CN106976909B - 一种六方相h-MoO3微米棒的制备方法和光催化应用 - Google Patents

一种六方相h-MoO3微米棒的制备方法和光催化应用 Download PDF

Info

Publication number
CN106976909B
CN106976909B CN201710044259.XA CN201710044259A CN106976909B CN 106976909 B CN106976909 B CN 106976909B CN 201710044259 A CN201710044259 A CN 201710044259A CN 106976909 B CN106976909 B CN 106976909B
Authority
CN
China
Prior art keywords
moo
micron bar
hexagonal phase
phase
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710044259.XA
Other languages
English (en)
Other versions
CN106976909A (zh
Inventor
李忠成
张德亮
马银雪
马娇娇
王德宝
宋彩霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weihai Yingkari Environmental Protection Technology Co ltd
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201710044259.XA priority Critical patent/CN106976909B/zh
Publication of CN106976909A publication Critical patent/CN106976909A/zh
Application granted granted Critical
Publication of CN106976909B publication Critical patent/CN106976909B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种六方相h‑MoO3微米棒的制备方法和光催化应用,具体的说是通过六方相h‑MoO3微米棒室温下高效光催化降解染料废水中的亚甲基蓝。本发明所述的六方相h‑MoO3微米棒是以正交相α‑MoO3为前驱体,通过水热方法合成的,能够有效光催化降解浓度为1‑10mg/L的亚甲基蓝溶液,脱除率为100%,无副产物产生。

Description

一种六方相h-MoO3微米棒的制备方法和光催化应用
技术领域
本发明涉及六方相h-MoO3微米棒及其在光催化中的应用,属于光催化剂的制备与应用领域。
背景技术
六方相h-MoO3具有ReO3结构,是MoO3的一种亚稳相态,基本结构单元是[MoO6]八面体。 h-MoO3是由MoO6八面体共角构成链,链与链之间通过顺位连接成片,片与片之间沿着z轴方向堆积,构成三维阵列。h-MoO3中存在四面体和八面体空位,适合Li+、Na+、K+、NH4 +等离子插入且自由流动。由于h-MoO3独特的晶体结构,使其具有优异的光学、电致变色、催化和电性能。与热力学稳定的正交相α-MoO3比较,亚稳结构的化合物常常表现出新的和增强的物理化学性质,但制备比较困难,制约了其应用研究。
目前使用液相合成方法,特别是水热法或者溶剂热法,是形貌可控合成h-MoO3材料最简便、最有效的方法。常用的合成方法主要有钼酸水热分解和过氧钼酸分解。例如:Bose等HNO3酸化(NH4)6Mo7O24·4H2O,通过120℃加热3h合成了h-MoO3微米棒(A.C.Bose,etal.,Catal.Sci. Technol.,2013,3,1405-1414)。Song等将H2MoO4溶于氨水,用HCl调节pH,通过100℃水热8 h合成了长度为14-25μm、直径为6-7μm的h-MoO3微米棒(J.Song et al.,Mater.Res.Bull., 2005,40,1751-1756)。Chen等在冰水浴条件下将Mo粉溶解于30%H2O2水溶液中,再加入 NH4Cl,160℃水热24h得到长度为12-25μm,直径为1.0-3.5μm的h-MoO3纳米带(W.Chen et al.,Appl.Surf.Sci.,2015,359,114-119)。Xie等将金属钼粉加入30%H2O2中溶解,再加入 NaNO3,150℃水热12h,得到直径为150nm的的h-MoO3纳米材料(Y.Xie etal.,Chem.Mater., 2009,21,5681-5690)。这些制备方法中由于加入酸或使用剧烈反应的钼粉,使制备方法需要进一步提升来调控制备六方相h-MoO3
亚甲基蓝,是一种阳离子型碱性染料。亚甲基蓝是工业上常使用的阳离子型有机染料,广泛用于棉、麻、蚕丝物品、造纸、染料等工业领域。目前,制浆造纸、化工染料、纺织等行业产生大量包含亚甲基的燃料废水。由于亚甲基蓝含有相对稳定的芳香分子结构,很难被水中的微生物降解,对生态环境和人类存在严重危害。因此,含有机染料亚甲基蓝的废水处理对缓解资源危机及改善人类生活环境具有重要的现实意义。光催化氧化法是采用光敏化半导体在紫外线照射下,将价带电子激发跃迁到导带并产生空穴,从而发生氧化反应破坏染料的发色基团,将染料分子降解,最终生成CO2、H2O及无机盐等物质。光催化氧化法具有降解脱色彻底、不造成二次污染等优点,在染料废水处理中的应用前景广阔。目前常用的光催化剂是TiO2、WO3、Fe2O3等,但关于六方相h-MoO3材料对亚甲基蓝的去除,则还研究的较少。因此,研究六方相h-MoO3材料可控合成及调控,使其能够高活性的吸附亚甲基蓝,具有潜在的实用价值。
综上所述,作为半导体氧化物,六方相h-MoO3在光降解亚甲基蓝领域研究的比较少。传统的合成氧化钼的方法中使用酸容易造成环境污染或使用剧烈反应的钼粉存在安全隐患,而以正交相α-MoO3为前驱体水热合成六方相h-MoO3材料尚未有报道。因此,通过绿色、新型路径合成了六方相h-MoO3微米棒,并实现了高活性的催化去除染料废水中的亚甲基蓝。
发明内容:
本发明旨在提供一种新型合成六方相h-MoO3微米棒的方法和在光催化去除亚甲基蓝的应用,实现100%的去除率。
基于上述目的,本发明所涉及的技术方案如下:
1)六方相h-MoO3微米棒具体制备过程如下:在50mL烧杯中加入1.44g正交相α-MoO3粒子和11mL(30%)H2O2,30℃搅拌至溶解,将7g NaNO3加入到上述溶液的烧杯中,搅拌均匀后,将所得液体转入50ml以聚四氟乙烯为内衬的不锈钢反应釜中于170℃水热处理 12h,然后自然冷却至室温,产物经离心洗涤,50℃真空干燥得到六方相h-MoO3微米棒,直径为0.5-1.6μm、长度为2.2-6.1μm。
2)正交相α-MoO3粒子的制备:将商品化的钼酸铵((NH4)6Mo7O24·4H2O)放入蒸发皿,将其放在马弗炉里,在空气气氛下以5℃/min从室温升到500℃,并在此温度保持4h,最后,空气气氛下自然降至室温,得到正交相α-MoO3粒子,粒径大约为0.6-3.1μm。
3)将六方相h-MoO3微米棒催化剂用于光催化降解去除亚甲基蓝反应。六方相h-MoO3微米棒在室温反应30min,亚甲基蓝去除率为37%,反应45min,去除率为52%,反应360min达100%。
本发明具有如下优点:
1)利用正交相α-MoO3为前驱体。水热合成了六方相h-MoO3微米棒,有效的拓展了h-MoO3微米棒的制备方法。
2)室温下六方相h-MoO3微米棒光催化降解亚甲基蓝,实现了亚甲基蓝废水溶液的有效脱除,脱除率为100%。
3)本发明具有环境友好、过程效率高且其光催化降解十分稳定的特点。
附图说明:
图1是六方相h-MoO3微米棒的表征结果,(a)XRD、(b)FT-IR和(c-d)电镜图片。
具体实施方式
下列实施例用来进一步说明本发明,但不因此而限制本发明。
正交相α-MoO3粒子的制备:将8g商品化的钼酸铵((NH4)6Mo7O24·4H2O)放入蒸发皿,将其放在马弗炉里,在空气气氛下以5℃/min从室温升到500℃,并在此温度保持4h,最后,空气气氛下自然降至室温,得到正交相α-MoO3粒子,粒径大约为0.6-3.1μm。
实施例1
六方相h-MoO3微米棒具体制备过程如下:在50mL烧杯中加入1.44g正交相α-MoO3粒子和11mL(30%)H2O2,30℃搅拌至溶解,将7g NaNO3加入到上述溶液的烧杯中,搅拌均匀后,将所得液体转入50ml以聚四氟乙烯为内衬的不锈钢反应釜中于170℃水热处理 12h,然后自然冷却至室温,产物经离心洗涤,50℃真空干燥得到六方相h-MoO3微米棒。
实施例2-11
实施例1所制备的材料用于光催化降解亚甲基蓝废水溶液。
将50mg实施例1中的材料加入到含有100mL浓度为1-10mg/L亚甲基蓝溶液的250mL锥形瓶中,在暗处处理30min以达到吸附/脱附平衡。将反应体系在搅拌条件下室温用300WXe灯照射一定时间(30-480min),反应产物离心分离后取上层清夜,分光光度仪PerkinElmer Lambda 750在最大吸收波长为664nm处分析其组成。反应结果如下。
表1六方相h-MoO3微米棒光降解亚甲基蓝废水溶液的反应结果
由表1可以看出:六方相h-MoO3微米棒光催化降解废水染料中亚甲基蓝有机物,在浓度为10mg/L时反应30min、45min、60min、90min、120min、180min、480min时,脱除率分别为37%、52%、59%、78%、90%、97%、100%。当浓度为1mg/L、2mg/L、5mg/L 时反应180min,脱除率为100%。

Claims (3)

1.一种六方相h-MoO3微米棒的制备方法,具体的说是通过正交相α-MoO3粒子为前驱体,水热合成六方相h-MoO3微米棒,该六方相h-MoO3微米棒室温下可高效光催化降解染料废水中的亚甲基蓝;六方相h-MoO3微米棒由如下步骤制得:将正交相α-MoO3粒子在30 oC下溶解于H2O2,将NaNO3加入到上述溶液中,将所得液体转入以聚四氟乙烯为内衬的不锈钢反应釜中于150-250 oC水热处理2-24 h,得到六方相h-MoO3微米棒。
2.按照权利要求1所述的方法,其特征在于:
将商品化的钼酸铵放在马弗炉里,在空气气氛下从室温升到500 oC,并在此温度保持4h,得到正交相α-MoO3粒子。
3.按照权利要求1或2所述的方法,其特征在于:
六方相h-MoO3微米棒在20-60 oC光催化3-8 h,可光催化降解浓度为1-10 mg/L的亚甲基蓝溶液,脱除率为100%,无副产物产生。
CN201710044259.XA 2017-01-19 2017-01-19 一种六方相h-MoO3微米棒的制备方法和光催化应用 Active CN106976909B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710044259.XA CN106976909B (zh) 2017-01-19 2017-01-19 一种六方相h-MoO3微米棒的制备方法和光催化应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710044259.XA CN106976909B (zh) 2017-01-19 2017-01-19 一种六方相h-MoO3微米棒的制备方法和光催化应用

Publications (2)

Publication Number Publication Date
CN106976909A CN106976909A (zh) 2017-07-25
CN106976909B true CN106976909B (zh) 2018-07-10

Family

ID=59338026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710044259.XA Active CN106976909B (zh) 2017-01-19 2017-01-19 一种六方相h-MoO3微米棒的制备方法和光催化应用

Country Status (1)

Country Link
CN (1) CN106976909B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109502647A (zh) * 2017-09-14 2019-03-22 天津工业大学 一种氧化钼花球的制备方法
KR102423807B1 (ko) * 2017-11-24 2022-07-20 주식회사 엘지에너지솔루션 헥사고날 산화몰리브덴 나노 로드의 제조 방법
CN109019693B (zh) * 2018-09-27 2020-11-17 青岛科技大学 一种单斜相wo3纳米长方体的制备方法及其光催化应用
CN111097429A (zh) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 甲醇氧化制甲醛催化剂及制备方法
CN110124678A (zh) * 2019-05-29 2019-08-16 中国矿业大学 利用废旧硅钼棒制备的Fe2(MoO4)3/MoO3光催化材料、方法及其应用
CN112076716B (zh) * 2020-09-04 2023-03-03 江西善纳新材料科技有限公司 一种复合相纳米三氧化钼吸附剂及其制备方法
CN112777638A (zh) * 2021-01-13 2021-05-11 淮北师范大学 一种六棱柱形MoO3粉体的制备方法
CN115608387B (zh) * 2022-09-21 2024-03-12 青岛科技大学 P-MoO3/P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其光催化应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190402A (zh) * 2014-08-13 2014-12-10 南京信息工程大学 铈掺杂催化剂材料及其制备方法和应用
CN104907064A (zh) * 2015-06-25 2015-09-16 湖北工业大学 降解废水中亚甲基蓝染料的催化剂组合物及其制备方法和应用
CN106315741A (zh) * 2016-10-17 2017-01-11 青岛科技大学 一种去除染料废水中亚甲基蓝的方法

Also Published As

Publication number Publication date
CN106976909A (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
CN106976909B (zh) 一种六方相h-MoO3微米棒的制备方法和光催化应用
Azzam et al. Enhancement the photocatalytic degradation of methylene blue dye using fabricated CNTs/TiO2/AgNPs/Surfactant nanocomposites
Gao et al. Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine
Chen et al. In2O3/g-C3N4 composite photocatalysts with enhanced visible light driven activity
Ratnayake et al. Carbon quantum dots-decorated nano-zirconia: a highly efficient photocatalyst
Ullah et al. Controlled crystal phase and particle size of loaded-TiO2 using clinoptilolite as support via hydrothermal method for degradation of crystal violet dye in aqueous solution
Mohamed et al. Photodegradation of phenol by N-Doped TiO2 anatase/rutile nanorods assembled microsphere under UV and visible light irradiation
Wang et al. Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions
Li et al. Advanced nanostructured photocatalysts based on reduced graphene oxide-flower-like Bi2WO6 composites for an augmented simulated solar photoactivity activity
Mamba et al. Gadolinium nanoparticle-decorated multiwalled carbon nanotube/titania nanocomposites for degradation of methylene blue in water under simulated solar light
CN107021523B (zh) 一种正交相α-MoO3纳米带的制备方法及其光催化应用
Zhang et al. Well-crystallized mesoporous TiO 2 shells for enhanced photocatalytic activity: prepared by carbon coating and silica-protected calcination
Sedghi et al. A one step electrospinning process for the preparation of polyaniline modified TiO2/polyacrylonitile nanocomposite with enhanced photocatalytic activity
Yu et al. AgI-modified TiO2 supported by PAN nanofibers: A heterostructured composite with enhanced visible-light catalytic activity in degrading MO
Li et al. Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fibers
Anson-Casaos et al. Evaluation of sol–gel TiO2 photocatalysts modified with carbon or boron compounds and crystallized in nitrogen or air atmospheres
Lu et al. Synthesis of mesoporous anatase TiO2 sphere with high surface area and enhanced photocatalytic activity
Baca et al. Physicochemical and photocatalytic characterization of mesoporous carbon/titanium dioxide spheres
Puneetha et al. Visible light active ZnO nanostructures prepared by simple co-precipitation method
Ghosh et al. Defect engineered mesoporous 2D graphitic carbon nitride nanosheet photocatalyst for rhodamine B degradation under LED light illumination
Bhuvaneswari et al. Enhanced photocatalytic activity of ethylenediamine-assisted tin oxide (SnO2) nanorods for methylene blue dye degradation
Qaraah et al. Facile route for C–N/Nb 2 O 5 nanonet synthesis based on 2-methylimidazole for visible-light driven photocatalytic degradation of Rhodamine B
Guo et al. Facile template-free one-pot fabrication of TiO2@ C microspheres with high visible-light photocatalytic degradation activity
CN109019693B (zh) 一种单斜相wo3纳米长方体的制备方法及其光催化应用
Xie et al. Facile fabrication of TiO2-SiO2-C composite with anatase/rutile heterostructure via sol-gel process and its enhanced photocatalytic activity in the presence of H2O2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230619

Address after: 264200 Zhongke Innovation Industrial Park 11-1, Fengchao Street, Weihai Economic and Technological Development Zone, Shandong Province

Patentee after: Weihai yingkari Environmental Protection Technology Co.,Ltd.

Address before: 266000 Qingdao University of Science & Technology, 53 Zhengzhou Road, Shibei District, Qingdao, Shandong

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right