WO2020107586A1 - 光学模组参数的检测系统及方法 - Google Patents

光学模组参数的检测系统及方法 Download PDF

Info

Publication number
WO2020107586A1
WO2020107586A1 PCT/CN2018/122936 CN2018122936W WO2020107586A1 WO 2020107586 A1 WO2020107586 A1 WO 2020107586A1 CN 2018122936 W CN2018122936 W CN 2018122936W WO 2020107586 A1 WO2020107586 A1 WO 2020107586A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
detected
offset
camera device
rotation angle
Prior art date
Application number
PCT/CN2018/122936
Other languages
English (en)
French (fr)
Inventor
孙琦
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2020107586A1 publication Critical patent/WO2020107586A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested

Definitions

  • the invention relates to the field of optics, in particular to an optical module parameter detection system and method.
  • the main purpose of the present invention is to provide an optical module parameter detection system and method, aiming to solve the problems that current equipment and procedures for testing optical module parameters are relatively complicated and costly.
  • an embodiment of the present invention provides an optical module parameter detection system.
  • the detection system includes:
  • a marking device which is arranged on the light incident side of the optical module to be detected and used to mark the characteristics of the picture card;
  • An imaging device which can be rotatably arranged on the light exit side of the optical module to be detected, and the rotation center of the imaging device coincides with the center of the pupil of the optical module to be detected;
  • the camera device rotates around the center of the pupil to different positions for shooting, so that the card features at different positions on the marking device pass through the optical module to be detected, and then at the center position of the imaging sensor of the camera device Imaging.
  • the detection system further includes a rotating table, and the camera device is disposed on the rotating table.
  • the detection system further includes a bearing lens barrel, an optical module to be detected is disposed at an end of the bearing lens barrel near the camera device, and the marking device is disposed at an end of the bearing lens barrel away from the camera device.
  • the optical axis of the camera device is coaxial with the optical axis of the optical module to be detected.
  • the camera device includes a body and a lens provided on the body, and the lens is a fixed focus lens.
  • the field of view of the camera device is 3-5 degrees, and the focusing distance is 0.8-3 meters.
  • the distance between the center of the pupil and the light exit surface of the optical module to be detected is 13-15 mm.
  • the present invention also provides an optical module parameter detection method.
  • the optical module parameter detection method includes the following steps:
  • the parameter information of the optical module to be detected includes at least one of effective focal length, optical distortion, and angle of view.
  • the picture card features include a reference picture card feature located at the center position of the marking device and an offset picture card feature offset from the center position of the marking device;
  • the required detection parameter is the effective focal length
  • the graphic card features include a reference graphic card feature located at the center position of the marking device and an offset graphic card feature offset from the center position of the marking device, wherein the offset graphic card feature includes at least two ;
  • the required detection parameter is the effective focal length
  • the average value of the first focal length in all offset directions is taken as the effective focal length of the optical module to be detected.
  • the second offset distance between the offset graph feature and the reference graph feature in the area from the center of the marking device to the edge of the marking device is acquired, And a second rotation angle of the camera device corresponding to the second offset distance;
  • the picture card feature on the marking device is replaced with a pure white picture
  • the method further includes:
  • the marking device is a display screen
  • the step of acquiring the offset distance between the different card features includes:
  • the offset distance corresponding to the card feature is acquired and the camera device corresponds to the offset
  • the information such as the rotation angle of the shift distance, and calculating the parameter information of the optical module to be detected according to the information of the offset distance and the rotation angle of the camera device, so that the optical module to be detected can be determined according to the parameter information Whether the design and field of view requirements are met, or the optical module to be tested is pre-distorted according to the parameter information later.
  • FIG. 1 is a schematic structural diagram of an embodiment of an optical module parameter detection system of the present invention
  • FIG. 2 is a schematic flowchart of a first embodiment of a method for detecting optical module parameters of the present invention
  • FIG. 3 is a schematic flowchart of a second embodiment of a method for detecting optical module parameters of the present invention.
  • FIG. 4 is a schematic flowchart of a third embodiment of a method for detecting optical module parameters of the present invention.
  • FIG. 5 is a schematic structural view of another embodiment of the optical module parameter detection system of the present invention.
  • FIG. 6 is a schematic flowchart of a fourth embodiment of a method for detecting optical module parameters of the present invention.
  • FIG. 7 is a schematic structural view of another embodiment of the optical module parameter detection system of the present invention.
  • FIG. 8 is a schematic flowchart of a fifth embodiment of a method for detecting optical module parameters of the present invention.
  • FIG. 9 is a schematic flowchart of a sixth embodiment of a method for detecting optical module parameters of the present invention.
  • FIG. 10 is a schematic flowchart of a seventh embodiment of a method for detecting optical module parameters of the present invention.
  • the detection system 100 includes:
  • the marking device 10 is disposed on the light incident side of the optical module 30 to be detected, and is used to mark the graphic card feature 11.
  • An imaging device 20 which can be rotatably disposed on the light exit side of the optical module 30 to be detected, and the rotation center 21 of the imaging device 20 coincides with the pupil center of the optical module 30 to be detected;
  • the camera device 20 rotates around the rotation center 21 to different positions for shooting, so that the card features 11 at different positions on the marking device 10 pass through the optical module 30 to be inspected, and then the camera device 20 Imaging center position of the imaging sensor.
  • the marking device 10 is a display screen
  • the graphic card feature 11 is a feature on the display screen set off by the background of the screen, such as a white cross, white circle, white square, etc. displayed on a black background
  • This embodiment does not limit the color and shape of the graphic card feature 11 displayed on the display screen, as long as the graphic card feature 11 can be captured by the camera device 20 and can be imaged on the camera device imaging sensor 20, and The image card feature 11 can be highlighted during imaging.
  • the marking device 10 includes a backlight (not shown) and a pattern (not shown) disposed on the backlight
  • the picture card feature 11 is a feature set against a background area on the pattern, Such as a white cross, a white circle, a white square, etc. set on a black background, this embodiment does not limit the color and shape of the features on the pattern, as long as the features on the pattern can be used by the camera 20 It can be captured and imaged by the camera device 20, and the image card feature 11 can be highlighted during imaging.
  • the marking device 10B shown in FIG. 1 is obtained by turning the marking device 10A 90 degrees, so as to clearly show the graphic card feature 11 on the marking device 10.
  • the marking device 10 is disposed on the light incident side of the optical module 30 to be inspected, so that the outgoing light emitted from the picture card feature 11 passes through the optical module 30 to be inspected and reaches the camera device 20, and Imaging at the center position of the imaging sensor of the camera device 20.
  • the optical module 30 to be detected may be a single lens or an optical system including a plurality of lenses; in the present invention, an optical module with a light-converging function in a virtual reality device will be described.
  • the camera device 20 can be rotatably disposed on the light emitting side of the optical module 30 to be inspected, so as to receive the outgoing light of the graphic card feature 11 passing through the optical module 30 to be inspected and take a photo image;
  • the rotation center 21 of the camera device 20 coincides with the pupil center of the optical module 30 to be detected, and it can be understood that the pupil center of the optical module to be detected is on the light-exiting side, at the smallest point where the exiting light rays pass together
  • the position of the aperture is the easiest to let the most light enter the eye when the pupil of the human eye is here.
  • the rotation of the camera device 20 around the rotation center 21 includes an initial position at which the optical axis of the camera device 20 and the optical module 30 to be detected
  • the optical axis of is coaxial.
  • the center position of the display device is also set on the optical axis of the optical module 30 to be detected.
  • the card feature 11 defining the center position of the display device is defined as
  • the reference image card feature 11A defines an image card feature 11 that is offset from the center position of the marking device 20 as an offset image card feature 11B, and there may be multiple offset image card features 11B; at the initial position, the The camera device 20 is capable of photographing the reference picture card feature 11A, and the reference picture card feature 11A is imaged exactly at the center position of the imaging sensor of the camera device 20.
  • the camera device 20 when the camera device 20 needs to photograph the offset map feature 11B, it needs to rotate around the rotation center 21 in a direction opposite to the deviation direction of the offset map feature 11B to capture To the offset map feature 11B, and image the offset map feature 11B at the center of the imaging sensor of the camera 20, for example, the offset map feature 11B shown in FIG. 1 is offset downward At this time, the camera device 20 needs to rotate upward to capture the offset card feature 11B.
  • the imaging device 20 is acquired from the initial position to the image feature of the offset map 11B Information such as the rotation angle of the position and the offset distance of the offset card feature 11B from the reference card feature 11A, and calculating parameter information of the optical module 30 to be detected based on the above information, the parameter information Including but not less than at least one of effective focal length, optical distortion and angle of view.
  • the present invention obtains the offset of the corresponding graphic card feature 11 when the imaging device 20 rotates to capture the graphic card feature 11 at different positions by marking the graphic card feature 11 at different positions on the marking device 10
  • the distance and the rotation angle of the imaging device 20 corresponding to the offset distance and other information, and calculating the parameter information of the optical module to be detected 30 based on the offset distance and the rotation angle of the imaging device 20 and the like, so that According to the parameter information, determine whether the optical module 30 to be tested meets the design and field of view requirements, or perform pre-distortion processing on the optical module 30 to be tested according to the parameter information later.
  • the detection process is simple, which solves the problems of complicated and high cost of optical module parameter test equipment and procedures in the prior art.
  • the detection system 100 further includes a rotating table 40, and the camera device 20 is disposed on the rotating table 40.
  • the rotary table 40 extends along the rotation direction of the camera device 20, the camera device 20 is slidably disposed on the rotary table 40, and the camera device 20 can be manually adjusted by a tester In a position above the rotating table 40, preferably, the imaging device 20 is rotated around the rotation center 21 on the rotating table 40 by a motor drive.
  • the rotating table 40 may be a bracket (not shown).
  • the bracket includes at least two uprights (not shown) and an arc-shaped slider (not shown) provided at the top of the uprights.
  • the equivalent circle center of the arc-shaped slide bar coincides with the rotation center 21, and the camera device 20 is disposed on the arc-shaped slide bar through a slide groove member, and a slide groove is formed on the slide groove member.
  • An arc-shaped slide bar is inserted into the slide groove and slidingly cooperates with the slide groove member.
  • the detection system 100 further includes a bearing lens barrel 50, the bearing lens barrel 50 is disposed at an end close to the camera device 20, and the bearing lens barrel 50 is disposed at an end remote from the camera device 20 ⁇ 10 ⁇ The labeling device 10.
  • the marking device 10 and the optical module 30 to be tested are respectively provided at both ends of the carrying lens, and the carrying lens barrel 50 plays a role of fixing the marking device 10 and the optical module to be tested 30 To keep the relative position of the marking device 10 and the optical module 30 to be detected fixed, and at the same time, the carrying lens barrel 50 is opaque to prevent external light from entering the carrying lens barrel 50.
  • the optical path of the detection optical module 30 plays a protective role.
  • the optical module 30 to be tested is an optical module of a virtual reality device
  • the marking device 10, the optical module 30 to be tested and the bearing lens barrel 50 together form a virtual reality device
  • the detection system 100 of the present application can be used to detect the optical parameter information of the virtual reality device.
  • the optical axis of the camera device 20 is coaxial with the optical axis of the optical module 30 to be detected.
  • the optical axis of the camera device 20 is coaxial with the optical axis of the optical module 30 to be detected, and can capture the The reference picture card feature 11A, and the reference picture card feature 11A is imaged at the center position of the imaging sensor of the camera 20.
  • the reference picture card feature 11A is imaged exactly at the central position of the camera device 20.
  • the present invention adjusts the position of the reference picture card feature 11A on the marking device 10 to make the reference picture card feature 11A accurate
  • the imaging at the center position of the imaging sensor of the camera device 20 also makes it more accurate to obtain the rotation angle of the camera device 20 and the offset distance later.
  • the camera device 20 includes a body (not shown) and a lens (not shown) provided on the body.
  • the lens is a fixed focus lens.
  • the present invention can adjust the camera device 20 and the optical module 30 to be detected before the inspection to ensure that the two are coaxial, and adjust the reference image card feature 11A to The position of the marking device 10 and the focusing distance of the camera device 20, but during the detection process, that is, during the rotation of the camera device 20 and during the shooting process, the three characteristics above cannot be adjusted, in this process
  • the image definition of the card feature 11 at the center of the imaging sensor of the camera device 20 can be kept consistent to ensure the consistency and stability of the testing process.
  • the angle of view of the camera device 20 is 3-5 degrees, and the focusing distance is 0.8-3 meters.
  • the field of view angle of the camera device 20 is 3-5 degrees, and a narrow field of view angle is used, which is more conducive to centralized reception of the image card feature 11 after passing through the optical module 30 to be detected
  • the light makes the imaging of the picture card 11 on the camera device 20 clearer and more accurate.
  • the focusing distance of the camera device 20 is 0.8-3 meters. Since the virtual reality image (the virtual reality image is a virtual image) seen by the human eye in the virtual reality device is between 0.8-3 meters, Therefore, the detection system 100 of the present invention can detect the parameter information of optical modules of almost all virtual reality devices, thereby enhancing the wide applicability of the detection system 100 of the present invention.
  • the distance between the pupil center and the light exit surface of the optical module 30 to be detected is 13-15 mm.
  • the distance between the pupil center and the light exit surface of the optical module 30 to be detected is 13-15 mm
  • the pupil center of the optical module 30 to be detected On the light exit side, at the position of the smallest aperture through which the emitted light passes together, when the pupil of the human eye is here, it is easiest to let the most light enter the eye, that is, when the rotation center 21 of the camera device 20 is to be detected
  • the pupil center of the optical module 30 coincides and rotates, as much as possible of the exit light of the picture card feature 11 can enter the camera device 20 so that the picture card feature 11 is in the camera device 20 Better imaging.
  • the present invention also provides a method for detecting optical module parameters. Based on the above-mentioned detection system 100, the detection of optical module parameters according to the first embodiment of the present invention is proposed. Method, the method for detecting the optical module parameters includes the following steps:
  • step S10 the camera device is controlled to rotate and shoot, so that the image card features with different positions on the marking device pass through the optical module to be detected, and then image at the center position of the imaging sensor of the camera device.
  • the rotation center of the camera device coincides with the center of the pupil of the optical module to be detected;
  • Step S20 Obtain the offset distance between the different card features and/or the rotation angle of the camera device from detecting the position of the optical axis of the optical module (that is, the initial position) to the imaging position of the card features;
  • Step S30 Obtain the parameter information of the optical module to be detected according to the offset distance and/or the rotation angle.
  • the marking device is disposed on the light incident side of the optical module to be inspected, so that the light of the picture card characteristic passes through the optical module to be inspected to reach the camera device, and
  • the imaging device imaging center position imaging.
  • the camera device can be rotatably disposed on the light emitting side of the optical module to be detected, so as to receive the light emitted by the image card feature passing through the optical module to be detected and perform photo imaging; the rotation center of the camera device is to be detected
  • the pupil centers of the optical modules are coincident, so that as many light rays of the picture card feature as possible enter the camera device, so that the picture card feature is better imaged in the camera device.
  • the rotation of the camera device around the center of rotation includes an initial position at which the optical axis of the camera device and the optical axis of the optical module to be detected are shared Axis, preferably, the center position of the display device is also set on the optical axis of the optical module to be detected, and at this time, at the initial position, the camera device is able to capture the reference image card feature And make the feature of the reference image card image exactly at the center of the imaging sensor of the camera device.
  • the camera device when the camera device needs to photograph the offset map feature, it needs to rotate around the rotation center in the opposite direction to the deviation direction of the offset map feature to capture To the offset map feature, and image the offset map feature at the center of the imaging sensor of the camera device.
  • the parameter information includes but is not limited to effective focal length, optical Distortion and field angle etc. Since the detection information required for obtaining different parameter information is different, the following will specifically explain.
  • the detection method of the present invention obtains the offset distance of the corresponding graphic card feature when the camera device rotates to capture the graphic card features at different positions by marking the graphic card features at different positions on the marking device
  • the camera device corresponds to information such as the rotation angle of the offset distance, and calculates parameter information of the optical module to be detected according to the information such as the offset distance and the rotation angle of the camera device, so that the parameter information Determine whether the optical module to be tested meets the design and field of view requirements, or pre-distort the optical module to be tested according to the parameter information to improve the imaging performance of the optical module.
  • the above detection method has a simple process, It solves the problems of complicated and high cost of optical module parameter test equipment and procedures in the prior art.
  • the detected parameter information of the optical module to be detected includes at least one of effective focal length, optical distortion, and angle of view.
  • the offset image card feature when detecting the effective focal length, the smaller the offset distance of the offset card feature, the better, as long as the offset distance can be recognized and captured by the camera device. Therefore,
  • the offset image card feature is generally set near the reference image card feature, and the outgoing light corresponding to the offset image card feature passes through the near-optical axis area or the center view of the optical module Field area.
  • the offset reference picture card feature is set in an area farther away from the reference picture card feature, and is used to detect optical distortion of a farther area where the thickness of the optical module to be detected changes greatly.
  • the field of view angle can be calibrated by controlling the camera device to sense the decrease in the gray level value at the edge position of the marking device at both ends of the rotating table, which will be described in detail below.
  • the detection method of the present invention can detect the parameter information of the optical module to be detected including at least one of effective focal length, optical distortion, and field of view angle.
  • the step S20 includes:
  • the picture card features include a reference picture card feature at the center position of the marking device and an offset picture card feature offset from the center position of the marking device; when the required detection parameter is an effective focal length, the A first offset distance between the offset card feature and the reference card feature, and a first rotation angle of the camera device corresponding to the first offset distance;
  • the step S30 includes:
  • Step S31A Obtain the first focal length in each offset direction according to each of the first offset distance and the first rotation angle;
  • Step S32A Use the first focal length as the effective focal length of the optical module to be detected.
  • the first focal length can be directly obtained according to the first offset distance and the first rotation angle in the offset direction , and use the first focal length as the effective focal length of the optical module to be detected, so that the effective focal length of the optical module to be detected can be quickly obtained.
  • the step S20 includes:
  • the image card features include a reference image card feature at the center position of the marking device and an offset image card feature offset from the center position of the marking device; when the required detection parameter is the effective focal length, different offsets are obtained A first offset distance between the offset card feature and the reference card feature in the shift direction, and a first rotation angle of the camera device corresponding to the first offset distance, wherein the offset Picture card features include at least two;
  • the step S30 includes:
  • Step S31B Obtain the first focal length in each offset direction according to each of the first offset distance and the first rotation angle;
  • step S32B the average value of the first focal lengths in all offset directions is used as the effective focal length of the optical module to be detected.
  • the average value of the first focal lengths in all offset directions is used as the effective focal length of the optical module to be detected, so that the detection of the effective focal length is more accurate; Mark any direction triggered by the central position of the device, as shown in Figure 1, upward, downward, leftward, rightward or to the direction of extension of each corner position.
  • EFL represents the first focal length
  • H represents the first offset of the offset map feature
  • represents a first rotation angle corresponding to the first offset distance H.
  • the step S20 includes:
  • Step S22 when the required detection parameter is optical distortion, acquiring a second offset distance between the offset graphic card feature and the reference graphic card feature in the area from the center of the marking device to the edge of the marking device, And a second rotation angle of the camera device corresponding to the second offset distance;
  • the step S30 includes:
  • Step S33 Obtain a second focal length according to the second offset distance and the second rotation angle
  • Step S34 Obtain the optical distortion of the optical module to be detected according to the second focal length and the effective focal length or the first focal length.
  • the offset distance of the offset card feature is larger than the offset distance of measuring the effective focal length, because the optical module to be detected is far away from only light
  • the optical distortion of the axial region and the edge region with large thickness changes is large, and the optical distortion of the near optical axis region or the central field of view region is large. Therefore, when measuring the optical distortion, the measurement is generally away from the optical axis region only.
  • D represents optical distortion
  • EFL1 represents the second focal length
  • EFL represents the effective focal length or the first focal length
  • the step S20 includes:
  • Step S23 when the required detection parameter is the angle of view, the picture card feature on the marking device is replaced with a pure white picture;
  • Step S24 controlling the camera device to rotate in the first direction, as shown in FIG. 6, when the gray value of the pure white picture in the camera device drops to a preset range, the calibration is performed at this time
  • the rotation angle corresponding to the camera device is a third rotation angle
  • Step S25 the camera device is controlled to rotate in the second direction, as shown in FIG. 6, when the gray value of the pure white picture in the camera device drops to a preset range, this is calibrated
  • the rotation angle corresponding to the camera device is the fourth rotation angle; wherein, the one direction is opposite to the second direction;
  • the step S30 includes:
  • Step S35 Obtain the angle of view of the optical module to be detected according to the third rotation angle and the fourth rotation angle.
  • the camera device is rotated to the opposite ends of the rotary table to obtain the gray value of the marking device at the edge position, and when the gray value of the edge position drops to a preset range During the calibration, the rotation angle of the camera device is half of the angle of view.
  • the preset range is that the gray value of the marking device at the edge position is reduced to 20%-80% compared to the gray value of the marking device at the center position, and most preferably is reduced to 50.
  • the method further includes:
  • Step S40 controlling the optical module to be detected to rotate around the optical axis of the camera device and re-detecting parameter information of different cross sections of the optical module to be detected.
  • the bearing lens barrel may be clamped, and the optical module to be detected and the marking device may be driven to rotate together through the bearing lens barrel.
  • a seventh embodiment of the method for detecting the optical module parameters of the present invention according to the first to sixth embodiments of the present invention is proposed based on the above detection system.
  • the step S20 further includes:
  • Step S26 Obtain the pixel distance of the display screen and the number of pixel pitches between different graphic card features
  • Step S27 Obtain the offset distance according to the pixel distance and the pixel pitch of the display screen.
  • the marking device when the marking device is a display screen, the product of the pixel distance of the display screen and the number of pixel pitches between different graphic card features is used as the offset distance, so that the acquisition of the offset distance is more Accurate, which in turn makes the acquisition of the effective focal length and optical distortion more accurate.
  • the required detection parameter is the effective focal length
  • the offset distance since the offset distance is small, the offset distance can be accurately calculated in the above manner, thereby calculating a more accurate effective focal length.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种光学模组参数的检测系统(100)及方法,检测系统(100)包括:标示装置(10),标示装置(10)设置于待检测光学模组(30)的入光侧,用于标示图卡特征(11);摄像装置(20),摄像装置(20)可转动设置于待检测光学模组(30)的出光侧,且摄像装置(20)的旋转中心与待检测光学模组(30)的光瞳中心重合;其中,摄像装置(20)围绕光瞳中心旋转至不同位置进行拍摄,以使标示装置(10)上不同位置的图卡特征(11)经过待检测光学模组(30)后,在摄像装置(20)成像传感器的中心位置成像。该检测系统(100)及方法具有检测机构及流程简单,检测得到的参数信息准确的优点。

Description

光学模组参数的检测系统及方法 技术领域
本发明涉及光学领域,特别涉及一种光学模组参数的检测系统及方法。
背景技术
随着先进光学设计及加工技术、显示技术及处理器的发展和升级,虚拟现实(Virtual Reality,VR)产品的形态和种类层出不穷,其应用领域也愈加广泛。虚拟现实产品的主要工作原理是,显示器所显示的图像通过光学镜片的传递和放大后,其图像会人眼所接收,人眼观察到的是放大的虚像。为了得到品质更加体验效果更好的虚拟现实产品,光学模块的品质备受关注,目前光学模块只能在生产过程中进行参数检测,设备和程序都比较复杂,成本较高。
发明内容
本发明的主要目的是提供一种光学模组参数的检测系统及方法,旨在解决目前测试光学模块参数的设备和程序都比较复杂,成本较高的问题。
为实现上述目的,本发明实施例提供了一种光学模组参数的检测系统,所述检测系统包括:
标示装置,所述标示装置设置于待检测光学模组的入光侧,用于标示图卡特征;
摄像装置,所述摄像装置可转动设置于待检测光学模组的出光侧,且所述摄像装置的旋转中心与待检测光学模组的光瞳中心重合;
其中,所述摄像装置围绕所述光瞳中心旋转至不同位置进行拍摄,以使所述标示装置上不同位置的图卡特征经过待检测光学模组后,在所述摄像装置成像传感器的中心位置成像。
优选地,所述检测系统还包括旋转台,所述摄像装置设置于所述旋转台上。
优选地,所述检测系统还包括承载镜筒,所述承载镜筒靠近所述摄像装置一端设置待检测光学模组,所述承载镜筒远离所述摄像装置一端设置所述标示装置。
优选地,当所述摄像装置处于初始位置时,所述摄像装置的光轴与待检测光学模组的光轴共轴。
优选地,所述摄像装置包括机身及设置于机身上的镜头,所述镜头为定焦镜头。
优选地,所述摄像装置的视场角为3-5度,对焦距离为0.8-3米。
优选地,所述光瞳中心与待检测光学模组的出光面的距离为13~15mm。
此外,为实现上述目的,本发明还提出一种光学模组参数的检测方法,所述光学模组参数的检测方法包括如下步骤:
控制摄像装置旋转并进行拍摄,以使标示装置上的图卡特征经过待检测光学模组后,在所述摄像装置成像传感器的中心位置成像,其中,所述摄像装置的旋转中心与待检测光学模组的光瞳中心重合;
获取不同所述图卡特征之间的偏移距离及/或所述摄像装置从待检测光学模组光轴位置到图卡特征成像位置的旋转角度;
根据所述偏移距离及/或旋转角度获取待检测光学模组的参数信息。
优选地,待检测光学模组的参数信息包括有效焦距、光学畸变及视场角中的至少一种。
优选地,所述图卡特征包括位于所述标示装置中心位置的基准图卡特征及偏移所述标示装置中心位置的偏移图卡特征;
当所需检测参数为有效焦距时,获取所述偏移图卡特征与所述基准图卡特征之间的第一偏移距离,以及与第一偏移距离对应的摄像装置的第一旋转角度;
根据每一所述第一偏移距离及第一旋转角度获取每一偏移方向下的第一焦距;
将所述第一焦距作为待检测光学模组的有效焦距。
优选地,所述图卡特征包括位于所述标示装置中心位置的基准图卡特征及偏移所述标示装置中心位置的偏移图卡特征,其中,所述偏移图卡特征至 少包括两个;
当所需检测参数为有效焦距时,获取不同偏移方向上的所述偏移图卡特征与所述基准图卡特征之间的第一偏移距离,以及与第一偏移距离对应的摄像装置的第一旋转角度;
根据每一所述第一偏移距离及第一旋转角度获取每一偏移方向下的第一焦距;
将所有偏移方向下的第一焦距的平均值作为待检测光学模组的有效焦距。
优选地,当所需检测参数为光学畸变时,获取标示装置中心到所述标示装置边缘之间区域的所述偏移图卡特征与所述基准图卡特征之间的第二偏移距离,以及与所述第二偏移距离对应的摄像装置的第二旋转角度;
根据所述第二偏移距离及与第二旋转角度获取第二焦距;
根据所述第二焦距及所述有效焦距获取所述待检测光学模组的光学畸变。
优选地,当所需检测参数为视场角时,将所述标示装置上的图卡特征替换为纯白图片;
控制所述摄像装置在第一方向上旋转,当所述纯白图片在所述摄像装置成像传感器中所成像的灰度值下降到预设范围时,标定此时所述摄像装置对应的旋转角度为第三旋转角度;
控制所述摄像装置在第二方向上旋转,当所述纯白图片在所述摄像装置成像传感器中所成像的灰度值下降到预设范围时,标定此时所述摄像装置对应的旋转角度为所述第四旋转角度;其中,所述一方向与第二方向相反;
根据所述第三旋转角度及第四旋转角度获取所述待检测光学模组的视场角。
优选地,所述根据所述偏移距离及旋转角度获取待检测光学模组的参数信息的步骤之后,还包括:
控制所述待检测光学模组围绕所述摄像装置光轴旋转并重新检测所述待检测光学模组不同截面的参数信息。
优选地,所述标示装置为显示屏,所述获取不同所述图卡特征之间的偏移距离的步骤包括:
获取所述显示屏像素距离,及不同图卡特征之间的像素间距数;
根据所述显示屏像素距离及像素间距数获取所述偏移距离
本发明通过在所述标示装置上标示不同位置的图卡特征,在所述摄像装置旋转捕捉不同位置的图卡特征时,获取对应图卡特征的偏移距离及所述摄像装置对应所述偏移距离的旋转角度等信息,并根据偏移距离及所述摄像装置的旋转角度等信息计算所述待检测光学模组的参数信息,从而可以根据所述参数信息判断所述待检测光学模组是否满足设计及视场需求,或者根据所述参数信息后期对所述待检测光学模组进行预畸变处理,上述检测系统结构及检测流程简单,很好地解决了现有技术中光学模块参数测试设备和程序复杂,成本高的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明光学模组参数的检测系统一实施例的结构示意图;
图2为本发明光学模组参数的检测方法第一实施例的流程示意图;
图3为本发明光学模组参数的检测方法第二实施例的流程示意图;
图4为本发明光学模组参数的检测方法第三实施例的流程示意图;
图5为本发明光学模组参数的检测系统又一实施例的结构示意图;
图6为本发明光学模组参数的检测方法第四实施例的流程示意图;
图7为本发明光学模组参数的检测系统再一实施例的结构示意图;
图8为本发明光学模组参数的检测方法第五实施例的流程示意图;
图9为本发明光学模组参数的检测方法第六实施例的流程示意图;
图10为本发明光学模组参数的检测方法第七实施例的流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果所述特定姿态发生改变时,则所述方向性指示也相应地随之改变。
另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
请参照图1,本发明提出的一种光学模组参数的检测系统100,所述检测系统100包括:
标示装置10,所述标示装置10设置于待检测光学模组30的入光侧,用于标示图卡特征11。
摄像装置20,所述摄像装置20可转动设置于待检测光学模组30的出光侧,且所述摄像装置20的旋转中心21与待检测光学模组30的光瞳中心重合;
其中,所述摄像装置20围绕所述旋转中心21旋转至不同位置进行拍摄,以使所述标示装置10上不同位置的图卡特征11经过待检测光学模组30后,在所述摄像装置20的成像传感器的中心位置成像。
在本实施例中,所述标示装置10为显示屏,所述图卡特征11即所述显示屏上被画面背景衬托的特征,如黑色背景上显示的白色十字架、白色圆形、白色方形等,本实施例对所述显示屏显示的图卡特征11的颜色、形状不做限制,只要所述图卡特征11能够被所述摄像装置20捕捉并能在摄像装置成像传感器上20成像,且成像时所述图卡特征11能够被突出显示即可。
在另外一些实施例中,所述标示装置10包括背光源(图未示)及设置于背光源上的图样(图未示),所述图卡特征11即图样上被背景区域衬托的特征,如在黑色背景上设置的白色十字架、白色圆形、白色方形等,本实施例 对所述图样上的特征的颜色、形状不做限制,只要所述图样上的特征能够被所述摄像装置20捕捉并能在摄像装置20成像,且成像时所述图卡特征11能够被突出显示即可。
在本实施例中,图1中所示的标示装置10B由标示装置10A翻转90度得到,以便明示所述标示装置10上的图卡特征11。所述标示装置10设置于待检测光学模组30的入光侧,以使从所述图卡特征11发出的出射光线穿过所述待检测光学模组30后到达所述摄像装置20,并在所述摄像装置20成像传感器的中心位置成像。所述待检测光学模组30可为单个透镜,也可为包括多个透镜的光学系统;本发明中以虚拟现实设备中的具有光汇聚功能的光学模组进行说明。
在本实施例中,所述摄像装置20可转动设置于待检测光学模组30的出光侧,以便接收所述图卡特征11经过所述待检测光学模组30的出射光线并进行拍照成像;所述摄像装置20的旋转中心21与待检测光学模组30的光瞳中心重合,且可以理解的是,待光学模组的的光瞳中心在出光侧,在所述出射光线共同经过的最小的口径的位置,当人眼的瞳孔在此处时最容易让最多的光线进入眼睛,同理,当所述摄像装置20的旋转中心21与待检测光学模组30的光瞳中心重合而进行旋转时,也能够让尽可能多的图卡特征11的出射光线进入到所述摄像装置20,以使所述图卡特征11在所述摄像装置20中的成像更清晰。
在本实施例中,所述摄像装置20围绕所述旋转中心21转动的过程中,包括一初始位置,在所述初始位置,所述摄像装置20的光轴与所述待检测光学模组30的光轴共轴,优选地,所述显示装置的中心位置也设置于所述待检测光学模组30的光轴上,此时,定义处于所述显示装置的中心位置的图卡特征11为基准图卡特征11A,定义偏离所述标示装置20的中心位置的图卡特征11为偏移图卡特征11B,所述偏移图卡特征11B可有多个;在所述初始位置,所述摄像装置20恰好能够拍摄到所述基准图卡特征11A,并使所述基准图卡特征11A恰好在所述摄像装置20成像传感器的中心位置成像。
可以理解,所述摄像装置20需要拍摄所述偏移图卡特征11B时,要沿着与所述偏移图卡特征11B的偏离方向相反的方向,绕着所述旋转中心21转动,才能捕捉到所述偏移图卡特征11B,并使所述偏移图卡特征11B在所述摄像 装置20成像传感器的中心位置成像,例如,图1中所示偏移图卡特征11B向下方偏移时,所述摄像装置20需要向上转动以捕捉所述偏移图卡特征11B。在所述摄像装置20相对于所述旋转中心21转动到所述偏移图卡特征11B成像位置的过程中,获取所述摄像装置20从所述初始位置到所述偏移图卡特征11B成像位置的旋转角度,以及所述偏移图卡特征11B偏离所述基准图卡特征11A的偏移距离等信息,并根据上述信息计算所述待检测光学模组30的参数信息,所述参数信息包括但不小于有效焦距、光学畸变及视场角中的至少一个。
综上所述,本发明通过在所述标示装置10上标示不同位置的图卡特征11,在所述摄像装置20旋转捕捉不同位置的图卡特征11时,获取对应图卡特征11的偏移距离及所述摄像装置20对应所述偏移距离的旋转角度等信息,并根据偏移距离及所述摄像装置20的旋转角度等信息计算所述待检测光学模组30的参数信息,从而可以根据所述参数信息判断所述待检测光学模组30是否满足设计及视场需求,或者根据所述参数信息后期对所述待检测光学模组30进行预畸变处理等操作,上述检测系统100结构及检测流程简单,很好地解决了现有技术中光学模块参数测试设备和程序复杂,成本高的问题。
优选地,所述检测系统100还包括旋转台40,所述摄像装置20设置于所述旋转台40上。
在本实施例中,所述旋转台40沿着所述摄像装置20的旋转方向延伸,所述摄像装置20可滑动设置于所述旋转台40上,所述摄像装置20可由测试人员手动调整其在所述旋转台40的上的位置,优选的,所述摄像装置20通过电机驱动在所述旋转台40上围绕所述旋转中心21旋转。
具体的,所述旋转台40可为一支架(图未示),所述支架包括至少两根立柱(图未示)及设置于所述立柱顶端的弧形滑条(图未示),所述弧形滑条的等效圆心与所述旋转中心21重合,所述摄像装置20通过一滑槽件设置于所述弧形滑条上,所述滑槽件上开设有一滑槽,所述弧形滑条穿设于所述滑槽中与所述滑槽件滑动配合。
优选地,所述检测系统100还包括承载镜筒50,所述承载镜筒50靠近所 述摄像装置20一端设置待检测光学模组30,所述承载镜筒50远离所述摄像装置20一端设置所述标示装置10。
在本实施例中,所述承载镜头两端分别设置所述标示装置10及待检测光学模组30,所述承载镜筒50对所述标示装置10及待检测光学模组30起到固定作用,保持标示装置10及待检测光学模组30的相对位置固定,同时,所述承载镜筒50不透光,防止外部光线进入到所述承载镜筒50中,对所述标示装置10及待检测光学模组30的光路起到保护作用。
可以理解的是,当所述待检测光学模组30为虚拟现实设备的光学模组时,所述标示装置10、待检测光学模组30及承载镜筒50共同组成了一个虚拟现实设备,也即,本申请的检测系统100可用于对虚拟现实设备的光学参数信息进行检测。
优选地,当所述摄像装置20处于初始位置时,所述摄像装置20的光轴与待检测光学模组30的光轴共轴。
在本实施例中,如前所述,当所述摄像装置20处于初始位置,所述摄像装置20的光轴与所述待检测光学模组30的光轴共轴,并能够捕捉到所述基准图卡特征11A,并使所述基准图卡特征11A在所述摄像装置20成像传感器的中心位置成像。
进一步地,在调整所述摄像装置20的光轴与待检测光学模组30的光轴共轴后,由于摄像装置20与待检测光学模组30的在组装时存在误差,不能很好地使所述基准图卡特征11A恰好成像于所述摄像装置20的中心位置,本发明通过调整所述基准图卡特征11A在所述标示装置10上的位置,以使所述基准图卡特征11A精准的成像于所述摄像装置20成像传感器的中心位置,也使得后期对所述摄像装置20旋转角度及所述偏移距离的获取更加准确。
进一步地,在调整所述基准图卡特征11A在所述标示装置10上的位置后,为了使所述基准图卡特征11A在所述摄像装置20成像传感器的中心位置的成像更清晰,可以通过调整所述摄像装置20的对焦距离,从而调整所述基准图卡特征11A在所述摄像装置20成像传感器的中心位置的成像清晰度。
优选地,所述摄像装置20包括机身(图未示)及设置于机身上的镜头(图 未示),所述镜头为定焦镜头。
在本实施例中,如前所述,本发明在进行检测之前可以调整所述摄像装置20与所述待检测光学模组30以保证两者共轴,并调整所述基准图卡特征11A在标示装置10的位置及所述摄像装置20的对焦距离,但在检测过程中,也即在所述摄像装置20的旋转及进行拍摄过程中,不能对上述特征三个特征进行调整,在此过程中通过使用定焦镜头,可以保证所述图卡特征11在所述摄像装置20成像传感器的中心位置的成像清晰度保持一致,以保证测试过程的一致性及稳定性。
优选地,所述摄像装置20的视场角为3-5度,对焦距离为0.8-3米。
在本实施例中,所述摄像装置20的视场角为3-5度,采用窄视场角,更有利于集中接收所述图卡特征11经过所述待检测光学模组30后的出射光线,使得所述图卡特征11在所述摄像装置20的成像更加清晰准确。
在本实施例中,所述摄像装置20对焦距离为0.8-3米,由于虚拟现实设备中人眼距离看到的虚拟现实图像(该虚拟现实图像为虚像)大概在0.8-3米之间,因而本发明的检测系统100可对几乎所有虚拟现实设备的光学模组的参数信息进行检测,从而加强本发明检测系统100的广泛适用性。
优选地,所述光瞳中心与待检测光学模组30的出光面的距离为13~15mm。
在本实施例中,所述光瞳中心与待检测光学模组30的出光面也即待检测光学模组30最后一个面的距离为13~15mm,待检测光学模组30的的光瞳中心在出光侧,在出射光线共同经过的最小的口径的位置,当人眼的瞳孔在此处时最容易让最多的光线进入眼睛,也即,当所述摄像装置20的旋转中心21与待检测光学模组30的光瞳中心重合进行旋转时,也能够让尽可能多的图卡特征11的出射光线进入到所述摄像装置20,以使所述图卡特征11在所述摄像装置20中更好的成像。
此外,请一并参阅图1-2,为实现上述目的,本发明还提出一种光学模组参数的检测方法,基于上述的检测系统100提出本发明第1实施例的光学模组参数的检测方法,所述光学模组参数的检测方法包括如下步骤:
步骤S10,控制所述摄像装置旋转并进行拍摄,以使所述标示装置上的位置不同的图卡特征经过待检测光学模组后,在所述摄像装置成像传感器的中心位置成像,其中,所述摄像装置的旋转中心与待检测光学模组的光瞳中心重合;
步骤S20,获取不同所述图卡特征之间的偏移距离及/或所述摄像装置从检测光学模组光轴位置(也即所述初始位置)到图卡特征成像位置的旋转角度;
步骤S30,根据所述偏移距离及/或旋转角度获取待检测光学模组的参数信息。
在本实施例中,所述标示装置设置于待检测光学模组的入光侧,以使所述图卡特征的光线穿过所述待检测光学模组后达到所述摄像装置,并在所述摄像装置成像传感器的中心位置成像。所述摄像装置可转动设置于待检测光学模组的出光侧,以便接收所述图卡特征经过所述待检测光学模组的出射光线并进行拍照成像;所述摄像装置的旋转中心与待检测光学模组的光瞳中心重合,让尽可能多的图卡特征的出射光线进入到所述摄像装置,以使所述图卡特征在所述摄像装置中更好的成像。
在本实施例中,所述摄像装置围绕所述旋转中心转动的过程中,包括一初始位置,在所述初始位置,所述摄像装置的光轴与所述待检测光学模组的光轴共轴,优选地,所述显示装置的中心位置也设置于所述待检测光学模组的光轴上,此时,在所述初始位置,所述摄像装置恰好能够拍摄到所述基准图卡特征,并使所述基准图卡特征恰好在所述摄像装置成像传感器的中心位置成像。
在后续的检测过程中,所述摄像装置需要拍摄所述偏移图卡特征时,要沿着与所述偏移图卡特征的偏离方向相反的方向,绕着所述旋转中心转动,才能捕捉到所述偏移图卡特征,并使所述偏移图卡特征在所述摄像装置成像传感器的中心位置成像。
在所述摄像装置相对于所述旋转中心转动到所述偏移图卡特征成像位置的过程中,获取所述摄像装置从所述初始位置到所述偏移图卡特征成像位置的旋转角度,以及所述偏移图卡特征偏离所述基准图卡特征的偏移距离等信息,并根据上述信息计算所述待检测光学模组的参数信息,所述参数信息包 括但不限于有效焦距、光学畸变及视场角等。由于获取不同的参数信息所需要的检测信息不一样,以下会具体说明。
综上所述,本发明的检测方法通过在所述标示装置上标示不同位置的图卡特征,在所述摄像装置旋转捕捉不同位置的图卡特征时,获取对应图卡特征的偏移距离及所述摄像装置对应所述偏移距离的旋转角度等信息,并根据偏移距离及所述摄像装置的旋转角度等信息计算所述待检测光学模组的参数信息,从而可以根据所述参数信息判断所述待检测光学模组是否满足设计及视场需求,或者根据所述参数信息后期对所述待检测光学模组进行预畸变处理以提高光学模组的成像性能,上述检测方法流程简单,很好地解决了现有技术中光学模块参数测试设备和程序复杂,成本高的问题。
请参阅图1,优选地,所述检测的待检测光学模组的参数信息包括有效焦距、光学畸变及视场角中的至少一种。
在本实施例中,在检测所述有效焦距时,所述偏移图卡特征的偏移距离越小越好,只要能够所述摄像装置识别、捕捉到所述偏移距离即可,因而,检测所述有效焦距时,所述偏移图卡特征一般设置于所述基准图卡特征附近,所述偏移图卡特征对应的出射光经过待检测光学模组的近光轴区域或者中心视场区域。
在检测所述光学畸变时,由于待检测光学模组的近光轴区域或者中心视场区域的光学畸变不大,较大的光学畸变发生远离所述光轴的区域,因此,对应地,在距离所述基准图卡特征较远的区域设置所述偏移基准图卡特征,用于检测所述待检测光学模组的厚度变化较大的较远区域的光学畸变。
在检测所述视场角时,可以通过控制所述摄像装置在旋转台两端感测处于标示装置边缘位置的灰阶值的下降程度来标定所述视场角,以下会具体说明。
综上所述,在所述摄像装置从初始位置旋转台一端,再折回所述初始位置到达旋转台另一端,重新回到初始位置的过程中,可以检测到计算所述有效焦距、光学畸变及视场角中的至少一种或者多种所需的信息,因此,本发明的检测方法可以检测待检测光学模组的参数信息包括有效焦距、光学畸变及视场角中的至少一种。
请一并参阅图1、3,基于本发明的检测方法第1实施例提出本发明的光学模组参数的检测方法的第2实施例,所述步骤S20包括:
步骤S21A,所述图卡特征包括位于所述标示装置中心位置的基准图卡特征及偏移所述标示装置中心位置的偏移图卡特征;当所需检测参数为有效焦距时,获取所述偏移图卡特征与所述基准图卡特征之间的第一偏移距离,以及与第一偏移距离对应的摄像装置的第一旋转角度;
所述步骤S30包括:
步骤S31A,根据每一所述第一偏移距离及第一旋转角度获取每一偏移方向下的第一焦距;
步骤S32A,将所述第一焦距作为待检测光学模组的有效焦距。
在本实施例中,可以只获取一偏移方向下的所述第一偏移距离及第一旋转角度,直接根据该偏移方向下的第一偏移距离及第一旋转角度获取第一焦距,并将所述第一焦距作为待检测光学模组的有效焦距,如此,可以快速获取所述待检测光学模组的有效焦距。
具体地,根据如下公式获取一偏移方向下的第一焦距:EFL=H/tan(θ);其中,EFL代表第一焦距,H代表所述偏移图卡特征的第一偏移距离,θ代表与所述第一偏移距离H对应的第一旋转角度。
请一并参阅图1、4,基于本发明的检测方法第1-2实施例提出本发明的光学模组参数的检测方法的第3实施例,所述步骤S20包括:
步骤S21B,所述图卡特征包括位于所述标示装置中心位置的基准图卡特征及偏移所述标示装置中心位置的偏移图卡特征;当所需检测参数为有效焦距时,获取不同偏移方向上的所述偏移图卡特征与所述基准图卡特征之间的第一偏移距离,以及与第一偏移距离对应的摄像装置的第一旋转角度,其中,所述偏移图卡特征至少包括两个;
所述步骤S30包括:
步骤S31B,根据每一所述第一偏移距离及第一旋转角度获取每一偏移方向下的第一焦距;
步骤S32B,将所有偏移方向下的第一焦距的平均值作为待检测光学模组的有效焦距。
在本实施例中,将所有偏移方向下的第一焦距的平均值作为待检测光学 模组的有效焦距,使得所述有效焦距的检测更为准确;该所有偏移方向可以是从所述标示装置中心位置触发的任意方向,如图1中向上、向下、向左、向右或者向各个角位置的延伸方向。
具体地,根据如下公式获取所述每一偏移方向下的第一焦距:EFL=H/tan(θ);其中,EFL代表第一焦距,H代表所述偏移图卡特征的第一偏移距离,θ代表与所述第一偏移距离H对应的第一旋转角度。在求得每一偏移方向下的第一焦距后,在求取多个第一焦距的平均值作为所述待检测模组的有效焦距。
请一并参阅图5-6,基于本发明的检测方法第1-3实施例提出本发明的光学模组参数的检测方法的第4实施例,所述步骤S20包括:
步骤S22,当所需检测参数为光学畸变时,获取标示装置中心到所述标示装置边缘之间区域的所述偏移图卡特征与所述基准图卡特征之间的第二偏移距离,以及与所述第二偏移距离对应的摄像装置的第二旋转角度;
所述步骤S30包括:
步骤S33,根据所述第二偏移距离及与第二旋转角度获取第二焦距;
步骤S34,根据所述第二焦距及所述有效焦距或者第一焦距获取所述待检测光学模组的光学畸变。
在本市实施例中,如图5所示,所述偏移图卡特征的偏移距离较测量所述有效焦距的偏移距离要大,原因在于:所述待检测光学模组远离仅光轴区域、厚度变化较大的边缘区域的光学畸变较大,而近光轴区域或者中心视场区域的光学畸变较大,因此,在测量所述光学畸变时,一般测量远离仅光轴区域、厚度变化较大的边缘区域。可以理解的是,本发明也可以测量待检测光学模任意位置的光学畸变。
具体地,根据如下公式获取所述光学畸变:D=(EFL1-EFL)/(EFL);
其中,D代表光学畸变,EFL1代表第二焦距,EFL代表有效焦距或者第一焦距。
请一并参阅图7-8,基于本发明的检测方法第1-4实施例提出本发明的光学模组参数的检测方法的第5实施例,所述步骤S20包括:
步骤S23,当所需检测参数为视场角时,将所述标示装置上的图卡特征替换为纯白图片;
步骤S24,控制所述摄像装置在第一方向上旋转,如图6中向上旋转,当所述纯白图片在所述摄像装置中所成像的灰度值下降到预设范围时,标定此时所述摄像装置对应的旋转角度为第三旋转角度;
步骤S25,控制所述摄像装置在第二方向上旋转,如图6中向下旋转,当所述纯白图片在所述摄像装置中所成像的灰度值下降到预设范围时,标定此时所述摄像装置对应的旋转角度为所述第四旋转角度;其中,所述一方向与第二方向相反;
所述步骤S30包括:
步骤S35,根据所述第三旋转角度及第四旋转角度获取所述待检测光学模组的视场角。
在本实施例中,将所述摄像装置旋转到所述旋转台的相对两端,获取所述标示装置在边缘位置的灰度值,在边缘位置的灰度值下降到预设范围时,则标定此时所述摄像装置转动的角度为所述视场角的一半。所述预设范围为所述标示装置在边缘位置的灰度值相比所述标示装置在中心位置的灰度值下降至20%-80%,最优选为下降至50。
具体地,根据如下公式获取所述视场角:FOV=θ1+θ2;其中,FOV代表视场角,θ1代表第三旋转角度,θ2代表第四旋转角度,也即θ1、θ2为所述视场角的一半,该θ1、θ2为所述摄像装置旋转到旋转台两端时测得。
请一并参阅图9,基于本发明的检测方法第1-5实施例提出本发明的光学模组参数的检测方法的第6实施例,所述步骤S30之后:还包括:
步骤S40,控制所述待检测光学模组围绕所述摄像装置光轴旋转并重新检测所述待检测光学模组不同截面的参数信息。
在本实施例中,通过旋转所述待检测光学模组围绕所述摄像装置光轴旋转,改变所述待检测光学模组中与所述摄像装置旋转所在的平面共面的截面,从而测定所述待检测光学模组中不同截面的参数信息。具体地,可以通过夹持所述承载镜筒,通过所述承载镜筒带动所述待检测光学模组及标示装置一齐转动。
请参阅图10,基于上述的检测系统提出本发明第1-6实施例的提出本发明的光学模组参数的检测方法的第7实施例,所述步骤S20还包括:
步骤S26,获取所述显示屏像素距离,及不同图卡特征之间的像素间距数;
步骤S27,根据所述显示屏像素距离及像素间距数获取所述偏移距离。
在本实施例中,当所述标示装置为显示屏时,将所述显示屏像素距离及不同图卡特征之间像素间距数乘积作为所述偏移距离,使所述偏移距离的获取更加准确,进而使得所述有效焦距及光学畸变的获取更加准确。尤其所需检测参数为有效焦距时,由于所述偏移距离较小,通过上述方式,可以准确计算该偏移距离,从而计算出更加精确的有效焦距。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (15)

  1. 一种光学模组参数的检测系统,其特征在于,所述检测系统包括:
    标示装置,所述标示装置设置于待检测光学模组的入光侧,用于标示图卡特征;
    摄像装置,所述摄像装置可转动设置于待检测光学模组的出光侧,且所述摄像装置的旋转中心与待检测光学模组的光瞳中心重合;
    其中,所述摄像装置围绕所述光瞳中心旋转至不同位置进行拍摄,以使所述标示装置上不同位置的图卡特征经过待检测光学模组后,在所述摄像装置成像传感器的中心位置成像。
  2. 根据权利要求1所述的光学模组参数的检测系统,其特征在于,所述检测系统还包括旋转台,所述摄像装置设置于所述旋转台上。
  3. 根据权利要求1所述的光学模组参数的检测系统,其特征在于,所述检测系统还包括承载镜筒,所述承载镜筒靠近所述摄像装置一端设置待检测光学模组,所述承载镜筒远离所述摄像装置一端设置所述标示装置。
  4. 根据权利要求1所述的光学模组参数的检测系统,其特征在于,当所述摄像装置处于初始位置时,所述摄像装置的光轴与待检测光学模组的光轴共轴。
  5. 根据权利要求1-4任一项所述的光学模组参数的检测系统,其特征在于,所述摄像装置包括机身及设置于机身上的镜头,所述镜头为定焦镜头。
  6. 根据权利要求1-4任一项所述的光学模组参数的检测系统,其特征在于,所述摄像装置的视场角为3-5度,对焦距离为0.8-3米。
  7. 根据权利要求1-4任一项所述的光学模组参数的检测系统,其特征在于,所述光瞳中心与待检测光学模组的出光面的距离为13~15mm。
  8. 一种光学模组参数的检测方法,其特征在于,所述光学模组参数的检测方法包括如下步骤:
    控制摄像装置旋转并进行拍摄,以使标示装置上的图卡特征经过待检测光学模组后,在所述摄像装置成像传感器的中心位置成像,其中,所述摄像装置的旋转中心与待检测光学模组的光瞳中心重合;
    获取不同所述图卡特征之间的偏移距离及/或所述摄像装置从待检测光学模组光轴位置到图卡特征成像位置的旋转角度;
    根据所述偏移距离及/或旋转角度获取待检测光学模组的参数信息。
  9. 根据权利要求8所述的光学模组参数的检测方法,其特征在于,待检测光学模组的参数信息包括有效焦距、光学畸变及视场角中的至少一种。
  10. 根据权利要求9所述的光学模组参数的检测方法,其特征在于,
    所述图卡特征包括位于所述标示装置中心位置的基准图卡特征及偏移所述标示装置中心位置的偏移图卡特征;
    当所需检测参数为有效焦距时,获取所述偏移图卡特征与所述基准图卡特征之间的第一偏移距离,以及与第一偏移距离对应的摄像装置的第一旋转角度;
    根据每一所述第一偏移距离及第一旋转角度获取每一偏移方向下的第一焦距;
    将所述第一焦距作为待检测光学模组的有效焦距。
  11. 根据权利要求9所述的光学模组参数的检测方法,其特征在于,
    所述图卡特征包括位于所述标示装置中心位置的基准图卡特征及偏移所述标示装置中心位置的偏移图卡特征,其中,所述偏移图卡特征至少包括两个;
    当所需检测参数为有效焦距时,获取不同偏移方向上的所述偏移图卡特征与所述基准图卡特征之间的第一偏移距离,以及与第一偏移距离对应的摄像装置的第一旋转角度;
    根据每一所述第一偏移距离及第一旋转角度获取每一偏移方向下的第一焦距;
    将所有偏移方向下的第一焦距的平均值作为待检测光学模组的有效焦距。
  12. 根据权利要求9或10所述的光学模组参数的检测方法,其特征在于,
    当所需检测参数为光学畸变时,获取标示装置中心到所述标示装置边缘之间区域的所述偏移图卡特征与所述基准图卡特征之间的第二偏移距离,以及与所述第二偏移距离对应的摄像装置的第二旋转角度;
    根据所述第二偏移距离及与第二旋转角度获取第二焦距;
    根据所述第二焦距及所述有效焦距获取所述待检测光学模组的光学畸变。
  13. 根据权利要求9所述的光学模组参数的检测方法,其特征在于,
    当所需检测参数为视场角时,将所述标示装置上的图卡特征替换为纯白图片;
    控制所述摄像装置在第一方向上旋转,当所述纯白图片在所述摄像装置成像传感器中所成像的灰度值下降到预设范围时,标定此时所述摄像装置对应的旋转角度为第三旋转角度;
    控制所述摄像装置在第二方向上旋转,当所述纯白图片在所述摄像装置成像传感器中所成像的灰度值下降到预设范围时,标定此时所述摄像装置对应的旋转角度为所述第四旋转角度;其中,所述一方向与第二方向相反;
    根据所述第三旋转角度及第四旋转角度获取所述待检测光学模组的视场角。
  14. 根据权利要求8所述的光学模组参数的检测方法,其特征在于,所述根据所述偏移距离及旋转角度获取待检测光学模组的参数信息的步骤之后,还包括:
    控制所述待检测光学模组围绕所述摄像装置光轴旋转并重新检测所述待检测光学模组不同截面的参数信息。
  15. 根据权利要求8所述的光学模组参数的检测方法,其特征在于,所述标示装置为显示屏,所述获取不同所述图卡特征之间的偏移距离的步骤包括:
    获取所述显示屏像素距离,及不同图卡特征之间的像素间距数;
    根据所述显示屏像素距离及像素间距数获取所述偏移距离。
PCT/CN2018/122936 2018-11-26 2018-12-22 光学模组参数的检测系统及方法 WO2020107586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811423702.5 2018-11-26
CN201811423702.5A CN109596319A (zh) 2018-11-26 2018-11-26 光学模组参数的检测系统及方法

Publications (1)

Publication Number Publication Date
WO2020107586A1 true WO2020107586A1 (zh) 2020-06-04

Family

ID=65959701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122936 WO2020107586A1 (zh) 2018-11-26 2018-12-22 光学模组参数的检测系统及方法

Country Status (2)

Country Link
CN (1) CN109596319A (zh)
WO (1) WO2020107586A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638227B (zh) * 2020-05-18 2023-11-24 歌尔光学科技有限公司 Vr光学模组画面缺陷检测方法及装置
CN111694158A (zh) * 2020-06-17 2020-09-22 Oppo广东移动通信有限公司 近眼显示装置的校准方法、校准设备及校准系统
CN113115017B (zh) * 2021-03-05 2022-03-18 上海炬佑智能科技有限公司 3d成像模组参数检验方法以及3d成像装置
CN113848041B (zh) * 2021-09-27 2024-04-30 歌尔光学科技有限公司 光学性能测试系统及测试方法
CN114427955A (zh) * 2021-12-29 2022-05-03 青岛歌尔声学科技有限公司 光学镜头畸变测试系统以及测试方法
CN114689281A (zh) * 2022-02-28 2022-07-01 歌尔光学科技有限公司 检测光学模组光瞳漂移的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024427A (zh) * 2011-09-28 2013-04-03 中国科学院西安光学精密机械研究所 相机调制传递函数的测试方法及其测试装置
CN202974297U (zh) * 2012-10-22 2013-06-05 中国科学院西安光学精密机械研究所 线阵ccd相机双向调制传递函数测试装置
JP2014206524A (ja) * 2013-03-18 2014-10-30 三菱電機株式会社 結像性能評価装置
CN107063646A (zh) * 2017-06-27 2017-08-18 歌尔科技有限公司 采用相机确定透镜有效焦距的方法、装置及虚拟现实头戴设备
CN108510549A (zh) * 2018-03-27 2018-09-07 京东方科技集团股份有限公司 虚拟现实设备的畸变参数测量方法及其装置、测量系统
CN105954007B (zh) * 2016-05-18 2018-10-02 杭州映墨科技有限公司 用于虚拟现实头盔加速度运动的延时测试系统和方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695173B2 (ja) * 1986-02-05 1994-11-24 富士通株式会社 光学的な系の走査歪の計測装置
US5471297A (en) * 1993-08-31 1995-11-28 Asahi Glass Company Ltd. Method of and apparatus for measuring optical distortion
CN2558982Y (zh) * 2002-08-16 2003-07-02 中国科学院西安光学精密机械研究所 超宽视场光学系统畸变测量装置
US7990467B2 (en) * 2004-11-08 2011-08-02 Sony Corporation Parallax image pickup apparatus and image pickup method
CN2748898Y (zh) * 2004-11-17 2005-12-28 中国科学院上海光学精密机械研究所 二维扫描型光学质量检测装置
CN101673043B (zh) * 2008-09-10 2012-08-29 鸿富锦精密工业(深圳)有限公司 广角畸变测试系统及方法
CN101676704B (zh) * 2008-09-19 2011-05-25 中国科学院西安光学精密机械研究所 一种畸变测试仪
CN101852677A (zh) * 2010-05-24 2010-10-06 中国科学院长春光学精密机械与物理研究所 一种提高长焦距平行光管焦距检测精度的方法
CN103292981A (zh) * 2013-05-22 2013-09-11 中国科学院上海光学精密机械研究所 光学镜头畸变的测量装置和校正方法
CN104111165A (zh) * 2014-08-08 2014-10-22 中国科学院光电技术研究所 一种近眼显示光学镜头像质的评价装置
CN105716582B (zh) * 2016-02-15 2018-08-28 中林信达(北京)科技信息有限责任公司 摄像机视场角的测量方法、装置以及摄像机视场角测量仪
CN105758623B (zh) * 2016-04-05 2018-04-10 中国科学院西安光学精密机械研究所 一种基于tdi‑ccd的大口径长焦距遥感相机畸变测量装置及方法
CN107529056B (zh) * 2016-06-22 2019-05-21 北京疯景科技有限公司 镜头亮度响应度测试方法、装置及系统
CN106441212B (zh) * 2016-09-18 2020-07-28 京东方科技集团股份有限公司 一种光学仪器视场角的检测装置及检测方法
CN106485755B (zh) * 2016-09-26 2020-01-03 中国科学技术大学 一种多摄像机系统标定方法
CN106441822A (zh) * 2016-11-30 2017-02-22 深圳市虚拟现实技术有限公司 虚拟现实头盔畸变检测的方法及装置
CN106768878A (zh) * 2016-11-30 2017-05-31 深圳市虚拟现实技术有限公司 光学镜片畸变拟合与检测的方法及装置
CN206740363U (zh) * 2016-12-28 2017-12-12 歌尔科技有限公司 一种检测光学系统像质的系统
CN106548477B (zh) * 2017-01-24 2019-03-29 长沙全度影像科技有限公司 一种基于立体标定靶的多路鱼眼相机标定装置及方法
CN107132030B (zh) * 2017-07-17 2023-04-14 大连鉴影光学科技有限公司 一种镜片焦距检测方法及装置
CN107607294B (zh) * 2017-09-14 2020-01-31 歌尔科技有限公司 一种工业相机入瞳位置检测方法及系统
CN108012146B (zh) * 2017-12-15 2019-06-25 歌尔科技有限公司 虚像距离检测方法及设备
CN108776003B (zh) * 2018-06-08 2019-10-22 歌尔股份有限公司 一种vr设备的检测方法
CN108827604A (zh) * 2018-09-20 2018-11-16 京东方科技集团股份有限公司 一种视场角测量装置和测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024427A (zh) * 2011-09-28 2013-04-03 中国科学院西安光学精密机械研究所 相机调制传递函数的测试方法及其测试装置
CN202974297U (zh) * 2012-10-22 2013-06-05 中国科学院西安光学精密机械研究所 线阵ccd相机双向调制传递函数测试装置
JP2014206524A (ja) * 2013-03-18 2014-10-30 三菱電機株式会社 結像性能評価装置
CN105954007B (zh) * 2016-05-18 2018-10-02 杭州映墨科技有限公司 用于虚拟现实头盔加速度运动的延时测试系统和方法
CN107063646A (zh) * 2017-06-27 2017-08-18 歌尔科技有限公司 采用相机确定透镜有效焦距的方法、装置及虚拟现实头戴设备
CN108510549A (zh) * 2018-03-27 2018-09-07 京东方科技集团股份有限公司 虚拟现实设备的畸变参数测量方法及其装置、测量系统

Also Published As

Publication number Publication date
CN109596319A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2020107586A1 (zh) 光学模组参数的检测系统及方法
TWI417640B (zh) 鏡頭校準系統
US10931924B2 (en) Method for the generation of a correction model of a camera for the correction of an aberration
US9644960B2 (en) Laser beam horizontal trueness testing device and corresponding method
TWI510770B (zh) 用於決定影像感測器之傾斜的方法
CN203929068U (zh) 一种广视场光学系统
US11562478B2 (en) Method and system for testing field of view
CN105318837B (zh) 易损件端部位置视觉校准装置及其校准方法
CN110006634B (zh) 视场角测量方法、视场角测量装置、显示方法和显示设备
CN204854657U (zh) 一种标定多光轴光学系统光轴平行度的装置
KR20200109360A (ko) 거울 표면을 위한 구조화 광의 투영
JP2012058139A (ja) レンズ検査装置及び方法
WO2020192218A1 (zh) 一种应用于光学系统的角度测量方法及测量装置
US10539412B2 (en) Measuring and correcting optical misalignment
CN105091798B (zh) 新型透射式镜片中心偏测量装置及测量方法
CN111044262A (zh) 近眼显示光机模组检测装置
CN206038278U (zh) 凹面镜成像测量长焦镜头调制传递函数的装置
CN110207952B (zh) 一种用于近目式设备显示屏检测的对准方法
JP2009271046A (ja) 光計測装置及び計測用光学系
JP6155924B2 (ja) 寸法測定装置、及び寸法測定方法
CN111707446B (zh) 光斑中心与探测器接收面中心对准的调节方法及系统
CN110455180B (zh) 一种针对多自由度二维调节机构的全路径精度校准方法及系统
CN108181094A (zh) 一种平视显示器字符亮度及线宽测量方法
WO2019047005A1 (zh) 对位装置和测试设备
JP6885762B2 (ja) レンズメータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941859

Country of ref document: EP

Kind code of ref document: A1