WO2019103536A1 - 헥사고날 산화몰리브덴 나노 로드의 제조 방법 - Google Patents
헥사고날 산화몰리브덴 나노 로드의 제조 방법 Download PDFInfo
- Publication number
- WO2019103536A1 WO2019103536A1 PCT/KR2018/014548 KR2018014548W WO2019103536A1 WO 2019103536 A1 WO2019103536 A1 WO 2019103536A1 KR 2018014548 W KR2018014548 W KR 2018014548W WO 2019103536 A1 WO2019103536 A1 WO 2019103536A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molybdenum oxide
- carbon
- nano
- water
- aqueous solution
- Prior art date
Links
- 229910000476 molybdenum oxide Inorganic materials 0.000 title claims abstract description 107
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 title claims abstract description 105
- 239000002073 nanorod Substances 0.000 title claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 31
- 238000006243 chemical reaction Methods 0.000 claims abstract description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 36
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000002134 carbon nanofiber Substances 0.000 claims abstract description 28
- 229920002678 cellulose Polymers 0.000 claims abstract description 20
- 239000001913 cellulose Substances 0.000 claims abstract description 20
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 19
- 239000004020 conductor Substances 0.000 claims abstract description 19
- 239000003990 capacitor Substances 0.000 claims abstract description 16
- 239000007864 aqueous solution Substances 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 22
- 239000002243 precursor Substances 0.000 claims description 22
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 19
- 235000010980 cellulose Nutrition 0.000 claims description 19
- 150000007522 mineralic acids Chemical class 0.000 claims description 15
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 14
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 14
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 9
- 239000002041 carbon nanotube Substances 0.000 claims description 8
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 229910021389 graphene Inorganic materials 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims description 4
- 235000018660 ammonium molybdate Nutrition 0.000 claims description 4
- 239000011609 ammonium molybdate Substances 0.000 claims description 4
- 229940010552 ammonium molybdate Drugs 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 235000015393 sodium molybdate Nutrition 0.000 claims description 3
- 239000011684 sodium molybdate Substances 0.000 claims description 3
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 claims description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 2
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 claims description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 claims 1
- 210000002700 urine Anatomy 0.000 claims 1
- 238000001556 precipitation Methods 0.000 abstract description 15
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Inorganic materials O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 abstract description 14
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 6
- 239000007773 negative electrode material Substances 0.000 abstract description 3
- 239000002131 composite material Substances 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 22
- 239000013078 crystal Substances 0.000 description 22
- 229920000049 Carbon (fiber) Polymers 0.000 description 14
- 239000004917 carbon fiber Substances 0.000 description 14
- 238000005259 measurement Methods 0.000 description 14
- 229940105329 carboxymethylcellulose Drugs 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000002245 particle Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000011149 active material Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910021607 Silver chloride Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- -1 carboxy, carboxymethyl Chemical group 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- VHUFJVUXRDLXGF-UHFFFAOYSA-N [Mo+2]=O.[O-2].[Nb+5] Chemical compound [Mo+2]=O.[O-2].[Nb+5] VHUFJVUXRDLXGF-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 2
- 239000002121 nanofiber Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- HJIYJLZFNBHCAN-UHFFFAOYSA-N [V].[C] Chemical compound [V].[C] HJIYJLZFNBHCAN-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- IFJXMGROYVCQFE-UHFFFAOYSA-N molybdenum oxomolybdenum Chemical compound [Mo].[Mo]=O IFJXMGROYVCQFE-UHFFFAOYSA-N 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004832 voltammetry Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G39/00—Compounds of molybdenum
- C01G39/02—Oxides; Hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the present invention relates to a method for preparing a nuclear accident-free molybdenum oxide nanorod.
- h-MoO 3 can store 1.5 lithium ions, while h-Mo 3 ⁇ 4 can store 1.6 tallium ions and thus has a higher capacity.
- h-MoO 3 has a crystal structure with all three aspects can be inserted into the Lyrium ions, but a-Mo3 ⁇ 4 by possible euroman planar direction, h_Mo0 3 is expected to have more excellent advantage in julryeok characteristics.
- the nuclear accident the day the case of molybdenum oxide semi-stable (metastable)
- molybdenum oxide at the nuclear accident site is mostly synthesized by hydrothermal synthesis at high temperature and high pressure.
- this synthesis method is not suitable for large-capacity synthesis, and there are restrictions on practical commercialization due to problems such as stability and process cost . Therefore, it is possible to easily manufacture molybdenum oxide (003), which is useful as a water-capacitor electrode material, by a low-temperature precipitation reaction rather than a hydrothermal reaction at a high temperature and a high pressure, There is a continuing need for research.
- the present invention is to provide a method for preparing a nuclear accident-free molybdenum oxide nanorod.
- the present invention also provides a nuclear accident-free molybdenum oxide nanorod produced by the above-described method.
- the present invention also provides a negative electrode of a water-soluble capacitor including the molybdenum oxide nano-rod.
- the present invention provides a method for producing a mixed aqueous solution, comprising the steps of: (a) preparing a mixed aqueous solution containing a molybdenum oxide precursor material and water-soluble cellulose; ( 1- 3 ⁇ 41 003 ) nano-rod ( 113110 10 ), which comprises a step of reacting the mixed aqueous solution with 50 to 100 (: do.
- a method for producing a mixed aqueous solution comprising the steps of: (a) preparing a mixed aqueous solution containing a molybdenum oxide precursor material and water-soluble cellulose; ( 1- 3 ⁇ 41 003 ) nano-rod ( 113110 10 ), which comprises a step of reacting the mixed aqueous solution with 50 to 100 (: do.
- the present invention will be described in detail.
- the molybdenum oxide precursor material is reacted with a structuring agent such that the molybdenum oxide produced through the precipitation reaction with inorganic acid has a hexagonal crystal structure of nano rod in the subsequent step.
- CMC carboxymethyl cellulose
- the molybdenum oxide precursor material used in step 1 may be a material having stable characteristics in an aqueous solution in order to form a nano rod shape having a hexagonal crystal structure in a subsequent low-temperature precipitation reaction have.
- the molybdenum oxide precursor material is ammonium molybdate (ammoni ⁇ molybdate), sodium molybdate (sodium molybdate), such as a molybdate or bulk M0O 3 to M0O 3 in a solution state dissolved in an aqueous ammonia-ammonium (Mo0 3 - ammonia) solution.
- the concentration of the molybdenum oxide precursor material in the mixed aqueous solution of step 1 may be about 20 mM to 2400 mM, or about 50 mM to 2200 mM, or about 100 mM to 2000 mM, based on the Mo metal. If the concentration of the molybdenum oxide precursor material is less than about 20 mM, the yield due to dissolution of Mo? In addition, when the concentration of the molybdenum oxide precursor material is greater than about 2400 mM, the molybdenum oxide precursor is not dissolved in the mixed aqueous solution of step 1, There may be a problem of mixing with a nano rod of a hexagonal crystal structure.
- the water-soluble cellulose used in the step 1 is a nano rod having a hexagonal crystal structure in the subsequent low-temperature precipitation reaction through the interaction between the cellulose functional group and the molybdenum oxide precursor .
- the water-soluble cellulose is soluble in water in an amount more than a certain amount and has a property of having a cellulose functional group.
- the molybdenum oxide to be produced may be micro-sized particles or nano-sized particles, There is a problem that a thin and long nano rod shape as in the present invention can not be obtained.
- the water-soluble cellulose is used as a structuring agent in the subsequent step so that the molybdenum oxide has a hexagonal crystal structure of a nano rod shape.
- Molybdenum oxide (h-Mo 3 ⁇ 4) having a nano rod shape can be easily produced by the low-temperature precipitation reaction at normal pressure without applying the hydrothermal synthesis method at high temperature and high pressure using such a water-soluble cellulose.
- Such water-soluble cellulose includes at least one of carboxy, carboxymethyl cellulose (CMC), hydroxyethyl cellulose, hydroxypropyl cellulose, and the like.
- an aqueous solution containing a molybdenum oxide precursor material is prepared using the water-soluble cellulose in the step 1, so that the same effect can be obtained without changing the cation type without further performing the cation exchange process through the ion- Which is advantageous in simplifying the entire process steps.
- the concentration of the water-soluble cellulose in the mixed aqueous solution of step 1 is about 5 g / L to 100 g / L, or about 6 g / L to 90 g / L, about 6.5 g / 80 g / L.
- the concentration of the carboxymethyl cellulose (CMC) is less than about 5 g / L, the MOO 3 nanorod may not be formed and microcano particles may be formed.
- the weight ratio of the molybdenum oxide precursor material to the water-soluble cellulose is preferably 1: 0.05 to 1: 5, or 1: 0.1 to 1: 4, or 1: 0.15 to 1: 3.
- the weight ratio is less than 1: 0.05, the morphology of the molybdenum oxide formed through the precipitation reaction may not be uniformly controlled in the subsequent step. If the weight ratio is more than 1: 5, precipitation of molybdenum oxide may not occur.
- step 1 one or more carbon-based conductive materials such as carbon nano fibers, carbon nanotubes, and graphene oxides are further added to the mixed aqueous solution , And a molybdenum oxide (h_Mo () 3) nano rod at the nuclear accident site.
- h_Mo () 3 a molybdenum oxide
- the composite of carbon-based conductive material can exhibit high output characteristics by improving the conductivity as well as the excellent energy storage ability when applied as an electrode material for a water capacitor.
- the weight ratio of the molybdenum oxide precursor material and the carbon-based conductive material is preferably 1: 0.01 to 1: 0.5, or 1: 0.01 to 1: 0.4, or 1: 0.015 to 1: 0.3.
- the weight ratio is less than 1: 0.01, the carbon- 2019/103536 1 »(: 1 ⁇ 1 ⁇ 2018/014548
- the step of preparing the mixed aqueous solution of step 1 may be carried out under an environment of about 20 to 25 X: room temperature, about 0.5 to 1.5 atm, preferably about 1 atm.
- step 2 is a step of adding the inorganic acid to the mixed aqueous solution of step 1
- the inorganic acid may be a strong acid component which can be sufficiently lowered to not more than 2 parts by weight or 0.1 to 2 parts by weight, preferably not more than about 1 part by weight or about 0.2 to 1 part by weight, .
- acidic components such as hydrochloric acid, nitric acid, sulfuric acid, and bromic acid can be used.
- the molar ratio of the molybdenum oxide precursor material and inorganic acid used in step 1 is 1: 0.5 to 1: 2, or 1: 0.6 to 1: 1.8, or 1: 0.7 to 1: 1.6, It is preferable to use it as it is. If the molar ratio is less than 1: 0.6, the effect of the use of the inorganic acid is insignificant and no precipitation occurs. If the molar ratio is more than 1: 2, the reaction effect may not substantially increase.
- Step 2 is carried out in the presence or absence of a reagent of 2 or less, or about 0.1 to 2, preferably about 1 or less, or about 0.2 to 1 2019/103536 1 »(: 1 ⁇ 1 ⁇ 2018/014548
- the mixed aqueous solution of the step 1 is heated to a reaction temperature of about
- the reaction of Step 2 is not sufficiently progressed, and the nanorods of molybdenum oxide (non-paraffin microparticles can be produced.
- the reaction temperature exceeds 100 due to the boiling point of water contained in the mixed aqueous solution, the overall process efficiency and cost, which require additional processing equipment such as a hydrothermal reactor and a condenser, may be increased.
- the reaction time of step 2 may be about 2 hours to 55 hours, or preferably about 3 to 50 hours, more preferably about 6 to 48 hours. When the reaction time is less than about 2 hours, the reaction with the inorganic acid is not sufficiently performed, and the molybdenum oxide 0 1 003 ) nanorods 113110 may not be generated.
- the reaction time of step 2 is more than about 55 hours, the reaction may not proceed substantially.
- the precipitation reaction of step 2 can be carried out in an atmospheric pressure range of about 0.5 atm to about 1.5 atm, preferably about 1 atm. If the reaction pressure is less than about 0.5 atm, concentration changes due to water evaporation and additional equipment may be required. If the reaction pressure exceeds about 1.5 atm, additional processing equipment such as a hydrothermal reactor or a condenser may be required.
- Step 2 when one or more carbon-based conductive materials such as carbon nano fibers, carbon nanotubes, and graphene oxides are further added to the mixed aqueous solution of step 1 It is preferable to carry out Step 2 in which the carbon-based conductive material is sufficiently dispersed through an ultrasonic dispersing machine or the like, and then inorganic acid is added to carry out the precipitation reaction.
- the carbon-based conductive material is not sufficiently dispersed, it is difficult to sufficiently obtain the effect of improving the conductivity due to the aggregation of the carbon-based conductive material.
- hanhue performing the step 2 the resulting nuclear accident day molybdenum oxide M0O Qi- 3 nanorods (nano rod) with the carbon nanofiber (carbon nano f iber), CNT (carbon nano tube), oxidized graphene treating the complex of the carbon-based conductive material such as graphene oxide under an atmosphere of a gas containing hydrogen.
- the carbon-based conductive material such as graphene oxide under an atmosphere of a gas containing hydrogen.
- the heat treatment step may be carried out at a temperature of about 200 ° C to 350 ° C, or about 220 ° C to about 340 ° C, specifically under the condition of introducing 4 vol% of MgO gas. If the heat treatment is carried out at a temperature lower than about 200 ° C, it may be difficult to sufficiently obtain the effect of crystallization of the particles through the heat treatment step. In addition, when the temperature of the heat treatment process is more than about 350 ° C, agglomeration of the nanorods and conversion to molybdenum oxide (Mo 3 ⁇ 4) of orthorhombic type are carried out. As a result, orthorhombic Molybdenum oxide (Mo 3 ⁇ 4) microparticles can be formed.
- Mo 3 ⁇ 4 molybdenum oxide
- the molybdenum oxide of the present invention is characterized by h-MoO 3 having a hexagonal crystal structure.
- the nuclear accident blade refers to the crystal structure of the hexagonal crystal system.
- Q - MoO 3 of orthorhombic crystal structure can store 1.5 lyrium ions while h - MoO 3 can store 1.6 lithium ions and have higher capacity.
- the molybdenum oxide (h-Mo 3 ⁇ 4) of the nuclear magnetic susceptor has a nano rod shape, and it can be formed into a thin, long rod shape instead of a plate-like plate type or an amorphous or granular nanoparticle .
- a high non-discharge capacity can be expected because of its large surface area and easy electron transfer.
- the nuclear accidental molybdenum oxide (h_MoC) 3) nano rod may have a diameter of from about 30 nm to about 500 nm and a length of from about 0.8 pm to about 10.
- the diameter of the nano-oxide molybdenum oxide (h-MoO 3) nano rod may be from about 40 nm to about 400 nm, or from about 50 nm to about 300 nm, About 8 im, or about 1 m to about 4.5.
- the molybdenum oxide molybdenum (h-Mo 3 ⁇ 4) prepared according to the present invention has a shape of a nano rod.
- the molar ratio of aspect ratios of length to length is in the range of about 1: 2 to about 1: 100, or from about 1: 5 to about 1: 50, or from about 1: 10 to about 1: 40.
- the carbon-based conductive material such as carbon nano fibers, carbon black, carbon nanotubes ≪ / RTI > Accordingly, the nuclear molybdenum oxide (h-Mo 3 ⁇ 4) nano rod and the molybdenum oxide Can be provided in the form of a composite of a carbon-based conductive material.
- Cathode Capacitor Cathode The present invention also provides a negative electrode for a capacitive capacitor comprising a nuclear accident-oxidized molybdenum oxide (h-MoO 3) nano rod as described above.
- the negative electrode for the water capacitor may include the nano rod of the molybdenum oxide (h-MOO 3) as a complex with the carbonaceous conductive material.
- the specific crystal structure, shape, production method, and kind of the carbon-based conductive material of the niobium oxide molybdenum oxide (h_Mo []) 3 nano rod are as described above, and a detailed description thereof is omitted do.
- the negative electrode for the water capacitor may further include a binder and a conductive material in addition to the noxious oxide molybdenum oxide (h-MOO 3 ) nano rod.
- the negative electrode for the water capacitor may further include at least one conductive material selected from the group consisting of carbon black, acetylene black, actibitized carbon, carbon nanotube, and vanadium carbon. Of these, it is preferable to use carbon black, acetylene black or the like in terms of price and accessibility.
- the cathode for the water channel capacitor may be made of polyvinylidene fluoride (PDVF), polytetrafluoroethylene (PTFE), Naf ion, and carboxymethylcellulose (CMC , carboxymethyl celulose), may be further included. Of these, it is preferable to use PVDF, PTFE or the like in terms of structural stability in the electrolyte.
- the production method according to the present invention comprises Molybdenum oxide (h-Mo 3 ⁇ 4) in the form of a nano rod can be easily produced by low-temperature precipitation reaction at normal pressure without applying a high-temperature high-pressure hydrothermal synthesis method.
- the molybdenum oxide (h-MoO 3) nano rod can be mixed with a carbon-based conductive material such as carbon nano-fiber to be used as a cathode material of a water capacitor.
- FIG. 1 shows an SEM image of a nuclear accident-free molybdenum oxide (h-MoO 3) nano rod produced according to Example 1 of the present invention.
- Fig. 2 shows a lake M image of a nuclear accident-free molybdenum oxide (h-Mo 3 ⁇ 4) nano-rod manufactured according to Example 2 of the present invention.
- 3 shows an SEM image of a nuclear accident-free molybdenum oxide (h-MoO 3) nano rod produced according to Example 3 of the present invention.
- 4 is a graph showing an XRD measurement of a carbon fiber (h-Mo nano rod-CNF) composite of a nuclear accident-incurled molybdenum oxide nanorod prepared according to Example 4 of the present invention.
- FIG. 1 shows an SEM image of a nuclear accident-free molybdenum oxide (h-MoO 3) nano rod produced according to Example 1 of the present invention.
- Fig. 2 shows a lake M image of a nuclear accident-free molybdenum oxide (
- FIG. 5 is a graph showing an XRD measurement of a carbon fiber (h-MoO 3 nano rod-CNF) composite of a nuclear accident-induced molybdenum oxide nanorod which was heat-treated according to Example 5 of the present invention.
- FIG. 6 is a SEM image of a carbon fiber (h-MoO 3 nano rod-CNF) composite of a nuclear accident-incombination molybdenum nano-rod prepared according to Example 4 of the present invention, and an SEM image after heat- (A: Example 4, b: Example 5).
- 7 is a graph which shows the measurement of nuclear accidents XI ⁇ day molybdenum oxide (11-1 «0 0 3) manufactured according to Comparative Example 1 of the present invention.
- FIG. 8 is a nuclear accident day molybdenum oxide prepared according to Comparative Example 1 of the present invention (: 3 ⁇ 41 0 0 3) Ada shows the image of the tomb unstructured particles.
- FIG. 9 shows SEM images of molybdenum oxide (h-MoO 3) particles prepared according to Comparative Examples 2 to 5 of the present invention (a: Comparative Example 2, b: Comparative Example 3, Example 4, d: Comparative Example 5).
- 10 shows SEM micrographs of molybdenum oxide (MOO 3 ) particles prepared according to Comparative Example 6 of the present invention.
- Figure 11 shows an SEM image of the present invention Comparative Example 7 The nuclear accident day molybdenum oxide prepared according to (h- MO0 3) particles.
- FIG. 9 shows SEM images of molybdenum oxide (h-MoO 3) particles prepared according to Comparative Examples 2 to 5 of the present invention (a: Comparative Example 2, b: Comparative Example 3, Example 4, d: Comparative Example 5).
- 10 shows SEM
- FIG. 12 is a graph showing the results of measurement of a niobium oxide molybdenum oxide (h-MoO 3) nano rod prepared according to Example 1 of the present invention as an active material by cyclic current method (cyclic voltammetry) in the electrode system of Experimental Example 1 (X axis: voltage relative to Ag / AgCl reference electrode, y axis: current amount, non-discharging capacity: 38.75 F / g, fifth cycle). Fig.
- FIG. 13 is a graph showing the results of the cyclic-current method in the electrode system of Experimental Example 1 using the carbon fiber (h-Mo03 nano rod-CNF) composite of the nuclear accident-incurled molybdenum oxide nanorod prepared according to Example 4 of the present invention as an active material (Cycle ic voltammetry).
- U axis Ag / AgCl reference electrode voltage
- y axis Amount of current
- non-discharging capacity 168.10 F / g, fifth cycle).
- Example 14 is a graph showing the relationship between a carbon fiber (h-Mo nano rod-CNF) composite of a nuclear accident-induced molybdenum oxide nanorod subjected to heat treatment according to Example 5 of the present invention (X axis: voltage relative to Ag / AgCl reference electrode, y axis: current amount, non-discharging capacity: 217.12 F / g, Fifth cycle). 15 is a graph showing the relationship between the amount of electric current measured in the electrode system of Experimental Example 1 using the carbon fiber (h-MoO 3 nano rod-CNF) composite of the nuclear accident-induced molybdenum oxide nanorod prepared according to Example 4 of the present invention, (current) versus capacitance.
- 16 is a graph showing the relationship between the amount of electric current measured in the electrode system of Experimental Example 1 using the carbon fiber (h-MoO 3 nano rod-CNF) composite of the nuclear accident-incurled molybdenum oxide nanorod which was heat-treated according to Example 5 of the present invention (current) versus capacitance.
- 17 is a graph showing the results of the cyclic current method (cyclic current method) in the electrode system of Experimental Example 1, using the molybdenum oxide (h-MoO 3) produced according to Comparative Example 1 which was heat-treated according to Comparative Example 1 of the present invention as an active material. (volts versus Ag / AgCl reference voltage, y axis: current, non-volatile capacity: about 30 F / g, fifth cycle).
- the reaction vessel was charged with 3.7 parts of ammonium molybdate (( 4) 23 ⁇ 4 0 4) and 1 part of carboxymethyl cellulose (CMC, carboxymethyl cel lulose) was added, and 100 mL of water was added and dissolved at room temperature for about 60 minutes using stirring / soni cat ion to prepare a mixed aqueous solution.
- the concentration of the molybdenum oxide precursor material was about 210 mM
- the concentration of carboxymethyl cellulose was about 10 g / L.
- the mixed aqueous solution of the step 1 was heated to about 85 ° C under the superficial conditions, and then 2.5 g of HCl 6 was added to adjust the pH to 1 and the reaction was carried out for about 9 hours. At this time, the mole ratio of the molybdenum oxide precursor material to HCl is 1: 0.7.
- the reaction solution was centrifuged at about 10000 rpm for about 5 minutes, and the resulting precipitate was washed with ethanol several times to obtain 2.4 parts of molybdenum oxide (Mo 4) (yield of 80% ).
- MoO 3 molybdenum oxide
- Mo 3 ⁇ 4. 1 shows the result of observing the molybdenum oxide (Mo 3 ⁇ 4) produced by the scanning electron microscope (SEM) image. As shown in FIG. 1, the nanofibers having a diameter of about 150 nm and a length of about 2.5 (nano-rod) shape.
- SEM scanning electron microscope
- MoO 3 . 2 shows the result of observing molybdenum oxide (MoO 3) produced in this way with an image of a scanning electron microscope (SEM). As shown in FIG. 2, 2.5 // intranasal nanoparticles (L 1 * 0 (1)).
- SEM scanning electron microscope
- FIG. 3 shows the result of observation of the molybdenum oxide (Mo 3 ⁇ 4) produced by the scanning electron microscope (SEM). As shown in FIG. 3, the nanofibers having a diameter of about 50 nm and a length of about 1 (nano-rods) are bundled with each other.
- the reaction vessel was charged with 3.7 parts of ammonium molybdate (NH4) 2 MOO4, 1 part of carboxymethyl cellulose (CMC), and 100 mg of carbon nanofiber (CNF) ) was added, and 100 mL of water was added and dissolved by stirring / sonication at room temperature for about 60 minutes to prepare a mixed aqueous solution.
- the concentration of the molybdenum oxide precursor material was about 210 mM
- the concentration of carboxymethyl cellulose was about 10 g / L.
- FIG. 4 shows XRD measurement results of the molybdenum oxide (Mo 4) and carbon fiber (CNF) composite produced in this manner. As shown in FIG.
- FIG. 5 shows XRD measurement results of the molybdenum oxide (MoO 3) and carbon fiber (CNF) composite produced in this manner.
- SEM scanning electron microscope
- the CNF composite was found to have a mixture of filamentous CNF and a thicker nano rod and that the nano rod had a nano rod shape with a diameter of about 250 nm and a length of about 2.5 Whereby the composite is composed of a carbon containing molybdenum oxide (h-MoO 3) nano-rod Fiber composite (h-Mo 3 ⁇ 4 nano rod-CNF composite).
- Molybdenum oxide 2.1 was produced in the same manner as in Example 1 except that carboxymethyl cellulose (CMC, carboxymethyl cellulose) was not added in step 1 (yield 70%).
- FIG. 5 shows the XRD measurement results of the molybdenum oxide (MoO 3) thus formed. As shown in FIG. 7, it was found through the values of 19.2., 25.8 ° and 29.2 ° that I1 -M0O was identified as 3.
- FIG. 8 shows the result of observation of the molybdenum oxide (MOO 3) thus formed by an image of a scanning electron microscope (SEM). As shown in FIG. 8, (mi cro) sized irregular particles were produced. Comparative Examples 2 to 5
- step 1 instead of carboxymethyl cellulose (CMC), 1 part of PVA (poly (vinyl pyrrolidone)), 1 part of PAA (poly (acryl ic acid) vinyl alcohol) and 1 part of PSS (poly (styrene sul fonate)) to prepare a mixed aqueous solution.
- PVA poly (vinyl pyrrolidone)
- PAA poly (acryl ic acid) vinyl alcohol
- PSS poly (styrene sul fonate)
- FIG. 10 shows the result of observation of the molybdenum oxide (Mo.sup.) Thus produced by scanning electron microscope (SEM) images. As shown in FIG. 10, microparticles having a diameter of about 10 / ), Respectively. Comparative Example 7
- Molybdenum oxide (Mo 4) was changed to 2.1 (mol%) in the same manner as in Example 1, except that the inorganic acid was added at room temperature before raising the temperature of the mixed aqueous solution and then the temperature was raised to about 85 ° C under atmospheric pressure and the reaction was conducted for about 9 hours. g (yield 70%).
- Yield 70% As a result of XRD measurement of molybdenum oxide (Mo 3 ⁇ 4) produced in this way, it was confirmed that it was h_ Mo 3 ⁇ 4 having a hexagonal crystal structure through values of 19.2 °, 25.8 ° and 29.2 °.
- 11 shows the result of observation of the molybdenum oxide (MoO 3 ) thus formed by scanning electron microscope (SEM) images. As shown in FIG. 11, the molybdenum oxide (MoO 3 ) having a diameter of about 150 nm and a length of about 2.5 / Nano rod shape, but the uniformity was remarkably reduced when compared with the nanorod of Example 1.
- the molybdenum oxide prepared in Examples 1 to 5 and Comparative Example 1 was used as an anode active material to prepare an electrode for a water condenser, and battery performance was evaluated.
- PVDF acetylene black: binder
- the nanorods of Examples 1 to 3 which were easily produced by a low-temperature precipitation reaction at normal pressure without applying high-temperature high-pressure hydrothermal synthesis using water-soluble cellulose according to the present invention characterized by accident day molybdenum oxide word -1 «003) a high surface area and ease of electronic transfer, comparison prepared without the use of water-soluble cellulose example 1, a molybdenum oxide having an amorphous shape of (3 ⁇ 4) 3 ⁇ 4) is based on the fifth cycle Compared to the non-inductive capacity of about 30 ⁇ M, 38.75 ⁇ M to 82.9 ⁇ M Indicating a higher non-discharging capacity.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
본 발명에 따른 제조 방법은 수용성 셀룰로스를 이용하여 고온 고압의 수열 합성법을 적용하지 않아도 상압의 저온 침전 반응으로도 나노로드 (nano rod) 형상의 헥사고날 산화몰리브덴 (h-Mo03)를 용이하게 제조하는 것으로, 이에 따라 제조된 헥사고날 산화몰리브덴 (h-Mo03) 나노 로드 (nano rod)는 탄소 나노 섬유 (carbon nano fiber ) 등의 탄소계 전도 재료와 적절한 혼합이 가능하여 수도 커패시터의 음극 재료로 유용하게 사용할 수 있다.
Description
【발명의 명칭】
핵사고날산화몰리브덴나노로드의 제조방법 【기술분야】
관련출원과의상호인용
본 출원은 2017년 11월 24일자 한국 특허 출원 제 10-2017- 0158922호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된모든내용은본명세서의 일부로서 포함된다. 본 발명은 핵사고날 산화몰리브덴 나노 로드의 제조 방법에 관한 것이다.
【배경기술】
에너지 저장 장치 중 하나인 슈퍼커패시터는, 소형에서 대형에 이르기까지 그응용 분야가다양하게 확대되고 있으며, 전력 밀도가높고, 충방전 속도가 빠르며, 충방전 사이클 수명이 길다는 특징이 있다. 슈퍼커패시터 중에서도 수도 커패시터 (Pseudo capaci tor)는 금속 산화물이 전극재료로서사용되며, 최근에는그중산화몰리브덴 (Mo¾)이 가지고있는 넓은작동전압영역으로인하여 많은연구가진행되고있다. 특히, 산화몰리브덴 (Mo¾)는 여러 가지 결정 구조가 존재하나, 오르쏘롬빅 (orthorhombi c) 결정 구조의 a-Mo(¾와핵사고날 (hexagonal )결정 구조의 h-Mo¾가 대표적이다. 에너지 저장물질로의 측면에서, a-Mo03가 1.5개의 리튬 이온의 저장이 가능한 반면, h-Mo¾에는 1.6개의 리툼 이온 저장이 가능하여 더 높은 용량을 가진다고 알려져 있다. 또한, h-Mo03는 결정구조의 세 방면 모두로 리륨이온의 삽입이 가능하지만 a-Mo¾는 평면방향으로만가능하여, h_Mo03가줄력 특성에서 좀더 우수한장점이 있을 것으로예상된다. 그러나, 핵사고날 산화몰리브덴의 경우 준안정 (metastable)한
2019/103536 1»(:1^1{2018/014548
결정구조로 일반적인 소결법으로는합성이 어려운문제가있다. 이에 따라, 핵사고날산화몰리브덴은 대부분 고온 고압의 수열합성법을 통해 합성하는 데, 이 합성법은 대용량 합성에 적합하지 않은 어려움이 있으며, 안정성, 공정비용등의 문제로실제상업화에 있어 제약을가지게된다. 따라서, 수도커패시터 전극재료로유용한핵사고날산화몰리브덴( 003)을 실제 응용하는데 있어 값싸며 대용량 합성이 가능하도록, 고온 고압의 수열 반응이 아닌 저온 침전 반응 등을 통해 용이하게 제조할 수 있는공정에 대한연구가지속적으로요구되고있다.
【발명의 상세한설명】
【기술적 과제】
본발명은핵사고날산화몰리브덴나노로드의 제조방법을제공하기 위한것이다. 또한, 본발명은상기 제조방법으로 제조된 핵사고날산화몰리브덴 나노로드를제공하기 위한것이다. 또한, 본발명은상기 핵사고날산화몰리브덴 나노로드를포함하는 수도커패시터의 음극을제공하기 위한것이다.
【기술적 해결방법】
상기 과제를 해결하기 위하여, 본 발명은 몰리브덴 산화물 전구체 물질과수용성 셀룰로스를포함하는혼합수용액을제조하는단계(단계 1); 및 상기 혼합수용액을 50 내지 100 (:로 승은한후에 무기산을 첨가하여 반응시키는 단계(단계 2)를포함하는, 핵사고날산화몰리브덴([1-¾1003) 나노 로드(113110 10 의 제조방법을제공한다. 이하, 각단계 별로본발명을상세히 설명한다.
몰리브덴 산화물 전구체 물질과 수용성 셀룰로스를 포함하는 혼합 수용액의 제조단계 (단계 1) 본 발명은 몰리브덴 산화물 전구체 물질을 포함하는 수용액에서 몰리브덴산화물전구체 물질을저온침전시켜 나노로드(nano rod) 형상의 핵사고날산화몰리브덴O1-M0O3)를합성하는것을특징으로한다. 상기 단계 1은 후속 단계에서 몰리브덴 산화물 전구체 물질이 무기산을 이용한 침전 반응을 통해 생성되는 몰리브덴 산화물이 핵사고날(hexagonal ) 결정 구조의 나노 로드(nano rod) 형상을 가지도록, 구조 형성 제제(structuring agent)로서 카르복시메틸 셀룰로스(CMC, carboxymethyl cellulose) 등의 수용성 셀룰로스를포함하는혼합수용액을 제조하는단계이다. 먼저, 상기 단계 1에서 사용하는 몰리브덴 산화물 전구체 물질은 후속저온침전반응에서 핵사고날 (hexagonal ) 결정 구조의 나노로드(nano rod) 형상이 형성되도록 하는 측면에서 수용액에서 안정한 특징을 갖는 물질을 사용할 수 있다. 바람직하게는, 상기 몰리브덴 산화물 전구체 물질은 암모늄 몰리브데이트 (ammoni· molybdate) , 소듐 몰리브데이트(sodium molybdate) 등의 몰리브덴산염이나 벌크 M0O3를 암모니아수에 용해한 용액 상태의 M0O3 -암모니아 (Mo03-ammonia) 용액 중의 1종이상을들수있다. 상기 단계 1의 혼합 수용액에서 몰리브덴 산화물 전구체 물질의 농도는 Mo금속기준으로약 20 mM내지 2400 mM, 혹은약 50 mM내지 2200 mM, 혹은 약 100 mM 내지 2000 mM가 될 수 있다. 상기 몰리브덴 산화물 전구체 물질의 농도가 약 20 mM 미만인 경우에는 Mo¾의 용해에 의한 수득률이 떨어지며 Mo¾가전혀 생성되지 않는문제가발생할수있다. 또한, 상기 몰리브덴 산화물 전구체 물질의 농도가 약 2400 mM초과인 경우에는 단계 1의 혼합 수용액에서 몰리브덴 산화물 전구체가 용해되지 않아,
핵사고날 (hexagonal ) 결정 구조의 나노 로드 (nano rod)와 섞이게 되는 문제가발생할수있다. 상기 단계 1에서 사용하는 수용성 셀룰로스는 셀룰로스 (cel lulose) 작용기와 몰르브덴 산화물 전구체 간의 상호작용을 통하여 몰리브덴 산화물이 후속의 저온 침전 반응에서 핵사고날 (hexagonal) 결정 구조의 나노 로드 (nano rod) 형상을 가지도록 한다. 바람직하게는, 상기 수용성 셀룰로스는 물에 일정량 이상 용해되며 셀룰로스 (cel lulose) 작용기를 가지는특징을 갖는 것을사용할수 있다. 특히, 카르복시메틸 셀룰로스를 사용하지 않고 침전 반응을 수행할 경우에, 생성되는 몰리브덴 산화물은 마이크로 (micro) 크기의 입자가 생성되거나, 나노 크기의 입자가 생성된다고 하아도 플레이트 형상이나 비정질 형상이 얻어지며 본 발명과 같은얇고긴나노로드 (nano rod) 형상을얻을수없는문제가있다. 특히, 상기 단계 1의 혼합 수용액에서 수용성 셀룰로스는 후속 단계에서 몰리브덴 산화물이 핵사고날 (hexagonal) 결정 구조의 나노 로드 (nano rod) 형상을 가지도록 하는 구조 형성 제제 (structur ing agent)로사용된다. 이러한수용성 셀룰로스를 이용하여 고온 고압의 수열 합성법을 적용하지 않아도 상압의 저온 침전 반응으로도 나노 로드 (nano rod) 형상의 핵사고날 산화몰리브덴 (h-Mo¾)를 용이하게 제조할 수 있다. 이러한 수용성 셀룰로스로는 카르복시;메틸 셀룰로스 (CMC, carboxymethyl cel lulose) , 히드록시에틸 셀룰로스 (hydroxyethyl cel lulose) , 히드록시프로필 셀룰로스 (hydroxypropyl cel lulose) 등의 1종 이상을들수 있다. 본 발명에서는 상기 단계 1에서 수용성 셀룰로스를 사용하여 몰리브덴 산화물 전구체 물질을포함하는수용액을 제조함에 따라, 기존에 알려진 이온교환법을 통한 양이온교환 공정 등을 추가로 수행하지 않아도 양이온 종류에 따른 변화 없이 동일한 효과를 얻을 수 있어 전체 공정 단계를간소화하는장점이 있다.
상기 단계 1의 혼합수용액에서 수용성 셀룰로스의 농도는수용액에 투입하는 물의 부피를 기준으로 약 5 g/L 내지 100 g/L, 혹은 약 6 g/L 내지 90 g/L, 약 6.5 g/L 내지 80 g/L가 될 수 있다. 상기 카르복시메틸 셀룰로스 (CMC, carboxymethyl cel lulose)의 농도가 약 5 g/L 미만인 경우에는 MO03나노로드 (nanorod)가 형성되지 않고마이크로 (mi rco) 입자가 형성되는문제가발생할수 있다. 또한, 상기 수용성 셀룰로스의 농도가약 100 g/L를 초과하는 경우에는 M0O3 침전 자체가 생성되지 않는 문제가 발생할수있다. 또한, 상기 단계 1의 혼합수용액에서, 상기 몰리브덴산화물전구체 물질과수용성 셀룰로스의 중량비는 1:0.05내지 1:5, 혹은 1:0.1내지 1:4, 혹은 1:0.15 내지 1:3가 바람직하다. 상기 중량비가 1:0.05 미만인 경우에는 후속 단계에서 침전 반응을 통해 생성되는 몰리브덴 산화물의 형상이 균일하게 조절되지 않을 수 있으며, 상기 중량비가 1:5 초과인 경우에는몰리브덴산화물의 침전이 생기지 않을수있다. 한편, 상기 단계 1에서 상기 혼합수용액에 탄소 나노 섬유 (carbon nano f iber) , 탄소나노튜브 (carbon nano tube) , 산화그라핀 (graphene oxide) 등의 탄소계 전도 재료 1종 이상을 추가로 첨가하여, 핵사고날 산화몰리브덴 (h_Mo()3) 나노로드 (nano rod)를포함하는복합체를 제조할수 있다. 특히, 이렇게 얻어진 핵사고날산화몰리브덴 (h-Mo03) 나노로드 (nano rod)와탄소나노섬유 (carbon nano f iber) , 탄소나노튜브 (carbon nano tube) , 산화 그라핀 (graphene oxide) 등의 탄소계 전도 재료의 복합체는 수도커패시터용 전극 재료로 적용시 우수한 에너지 저장능력과 함께 전도도를향상시켜 높은출력 특성을나타낼수이다. 이때, 상기 몰리브덴 산화물 전구체 물질과 탄소계 전도 재료의 중량비는 1:0.01내지 1:0.5, 혹은 1:0.01내지 1:0.4, 혹은 1:0.015내지 1:0.3가 바람직하다. 상기 중량비가 1:0.01 미만인 경우에는 탄소계 전도
2019/103536 1»(:1^1{2018/014548
재료에 의한 전도성 향상 효과가 미미하고, 상기 중량비가 1:0.5 초과인
상기 단계 1의 혼합 수용액을 제조하는 단계는, 구체적으로 약 20 내지 25 X:의 상온에서 약 0.5 내지 1.5 기압, 바람직하게는 약 1 기압 정도의 상암조건하에서 수행할수있다. 상기 단계 1의 혼합 수용액에 무기산을 첨가하여 반응시키는 단계(단계 2)생성물에산화제를첨가하여 반응시키는단계(단계 2) 상기 단계 2는, 상기 단계 1의 혼합수용액을 약 50내지 100 로 승은한 후에 무기산을 첨가하여 반응시킴으로써, 최종적으로 핵사고날
상기무기산은, 를약 2이하또는 0.1내지 2, 바람직하게는약 1 이하또는 약 0.2내지 1로충분히 낮출수 있는강산성분이 될 수 있고, 이 분야에 사용 가능한 것으로 알려진 성분이라면 별다른 제약 없이 적용 가능하다. 예를들면, 염산, 질산, 황산, 브롬산등의 산성분중에서 1종 이상을사용할수 있다. 특히, 공정 편의 및 원가 절감측면에서는 염산, 질산을사용하는것이 좀더 바람직하다. 상기 무기산의 사용량은 특별하 제한되지 않으나, 상기 단계 1에서 사용한몰리브덴산화물 전구체 물질과무기산의 몰 비가 1:0.5내지 1:2, 혹은 1:0.6 내지 1: 1.8, 혹은 1:0.7 내지 1: 1.6가 되도록 사용하는 것이 바람직하다. 상기 몰 비가 1:0.6 미만인 경우에는 상기 무기산의 사용에 따른 효과가 미미하여 침전이 발생하지 않고, 상기 몰 비가 1:2 초과인 경우에는반응효과가실질적으로더 증가하지 않을수있다. 또한, 상기 단계 2의 반응은무기산을첨가한후반응액의 를약 2 이하또는 약 0.1내지 2, 바람직하게는 약 1 이하또는 약 0.2내지 1로
2019/103536 1»(:1^1{2018/014548
복합체의 형성으로인해 입자균일성에 문제가있다.
무기산을 첨가하여도 상기 단계 2의 반응이 충분히 진행되지 않으며, 몰리브덴 산화물의 나노로드(패페 가 아닌 마이크로 입자가 생성될 수 있다. 또한, 혼합 수용액에 포함된 물의 끓는점으로 인하여, 상기 반응 온도가 100 를초과하는 경우에는 별도의 수열반응기, 콘덴서 등의 추가 공정설비가필요하게 되는전체공정 효율및비용이 증가할수있다. 상기 단계 2의 반응 시간은 약 2 시간 내지 55 시간, 또는 바람직하게는 약 3내지 50시간, 좀더 바람직하게는 약 6내지 48시간이 될 수 있다. 상기 반응 시간이 약 2 시간 미만인 경우에는, 무기산과 반응이 충분히 이뤄지지 않으며 핵사고날 산화몰리브덴 01 003) 나노 로드(113110 가 생성되지 않을 수 있다. 또한, 상기 단계 2의 반응 시간이 약 55 시간을 초과하는 경우에는, 실질적으로 반응이 더 진행되지 않을수있다. 또한, 상기 단계 2의 침전 반응은 약 0.5 기압 내지 약 1.5 기압, 바람직하게는 약 1기압정도의 상압범위에서 수행할수 있다. 상기 반응 압력이 약 0.5 기압미만인 경우에는, 물 증발에 의한농도 변화 및 추가 설비의 필요할수 있다. 또한, 상기 반응 압력이 약 1.5 기압을 초과하는 경우에는별도의 수열반응기, 콘덴서 등의 추가공정설비가필요할수 있다.
한편, 상기 단계 1의 혼합 수용액에 탄소 나노 섬유 (carbon nano f iber) , 탄소나노튜브 (carbon nano tube) , 산화그라핀 (graphene oxide) 등의 탄소계 전도 재료를 1종 이상 추가로 첨가한 경우에, 구체적으로 초음파분산기 등을통해 탄소계 전도재료를충분히 분산시킨후무기산을 첨가하여 침전 반응을 수행하는 단계 2 를 수행하는 것이 바람직하다. 탄소계 전도 재료가 충분히 분산되지 않을 경우, 탄소계 전도 재료의 응집으로인해 전도도향상효과를충분히 얻기 어렵다. 또한, 상기 단계 2를수행한후에, 생성된 핵사고날산화몰리브덴 Qi- M0O3) 나노 로드 (nano rod)와 탄소 나노 섬유 (carbon nano f iber) , 탄소 나노튜브 (carbon nano tube) , 산화그라핀 (graphene oxide) 등의 탄소계 전도 재료의 복합체에 대하여 수소를 포함하는 가스의 분위기 하에서 열처리하는단계를추가로포함할수 있다. 이러한 열처리 공정을통해 h- Mo¾의 부분적 환원과 CNF 등의 탄소계 전도 재료의 표면 개질을 통해 추가적인 전도도향상과그로인한에너지 저장능력의 개선 효과를얻을수 있다. 상기 열처리 단계는, 구체적으로 4 vol%의 ¾Mr 가스를 투입하는 조건 하에서 약 200 °C 내지 350 C , 혹은 약 220 °C 내지 약 340 의 온도에서 수행할 수 있다. 상기 열처리 공정이 약 200 °C 미만에서 수행하는 경우에는, 상기 열처리 단계를 통한 입자의 결정화 효과 등을 충분히 얻기 어려울수 있다. 또한, 상기 열처리 공정 조건이 약 350 °C를 초과하는 경우에는, 나노 막대의 응집과 오르쏘롬빅 (orthorhombic) 형태의 몰리브덴 산화물 (Mo¾)로의 전환이 이루어지고, 결과적으로 오르쏘롬빅 (orthorhombi c) 형태의 몰리브덴 산화물 (Mo¾) 마이크로 입자 (mi cro part i cle)이 형성될수있다. 핵사고날산화몰리브덴 (h4Io()3)나노로드 (nano rod) 또한, 본 발명은 상술한 제조 방법으로 제조되는 핵사고날
산화몰리브덴 Q1-M0O3)나노로드 (nano rod)를제공한다. 본 발명의 산화몰리브덴은 핵사고날 (hexagonal ) 결정 구조를 갖는 것을 h-Mo03를 특징을 한다. 여기서, 핵사고날은 육방정계 결정계의 결정 구조를지칭한다. 특히, 기존의 오르쏘롬빅 (orthorhombic) 결정 구조의 Q - Mo03가 1.5개의 리륨 이온의 저장이 가능한반면, h-Mo03에는 1.6개의 리튬 이온저장이 가능하여 더 높은용량을가질수있다. 또한, 상기 핵사고날 산화몰리브덴 (h-Mo¾)는 나노 로드 (nano rod) 형상을 갖는 것으로, 기존의 플레이트 (plate) 형태의 판상형이나 비결정 형태나 과립 형태의 나노 입자가 아닌 얇고 긴 막대 형태를 갖는 것으로 특징으로 한다. 이러한 나노 로드 (nano rod) 형상을 갖는 경우에 넓은 표면적과용이한전자전달을특징으로높은비정전용량을기대할수있다. 특히, 상기 핵사고날 산화몰리브덴 (h_MoC)3) 나노 로드 (nano rod)는 직경이 약 30 nm내지 약 500 nm이며, 길이가 약 0.8 pm내지 약 10 일 수 있다. 구체적으로, 상기 핵사고날산화몰리브덴 (h-Mo03) 나노로드 (nano rod)의 직경은 약 40 nm내지 약 400 nm, 혹은 약 50 nm내지 약 300 nm일 수 있고, 길이는 약 0.9 m내지 약 8 im, 혹은 약 1 m내지 약 4.5,일 수있다. 또한, 본발명에 따라제조된 핵사고날산화몰리브덴 (h-Mo¾)는나노 로드 (nmo rod) 형상을 갖는 것을 특징으로, 직경 대비 길이의 종횡비 (aspect rat io)가약 1:2내지 약 1:100, 또는약 1:5내지 약 1:50, 또는약 1: 10내지 약 1:40가될수있다. 상기 핵사고날 산화몰리브덴 (h_MoC)3) 나노 로드 (nano rod)는, 표면적이 넓기 때문에 탄소계 전도재료, 예를들어 탄소나노섬유 (carbon nano f iber ) , 카본블랙, 탄소나노튜브와 같은 재료와 잘 혼합될 수 있다. 이에 따라, 상기 핵사고날 산화몰리브덴 (h-Mo¾) 나노 로드 (nano rod)와
탄소계 전도재료의 복합체 형태로제공될수있다. 수도커패시터용음극 또한, 본 발명은 상술한 바와 같은 핵사고날 산화몰리브덴 (h-Mo03) 나노로드 (nano rod)를포함하는수도커패시터용음극을제공한다. 특히, 상기 수도커패시터용 음극은 상기 핵사고날 산화몰리브덴 (h- MO03) 나노로드 (nano rod)를 탄소계 전도 재료와의 복합체 형태로 포함할 수있다. 여기서, 상기 핵사고날산화몰리브덴 (h_Mo〔)3) 나노로드 (nano rod)의 구체적인 결정 구조와 형상등과 제조 방법, 및 탄소계 전도 재료의 종류 등은전술한바와같으며 , 상세한설명은생략한다. 또한, 상기 수도커패시터용 음극은 상기 핵사고날 산화몰리브덴 (h- MO03)나노로드 (nano rod)외에 바인더 및도전재를추가로포함할수있다. 일 예로, 상기 수도커패시터용 음극은 카본 블랙, 아세틸렌 블랙, 액티배이티드 카본, 탄소 나노 튜브 및 불칸 카본으로 이루어진 군에서 선택된 1종 이상의 도전재를 추가로 포함할 수 있다. 이 중에서, 가격 및 접근성 측면에서 카본블랙, 아세틸렌블랙 등을사용하는것이 바람직하다. 또한, 상기 수도커패시터용 음극은 폴리비닐리덴플로라이드 (PDVF, poly vinyl i dene f luor ide) , 폴리테트라플루오로에틸렌 (PTFE, polytetraf luoroethylene) , 나피온 (Naf ion) , 및 카르복시메틸 셀룰로오스 (CMC, carboxymethyl cel lulose)로 이루어진 군에서 선택된 1종 이상의 바인더를 추가로 포함할 수 있다. 이 중에서, 전해질에서의 구조안정성 측면에서 PVDF, PTFE등을사용하는것이 바람직하다.
【발명의 효과】
상술한 바와 같이, 본 발명에 따른 제조 방법은수용성 셀룰로스를
이용하여 고온 고압의 수열 합성법을 적용하지 않아도 상압의 저온 침전 반응으로도 나노 로드 (nano rod) 형상의 핵사고날 산화몰리브덴 (h-Mo¾)를 용이하게 제조하는것으로, 이에 따라제조된핵사고날산화몰리브덴 (h-Mo03) 나노 로드 (Mno rod)는 탄소 나노 섬유 (carbon nano f iber) 등의 탄소계 전도 재료와 적절한 혼합이 가능하여 수도 커패시터의 음극 재료로 유용하게사용할수있다.
【도면의 간단한설명】
도 1은, 본 발명의 실시예 1에 따라 제조된 핵사고날 산화몰리브덴 (h-Mo03)나노로드의 SEM이미지를나타낸것이다. 도 2는, 본 발명의 실시예 2에 따라 제조된 핵사고날 산화몰리브덴 (h-Mo¾)나노로드의 湖 M이미지를나타낸것이다. 도 3은, 본 발명의 실시예 3에 따라 제조된 핵사고날 산화몰리브덴 (h-Mo03)나노로드의 SEM이미지를나타낸것이다. 도 4는, 본 발명의 실시예 4에 따라 제조된 핵사고날산화몰리브덴 나노로드의 카본파이버 (h-Mo¾ nano rod-CNF)복합체의 XRD측정 그래프를 나타낸것이다. 도 5은, 본발명의 실시예 5에 따라열처리한핵사고날산화몰리브덴 나노로드의 카본파이버 (h-Mo03 nano rod-CNF)복합체의 XRD측정 그래프를 나타낸것이다. 도 6은, 본 발명의 실시예 4에 따라 제조된 핵사고날산화몰리브덴 나노 로드의 카본 파이버 (h-Mo03 nano rod-CNF) 복합체의 SEM 이미지 및 실시예 5에 따라 이를 열처리 한 후의 SEM 이미지를 나타낸 것이다 (a: 실시예 4, b: 실시예 5) .
도 7은, 본 발명의 비교예 1에 따라 제조된 핵사고날 산화몰리브덴 (11-1«003)의 XI犯측정 그래프를나타낸것이다. 도 8은, 본 발명의 비교예 1에 따라 제조된 핵사고날 산화몰리브덴 (: ¾1003)비정형 입자들의 묘 이미지를나타낸것아다. 도 9는, 본 발명의 비교예 2 내지 5에 따라 제조된 핵사고날 산화몰리브덴 (h-Mo03) 입자들의 SEM이미지를나타낸것이다 (a: 비교예 2, b: 비교예 3, c: 비교예 4, d: 비교예 5) . 도 10은, 본 발명의 비교예 6에 따라 제조된 산화몰리브덴 (MO03) 입자의 SEM아미지를나타낸것이다. 도 11은, 본 발명의 비교예 7에 따라 제조된 핵사고날 산화몰리브덴 (h- MO03) 입자들의 SEM이미지를나타낸것이다. 도 12는, 본 발명의 실시예 1에 따라 제조된 핵사고날 산화몰리브덴 (h-Mo03) 나노 로드를 활물질로 사용하여 실험예 1의 전극 시스템에서 순환전류법 (Cycl ic vol tammetry)으로 측정한 그래프이다 (x축: Ag/AgCl 기준전극대비 전압, y축: 전류량, 비정전용량: 38.75 F/g, 5번째 사이클) . 도 13은, 본발명의 실시예 4에 따라제조된 핵사고날산화몰리브덴 나노로드의 카본파이버 (h-Mo03 nano rod-CNF)복합체를활물질로사용하여 실험예 1의 전극 시스템에서 순환전류법 (Cycl i c voltammetry)으로 측정한 그래프이다 U축: Ag/AgCl 기준전극 대비 전압, y축: 전류량, 비정전용량: 168.10 F/g, 5번째사이클) . 도 14는, 본 발명의 실시예 5에 따라 열처리한 핵사고날 산화몰리브덴 나노 로드의 카본 파이버 (h-Mo¾ nano rod-CNF) 복합체를
활물질로 사용하여 실험예 1의 전극 시스템에서 순환전류법 (Cycl i c vol tammetry)으로 측정한 그래프이다 (x축: Ag/AgCl 기준전극 대비 전압, y축: 전류량, 비정전용량: 217.12 F/g, 5번째사이클) . 도 15는, 본발명의 실시예 4에 따라제조된 핵사고날산화몰리브덴 나노로드의 카본파이버 (h-Mo03 nano rod-CNF)복합체를활물질로사용하여 실험예 1의 전극 시스템에서 측정한 전류량 (current) vs 정전용량 그래프이다. 도 16은, 본 발명의 실시예 5에 따라 열처리한 핵사고날 산화몰리브덴 나노 로드의 카본 파이버 (h-Mo03 nano rod-CNF) 복합체를 활물질로사용하여 실험예 1의 전극시스템에서 측정한전류량 (current) vs 정전용량그래프이다. 도 17은, 본 발명의 비교예 1에 따라 열처리한 비교예 1에 따라 제조된 핵사고날 산화몰라브덴 (h-Mo03)을 활물질로 사용하여 실험예 1의 전극 시스템에서 순환전류법 (Cycl i c vol tammetry)으로 측정한 그래프이다 (x축: Ag/AgCl 기준전극 대비 전압, y축: 전류량, 비정전용량: 약 ~30 F/g, 5번째사이클) .
【발명의 실시를위한최선의 형태】
이하, 본 발명의 이해를 돕기 위하여 바람직한실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일뿐, 이에 의해본발명의 내용이 한정되는것은아니다.
<h-Mo¾ nano rod의 제조 >
실시예 1
(단계 1)
반응 용기에 3.7 용의 암모늄 몰리브데이트 (ammonhim molybdate, (■4)2¾04), 및 1 용의 카르복시메틸 셀룰로스 (CMC, carboxymethyl
cel lulose)를 넣고, 물 100 mL를 넣어 상온에서 약 60 분 동안 교반/ soni cat ion을 이용하여 용해시켜서, 혼합수용액을제조하였다. 이때, 몰리브덴 산화물 전구체 물질의 농도는 약 210 mM이며, 카르복시메틸 셀룰로스의 농도는약 10 g/L이었다.
(단계 2)
상기 단계 1의 혼합수용액을상암조건하에서 약 85 °C로승온시킨 후, 6 의 HC1을 2.5 g첨가하여 pH를 1로조정하여 약 9시간동안반응을 진행하였다. 이때, 몰리브덴산화물전구체 물질과 HC1의 몰비는 1:0.7이다. 반응을 종료한 후, 반응액을 약 10000 rpm, 약 5분 조건으로 원심분리 공정을 수행하여, 얻어진 침전물을 에탄올 (ethanol)로 수회 세척하여 산화몰리브덴 (Mo¾)를 2.4요을수득하였다 (수득률 80%) . 이렇게 생성된 산화몰리브덴 (Mo03)에 대한 XRD 측정 결과, 19.2°, 25.8°, 29.2° 값을 통해 핵사고날 (hexagonal )의 결정 구조를 갖는 h_
Mo¾임을 확인하였다. 또한, 이렇게 생성된 산화몰리브덴 (Mo¾)을 주사현미경 (SEM, Scanning Electron Mi croscope) 이미지로 관찰한 결과를 도 1에 나타내었으며, 도 1에 나타난바와같이 직경 약 150 nm및 길이 약 2.5 의 나노막내 (nano rod) 형태를갖는것임을확인하였다. 실시예 2
단계 2의 반응을상압및 65 °C 조건하에서 약 24시간동안수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 산화몰리브덴 (Mo¾)를 2.2 g을수득하였다 (수득률 73%) . 이렇게 생성된 산화몰리브덴 (Mo03)에 대한 XRD 측정 결과, 19.2ᄋ, 25.8°, 29.2° 값을 통해 핵사고날 (hexagonal)의 결정 구조를 갖는 h_
Mo03임을 확인하였다. 또한, 이렇게 생성된 산화몰리브덴 (Mo03)을 주사현미경 (SEM, Scanning Electron Microscope) 이미지로 관찰한 결과를 도 2에 나타내었으며, 도 2에 나타난바와같이 직경 약 150 nm및 길이 약
2.5 //이의 나노막내 (패 1*0(1)형태를갖는것임을확인하였다. 실시예 3
단계 2의 반응을상압및 50 °C조건하에서 약 48시간동안수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 산화몰리브덴 (Mo03)를 2.3 용을수득하였다 (수득률 73%) . 이렇게 생성된 산화몰리브덴 (Mo¾)에 대한 XRD 측정 결과, 19.2°, 25.8°, 29.2° 값을 통해 핵사고날 (hexagonal )의 결정 구조를 갖는 h- Mo¾임을 확인하였다. 또한, 이렇게 생성된 산화몰리브덴 (Mo¾)을 주사현미경 (SEM, Scanning Electron Mi croscope) 이미지로 관찰한 결과를 도 3에 나타내었으며, 도 3에 나타난바와같이 직경 약 50 nm및 길이 약 1 의 나노 막내 (nano rod)가 번들을 이루는 형태를 갖는 것임을 확인하였다.
<h-Mo03 nano rod~CNF복합체의 제조 >
실시예 4
(단계 1)
반응 용기에 3.7 용의 암모늄 몰리브데이트 (ammonium molybdate , (NH4)2MO04) , 1용의 카르북시메틸 셀룰로스 (CMC, carboxymethyl cel lulose) , 및 100 mg의 카본 나노 파이버 (CNF , carbon nano f iber)를 넣고, 물 100 mL를넣어 상온에서 약 60분동안교반/ son i cat ion을이용하여 용해시켜서, 혼합 수용액을 제조하였다. 이때, 몰리브덴 산화물 전구체 물질의 농도는 약 210 mM이며, 카르복시메틸셀룰로스의농도는약 10 g/L이었다.
(단계 2)
상기 단계 1의 혼합수용액을상압조건하에서 약 85 °C로승온시킨 후, 약 2.5 요의 6M HC1을 첨가하여 pH를 1로 조정하여 약 9 시간 동안 반응을 진행하였다. 반응을 종료한후, 반응액을 약 10000 rpm, 5 분간의 조건으로 원심분리 공정을 수행하여, 얻어진 침전물을 에탄올 (ethanol )로
수회 세척하여 산화몰리브덴 «003)과 카본 파이버犯 ) 복합체 2.5 묘을 수득하였다 (수득률 80%) . 이렇게 생성된 산화몰리브덴 (Mo¾)과 카본 파이버 (CNF) 복합체에 대한 XRD측정 결과를도 4에 나타내었으며, 도 4에 나타난바와같이 19.2°, 25.8° , 29.2° 값을 통해 핵사고날 (hexagonal )의 결정 구조를 갖는 h_Mo¾가 생성되었음을 확인하였다. 또한, 이렇게 생성된 산화몰리브덴 (Mo¾)을 주사현미경 (SEM, Scanning Electron Mi croscope) 이미지로 관찰한 결과를 도 6의 (a)에 나타내었으며, 도 6의 (a)에 나타난바와같이 합성된 h_Mo03- CNF 복합체는 실모양의 CNF와 좀더 굵은 나노 로드 (nano rod)가 혼합되어 있었으며, 상기 나노 로드 (nano rod)는 직경 약 250 nm 및 길이 약 2.5 ,의 나노막내 (nano rod) 형태를갖는것임을확인하였다. 이를통해 상기 복합체가, 핵사고날 산화몰리브덴 (h-Mo(¾) 나노 로드를 포함하는 카본 파이버 복합체 (h-Mo03 nano rod-CNF복합체)임을확인하였다. 실시예 5
실시예 4에서 얻어진 핵사고날 산화몰리브덴 나노 로드의 카본 파이버 (h-Mo03 nano rod-CNF) 복합체를, 4%의 ¾를 포함하는 아르곤 혼합 가스존재 하에서 약 300 °C에서 약 3시간동안열처리하였다. 이렇게 생성된 산화몰리브덴 (Mo03)과 카본 파이버 (CNF) 복합체에 대한 XRD측정 결과를도 5에 나타내었으며 , 도 5에 나타난바와같이 19.2ᄋ, 25.8°, 29.2° 값을 통해 핵사고날 (hexagonal)의 결정 구조를 갖는 h_Mo¾가 생성되었음을 확인하였다. 또한, 이렇게 생성된 산화몰리브덴 (Mo¾)을 주사현미경 (SEM, Scanning Electron Mi croscope) 이미지로 관찰한 결과를 도 6의 ( 에 나타내었으며, 도 6의 ( 에 나타난바와같이 합성된 h-Mo03- CNF 복합체는 실모양의 CNF와 좀더 굵은 나노로드 (nano rod)가 혼합되어 있었으며, 상기 나노 로드 (nano rod)는 직경 약 250 nm 및 길이 약 2.5 의 나노막내 (nano rod) 형태를갖는것임을확인하였다. 이를통해 상기 복합체가, 핵사고날 산화몰리브덴 (h-Mo03) 나노 로드를 포함하는 카본
파이버 복합체 (h-Mo¾ nano rod-CNF복합체)임을확인하였다.
<h-Mo03 nano rod의 비교실험 >
비교예 1
단계 1에서 카르복시메틸 셀룰로스 (CMC, carboxymethyl cel lulose)를 첨가하지 않고혼합수용액을 제조한 것을 제외하고는, 실시예 1과동일한 방법으로산화몰리브덴 2.1당을생성시켰다 (수득률 70%) . 이렇게 생성된 산화몰리브덴 (Mo03)에 대한 XRD 측정 결과를 도 5에 나타내었으며, 도 7에 나타난 바와 같이 19.2。, 25.8°, 29.2° 값을 통해 핵사고날 (hexagonal )의 결정 구조를 갖는 I1-M0O3임을 확인하였다. 또한, 이렇게 생성된 산화몰리브덴 (M0O3)을 주사현미경 (SEM, Scanning Electron Mi croscope) 이미지로 관찰한 결과를 도 8에 나타내었으며, 도 8에 나타난 바와같이 수평균 입자크기가 약 10,인 마이크로 (mi cro) 크기의 비정형 입자들이 생성되었음을확인하였다. 비교예 2내지 5
단계 1에서 카르복시메틸 셀룰로스 (CMC, carboxymethyl cel lulose) 대신에, 각각 1 용의 PVP (poly(vinyl pyrrol idone)) , 1 요의 PAA (poly(acryl i c acid)) , 1 용의 PVA (poly(vinyl alcohol )) , 1 용의 PSS (poly(styrene sul fonate))를 첨가하여 혼합 수용액을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 산화몰리브덴 2.3 g을 생성시켰다 (수득률 76%) . 이렇게 생성된 산화몰리브덴 (Mo¾)에 대한 XRD 측정 결과, 19.2°,
25.8°, 29.2。 값을 통해 핵사고날 (hexagonal )의 결정 구조를 갖는 h- Mo¾임을 확인하였다. 또한, 이렇게 생성된 산화몰리브덴 (Mo03)을 주사현미경 (SEM, Scanning Electron Mi croscope) 이미지로 결과를 도 9에 나타내었다. 도 9에 나타난바와같이, 비교예 2의 경우 (a: PVP)에 직경 약 600 nm 및 길이 약 5 _의 나노 막내 (nano rod) 형태를 갖는 것이며,
비교예 3의 경우 (b :PM)에 직경 약 1 /패의 비정형 나노 입자 (nano part icle)를 갖는 것을 확인하였으며, 비교예 4의 경우 (c : PVA)에 직경 약 1 쌔! 및 길이 약 20 썬!의 마이크로 막내 (mi cro rod) 형태를 갖는 것을 확인하였으며, 비교예 5의 경우 (d: PSS)에 직경 약 800 nm 및 길이 약 10 /세의 나노막내 (nano rod) 형태를갖는것을확인하였다. 비교예 6
단계 2의 반응을 상압 및 상온 (약 25 °C ) 조건 하에서 약 24시간 동안 수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 몰리브덴 -CMC 복합체를수득하였다. 이렇게 생성된 산화몰리브덴 (Mo¾)을 주사현미경 (SEM, Scanning Electron Microscope) 이미지로 관찰한 결과를 도 10에 나타내었으며, 도 10에 나타난 바와 같이 직경 약 10 /zm 이상의 마이크로 입자 (mi cro part i cle)형태를갖는것임을확인하였다. 비교예 7
무기산을 혼합 수용액을 승온시키기 전에 상온에서 첨가한 다음에, 상압 조건 하에서 약 85 °C로 승온시켜 약 9 시간 동안 반응시킨 것을 제외하고는, 실시예 1과 동일한 방법으로 산화몰리브덴 (Mo¾)를 2.1 g을 수득하였다 (수득률 70%) . 이렇게 생성된 산화몰리브덴 (Mo¾)에 대한 XRD 측정 결과, 19.2° , 25.8° , 29.2ᄋ 값을 통해 핵사고날 (hexagonal )의 결정 구조를 갖는 h_ Mo¾임을 확인하였다. 또한, 이렇게 생성된 산화몰리브덴 (Mo03)을 주사현미경 (SEM, Scanning Electron Microscope) 이미지로 관찰한 결과를 도 11에 나타내었으며, 도 11에 나타난바와같이 직경 약 150 nm및 길이 약 2.5 /패의 나노막내 (nano rod) 형태를가지나, 실시예 1의 나노 막대와 비교하였을때균일성이 현저히 떨어짐을확인하였다.
실험예
실시예 1 내지 5 및 비교예 1에서 제조한 산화몰리브덴을 음극 활물질로 사용하여 수도커패시터용 전극을 제조한 후에, 이에 대한 전지 성능평가를수행하였다.
수도커패시터 제조
전기화학 성능 측정을 위해 활물질:도전재 (acetylene black):바인더 (PVDF)를 70:20:10의 질량비로 에 분산 후 약 ~1 mg/cm2 로딩량 (전체 고형분 기준)으로 글래시 카본 (glassy carbon) 전극 위에 도포 후 건조하여 수도커패시터 전극을 제조하였다 (활물질:도전제:바인더 = 70:20:10,용량은전체고형분물질기준). 전지성능평가
AgMgCl을 기준전극으로 0 V -1.1 V 전압영역에서 순환전류법 (cyclic voltammetry)으로 수도커패시터의 비정전용량 즉정하고 정전류측정하였다. 특히, 1 의 Li2S04 수용액에서 삼전극측정법을 통해 전기화학적 성능을 평가했을 때 5번째 사이클에서 최대 용량을 측정하였다 (활물질:도전제:바인더 = 70:20:10,용량은전체전극물질기준). 실시예 1 내지 5 및 비교예 1에서 제조한 산화몰리브덴을 음극 활물질로포함한수도커패시터용전극에 대한비정전용량측정 결과는하기 표 1에 나타낸바와같다.
【표 1】
또한, 본 발명의 실시예 1, 실시예 4 내지 5, 및 비교예 1에 따라 제조된 핵사고날산화몰리브덴 나노로드, 이를 포함한복합체, 및 비정형 산화몰리브덴를 각각 음극 활물질로 사용한 실험예 1의 전극 시스템에서
측정한그래프를각각도 12내지 14, 및 도 17로 나타내었으며, 구체적인 비정전용량 측정값은 상기 표 1에 나타낸바와같다. 상기 표 1에 나타낸 바와 같이, 본 발명에 따라수용성 셀룰로스를 이용하여 고온 고압의 수열 합성법을 적용하지 않아도 상압의 저온 침전 반응으로용이하게 제조된 실시예 1내지 3의 나노로드( 대 형상을 갖는 핵사고날 산화몰리브덴어-1«003)이 넓은 표면적과 용이한 전자 전달을 특징으로, 수용성 셀룰로스를 사용하지 않고 제조한 비교예 1의 비정형 형상을갖는산화몰리브덴(¾)¾)이 5번째사이클기준비정전용량약 30 17요 를 나타내는 것에 비해, 38.75 八내지 82.9
더 높은 비정전용량을 나타냄을알수있다. 특히, 본 발명에 따라 제조된 핵사고날 산화몰리브덴(: 11 003) 나노 로드를포함하는실시예 4및 5의 카본파이버
복합체)의 경우에, 상기 핵사고날 산화몰리브덴(}1_]\1003) 나노 로드(113110 )가 표면적이 넓기 때문에 탄소계 전도 재료와 잘 혼합됨으로써, 비정전용량이 168. 10
내지 217. 12 八로 현저히 증가되었음을 알 수 있다. 또한, 상기 실시예 4 및 5의 카본 파이버 복합체(^1-1\1003 11^10
극 활물질로 사용한 실험예 1의 전극 시스템에서
' 정전용량그래프를도 15및 16에 나타내었다. 도 15및 도 16에 나타난바와같이, 혼합가스조건에서 열처리 함에 따라 ¾1003의 부분적인 환원을 유도할 수 있고, 이를 통해 ¾03의 전기전도도를
2019/103536 1»(:1/10公018/014548
향상시켜 비정전용량 및 출력특성을 증가시키는 우수한 효과가 있음을 알 수있다.
Claims
【청구항 1]
몰리브덴 산화물 전구체 물질과 수용성 셀룰로스를 포함하는 혼합 수용액을제조하는단계(단계 1); 및
핵사고날산화몰리브덴(: 1«003)나노로드(113110대 의 제조방법 .
【청구항 2]
제 1항에 있어서,
상기 몰리브덴 산화물 전구체 물질은 암모늄 몰리브데이트, 소듐 몰리브데이트, 및 0¾ -암모니아 용액으로 이루어진 군에서 선택되는 1종 이상인,
제조방법.
【청구항 3】
제 1항에 있어서,
상기 수용성 셀룰로스는 카르복시메틸 셀룰로스, 히드록시에틸 셀룰로스, 및 히드록시프로필 셀룰로스로 이루어진 군에서 선택되는 1종 이상인,
제조방법 .
【청구항 4]
제 1항에 있어서,
상기 몰리브덴 산화물 전구체 물질과 수용성 셀룰로스의 중량비는
1 :0.05내지 1:5인,
제조방법 .
【청구항 5]
제 1항에 있어서,
2019/103536 1»(:1^1{2018/014548
상기 무기산은 염산, 질산, 황산, 및 브롬산으로 이루어진 군에서 선택되는 1종이상인,
제조방법.
【청구항 6]
제 1항에 있어서,
상기 몰리브덴 산화물 전구체 물질과무기산의 몰 비는 1:0.5내지
1:2인,
제조방법 .
【청구항 7】
제 1항에 있어서,
상기 단계 1에서, 상기 혼합 수용액에 탄소 나노 섬유, 탄소 나노 튜브, 산화 그라핀으로 이루어지는 군에서 선택되는 1종 이상와 탄소계 전도재료를추가로첨가하는,
제조방법 .
【청구항 8】
제 1항에 있어서,
상기 단계 2에서, 무기산을첨가한후반응액의 가 2이하인, 제조방법 .
【청구항 9]
제 1항에 있어서,
상기 단계 2의 반응시간은 2시간내지 55시간인,
제조방법.
【청구항 10】
제 1항에 있어서,
상기 단계 2의 반응압력은 0.5내지 1.5기압인,
2019/103536 1»(:1^1{2018/014548
제조방법 .
【청구항 11】
제 1항에 있어서,
상기 핵사고날산화몰리브덴(: 1141003) 나노로드(패 대 는 직경이
30 ^내지 500빼이고, 길이가 0.8 n내지 10 _인,
제조방법 .
【청구항 12】
제 1항에 있어서,
상기 핵사고날 산화몰리브덴(11-1\1003) 나노 로드(패 선)는 직경 대비 길이의 종횡비(크3?6 대1 )가 1 : 2내지 1 : 100인,
제조방법.
【청구항 13】
제 1항 내지 제 12항 중 어느 한 항의 제조 방법으로 제조되는, 핵사고날산화몰리브덴(]1-1\1003)나노로드(113110 선) .
【청구항 14】
제 13항의 핵사고날 산화몰리브덴(:뇨410()3) 나노 로드(때예 년)를 포함하는, 수도커패시터용음극.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/753,382 US11530136B2 (en) | 2017-11-24 | 2018-11-23 | Preparation method of hexagonal molybdenum oxide nanorod |
EP18880317.5A EP3670452A4 (en) | 2017-11-24 | 2018-11-23 | METHOD OF MANUFACTURING HEXAGONAL MOLYBDENOXIDE NANO BARS |
CN201880060250.0A CN111094185A (zh) | 2017-11-24 | 2018-11-23 | 六方三氧化钼纳米棒的制备方法 |
JP2020517478A JP6953065B2 (ja) | 2017-11-24 | 2018-11-23 | 六方晶系酸化モリブデンナノロッドの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0158922 | 2017-11-24 | ||
KR1020170158922A KR102423807B1 (ko) | 2017-11-24 | 2017-11-24 | 헥사고날 산화몰리브덴 나노 로드의 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019103536A1 true WO2019103536A1 (ko) | 2019-05-31 |
Family
ID=66631659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/014548 WO2019103536A1 (ko) | 2017-11-24 | 2018-11-23 | 헥사고날 산화몰리브덴 나노 로드의 제조 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11530136B2 (ko) |
EP (1) | EP3670452A4 (ko) |
JP (1) | JP6953065B2 (ko) |
KR (1) | KR102423807B1 (ko) |
CN (1) | CN111094185A (ko) |
WO (1) | WO2019103536A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115321598A (zh) * | 2022-09-23 | 2022-11-11 | 西安稀有金属材料研究院有限公司 | 低成本、高分散、高孔隙和高纯超细三氧化钼的制备方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112076716B (zh) * | 2020-09-04 | 2023-03-03 | 江西善纳新材料科技有限公司 | 一种复合相纳米三氧化钼吸附剂及其制备方法 |
CN112777638A (zh) * | 2021-01-13 | 2021-05-11 | 淮北师范大学 | 一种六棱柱形MoO3粉体的制备方法 |
WO2023013244A1 (ja) * | 2021-08-04 | 2023-02-09 | 三井金属鉱業株式会社 | モリブデン酸溶液およびその製造方法、酸化モリブデン粉末およびその製造方法 |
CN115246656B (zh) * | 2022-01-12 | 2023-07-25 | 青岛大学 | 一种氧化钼/铁纳米材料的制备方法及其应用 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101531401B (zh) | 2009-04-14 | 2011-07-27 | 中国地质大学(武汉) | 一种具有敏感光致变色性能的MoO3纳米杆粉体的制备方法 |
CN103342388B (zh) | 2013-07-18 | 2015-01-14 | 北京化工大学 | 一种α型氧化钼纳米棒气敏材料及其制备方法和应用 |
CN106604892B (zh) | 2014-08-29 | 2019-01-15 | Lg化学株式会社 | 棒状氧化钼的制备方法以及氧化钼复合材料的制备方法 |
CN104371715B (zh) * | 2014-11-28 | 2016-06-22 | 赵兵 | 一种水溶性三氧化钼上转换纳米材料及其制备方法 |
CN106006582A (zh) * | 2016-05-20 | 2016-10-12 | 宁夏大学 | 六方棒状Mo2N的制备和六方棒状Mo2N及应用 |
CN106976909B (zh) * | 2017-01-19 | 2018-07-10 | 青岛科技大学 | 一种六方相h-MoO3微米棒的制备方法和光催化应用 |
CN107021523B (zh) * | 2017-01-19 | 2018-06-01 | 青岛科技大学 | 一种正交相α-MoO3纳米带的制备方法及其光催化应用 |
-
2017
- 2017-11-24 KR KR1020170158922A patent/KR102423807B1/ko active IP Right Grant
-
2018
- 2018-11-23 US US16/753,382 patent/US11530136B2/en active Active
- 2018-11-23 JP JP2020517478A patent/JP6953065B2/ja active Active
- 2018-11-23 CN CN201880060250.0A patent/CN111094185A/zh active Pending
- 2018-11-23 WO PCT/KR2018/014548 patent/WO2019103536A1/ko unknown
- 2018-11-23 EP EP18880317.5A patent/EP3670452A4/en active Pending
Non-Patent Citations (6)
Title |
---|
CHITHAMBARARAJ, A. ET AL.: "Hydrothermally Synthesized h-MoO3 and alpha-MoO3 Nanocrystals: New Findings on Ciystal-Structure-Dependent Charge Transport", CRYSTAL GROWTH AND DESIGN, vol. 16, no. 4, 6 April 2016 (2016-04-06), pages 1984 - 1995, XP055618036 * |
QIN, C. ET AL.: "Preparation of Flower-like ZnO Nanoparticles in a Cellulose Hydrogel Microreactor", BIORESOURCES, vol. 12, no. 2, March 2017 (2017-03-01), pages 3182 - 3191, XP055618035 * |
See also references of EP3670452A4 * |
YANG, Q.-D. ET AL.: "Low Temperature Sonochemical Synthesis of Morphology Variable Mo03 Nanostructures for Performance Enhanced Lithium Ion Battery Applications", ELECTROCHIMICA ACTA, vol. 185, 2015, pages 83 - 89, XP029332531, DOI: 10.1016/j.electacta.2015.10.099 * |
ZHENG, L. ET AL.: "Novel Metastable Hexagonal MoO3 Nanobelts: Synthesis, Photochromic, and Electtochromic Properties", CHEMISTIY OF MATERIALS, vol. 21, no. 23, 11 November 2009 (2009-11-11), pages 5681 - 5690, XP055679136, ISSN: 0897-4756, DOI: 10.1021/cm9023887 * |
ZHOU, J. ET AL.: "Synthesis of Hexagonal MoO3 Nanorods and a Study of Their Electrochemical Performance as Anode Materials for Lithium-ion Batteries", JOURNAL OF MATERIALS CHEMISTRY A, vol. 3, no. 14, 2015, pages 7463 - 7468, XP055618030 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115321598A (zh) * | 2022-09-23 | 2022-11-11 | 西安稀有金属材料研究院有限公司 | 低成本、高分散、高孔隙和高纯超细三氧化钼的制备方法 |
CN115321598B (zh) * | 2022-09-23 | 2023-10-20 | 西安稀有金属材料研究院有限公司 | 低成本、高分散、高孔隙和高纯超细三氧化钼的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102423807B1 (ko) | 2022-07-20 |
KR20190060580A (ko) | 2019-06-03 |
EP3670452A4 (en) | 2020-11-11 |
CN111094185A (zh) | 2020-05-01 |
EP3670452A1 (en) | 2020-06-24 |
US11530136B2 (en) | 2022-12-20 |
JP2020535099A (ja) | 2020-12-03 |
JP6953065B2 (ja) | 2021-10-27 |
US20200283306A1 (en) | 2020-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Iqbal et al. | Ultrasonication-assisted synthesis of novel strontium based mixed phase structures for supercapattery devices | |
Khan et al. | VO2 nanostructures for batteries and supercapacitors: a review | |
Zhou et al. | A review on transition metal nitrides as electrode materials for supercapacitors | |
Zhong et al. | Nickel cobalt manganese ternary carbonate hydroxide nanoflakes branched on cobalt carbonate hydroxide nanowire arrays as novel electrode material for supercapacitors with outstanding performance | |
Abouali et al. | Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors | |
WO2019103536A1 (ko) | 헥사고날 산화몰리브덴 나노 로드의 제조 방법 | |
Chen et al. | Combination of lightweight elements and nanostructured materials for batteries | |
Kiruthiga et al. | Reduced graphene oxide embedded V2O5 nanorods and porous honey carbon as high performance electrodes for hybrid sodium-ion supercapacitors | |
Xu et al. | Fluorine-doped tin oxide nanocrystal/reduced graphene oxide composites as lithium ion battery anode material with high capacity and cycling stability | |
Junais et al. | Supercapattery performances of nanostructured cerium oxide synthesized using polymer soft-template | |
Mai et al. | Vanadium oxide nanowires for Li-ion batteries | |
Yu et al. | Electrospun ZnCo2O4/C composite nanofibers with superior electrochemical performance for supercapacitor | |
Du et al. | Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery | |
Ren et al. | An architectured TiO 2 nanosheet with discrete integrated nanocrystalline subunits and its application in lithium batteries | |
Zhu et al. | Free-standing, binder-free titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries | |
Ghiyasiyan-Arani et al. | Synergic and coupling effect between SnO 2 nanoparticles and hierarchical AlV 3 O 9 microspheres toward emerging electrode materials for lithium-ion battery devices | |
Lewis et al. | Correlating titania nanostructured morphologies with performance as anode materials for lithium-ion batteries | |
Kandhasamy et al. | Copper and zinc oxide anchored silica microsphere: a superior pseudocapacitive positive electrode for aqueous supercapacitor applications | |
Bhoyate et al. | Nanostructured materials for supercapacitor applications | |
KR20190092075A (ko) | 이산화티타늄/그래핀 나노복합체 제조방법 및 이를 음극재로서 이용한 이차전지 제조방법 | |
Seok et al. | Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility | |
Li et al. | Effects of the graphene content and the treatment temperature on the supercapacitive properties of VOx/graphene nanocomposites | |
Chen et al. | Cactus-like iron oxide/carbon porous microspheres lodged in nitrogen-doped carbon nanotubes as anodic electrode materials of lithium ion batteries | |
KR20130047885A (ko) | 산화수산화니켈-탄소나노튜브 나노복합체 전극의 제조 방법 | |
Liang et al. | Ultrafine SnO2 coated by wheat straw-derived carbon used as anode for high-performance lithium ion batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18880317 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020517478 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018880317 Country of ref document: EP Effective date: 20200317 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |