WO2019104782A1 - 一种冲击式速冻机射流喷嘴结构 - Google Patents

一种冲击式速冻机射流喷嘴结构 Download PDF

Info

Publication number
WO2019104782A1
WO2019104782A1 PCT/CN2017/117612 CN2017117612W WO2019104782A1 WO 2019104782 A1 WO2019104782 A1 WO 2019104782A1 CN 2017117612 W CN2017117612 W CN 2017117612W WO 2019104782 A1 WO2019104782 A1 WO 2019104782A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
strip
conveyor belt
shaped
jet
Prior art date
Application number
PCT/CN2017/117612
Other languages
English (en)
French (fr)
Inventor
谢晶
李文俊
王金峰
顾翰文
Original Assignee
上海海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海洋大学 filed Critical 上海海洋大学
Publication of WO2019104782A1 publication Critical patent/WO2019104782A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/361Freezing; Subsequent thawing; Cooling the materials being transported through or in the apparatus, with or without shaping, e.g. in form of powder, granules, or flakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/001Details of apparatus, e.g. for transport, for loading or unloading manipulation, pressure feed valves

Definitions

  • the invention relates to the technical field of food quick freezing, in particular to a jet nozzle structure of an impact quick freezing machine.
  • the blasting quick-freezing machine is a common equipment in the field of quick-frozen food processing.
  • the impact chiller has become a closely watched object of the quick-freezing machine manufacturer and scientific researcher with its high convective heat transfer coefficient.
  • the airflow in the static pressure box of the quick-freezer releases the high-speed airflow through the nozzle structure, which is the key to achieve the impact effect, and the impact effect depends largely on the structure and size of the nozzle structure.
  • the nozzle structure of the existing impact type quick-freezing machine is mostly a circular open-hole plate structure. However, such a structure has a problem that the uniformity of the cooling process of the frozen area in the frozen area is low.
  • the present invention provides a jet nozzle structure of an impingement quick-freezer, comprising a plurality of V-shaped guide grooves arranged in parallel along the moving direction of the frozen conveyor belt and communicating with the lower end of the V-shaped guide groove.
  • the slit nozzle; the V-shaped guide groove comprises two strip-shaped plates disposed obliquely, the longitudinal direction of the strip-shaped plate is in a horizontal direction, the cross section of the V-shaped guide groove is rectangular, and the longitudinal section in the width direction is inverted.
  • the slit nozzles comprise two strip-shaped plates arranged vertically in parallel, the longitudinal direction of the strip-shaped plates being horizontal, and two slit nozzles
  • the upper ends of the strip plates are respectively connected to the lower ends of the two strip plates of the V-shaped guide groove.
  • the slit nozzle is a bevel slit nozzle, which is formed obliquely from the center point of the lower end of the two strip plates of the slit nozzle to the two ends, and the cutting ratio is the height of the cut end of the nozzle and the height of the longitudinal center of the nozzle The ratio, 1 ⁇ ⁇ ⁇ 0.
  • the slit nozzle has a length of 1000-2000 mm, a width of 3-10 mm, and a height of 20-40 mm; the distance between the slit nozzle and the conveyor belt below it is 10-60 mm, and the spacing is The shortest vertical distance between the slot nozzle and the conveyor belt.
  • the slot nozzle has a length of 1200-1800 mm, a width of 4-7 mm, and a height of 25-35 mm; the slot nozzle has a spacing of 20-50 mm from the conveyor belt below it.
  • the slot nozzle has a length of 1500 mm, a width of 5 mm, and a height of 30 mm; the slot nozzle has a distance of 40 mm from the conveyor belt below it.
  • Hs when Hs ⁇ 10, 1> ⁇ 0 >0, where Hs is the ratio of the spacing between the slot nozzle and the conveyor belt underneath the slot nozzle, and ⁇ 0 is the critical cutting ratio.
  • ⁇ 0
  • the uniformity of heat exchange in the frozen zone on the conveyor belt of the quick freezer is optimal; the pitch is the shortest vertical distance between the slot nozzle and the conveyor belt.
  • ⁇ 0 0.001Hs 4 + 0.0349Hs 3 - 0.4127Hs 2 + 1.8689Hs - 1.9617.
  • Hs is the ratio of the distance between the slot nozzle and the conveyor belt below it and the width of the slot nozzle
  • is the height of the nozzle at both ends of the nozzle and the nozzle
  • the ratio of the heights at the longitudinal center which is the shortest vertical distance between the slot nozzle and the conveyor belt.
  • the above technical solution provided by the invention can effectively improve the uniformity of the cooling process of the frozen product, improve the large difference in the cooling rate of the frozen product at different positions in the food freezing process, and improve the quality of the frozen product.
  • FIG. 1 is a schematic perspective view showing the structure of a jet nozzle of the present invention.
  • FIG. 2 is a front plan view showing the structure of a jet nozzle of the present invention.
  • FIG 3 is a side plan view showing the structure of a jet nozzle of the present invention.
  • Figure 10 is a graph of critical cut ratio distribution.
  • the jet nozzle structure of the impact type quick-freezer of the present invention comprises a plurality of V-shaped guide grooves 1 and V which are uniformly arranged in parallel along the moving direction of the frozen conveying belt 3 (the direction indicated by the arrow in FIG. 1).
  • the slit nozzle 2 in which the lower end of the type guide groove 1 communicates.
  • the V-shaped guide groove 1 comprises two strip-shaped plates which are disposed obliquely opposite to each other, and have a rectangular cross section, an inverted trapezoidal shape in the width direction, and an upper portion of the adjacent two V-shaped guide grooves 1 are connected by a flat plate.
  • the slit nozzle 2 includes two strip-shaped plates disposed vertically in parallel, and the upper ends of the two strip-shaped plates of the slit nozzles 2 are respectively connected to the lower ends of the two strip-shaped plates of the V-shaped guide groove 1.
  • the slit nozzle is a bevel slit nozzle, which is formed obliquely from the center point of the lower end of the two strip plates of the slit nozzle to the both ends, and the cutting ratio is the height of the cut end of the nozzle and the height of the longitudinal center of the nozzle The ratio, 1 ⁇ ⁇ ⁇ 0.
  • the low-temperature air from the evaporator is sucked by the fan of the quick-freezer and then boosted and flows out. After passing through the static pressure tank, it enters the jet nozzle. After being sprayed through the nozzle, it flows out from the outlet of the nozzle structure into the evaporator for heat exchange, and then is again sucked into the fan. The next cycle.
  • the above-mentioned jet nozzle structure provided by the present invention can improve the jet impact velocity on the surface of the conveyor belt, thereby increasing the Nu number on the surface of the conveyor belt and strengthening the exchange of the frozen area above the conveyor belt. Heat, thereby increasing the freezing rate of the frozen product.
  • the jet nozzle structure provided by the invention can greatly improve the heat exchange uniformity in the width direction of the quick-freezing machine, that is, the freezing rate consistency of the frozen products on both sides of the conveyor belt and the central position can be enhanced, and the uniformity of the frozen product quality can be further improved.
  • the length of the slit nozzle 2 is preferably 1000-2000 mm.
  • the width is 3-10 mm, the height is 20-40 mm, and the distance H between the slit nozzle 2 and the frozen transfer sheet strip 3 below (the shortest vertical distance between the two) is 10-60 mm.
  • the minimum fan energy consumption can be obtained under the condition of a large transfer plate surface Nu number distribution and a good heat transfer uniformity of the transfer plate surface.
  • the Nu number is the Nusselt number
  • X is the width direction of the conveyor belt.
  • ⁇ 0 0.001Hs 4 +0.0349Hs 3 -0.4127Hs 2 +1.8689Hs-1.9617
  • the jet nozzle structure of the impact quick-freezer selects a suitable cutting ratio according to the change of the Hs value, can more effectively improve the uniformity of the cooling process of the frozen product, and improve the traditional structure at different positions in the food freezing process. There is a big difference in the cooling rate of frozen products.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种冲击式速冻机射流喷嘴,包括若干沿冻品传送板带(3)的移动方向均匀平行排列的V型导流槽(1)和与V型导流槽(1)的下端连通的条缝喷嘴(2);V型导流槽(1)包括相对倾斜设置的两块条形板,V型导流槽的横截面为矩形,宽度方向的纵截面为倒梯形,相邻两V型导流槽(1)的上部以平板相连;条缝喷嘴(2)包括相对平行设置的两块条形板,条缝喷嘴(2)的两块条形板的上端分别与V型导流槽(1)的两块条形板的下端连接。该喷嘴可以有效地提高冻品降温过程的均匀性、改善传统结构在食品冷冻加工过程中不同位置处冻品降温速率存在的较大差异性,提高冻品质量。

Description

一种冲击式速冻机射流喷嘴结构 技术领域
本发明涉及食品速冻技术领域,特别是涉及一种冲击式速冻机射流喷嘴结构。
背景技术
鼓风速冻机是速冻食品加工领域的常用设备,其中的冲击式速冻机以其较高的对流换热系数越来越成为速冻机制造厂家及科研工作者密切关注的对象。速冻机静压箱内的气流通过喷嘴结构释放出高速气流是实现冲击效果的关键,而冲击效果在很大程度上取决于喷嘴结构的结构与尺寸。现有冲击式速冻机的喷嘴结构多为圆形开孔板式结构,然而此种结构存在冻结区域冻品降温过程均匀性较低的问题。
发明内容
本发明的目的至少在于提供一种能够提高冻结区域冻品降温过程均匀性的冲击式速冻机射流喷嘴结构。
为实现上述目,本发明提供了一种冲击式速冻机射流喷嘴结构,包括若干沿冻品传送板带的移动方向均匀平行排列的V型导流槽和与V型导流槽的下端连通的条缝喷嘴;V型导流槽包括相对倾斜设置的两块条形板,所述条形板的长度方向位于水平方向,V型导流槽的横截面为矩形,宽度方向的纵截面为倒梯形,相邻两V型导流槽的上部以平板相连;条缝喷嘴包括相对平行竖直设置的两块条形板,所述条形板的长度方向位于水平方向,条缝喷嘴的两块条形板的上端分别与V型导流槽的两块条形板的下端连接。所述条缝喷嘴为斜切条缝喷嘴,从条缝喷嘴的两块条形板下端的中心点向两端对称斜切形成,切割比Ψ为喷嘴两端被切割高度与喷嘴纵向中心处高度的比值,1≥Ψ≥0。
在一个实施方式中,所述条缝喷嘴的长度为1000-2000mm,宽度为3-10mm,高度为20-40mm;条缝喷嘴与其下方的传送板带的间距为10-60mm,所述间距为条缝喷嘴与传送板带之间的最短垂直距离。
在一个实施方式中,所述条缝喷嘴的长度为1200-1800mm,宽度为4-7mm,高度为25-35mm;条缝喷嘴与其下方的传送板带的间距为20-50mm。
在一个实施方式中,所述条缝喷嘴的长度为1500mm,宽度为5mm,高度为30mm;条缝喷嘴与其下方的传送板带的间距为40mm。
在一个实施方式中,当Hs<10时,1>Ψ 0>0,其中Hs为条缝喷嘴与其下方的传送板带的 间距与条缝喷嘴的宽度的比值,Ψ 0为临界切割比,当Ψ=Ψ 0时,速冻机传送板带上冻结区域的换热均匀性最佳;所述间距为条缝喷嘴与传送板带之间的最短垂直距离。
在一个实施方式中,当Hs<10时,Ψ 0与Hs的关系公式为Ψ 0=0.001Hs 4+0.0349Hs 3-0.4127Hs 2+1.8689Hs-1.9617。
在一个实施方式中,当Hs≥10时,Ψ 0=0,其中Hs为条缝喷嘴与其下方的传送板带的间距与条缝喷嘴的宽度的比值,Ψ为喷嘴两端被切割高度与喷嘴纵向中心处高度的比值,所述间距为条缝喷嘴与传送板带之间的最短垂直距离。
本发明提供的上述技术方案可以有效地提高冻品降温过程的均匀性,改善传统结构在食品冷冻加工过程中不同位置处冻品降温速率存在的较大差异性,提高冻品质量。
附图说明
图1为本发明射流喷嘴结构的立体结构示意图。
图2为本发明射流喷嘴结构的主视平面结构示意图。
图3为本发明射流喷嘴结构的侧视平面结构示意图。
图4为Hs=2时,不同切割比Ψ条件下x/s=0和x/s=150处的Nu数变化趋势图。
图5为Hs=4时,不同切割比Ψ条件下x/s=0和x/s=150处的Nu数变化趋势图。
图6为Hs=6时,不同切割比Ψ条件下x/s=0和x/s=150处的Nu数变化趋势图。
图7为Hs=8时,不同切割比Ψ条件下x/s=0和x/s=150处的Nu数变化趋势图。
图8为Hs=10时,不同切割比Ψ条件下x/s=0和x/s=150处的Nu数变化趋势图。
图9为Hs=12时,不同切割比Ψ条件下x/s=0和x/s=150处的Nu数变化趋势图。
图10为临界切割比分布曲线图。
具体实施方式
下面结合附图,以具体实施例为例,详细说明本发明的实施方式。
如图1-3所示,本发明冲击式速冻机射流喷嘴结构包括若干沿冻品传送板带3的移动方向(图1箭头所示方向)均匀平行排列的V型导流槽1和与V型导流槽1的下端连通的条缝喷嘴2。V型导流槽1包括相对倾斜设置的两块条形板,其横截面为矩形,宽度方向的纵截面为倒梯形,相邻两V型导流槽1的上部以平板相连。条缝喷嘴2包括相对平行竖直设置的两块条形板,条缝喷嘴2的两块条形板的上端分别与V型导流槽1的两块条形板的下端连接。所述条缝喷嘴为斜切条缝喷嘴,从条缝喷嘴的两块条形板下端的中心点向两端对称斜切形成, 切割比Ψ为喷嘴两端被切割高度与喷嘴纵向中心处高度的比值,1≥Ψ≥0。来自蒸发器的低温空气被速冻机的风机吸入后升压流出,经过静压箱后进入射流喷嘴,在经过喷嘴喷射后从喷嘴结构的出口流出进入蒸发器进行换热,然后再次被风机吸入进入下一个循环。
和传统的圆形开孔板式结构相比较,采用本发明提供的上述射流喷嘴结构,能够提高传送板带表面的射流冲击速度,从而提高传送带表面的Nu数,及强化了传送带上方冻结区域的换热,从而提高冻品的冻结速率。同时本发明提供的射流喷嘴结构可以极大提升速冻机宽度方向换热均匀性,即可以加强传送板带两侧与中心位置的冻品的冻结速率一致性,进一步提升冻品品质均匀性。
综合考虑了换热效果和风机能耗,基于尽量降低风机能耗和增大冻结区域换热的条件下提升传送板带表面的换热均匀性,优选条缝喷嘴2的长为1000-2000mm,宽为3-10mm,高为20-40mm,条缝喷嘴2与其下方的冻品传送板带3的间距H(二者间最短垂直距离)为10-60mm。
研究表明,当条缝喷嘴的长为1200-1800mm,宽为4-7mm,高为25-35mm,条缝喷嘴2与其正下方的冻品传送板带3的间距H为20-50mm时,可获得更好的效果,其中最佳取值为:条缝喷嘴2的长为1500mm,宽为5mm,高为30mm,条缝喷嘴2与其正下方的冻品传送板带3的间距H为40mm,此时可以在较大的传送板带表面Nu数分布和良好的传送板带表面的换热均匀性条件下获得最小的风机能耗。
在进一步研究的基础上,发明人发现,喷嘴2与传送板带3的间距H与喷嘴宽度S的比值Hs(Hs=H/s)的变化影响着冻品降温过程的均匀性,并呈现出以下规律:当Hs<10时,沿传送板带3的宽度方向即图3箭头所示方向(该方向同时也是横流方向),传送板带3的表面换热强度存在明显差异,当Hs≥10时,传送板带3的表面不同位置处的换热强度则表现出较好的均匀性。从图3可以看出,切割比Ψ为喷嘴两端被切割高度T与喷嘴纵向中心处高度K的比值,Ψ=T/K。
为进一步改善换热强度的均匀性,即冻品降温过程的均匀性,发明人对条缝喷嘴2在不同切割比Ψ和不同的Hs条件下计算的数据进行了数据处理。图4-9为Hs变化时,不同切割比Ψ条件下x/s=0和x/s=150处的Nu数变化趋势图。根据图4-9可知,切割比Ψ 0是根据x/s=0和x/s=150处的Nu数相等确定的,当Ψ=Ψ 0时,速冻机传送板带上冻结区域的换热均匀性最好。
其中,切割比Ψ(Ψ=T/K)为喷嘴两端被切割高度T与喷嘴纵向中心处高度K的比值,Nu数为努塞尔数(Nusselt number),X为传送板带宽度方向的坐标值,中线点4点为x/s=150的位置,传送板带侧边为x/s=0的位置。从图4-9可以看出:当Hs<10,Ψ=0时,沿横流方 向传送板带表面换热强度存在明显差异性,即x/s=0处传送板带表面Nu数明显大于x/s=150处;当Hs<10时,随着Ψ的增加,沿横流方向传送板带表面换热强度差异性逐渐降低,当超过临界切割比Ψ 0之后,x/s=0处钢带表面Nu数低于x/s=150处。根据x/s=0和x/s=150两点处的Nu数相等来确定临界切割比Ψ 0。因此当Ψ=Ψ0时,传送板带表面换热均匀性最好。临界切割比Ψ 0随Hs的增加,呈现先增大后减小的趋势;当Hs≥10时,临界切割比Ψ 0非常小,Hs=10时,临界切割比Ψ 0=0.03;Hs=12时,临界切割比Ψ 0=0.02;而且在Ψ=0,Hs=10时,位于x/s=0和x/s=150两点出的Nu数的绝对差值为1.6,差值百分比不到1%;在Ψ=0,Hs=12时,位于x/s=0和x/s=150两点出的Nu数的绝对差值为11.8,差值百分比为7.5%;在Ψ=0条件下,Nu数分布的均匀性满足实际生产的要求,因此当Hs≥10时,取临界切割比Ψ 0=0。
如图10所示,临界切割比Ψ 0曲线随Hs的增加,呈现先增大后减小的趋势,在Hs=4附近,Ψ 0达到峰值。Ψ 0与Hs的关系为:Ψ 0=0.001Hs 4+0.0349Hs 3-0.4127Hs 2+1.8689Hs-1.9617
可见,发明提供的冲击式速冻机射流喷嘴结构,根据Hs值的变化选择合适的切割比Ψ,能够更有效地提高冻品降温过程的均匀性,改善传统结构在食品冷冻加工过程中不同位置处冻品降温速率存在较大差异性。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (7)

  1. 一种冲击式速冻机射流喷嘴结构,其特征在于:
    包括若干沿冻品传送板带的移动方向均匀平行排列的V型导流槽和与V型导流槽的下端连通的条缝喷嘴;
    V型导流槽包括相对倾斜设置的两块条形板,所述条形板的长度方向位于水平方向,V型导流槽的横截面为矩形,宽度方向的纵截面为倒梯形,相邻两V型导流槽的上部以平板相连;
    条缝喷嘴包括相对平行竖直设置的两块条形板,所述条形板的长度方向位于水平方向,条缝喷嘴的两块条形板的上端分别与V型导流槽的两块条形板的下端连接;
    所述条缝喷嘴为斜切条缝喷嘴,从条缝喷嘴的两块条形板下端的中心点向两端对称斜切形成,切割比Ψ为喷嘴两端被切割高度与喷嘴纵向中心处高度的比值,1≥Ψ≥0。
  2. 如权利要求1所述的冲击式速冻机射流喷嘴结构,其特征在于:
    所述条缝喷嘴的长度为1000-2000mm,宽度为3-10mm,高度为20-40mm;条缝喷嘴与其下方的传送板带的间距为10-60mm,所述间距为条缝喷嘴与传送板带之间的最短垂直距离。
  3. 如权利要求2所述的冲击式速冻机射流喷嘴结构,其特征在于:
    所述条缝喷嘴的长度为1200-1800mm,宽度为4-7mm,高度为25-35mm;条缝喷嘴与其下方的传送板带的间距为20-50mm。
  4. 如权利要求3所述的冲击式速冻机射流喷嘴结构,其特征在于:
    所述条缝喷嘴的长度为1500mm,宽度为5mm,高度为30mm;条缝喷嘴与其下方的传送板带的间距为40mm。
  5. 如权利要求1所述的冲击式速冻机射流喷嘴结构,其特征在于:
    当Hs<10时,1>Ψ 0>0,其中Hs为条缝喷嘴与其下方的传送板带的间距与条缝喷嘴的宽度的比值,Ψ 0为临界切割比,当Ψ=Ψ 0时,速冻机传送板带上冻结区域的换热均匀性最佳;所述间距为条缝喷嘴与传送板带之间的最短垂直距离。
  6. 如权利要求5所述的冲击式速冻机射流喷嘴结构,其特征在于:
    当Hs<10时,Ψ 0与Hs的关系公式为Ψ 0=0.001Hs 4+0.0349Hs 3-0.4127Hs 2+1.8689Hs-1.9617。
  7. 如权利要求1所述的冲击式速冻机射流喷嘴结构,其特征在于:
    当Hs≥10时,Ψ 0=0,其中Hs为条缝喷嘴与其下方的传送板带的间距与条缝喷嘴的宽度的比值,Ψ为喷嘴两端被切割高度与喷嘴纵向中心处高度的比值,所述间距为条缝喷嘴与传送板带之间的最短垂直距离。
PCT/CN2017/117612 2017-11-30 2017-12-21 一种冲击式速冻机射流喷嘴结构 WO2019104782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711239274.6A CN107751714A (zh) 2017-11-30 2017-11-30 一种冲击式速冻机射流喷嘴结构
CN201711239274.6 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019104782A1 true WO2019104782A1 (zh) 2019-06-06

Family

ID=61276417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117612 WO2019104782A1 (zh) 2017-11-30 2017-12-21 一种冲击式速冻机射流喷嘴结构

Country Status (2)

Country Link
CN (1) CN107751714A (zh)
WO (1) WO2019104782A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112413997A (zh) * 2020-11-24 2021-02-26 安徽中谷食品有限公司 一种食品加工用烘培食品降温箱

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107763939A (zh) * 2017-11-30 2018-03-06 上海海洋大学 一种速冻机用斜切条缝喷嘴
CN110186245A (zh) * 2019-06-03 2019-08-30 上海海洋大学 速冻机宽度方向上的气流优化方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055526A (ja) * 1998-08-05 2000-02-25 Hisashi Takeuchi 冷凍装置及び冷凍方法
KR20040082863A (ko) * 2003-03-20 2004-09-30 한일냉동기계공업 주식회사 터널식 식품냉각 동결장치의 노즐덕트
CN201370083Y (zh) * 2009-03-26 2009-12-30 郑州亨利制冷设备有限公司 一种空气冲击式速冻装置
CN201514085U (zh) * 2009-08-20 2010-06-23 大连冰山菱设速冻设备有限公司 隧道式速冻机
CN203771857U (zh) * 2014-01-22 2014-08-13 青岛农业大学 一种冲击式快速冷冻装置
CN107763939A (zh) * 2017-11-30 2018-03-06 上海海洋大学 一种速冻机用斜切条缝喷嘴
CN107763940A (zh) * 2017-11-30 2018-03-06 上海海洋大学 一种新型速冻机喷嘴
CN207702810U (zh) * 2017-11-30 2018-08-07 上海海洋大学 一种新型速冻机喷嘴结构
CN207702809U (zh) * 2017-11-30 2018-08-07 上海海洋大学 一种速冻机用斜切条缝喷嘴结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001120243A (ja) * 1999-10-29 2001-05-08 Takahashi Kogyo Kk 食品の連続式急速凍結装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055526A (ja) * 1998-08-05 2000-02-25 Hisashi Takeuchi 冷凍装置及び冷凍方法
KR20040082863A (ko) * 2003-03-20 2004-09-30 한일냉동기계공업 주식회사 터널식 식품냉각 동결장치의 노즐덕트
CN201370083Y (zh) * 2009-03-26 2009-12-30 郑州亨利制冷设备有限公司 一种空气冲击式速冻装置
CN201514085U (zh) * 2009-08-20 2010-06-23 大连冰山菱设速冻设备有限公司 隧道式速冻机
CN203771857U (zh) * 2014-01-22 2014-08-13 青岛农业大学 一种冲击式快速冷冻装置
CN107763939A (zh) * 2017-11-30 2018-03-06 上海海洋大学 一种速冻机用斜切条缝喷嘴
CN107763940A (zh) * 2017-11-30 2018-03-06 上海海洋大学 一种新型速冻机喷嘴
CN207702810U (zh) * 2017-11-30 2018-08-07 上海海洋大学 一种新型速冻机喷嘴结构
CN207702809U (zh) * 2017-11-30 2018-08-07 上海海洋大学 一种速冻机用斜切条缝喷嘴结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112413997A (zh) * 2020-11-24 2021-02-26 安徽中谷食品有限公司 一种食品加工用烘培食品降温箱

Also Published As

Publication number Publication date
CN107751714A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2019104782A1 (zh) 一种冲击式速冻机射流喷嘴结构
JP3215531U (ja) 急速冷凍装置用斜切りスリットノズル構造
WO2019104784A1 (zh) 一种速冻机用斜切条缝喷嘴
US20180058744A1 (en) Method and apparatus for impingement freezing of irregularly shaped products
KR101328415B1 (ko) 연속 소둔로의 가스 제트 냉각 장치
US10602760B2 (en) Slender and funnel-shaped jet nozzle structure
CN207702810U (zh) 一种新型速冻机喷嘴结构
WO2019104783A1 (zh) 一种冲击式速冻机圆形射流喷嘴结构
JP2010185101A (ja) 連続焼鈍炉のガスジェット冷却装置
JP3215530U (ja) 衝撃式急速冷凍装置用ジェットノズル
CN107763940A (zh) 一种新型速冻机喷嘴
JP5640648B2 (ja) 熱鋼板の下面冷却方法及び装置
US9791201B1 (en) Spiral chiller apparatus and method of chilling
US2881565A (en) Tempering of sheet material
KR20190004676A (ko) 열처리로
JP2009215100A (ja) ガラス板の熱強化装置
CN214250279U (zh) 一种速冻机的静压箱内的平直叶片式导流板
JP4901276B2 (ja) 鋼帯の冷却装置
JP6886041B2 (ja) 金属板の冷却装置及び金属板の連続熱処理設備
US10913078B2 (en) Elliptical and funnel-shaped jet nozzle structure
CN212315922U (zh) 一种玻璃钢化炉对流加热结构及玻璃钢化炉
CN214276272U (zh) 一种高效率冷风循环装置
JP2000234830A (ja) 熱交換装置および冷却装置
JP2021090943A (ja) 急速凍結機用ノズル
US3398788A (en) Heat exchange tunnel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933446

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17933446

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.12.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17933446

Country of ref document: EP

Kind code of ref document: A1