grid center line 73.
  • the color of the cross center line 62 may be green or white.
  • the outer frame and the cross center line may be the same color; different colors may be used, which are not limited in the embodiment of the present disclosure.
  • the color of the outer frame can also be different from the color of the mesh graphic.
  • step S103 shown in FIG. 1 the grid line device is moved, the spacing between the grid line device and the image acquisition device is kept constant, and the center line of the grid pattern and the test pattern output by the image output device are The center lines coincide.
  • the center positions of the test pattern 6 and the grid pattern 7 may be far apart.
  • the position of the grid line device 4 needs to be adjusted so that the center of the grid pattern is 7
  • the line and the output line of the test pattern 6 output by the image output device coincide, as shown in FIG.
  • step S104 shown in FIG. 1 the image capturing means is used to take a picture of the grid pattern and the test pattern.
  • the image acquisition device can be focused on the grid centerline 73 or focused on the cross centerline 62 for photography.
  • step S105 shown in Fig. 1 the angle of view of the image output device is determined based on the relationship between the grid pattern and the test pattern in the captured image.
  • the step S105 may include: determining an actual length and an actual width of the test pattern according to the captured image; determining the image output device according to the set distance and the actual length and the actual width of the test pattern The angle of view.
  • determining the actual length and the actual width of the test pattern according to the captured image may include: respectively determining the length a and the width b of the grid pattern 7 in the captured image, and the length c and width of the test pattern 6 in the image. d; determining the actual length A and the actual width B of the grid pattern corresponding to the grid pattern 7 in the captured image; testing the length c and width of the pattern 6 according to the length a and the width b of the grid pattern in the image d and the actual length A and the actual width B of the grid pattern corresponding to the grid pattern in the image, the actual length C and the actual width D of the test pattern are determined.
  • the grid pattern in the image may be all or part of a grid pattern output by the image output device.
  • determining the length and width of the test pattern in the captured image and the length and width of the grid pattern in the image may be manually implemented. For example, the length c and the width d of the test pattern in the captured image and the length a and width b of the grid pattern are determined by manual measurement.
  • the actual length and width of the grid pattern corresponding to the grid pattern in the image are known, for example, it can be directly obtained by measuring the grid pattern 7 on the grid line device 4, and the test pattern and the network in the captured image are taken.
  • the scale of the grid pattern is the same as the actual scale of the test pattern and the grid pattern, and therefore, the actual length and the actual width of the grid pattern corresponding to the first ratio, the second ratio, and the grid pattern in the image may be used.
  • the first ratio is the ratio of the length a of the grid pattern in the image to the length c of the test pattern in the image
  • the second ratio is the ratio of the width b of the grid pattern in the image to the width d of the test pattern in the image.
  • the actual length C and the actual width D of the test pattern can be determined according to the following formulas (1) and (2):
  • determining the length and width of the test pattern in the captured image and the length and width of the grid pattern may also be implemented in an automated manner. For example, to determine the length and width of the test pattern, the captured image is first sent to an image processing device (such as a computer, etc.) for image processing to determine the position of the outer frame of the test graphic, and then according to the position of the outer frame. Determine the length and width of the test pattern.
  • an image processing device such as a computer, etc.
  • the position of the outer frame of the test pattern may be determined by converting the image into a grayscale image, then determining the line in the image using an edge detection algorithm, and then identifying the test pattern from the lines of the image.
  • the outer frame determines the position of the outer frame of the test graphic. It should be noted that the embodiment of the present disclosure may be implemented by any image processing technology capable of detecting the outer frame of the test pattern, which is not limited in the disclosure.
  • the length of the test pattern can be determined according to the position of the outer frame in the following manner: determining the maximum coordinate value and the minimum coordinate value of each point on the outer frame in the horizontal direction (X direction), according to the maximum coordinate value and the minimum coordinate in the horizontal direction.
  • the value calculates the length of the test pattern in the image; determines the maximum coordinate value and the minimum coordinate value of each point on the outer frame in the vertical direction (Y direction), and calculates the image according to the maximum coordinate value and the minimum coordinate value in the vertical direction. Test the width of the graphic.
  • determining the length and width of the test pattern in the captured image and the length and width of the grid pattern can also be achieved in a semi-automated manner.
  • the operator specifies the two sides of the outer frame of the test pattern or two points on the outer frame by means of the image processing device, and then the image processing device automatically calculates the distance between the two lines or two points, thereby obtaining the length of the test pattern in the image and width.
  • the length and width of the grid pattern in the image can also be determined in the same way.
  • determining the field of view of the image output device according to the set distance and the actual length and the actual width of the test pattern may include:
  • FOV level arctan (C / S) (3)
  • C is the actual length of the test pattern
  • S is the aforementioned set distance
  • FOV vertical arctan (D / S) (4)
  • D is the actual width of the test pattern
  • S is the aforementioned set distance
  • the angle of view of the image output device can be accurately determined by the above formula (3) and formula (4).
  • the field of view of the image output device may be calculated without using the above formula, and the field of view of the image output device may be directly determined according to the scale value.
  • the test pattern in FIG. 9 is adjacent to the seventh vertical line on the left and right sides of the vertical center line of the grid pattern in the longitudinal direction, and the angle of view corresponding to the seventh vertical line is 7°, and the horizontal field of view is The angle is close to 14°, coincides with the fourth horizontal line below the horizontal center line of the grid pattern in the width direction, and the angle of view corresponding to the fourth horizontal line is 4°, and the vertical angle of view is 8°.
  • the magnitude of the field of view may be further estimated based on how close the test pattern is to the vertical line.
  • the test pattern is adjacent to the seventh vertical line to the left and right of the vertical center line of the grid pattern in the longitudinal direction, and the horizontal angle of view can be estimated to be 13.7.
  • the grid pattern on the grid line device and the test pattern output by the image output device are photographed, and the grid line device and the image acquisition device are ensured at the time of shooting.
  • the pitch is constant and the center line of the grid pattern coincides with the center line of the test pattern output by the image output device, so that the angle of view of the image output device can be determined according to the relationship between the grid pattern and the test pattern in the captured image. Easy to implement.
  • Embodiments of the present disclosure also provide a field of view test system including: a grid line device and an image acquisition device.
  • the image acquisition device is located at a set observation point of the image output device, the grid line device is located at a set distance before the image acquisition device, and a side surface of the grid line device opposite to the image acquisition device is Having a grid pattern; the image acquisition device is configured to photograph the grid pattern and the test pattern when a center line of the grid pattern coincides with a center line of a test pattern output by the image output device .
  • the angle of view of the image output device may be determined based on the relationship between the test pattern and the grid pattern in the image captured by the image acquisition device.
  • an image processing device may be employed to determine an angle of view.
  • the field of view test system further includes an image processing device coupled to the image acquisition device for Acquiring an image captured by the image acquisition device, and determining a field of view of the image output device according to the relationship between the test pattern and the grid pattern in the captured image.
  • the image processing device may be a device such as a computer.
  • the grid pattern on the grid line device and the test pattern output by the image output device are photographed, and the grid line device and the image acquisition device are ensured at the time of shooting.
  • the pitch is constant and the center line of the grid pattern coincides with the center line of the test pattern output by the image output device, so that the angle of view of the image output device can be determined according to the relationship between the grid pattern and the test pattern in the captured image. Easy to implement.

Abstract

提供了一种视场角测试方法和系统。该方法包括:将图像获取装置(3)置于影像输出设备的设定观察点,并将网格线装置(4)置于所述图像获取装置(3)之前设定距离处,所述网格线装置(4)与所述图像获取装置(3)相对的一侧面设有网格图形(7);控制影像输出设备输出测试图形(6);移动网格线装置(4),保持网格线装置(4)与图像获取装置(3)的间距不变并使得所述网格图形(7)的中心线和影像输出设备输出的测试图形(6)的中心线重合;采用所述图像获取装置(3)对所述网格图形(7)和所述测试图形(6)进行拍摄;根据拍摄到的图像中测试图形与网格图形的关系确定影像输出设备的视场角。

Description

视场角测试方法和系统
本申请要求于2017年11月30日提交的申请号为201711240834.X、发明名称为“视场角测试方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种视场角测试方法和系统。
背景技术
视场角(Field of View,FOV)是各种影像输出设备,例如抬头显示器(Head Up Display,HUD)、虚拟现实(Virtual Reality,VR)设备等的一个重要性能,是指影像输出设备输出的影像的相对的两边缘到某一观察点的连线之间的夹角。在影像输出设备出厂前,需要对影像输出设备的视场角进行检测,以保证影像输出设备的视场角能够满足产品的要求。
发明内容
本公开实施例提供了一种视场角测试方法和系统,其可以用于测试影像输出设备的视场角。
本公开至少一实施例提供了一种视场角测试方法,该方法包括:将图像获取装置置于影像输出设备的设定观察点,并将网格线装置置于所述图像获取装置之前设定距离处,所述网格线装置的与所述图像获取装置相对的一侧面设有网格图形;控制影像输出设备输出测试图形;移动网格线装置,保持网格线装置与图像获取装置之间的间距不变并使得所述网格图形的中心线和影像输出设备输出的测试图形的中心线重合;采用所述图像获取装置对所述网格图形和所述测试图形进行拍摄;根据拍摄到的图像中测试图形与网格图形的关系确定影像输出设备的视场角。
在本公开实施例的一种实施方式中,所述网格图形为等角度网格图形。
可选地,所述网格图形为白底黑线或黑底白线。
可选地,所述网格图形上设有刻度值,所述刻度值用于指示所述网格图形中每根线条对应的视场角的大小。
可选地,所述网格图形上设有网格中心线,所述网格中心线包括水平中心线和竖直中心线,所述网格中心线的颜色与所述网格图形的颜色不同。
在本公开实施例的一种实施方式中,所述测试图形包括外框和设置在所述外框内部的十字中心线,所述十字中心线包括水平中心线和竖直中心线,所述外框位于所述十字中心线的水平中心线两侧的部分到所述十字中心线的水平中心线的最大距离相等,所述外框位于所述十字中心线的竖直中心线两侧的部分到所述十字中心线的竖直中心线的最大距离相等。
可选地,所述十字中心线的颜色与所述网格图形和所述网格中心线的颜色均不同。
可选地,所述根据拍摄到的图像中测试图形与网格图形的关系确定影像输出设备的视场角,包括:根据拍摄到的图像确定所述测试图形的实际长度和实际宽度;根据所述设定距离以及所述测试图形的实际长度和实际宽度,确定所述影像输出设备的视场角。
在本公开实施例的一种实施方式中,所述根据拍摄到的图像确定测试图形的实际长度和实际宽度,包括:分别确定所述图像中网格图形的长度和宽度以及所述图像中测试图形的长度和宽度;确定所述图像中的网格图形对应的网格图形的实际长度和实际宽度;根据所述图像中网格图形的长度和宽度、所述图像中测试图形的长度和宽度以及所述图像中的网格图形对应的网格图形的实际长度和实际宽度,确定所述测试图形的实际长度和实际宽度。
在本公开实施例的一种实施方式中,所述影像输出设备的视场角包括水平视场角和垂直视场角,所述水平视场角和所述垂直视场角分别采用以下公式计算:
FOV 水平=arctan(C/S);
FOV 垂直=arctan(D/S);
其中,FOV 水平为影像输出设备的水平视场角,FOV 垂直为影像输出设备的垂直视场角,C为测试图形的实际长度,D为测试图形的实际宽度,S为所述设定距离。
可选地,所述设定距离为5~20米。
可选地,所述图像获取装置为CCD(Charge-coupled Device,电荷耦合元件) 照相机、复眼摄像头或者集成成像相机。
可选地,所述影像输出设备包括HUD或全息影像输出设备。
本公开至少一实施例还提供了一种视场角测试系统,包括:图像获取装置和网格线装置,所述图像获取装置位于影像输出设备的设定观察点,所述网格线装置位于所述图像获取装置之前设定距离处,所述网格线装置的与所述图像获取装置相对的一侧面设有网格图形;所述图像获取装置用于在所述网格图形的中心线与所述影像输出设备输出的测试图形的中心线重合时,对所述网格图形和所述测试图形进行拍摄。
可选地,该视场角测试系统还包括图像处理装置,用于获取所述图像获取装置拍摄到的图像,并根据拍摄到的图像中测试图形与网格图形的关系确定影像输出设备的视场角。
在本公开实施例的一种实施方式中,所述网格图形为等角度网格图形。
可选地,所述网格图形为白底黑线或黑底白线。
可选地,所述网格图形上设有刻度值,所述刻度值用于指示所述网格图形中每根线条对应的视场角的大小。
可选地,所述网格图形上设有网格中心线,所述网格中心线包括水平中心线和竖直中心线,所述网格中心线的颜色与所述网格图形的颜色不同。
在本公开实施例的一种实施方式中,所述测试图形包括外框和设置在所述外框内部的十字中心线,所述十字中心线包括水平中心线和竖直中心线,所述外框位于所述十字中心线的水平中心线两侧的部分到所述十字中心线的水平中心线的最大距离相等,所述外框位于所述十字中心线的竖直中心线两侧的部分到所述十字中心线的竖直中心线的最大距离相等。
可选地,所述十字中心线的颜色与所述网格图形和所述网格中心线的颜色均不同。
可选地,所述设定距离为5~20米。
可选地,所述图像获取装置为CCD(Charge-coupled Device,电荷耦合元件)照相机、复眼摄像头或者集成成像相机。
可选地,所述影像输出设备包括HUD或全息影像输出设备。
附图说明
图1是本公开实施例提供的一种视场角测试方法的流程示意图;
图2是本公开实施例提供的视场角测试方法的应用场景示意图;
图3是本公开实施例提供的设定观察点的设置示意图;
图4a是本公开实施例提供的一种网格图形的示意图;
图4b是本公开实施例提供的等角度网格图形的示意图;
图5是本公开实施例提供的测试图形的示意图;
图6是本公开实施例提供的网格图形和测试图形初始对位示意图;
图7是本公开实施例提供的一种网格图形和测试图形对准后的示意图;
图8是本公开实施例提供的拍摄到的图像的示意图;
图9是本公开实施例提供的另一种网格图形和测试图形对准后的示意图。
具体实施方式
为使本公开的原理和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1示出本公开实施例提供的一种视场角测试方法的流程示意图。
如图1所示,该方法包括:在步骤S101中,将图像获取装置置于影像输出设备的设定观察点,并将网格线装置置于所述图像获取装置之前设定距离处。
在本实施例中,影像输出设备是指输出影像不在物理成像屏上成像的影像输出设备。输出影像即可以是虚拟影像(例如HUD的输出影像),也可以是真实影像(例如全息影像输出设备输出的全息影像)。
图2以测试HUD的视场角为例,显示了本实施例的测试方法的应用场景。如图2所示,HUD通常包括显示源1、光学系统(图未示)和成像屏2(通常为汽车前挡风玻璃)。显示源1用于根据输入的图像数据输出测试图形6,该测试图形6经过光学系统投射至成像屏2,在成像屏2远离HUD的一侧成像。
图像获取装置3设置在影像输出设备的设定观察点。对于影像输出设备而言,通常设置有最佳观看距离,并且在该最佳观看距离处设有一个矩形区域作为最佳观察区域S0(参见图3),该矩形区域可以被称为眼盒。如图3所示,该设定观察点可以为矩形区域的中心点O,即矩形的对角线的交点。对于HUD而言,通常还设置有最近观察距离S1和最远观察距离S2。最佳观察位置S0位于最近观察距离S1和最远观察距离S2之间。该矩形区域的长度通常为140mm~160mm,宽度通常为40mm~60mm。该矩形区域的水平高度可以根据实际需要设置。在测试过程中,通常会将矩形区域的中心点O与测试图形的中心点设置在同一水平高度。将图像获取装置3设置在设定观察点,是指图像获取装置3 的镜头的中心位于设定观察点处,且镜头的中心线对准测试图形的中心点。可选地,图像获取装置可以为CCD照相机、复眼摄像头或者集成成像相机(又称光场相机)等。
在本实施例中,网格线装置4与图像获取装置3相对的一侧面设有网格图形7。
可选地,网格线装置4可以包括底板以及设置在底板的一侧面的涂层或贴画等。该涂层或贴画用于展示网格图形7。或者,该网格线装置可以为电子显示屏。该电子显示屏用于展示网格图形7。为了便于网格线装置4与输出图像的对准,可以将网格线装置4设置在支架5上。可选地,为了便于调节网格图形的位置,该支架5上还可以设置有升降机构和/或平移机构。升降机构用于调节网格图形的水平高度,平移机构用于调节网格图形的水平位置。升降机构和平移机构可以采用现有任意的机构,包括但不限于齿轮齿条移动机构、丝杠移动机构等。
图4a为本公开实施例提供的一种网格图形的示意图。该网格图形7包括多根平行间隔设置的第一直线71和多根平行间隔设置的第二直线72,第一直线71与第二直线72相互垂直。第一直线71通常为水平线,第二直线72为竖直线。在一种实现方式中,该网格图形4为等角度网格图形。图4b为本公开实施例提供的等角度网格图形的示意图。如图4b所示,在等角度网格图形中,设定观察点O到任意相邻的两条第一直线71的垂线之间的夹角均为固定角度A,并且设定观察点O到任意相邻的两条第二直线72的垂线之间的夹角也为固定角度A(图4b中仅以网格图形中部的线条为例进行说明)。实际应用中,通常A=1°。当然,也可以根据实际情况设置为其他值,例如0.5°、1.5°、2°等。
由于设定观察点O到网格图形的中心点的距离一定(为前述设定距离),那么可以按照以下公式确定各相邻的第一直线之间的距离和各相邻的第二直线之间的距离:
Yn=S*tan(n°),
Xm=S*tan(m°),
其中,Yn表示从网格图形的水平中心线起第n根第一直线到网格图形的水平中心线的距离(例如,Y1表示与网格图形的水平中心线相邻的第一直线的距离),Xm表示从网格图形的竖直中心线起第m根第二直线到网格图形的竖直中心线的距离(例如,X1表示与网格图形的竖直中心线相邻的第二直线的距离), S为前述设定距离,即设定观察点O到网格图形的中心点的距离。
可选地,n≥10,m≥25。
可选地,该网格图形7可以为白底黑线或黑底白线。其中,白底黑线是指网格线(即前述为水平线的第一直线71和为竖线的第二直线72)为黑色线条,而除了黑色线条以外的部分均为白色。由于黑色和白色对比度高,将网格图形设置为黑底白线或者白底黑线有利于通过图像获取装置能够获得清晰的网格线条图像,提高测试结果的准确度。
可选地,所述网格图形7上设有网格中心线73,用于指示网格图形的中心线的位置。网格中心线73包括水平中心线和竖直中心线。网格中心线73的颜色与网格图形7的颜色不同。例如,网格中心线73可以采用红色或绿色,以使得网格中心线73能突出显示在网格图形7中,便于后续测试图形的中心线与网格图形的中心线的位置对准。
可选地,网格图形7上还可以设置有刻度值,刻度值用于指示所述网格图形7中每根线条对应的视场角的大小。如图4a中的数字所示,每条第一直线71和每条第二直线72均对应有一个刻度值。该刻度值与第一直线71和每条第二直线72对应的视场角相对应。
网格线装置4设置在图像获取装置3之前,是指网格线装置4位于图像获取装置3的镜头对准的方向。网格线装置4与图像获取装置3之间间隔为设定距离,使得网格线装置4设置在影像输出设备1的成像位置附近。大多数影像输出设备1的成像距离(即影像输出设备输出的影像到设定观察点之间的距离)为3m、5m、8m。后续可能发展到20m以上,甚至百米以上。将设定距离设置为5m~20m,例如5m~10m,影像可以呈现在网格线装置的前、后或者与网格线装置重合。该距离设置综合考虑了图像获取设备的聚焦精度和测试方法所需要的占地空间,适用于对大多数影像输出设备进行测试,适用性好。在本实施例中,设定距离可以为5m。
在图1所示的步骤S102中,控制影像输出设备输出测试图形。
例如,点亮显示源并将测试图形的图像数据输入显示源,从而使得影像输出设备输出测试图形。
图5为本公开实施例提供的一种测试图形的示意图。如图5所示,测试图形6包括矩形外框61和十字中心线62。十字中心线62用于指示测试图形的中心线的位置。十字中心线62包括水平中心线和竖直中心线,水平中心线与所述 矩形外框61的宽度方向中心线重合,竖直中心线与所述矩形外框61的长度方向中心线重合。该矩形外框61的大小由影像输出设备输出影像的最大范围决定,即影像输出设备输出的影像所在的位置均不会超出该矩形外框。
在其他实施例中,测试图形的外框还可以为其他形状,例如椭圆形、菱形等,只要外框位于所述十字中心线的水平中心线两侧的部分到所述十字中心线的水平中心线的最大距离相等,所述外框位于所述十字中心线的竖直中心线两侧的部分到所述十字中心线的竖直中心线的最大距离相等。例如,若测试图形的外框为椭圆形,则十字中心线的水平中心线和竖直中心线分别位于椭圆的长轴和短轴上,若测试图形的外框为菱形,十字中心线位于菱形的两条对角线上。
在本公开实施例的一种实现方式中,十字中心线62的颜色与网格图形7和网格中心线73的颜色均不同。例如,当网格图形7为黑底白线且网格中心线73为绿色时,十字中心线62的颜色可以为红色。当然,十字中心线62的颜色可以根据实际需要设置,只要十字中心线62的颜色容易区分于网格图形7的颜色即可。将十字中心线62的颜色设置为与网格图形7和网格中心线73的颜色不同,从而在测试图形6的十字中心线62与网格图形7重合时,容易观察十字中心线62相对于网格图形7的位置,以便于调整网格图形7的位置,从而将十字中心线62与网格图形7的中心线(即网格中心线73)对准。
在本公开实施例的另一种实现方式中,十字中心线62的颜色也可以采用与网格图形7或者网格中心线73中线条相同的颜色。例如,当网格图形7为黑底白线且网格中心线73为绿色时,十字中心线62的颜色可以为绿色或白色。
可选地,外框和十字中心线可以采用相同的颜色;也可以采用不同的颜色,本公开实施例对此不作限定。为了便于区分外框,外框的颜色也可以与网格图形的颜色不同。
在图1所示的步骤S103中,移动网格线装置,保持网格线装置与图像获取装置之间的间距不变并使得所述网格图形的中心线和影像输出设备输出的测试图形的中心线重合。
如图6所示,在影像输出设备输出测试图形后,测试图形6和网格图形7的中心位置可能相距较远,此时需要调整网格线装置4的位置,使得网格图形的7中心线和影像输出设备输出的测试图形6的中心线重合,如图7所示。
在图1所示的步骤S104中,采用所述图像获取装置对网格图形和测试图形进行拍摄。
例如,可以将图像获取装置聚焦在网格中心线73上或者聚焦在十字中心线62上进行拍摄。
在图1所示的步骤S105中,根据拍摄到的图像中网格图形和测试图形的关系确定影像输出设备的视场角。
在本公开实施例中,该步骤S105可以包括:根据拍摄到的图像确定测试图形的实际长度和实际宽度;根据所述设定距离以及所述测试图形的实际长度和实际宽度,确定影像输出设备的视场角。
结合图8,根据拍摄到的图像确定测试图形的实际长度和实际宽度,可以包括:分别确定拍摄得到的图像中网格图形7的长度a和宽度b,图像中测试图形6的长度c和宽度d;确定拍摄得到的图像中的网格图形7对应的网格图形的实际长度A和实际宽度B;根据所述图像中网格图形的长度a和宽度b,测试图形6的长度c和宽度d以及所述图像中的网格图形对应的网格图形的实际长度A和实际宽度B,确定所述测试图形的实际长度C和实际宽度D。
示例性地,图像中的网格图形可以是影像输出设备输出的网格图形的全部或者一部分。
在本公开实施例的一种实现方式中,确定拍摄得到的图像中测试图形的长度和宽度以及图像中网格图形的长度和宽度可以人工方式实现。例如,采用人工测量的方式,确定拍摄得到的图像中测试图形的长度c和宽度d以及网格图形的长度a和宽度b。
由于图像中的网格图形对应的网格图形的实际长度和宽度已知,例如,可以直接通过测量网格线装置4上的网格图形7得到,而拍摄得到的图像中的测试图形和网格图形的比例、与测试图形和网格图形的实际比例是相同的,因此,可以根据第一比值、第二比值以及所述图像中的网格图形对应的网格图形的实际长度和实际宽度,确定所述测试图形的实际长度和实际宽度。例如,第一比值为图像中网格图形的长度a与图像中测试图形的长度c的比值,第二比值为图像中网格图形的宽度b与图像中测试图形的宽度d的比值。
具体可以根据以下公式(1)和(2)确定测试图形的实际长度C和实际宽度D:
a/c=A/C,(1)
b/d=B/D,(2)
在本公开实施例的另一种实现方式中,确定拍摄得到的图像中测试图形的 长度和宽度以及网格图形的长度和宽度也可以采用自动化方式实现。例如,以确定测试图形的长度和宽度为例,先将拍摄得到的图像发送给图像处理装置(例如计算机等)进行图像处理,确定出测试图形的外框所在位置,然后再根据外框所在位置确定测试图形的长度和宽度。
可选择地,可以采用如下方式确定出测试图形的外框所在位置:将图像转换为灰度图,然后再用边缘检测算法确定出图像中的线条,然后从图像的线条中识别出测试图形的外框,从而确定出测试图形的外框所在的位置。需要说明的是,本公开实施例可以采用任何能够检测出测试图形的外框的图像处理技术实现,本公开对此不做限制。
可以采用以下方式根据外框所在位置确定测试图形的长度:确定外框上的各点在水平方向(X方向)上的最大坐标值和最小坐标值,根据水平方向上的最大坐标值和最小坐标值计算图像中测试图形的长度;确定外框上的各点在竖直方向(Y方向)上的最大坐标值和最小坐标值,根据竖直方向上的最大坐标值和最小坐标值计算图像中测试图形的宽度。
当然,确定拍摄得到的图像中测试图形的长度和宽度以及网格图形的长度和宽度还可以采用半自动化的方式实现。例如,操作人员借助图像处理装置指定测试图形的外框的两边线或者外框上的两点,然后图像处理装置自动计算两边线或两点之间的距离,从而得到图像中测试图形的长度和宽度。图像中网格图形的长度和宽度也可以采用同样的方法确定。
例如,根据所述设定距离以及所述测试图形的实际长度和实际宽度,确定影像输出设备的视场角可以包括:
按照公式(3)确定影像输出设备的水平视场角FOV 水平
FOV 水平=arctan(C/S)(3)
公式(3)中,C为测试图形的实际长度,S为前述设定距离。
按照公式(4)确定影像输出设备的垂直视场角FOV 垂直
FOV 垂直=arctan(D/S)(4)
公式(4)中,D为测试图形的实际宽度,S为前述设定距离。
通过上述公式(3)和公式(4)可以准确确定出影像输出设备的视场角。
在发明的又一实施例中,若网格图形7上设有刻度值,可以不采用上述公式计算影像输出设备的视场角,而直接根据刻度值来确定影像输出设备的视场角。例如,图9中的测试图形在长度方向上分别靠近网格图形的竖直中心线左 边和右边的第7根竖线,第7根竖线对应的视场角为7°,则水平视场角接近14°,在宽度方向上与网格图形的水平中心线上下的第4根横线重合,第4根横线对应的视场角为4°,则垂直视场角为8°。可选择地,可以根据测试图形与竖线的接近程度进一步估计视场角的大小。例如,在图9所示情况下,测试图形在长度方向上分别靠近网格图形的竖直中心线左边和右边的第7根竖线,则可以估计出水平视场角为13.7°。通过设置刻度值,可以直接确定出测试图形对应的视场角,快捷方便,尤其适用于不需要精确确定视场角的情况。
通过将图像获取装置放置在影像输出设备的设定观察点,对网格线装置上的网格图形和影像输出设备输出的测试图形进行拍摄,并且保证拍摄时网格线装置与图像获取装置的间距不变且所述网格图形的中心线和影像输出设备输出的测试图形的中心线重合,从而可以根据拍摄到的图像中网格图形和测试图形的关系确定出影像输出设备的视场角,实现方便。
本公开实施例还提供了一种视场角测试系统,该测试系统包括:网格线装置和图像获取装置。所述图像获取装置位于影像输出设备的设定观察点,所述网格线装置位于所述图像获取装置之前设定距离处,所述网格线装置与所述图像获取装置相对的一侧面设有网格图形;所述图像获取装置用于在所述网格图形的中心线与所述影像输出设备输出的测试图形的中心线重合时,对所述网格图形和所述测试图形进行拍摄。
关于网格线装置和图像获取装置的详细描述可以参见图1所示方法实施例的相关描述,在此不再赘述。
在一种实现方式中,可以采用人工的方式,基于图像获取装置拍摄得到的图像中测试图形与网格图形的关系,确定影像输出设备的视场角。
在另一种实现方式中,可以采用图像处理装置来确定视场角,在这种实施方式中,该视场角测试系统还包括图像处理装置,该图像处理装置与图像获取装置连接,用于获取所述图像获取装置拍摄到的图像,并根据拍摄到的图像中测试图形与网格图形的关系确定影像输出设备的视场角。图像处理装置获取影像输出设备的视场角的方式可以参见前述对步骤S105的描述,在此不再赘述。其中,图像处理装置可以为计算机等设备。
通过将图像获取装置放置在影像输出设备的设定观察点,对网格线装置上的网格图形和影像输出设备输出的测试图形进行拍摄,并且保证拍摄时网格线 装置与图像获取装置的间距不变且所述网格图形的中心线和影像输出设备输出的测试图形的中心线重合,从而可以根据拍摄到的图像中网格图形和测试图形的关系确定出影像输出设备的视场角,实现方便。
以上所述仅为对本公开实施例的举例说明,并不用以限制本公开的范围。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开所附权利要求的保护范围之内。

Claims (20)

  1. 一种视场角测试方法,包括:
    将图像获取装置置于影像输出设备的设定观察点,并将网格线装置置于所述图像获取装置之前设定距离处,所述网格线装置的与所述图像获取装置相对的一侧面设有网格图形;
    控制影像输出设备输出测试图形;
    移动网格线装置,保持网格线装置与图像获取装置之间的间距不变并使得所述网格图形的中心线和影像输出设备输出的测试图形的中心线重合;
    采用所述图像获取装置对所述网格图形和所述测试图形进行拍摄;
    根据拍摄到的图像中测试图形与网格图形的关系确定所述影像输出设备的视场角。
  2. 根据权利要求1所述的视场角测试方法,其中,所述网格图形为等角度网格图形。
  3. 根据权利要求2所述的视场角测试方法,其中,所述网格图形上设有刻度值,所述刻度值用于指示所述网格图形中每根线条对应的视场角的大小。
  4. 根据权利要求2所述的视场角测试方法,其中,所述网格图形为白底黑线或黑底白线。
  5. 根据权利要求4所述的视场角测试方法,其中,所述网格图形上设有网格中心线,所述网格中心线包括水平中心线和竖直中心线,所述网格中心线的颜色与所述网格图形的颜色不同。
  6. 根据权利要求5所述的视场角测试方法,其中,所述测试图形包括外框和设置在所述外框内部的十字中心线,所述十字中心线包括水平中心线和竖直中心线,所述外框位于所述十字中心线的水平中心线两侧的部分到所述十字中心线的水平中心线的最大距离相等,所述外框位于所述十字中心线的竖直中心线两侧的部分到所述十字中心线的竖直中心线的最大距离相等。
  7. 根据权利要求6所述的视场角测试方法,其中,所述十字中心线的颜色与所述网格图形和所述网格中心线的颜色均不同。
  8. 根据权利要求1-7任一项所述的视场角测试方法,其中,所述根据拍摄到的图像中测试图形与网格图形的关系确定影像输出设备的视场角,包括:
    根据拍摄到的图像确定所述测试图形的实际长度和实际宽度;
    根据所述设定距离以及所述测试图形的实际长度和实际宽度,确定所述影像输出设备的视场角。
  9. 根据权利要求8所述的视场角测试方法,其中,所述根据拍摄到的图像确定测试图形的实际长度和实际宽度,包括:
    分别确定所述图像中网格图形的长度和宽度以及所述图像中测试图形的长度和宽度;
    确定所述图像中的网格图形对应的网格图形的实际长度和实际宽度;
    根据所述图像中网格图形的长度和宽度、所述图像中测试图形的长度和宽度以及所述图像中的网格图形对应的网格图形的实际长度和实际宽度,确定所述测试图形的实际长度和实际宽度。
  10. 根据权利要求9所述的视场角测试方法,其中,所述影像输出设备的视场角包括水平视场角和垂直视场角,所述水平视场角和所述垂直视场角分别采用以下公式计算:
    FOV 水平=arctan(C/S);
    FOV 垂直=arctan(D/S);
    其中,FOV 水平为影像输出设备的水平视场角,FOV 垂直为影像输出设备的垂直视场角,C为测试图形的实际长度,D为测试图形的实际宽度,S为所述设定距离。
  11. 一种视场角测试系统,包括:图像获取装置和网格线装置,所述图像获取装置位于影像输出设备的设定观察点,所述网格线装置位于所述图像获取装置之前设定距离处,所述网格线装置的与所述图像获取装置相对的一侧面设有网格图形;所述图像获取装置用于在所述网格图形的中心线与所述影像输出设备输出的测试图形的中心线重合时,对所述网格图形和所述测试图形进行拍摄。
  12. 根据权利要求11所述的视场角测试系统,其中,还包括:
    图像处理装置,用于获取所述图像获取装置拍摄到的图像,并根据拍摄到的图像中测试图形与网格图形的关系确定影像输出设备的视场角。
  13. 根据权利要求11所述的视场角测试系统,其中,所述网格图形为等角度网格图形。
  14. 根据权利要13所述的视场角测试系统,其中,所述网格图形上设有刻度值,所述刻度值用于指示所述网格图形中每根线条对应的视场角的大小。
  15. 根据权利要求13所述的视场角测试系统,其中,所述网格图形为白底黑线或黑底白线。
  16. 根据权利要求15所述的视场角测试系统,其中,所述网格图形上设有网格中心线,所述网格中心线包括水平中心线和竖直中心线,所述网格中心线的颜色与所述网格图形的颜色不同。
  17. 根据权利要求16所述的视场角测试系统,其中,所述测试图形包括外框和设置在所述外框内部的十字中心线,所述十字中心线包括水平中心线和竖直中心线,所述外框位于所述十字中心线的水平中心线两侧的部分到所述十字中心线的水平中心线的最大距离相等,所述外框位于所述十字中心线的竖直中心线两侧的部分到所述十字中心线的竖直中心线的最大距离相等。
  18. 根据权利要求17所述的视场角测试系统,其中,所述十字中心线的颜色与所述网格图形和所述网格中心线的颜色均不同。
  19. 根据权利要求11-18任一项所述的视场角测试系统,其中,所述图像获取装置为电荷耦合元件照相机、复眼摄像头或者集成成像相机。
  20. 根据权利要求11-18任一项所述的视场角测试系统,其中,所述影像输出设备包括抬头显示器或全息影像输出设备。
PCT/CN2018/117348 2017-11-30 2018-11-25 视场角测试方法和系统 WO2019105315A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/768,144 US11562478B2 (en) 2017-11-30 2018-11-25 Method and system for testing field of view

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711240834.XA CN109862345B (zh) 2017-11-30 2017-11-30 视场角测试方法和系统
CN201711240834.X 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019105315A1 true WO2019105315A1 (zh) 2019-06-06

Family

ID=66665405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117348 WO2019105315A1 (zh) 2017-11-30 2018-11-25 视场角测试方法和系统

Country Status (3)

Country Link
US (1) US11562478B2 (zh)
CN (1) CN109862345B (zh)
WO (1) WO2019105315A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116519274A (zh) * 2023-06-25 2023-08-01 之江实验室 镜头的视场角测试方法及测试系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907142B (zh) * 2019-12-09 2021-08-03 中国科学院长春光学精密机械与物理研究所 一种视觉体感设备测试系统及方法
CN111551346B (zh) * 2020-04-13 2022-04-01 深圳惠牛科技有限公司 一种视场角的测量方法、设备、系统及计算机存储介质
CN111982468B (zh) * 2020-07-29 2022-12-09 深圳惠牛科技有限公司 一种视场角的测量方法、设备、系统及计算机存储介质
FR3123978A1 (fr) * 2021-06-10 2022-12-16 Psa Automobiles Sa Système de mesure d’une distance pour un afficheur tête haute
CN114339201A (zh) * 2021-12-07 2022-04-12 重庆市天实精工科技有限公司 广角模组的反畸变测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000831A (ko) * 2012-06-25 2014-01-06 인텔렉추얼디스커버리 주식회사 디스플레이 장치 및 방법
CN103940590A (zh) * 2014-03-26 2014-07-23 中国科学院长春光学精密机械与物理研究所 大口径光学镜头畸变的标定方法
CN205120345U (zh) * 2015-11-26 2016-03-30 上海镭昊光电股份有限公司 一种平显光学性能测试设备
CN105787980A (zh) * 2016-03-17 2016-07-20 北京牡丹视源电子有限责任公司 一种检测虚拟现实显示设备视场角的方法及系统
CN106596061A (zh) * 2016-12-05 2017-04-26 中国航空工业集团公司洛阳电光设备研究所 一种平视显示器光学性能通用测试平台

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402224A (en) * 1992-09-25 1995-03-28 Nikon Corporation Distortion inspecting method for projection optical system
US5731902A (en) * 1996-08-19 1998-03-24 Delco Electronics Corporation Head-up display combiner binocular test fixture
US7856750B2 (en) * 1997-12-08 2010-12-28 Horus Vision Llc Apparatus and method for calculating aiming point information
GB2395261A (en) * 2002-11-11 2004-05-19 Qinetiq Ltd Ranging apparatus
JP4286068B2 (ja) * 2003-06-03 2009-06-24 大塚電子株式会社 画面の動画質評価方法
DE602005016528D1 (de) * 2004-02-04 2009-10-22 Microvision Inc Raster-head-up-display und entsprechende systeme und verfahren
US20080088527A1 (en) * 2006-10-17 2008-04-17 Keitaro Fujimori Heads Up Display System
CA2568021A1 (fr) * 2006-11-20 2008-05-20 Colmatec Inc. Dispositif pour mesurer des fissures dans des conduites
CN100545746C (zh) * 2006-12-01 2009-09-30 鸿富锦精密工业(深圳)有限公司 光学视角测量系统及其测量方法
JP2012151670A (ja) * 2011-01-19 2012-08-09 Renesas Electronics Corp 画像投影システム及び半導体集積回路
PT106430B (pt) * 2012-07-03 2018-08-07 Cesar Augusto Dos Santos Silva Sistema para medição da distância interpupilar usando um dispositivo equipado com um ecrã e uma câmara
US9342877B2 (en) * 2013-08-22 2016-05-17 Glasses.Com Inc. Scaling a three dimensional model using a reflection of a mobile device
US9524580B2 (en) * 2014-01-06 2016-12-20 Oculus Vr, Llc Calibration of virtual reality systems
US9307231B2 (en) * 2014-04-08 2016-04-05 Lucasfilm Entertainment Company Ltd. Calibration target for video processing
US20140232871A1 (en) * 2014-05-01 2014-08-21 Caterpillar Inc. Method for manually calibrating a camera mounted on vehicle
CN104079927B (zh) * 2014-07-07 2016-04-20 广东欧珀移动通信有限公司 一种视场角测量装置
US9503687B2 (en) * 2015-03-24 2016-11-22 Fuji Xerox Co., Ltd. Personalized meeting event capture using egocentric tracking in smart spaces
US10009585B2 (en) * 2016-01-04 2018-06-26 Microvision, Inc. MEMS scan controlled keystone and distortion correction
US10281644B2 (en) * 2017-02-09 2019-05-07 David Wayne Holdsworth Method and apparatus for calibrating low-light level optical imaging systems
CN109859155A (zh) * 2017-11-30 2019-06-07 京东方科技集团股份有限公司 影像畸变检测方法和系统
US11879854B2 (en) * 2020-09-23 2024-01-23 Baker Hughes Oilfield Operations Llc Positioning of x-ray imaging system using an optical camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000831A (ko) * 2012-06-25 2014-01-06 인텔렉추얼디스커버리 주식회사 디스플레이 장치 및 방법
CN103940590A (zh) * 2014-03-26 2014-07-23 中国科学院长春光学精密机械与物理研究所 大口径光学镜头畸变的标定方法
CN205120345U (zh) * 2015-11-26 2016-03-30 上海镭昊光电股份有限公司 一种平显光学性能测试设备
CN105787980A (zh) * 2016-03-17 2016-07-20 北京牡丹视源电子有限责任公司 一种检测虚拟现实显示设备视场角的方法及系统
CN106596061A (zh) * 2016-12-05 2017-04-26 中国航空工业集团公司洛阳电光设备研究所 一种平视显示器光学性能通用测试平台

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116519274A (zh) * 2023-06-25 2023-08-01 之江实验室 镜头的视场角测试方法及测试系统

Also Published As

Publication number Publication date
US20200388019A1 (en) 2020-12-10
CN109862345B (zh) 2022-09-30
US11562478B2 (en) 2023-01-24
CN109862345A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
WO2019105315A1 (zh) 视场角测试方法和系统
US8339463B2 (en) Camera lens calibration system
CN102509261B (zh) 一种鱼眼镜头的畸变校正方法
CN107024339B (zh) 一种头戴显示设备的测试装置及方法
WO2019105433A1 (zh) 影像畸变检测方法和系统
CN101207833B (zh) 数码相机镜头光心偏移的检测方法
CN111862224B (zh) 确定相机与激光雷达之间外参的方法和装置
TWI484283B (zh) 影像計算量測方法、影像計算量測裝置及影像檢查裝置
CN203929068U (zh) 一种广视场光学系统
TWI577172B (zh) 影像校正系統和立體照相機的校正方法
CN107783270B (zh) 大视场及小f数线面结合的遥感相机光学配准方法及系统
US20140293035A1 (en) Image processing apparatus, imaging apparatus, microscope system, image processing method, and computer-readable recording medium
CN104038755B (zh) 摄像头畸变中心点测试装置及识别方法
CN108734738B (zh) 相机标定方法及装置
WO2020107586A1 (zh) 光学模组参数的检测系统及方法
WO2012163259A1 (zh) 视频会议系统调整的方法及装置
TW201833868A (zh) 魚眼相機全自動校正方法及其裝置
CN102589529A (zh) 扫描近景摄影测量方法
US20170219339A1 (en) Measuring and correcting optical misalignment
CN111343360B (zh) 一种校正参数获得方法
CN111131801A (zh) 投影仪校正系统、方法及投影仪
CN206038278U (zh) 凹面镜成像测量长焦镜头调制传递函数的装置
CN107977998B (zh) 一种基于多视角采样的光场校正拼接装置及方法
JP6483661B2 (ja) 撮像制御装置、撮像制御方法およびプログラム
JP6142655B2 (ja) 外観検査装置及び外観検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18883341

Country of ref document: EP

Kind code of ref document: A1